JP2016031182A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016031182A
JP2016031182A JP2014153423A JP2014153423A JP2016031182A JP 2016031182 A JP2016031182 A JP 2016031182A JP 2014153423 A JP2014153423 A JP 2014153423A JP 2014153423 A JP2014153423 A JP 2014153423A JP 2016031182 A JP2016031182 A JP 2016031182A
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
outdoor
heating operation
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014153423A
Other languages
Japanese (ja)
Inventor
義久 青木
Yoshihisa Aoki
義久 青木
濱田 進
Susumu Hamada
進 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014153423A priority Critical patent/JP2016031182A/en
Publication of JP2016031182A publication Critical patent/JP2016031182A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which suppresses deterioration of heating capacity, in an operation for performing both defrosting and heating simultaneously by an outdoor heat exchanger connected in parallel.SOLUTION: An air conditioner includes: a main circuit in which a compressor, a four-way valve, an indoor heat exchanger, a decompression device and an outdoor heat exchanger having a first heat exchanger and a second heat exchanger connected in parallel are connected by refrigerant piping; a hot gas by-pass circuit for connecting a discharge side of the compressor and an inlet side at heating operation time of the first heat exchanger, and also, the discharge side of the compressor and the inlet side at heating operation time of the second heat exchanger; an outdoor fan; and control means for performing defrosting/heating operation for defrosting one of the first heat exchanger and the second heat exchanger, and using the other as an evaporator. The control means, at the defrosting/heating operation time, makes first rotational frequency of the outdoor fan from the start of the defrosting of the first heat exchanger before the elapse of first time higher than second rotational frequency of the outdoor fan from the start of the defrosting of the first heat exchanger after the elapse of the first time.SELECTED DRAWING: Figure 9

Description

空気調和機に関する。   It relates to air conditioners.

特許文献1には、室外熱交換器を複数に分けて並列に接続し、並列接続された各室外熱交換器の冷媒回路に対応して暖房運転入口側に主回路開閉弁を設け、圧縮機の吐出側と各室外熱交換器の冷媒回路の暖房運転入口側と連結するホットガスバイパス回路を設け、ホットガスバイパス回路に各室外熱交換器の冷媒回路に対応してバイパス開閉弁を設け、開閉弁と冷凍サイクルの各構成要素を制御する制御装置を設けた空気調和機であって、制御装置は、暖房運転中に室外熱交換器の除霜を開始する場合、主回路開閉弁およびバイパス開閉弁の一部を開閉制御し、複数の室外熱交換器の内の一部を除霜しつつ他の室外熱交換器で暖房する除霜・暖房運転を行い、除霜・暖房運転を複数の室外熱交換器の全てについて繰り返した後に、暖房運転に復帰するように制御することが記載されている。   In Patent Document 1, a plurality of outdoor heat exchangers are connected in parallel, and a main circuit on-off valve is provided on the heating operation inlet side corresponding to the refrigerant circuit of each of the outdoor heat exchangers connected in parallel. A hot gas bypass circuit that is connected to the discharge side of each of the outdoor heat exchangers and the heating operation inlet side of the refrigerant circuit of each outdoor heat exchanger, the hot gas bypass circuit is provided with a bypass on-off valve corresponding to the refrigerant circuit of each outdoor heat exchanger, An air conditioner provided with a control device for controlling each component of an on-off valve and a refrigeration cycle, the control device, when starting defrosting of an outdoor heat exchanger during heating operation, the main circuit on-off valve and bypass A part of the on-off valve is controlled to open and close, and a part of the plurality of outdoor heat exchangers is defrosted and heated with other outdoor heat exchangers to perform a defrosting / heating operation. After repeating all of the outdoor heat exchangers in It has been described to be controlled to return.

さらに、除霜・暖房運転時は、熱交換器の霜の融解に使われるホットガスの熱が外気に流出する量の増加を防ぐ目的で暖房運転時よりも室外熱交換器用の送風装置の回転数を低下または停止するように制御することも記載されている。   In addition, during the defrosting / heating operation, the rotation of the blower for the outdoor heat exchanger is more effective than during the heating operation in order to prevent an increase in the amount of hot gas used to melt the frost in the heat exchanger. Control is also described to reduce or stop the number.

特開2009−281698号公報JP 2009-281698 A

しかしながら、特許文献1の空気調和機は、除霜・暖房運転時における室外熱交換器のファンの回転数を暖房運転時より低下または停止させる為、除霜・暖房運転時の暖房能力が低下する課題があった。   However, since the air conditioner of Patent Document 1 lowers or stops the rotation speed of the fan of the outdoor heat exchanger during defrosting / heating operation compared to during heating operation, the heating capacity during defrosting / heating operation decreases. There was a problem.

本発明は、除霜・暖房運転時に外気に奪われるホットガスの熱量を抑制しつつ、暖房能力の低下を抑制する空気調和機を提供することを目的とする。   An object of this invention is to provide the air conditioner which suppresses the fall of heating capability, suppressing the calorie | heat amount of the hot gas taken away by external air at the time of a defrost and heating operation.

本発明の空気調和機は、圧縮機、四方弁、室内熱交換器、減圧装置、及び、並列に接続された第1の熱交換器と第2の熱交換器とを有する室外熱交換器を冷媒配管で接続した主回路と、圧縮機の吐出側と第1の熱交換器の暖房運転時入口側、及び、圧縮機の吐出側と第2の熱交換器の暖房運転時入口側とを接続するホットガスバイパス回路と、室外ファンと、第1の熱交換器と第2の熱交換器の一方を除霜しつつ、他方を蒸発器とする除霜・暖房運転を行う制御手段とを備え、制御手段は、除霜・暖房運転時、第1の熱交換器の除霜開始から第1の時間経過する迄の室外ファンの第1の回転数を第1の熱交換器の除霜開始から第1の時間経過した後の室外ファンの第2の回転数よりも高くする。   An air conditioner of the present invention includes a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger having a first heat exchanger and a second heat exchanger connected in parallel. The main circuit connected by the refrigerant pipe, the discharge side of the compressor and the inlet side during heating operation of the first heat exchanger, and the discharge side of the compressor and the inlet side during heating operation of the second heat exchanger A hot gas bypass circuit to be connected, an outdoor fan, and a control means for performing a defrosting / heating operation in which one of the first heat exchanger and the second heat exchanger is defrosted and the other is an evaporator. And the control means includes the first rotation number of the outdoor fan from the start of the defrosting of the first heat exchanger until the first time elapses during the defrosting / heating operation. The second rotational speed of the outdoor fan after the first time has elapsed from the start is set higher.

本発明によれば、除霜・暖房運転時に外気に奪われるホットガスの熱量を抑制しつつ、暖房能力の低下を抑制する空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which suppresses the fall of heating capability can be provided, suppressing the calorie | heat amount of the hot gas taken away by external air at the time of a defrost and heating operation.

空気調和機の構成図である。It is a block diagram of an air conditioner. 冷凍サイクルの構成図である。It is a block diagram of a refrigerating cycle. 冷房サイクルの構成図である。It is a block diagram of a cooling cycle. 暖房サイクルの構成図である。It is a block diagram of a heating cycle. 第1の熱交換器を除霜する時の冷媒の流れを示す除霜・暖房サイクルの構成図である。It is a block diagram of the defrosting / heating cycle which shows the flow of the refrigerant | coolant at the time of defrosting a 1st heat exchanger. 第2の熱交換器を除霜する時の冷媒の流れを示す除霜・暖房サイクルの構成図である。It is a block diagram of the defrosting / heating cycle which shows the flow of the refrigerant | coolant at the time of defrosting a 2nd heat exchanger. 除霜・暖房時における室外ファンの回転数を示した図である。It is the figure which showed the rotation speed of the outdoor fan at the time of defrosting and heating. 除霜・暖房時における室外ファンの回転数を示した図である。It is the figure which showed the rotation speed of the outdoor fan at the time of defrosting and heating. 除霜・暖房時における室外ファンの回転数を示した図である。It is the figure which showed the rotation speed of the outdoor fan at the time of defrosting and heating. 除霜・暖房時における室外ファンの回転数と第1の熱交換器の温度を示した図である。It is the figure which showed the rotation speed of the outdoor fan at the time of defrosting and heating, and the temperature of a 1st heat exchanger.

以下、本発明の実施例について図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、空気調和機の全体構成を、図1を用いて説明する。   First, the whole structure of an air conditioner is demonstrated using FIG.

図1は空気調和機の構成図である。空気調和機1は、冷凍サイクルと、送風装置と、これらを制御する制御系とを備えて構成されている。空気調和機1は、室内機2と室外機6とを冷媒配管8、電気配線、信号配線などを介して接続されたセパレート形空気調和機である。   FIG. 1 is a configuration diagram of an air conditioner. The air conditioner 1 includes a refrigeration cycle, a blower, and a control system that controls them. The air conditioner 1 is a separate type air conditioner in which an indoor unit 2 and an outdoor unit 6 are connected via a refrigerant pipe 8, electrical wiring, signal wiring, and the like.

図2は冷凍サイクルの構成図である。冷凍サイクルは、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713a、713b、減圧装置74、室内熱交換器33、バイパス開閉弁715a、715bを備え、これらを冷媒配管を介して接続して構成される。   FIG. 2 is a configuration diagram of the refrigeration cycle. The refrigeration cycle includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on / off valves 713a and 713b, a pressure reducing device 74, an indoor heat exchanger 33, and bypass on / off valves 715a and 715b, which are connected to a refrigerant pipe. Connected to each other.

冷媒配管は、吸込配管710、吐出配管711、利用側ガス管712、液管713、熱源側ガス管714、ホットガスバイパス管715、主回路・バイパス共用管716a、716bなどで構成される。   The refrigerant pipe includes a suction pipe 710, a discharge pipe 711, a use side gas pipe 712, a liquid pipe 713, a heat source side gas pipe 714, a hot gas bypass pipe 715, main circuit / bypass common pipes 716a and 716b, and the like.

室内熱交換器33は室内機2に収納され、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713a、713b、減圧装置74、バイパス開閉弁715a、715bは室外機6に収納される。   The indoor heat exchanger 33 is housed in the indoor unit 2, and the compressor 75, the four-way valve 72, the outdoor heat exchanger 73, the main circuit on / off valves 713 a and 713 b, the decompression device 74, and the bypass on / off valves 715 a and 715 b are provided in the outdoor unit 6. Stored.

四方弁72は冷媒流路切換弁の一例である。四方弁72は、冷房サイクルと暖房サイクルとを切換えるものである。   The four-way valve 72 is an example of a refrigerant flow path switching valve. The four-way valve 72 switches between a cooling cycle and a heating cycle.

冷房サイクルは、圧縮機75から吐出配管711を介して吐出された冷媒を室外熱交換器73へ導き、室内熱交換器33からの冷媒を圧縮機75に戻すサイクルである。暖房サイクルは、圧縮機75から吐出された冷媒を室内熱交換器33へ導き、室外熱交換器73からの冷媒を吸込配管710及びアキュムレータ76を介して圧縮機75に戻すサイクルである。   The cooling cycle is a cycle in which the refrigerant discharged from the compressor 75 through the discharge pipe 711 is guided to the outdoor heat exchanger 73 and the refrigerant from the indoor heat exchanger 33 is returned to the compressor 75. The heating cycle is a cycle in which the refrigerant discharged from the compressor 75 is guided to the indoor heat exchanger 33 and the refrigerant from the outdoor heat exchanger 73 is returned to the compressor 75 via the suction pipe 710 and the accumulator 76.

室外熱交換器73は、冷房サイクルの冷房運転時に高圧側熱交換器(凝縮器)を構成し、暖房サイクルの暖房運転時に低圧側熱交換器(蒸発器)を構成する。また、室内熱交換器33は、暖房サイクルの暖房運転時に高圧側熱交換器(凝縮器)を構成し、冷房サイクルの冷房運転時に低圧側熱交換器(蒸発器)を構成する。   The outdoor heat exchanger 73 constitutes a high-pressure side heat exchanger (condenser) during the cooling operation of the cooling cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the heating operation of the heating cycle. The indoor heat exchanger 33 constitutes a high-pressure side heat exchanger (condenser) during the heating operation of the heating cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the cooling operation of the cooling cycle.

室外熱交換器73は、冷媒配管と熱交換フィンとで構成され、その冷媒配管で形成される冷媒回路を複数に分割して並列に接続されている。この冷媒回路は複数に区分して構成されている。室外熱交換器73は、第1の熱交換器731、第2の熱交換器732とからなっている。前記複数に区分された冷媒回路の室外熱交換器の構成は、各々が分離した構造(第1及び第2の熱交換器が独立した構造)でも一体構造でもよい。   The outdoor heat exchanger 73 includes a refrigerant pipe and heat exchange fins, and a refrigerant circuit formed by the refrigerant pipe is divided into a plurality of pieces and connected in parallel. This refrigerant circuit is divided into a plurality of parts. The outdoor heat exchanger 73 includes a first heat exchanger 731 and a second heat exchanger 732. The configuration of the outdoor heat exchanger of the refrigerant circuit divided into a plurality of sections may be a structure in which each is separated (a structure in which the first and second heat exchangers are independent) or an integrated structure.

室外熱交換器731、732の各々は、主回路開閉弁713a、713bを介して、減圧装置74に接続されている。また、熱交換器(第1の熱交換器731、第2の熱交換器732)と主回路開閉弁713a、713bとの間から分岐し、バイパス開閉弁715a、715bを介して圧縮機75の吐出管711にホットガスバイパス管715で接続されるホットガスバイパス回路が設けられている。   Each of the outdoor heat exchangers 731 and 732 is connected to the decompression device 74 via main circuit on-off valves 713a and 713b. The compressor 75 branches from between the heat exchanger (the first heat exchanger 731 and the second heat exchanger 732) and the main circuit on / off valves 713a and 713b, and is connected to the compressor 75 via the bypass on / off valves 715a and 715b. A hot gas bypass circuit connected to the discharge pipe 711 by a hot gas bypass pipe 715 is provided.

減圧装置74は、室外熱交換器73と室内熱交換器33との間に設けられ、冷房サイクルの冷房時に室外熱交換器73からの冷媒を減圧し、暖房サイクルの暖房運転時に室内熱交換器33からの冷媒を減圧する。なお、本実施例では減圧装置74は絞り開度が制御可能な膨張弁、例えば電動式などで構成されている。   The decompression device 74 is provided between the outdoor heat exchanger 73 and the indoor heat exchanger 33, depressurizes the refrigerant from the outdoor heat exchanger 73 during cooling of the cooling cycle, and the indoor heat exchanger during heating operation of the heating cycle. The refrigerant from 33 is depressurized. In the present embodiment, the decompression device 74 is configured by an expansion valve whose throttle opening can be controlled, for example, an electric type.

主回路開閉弁713a、713bとバイパス開閉弁715a、715bは、電磁式開閉弁で構成され、冷媒の主回路及びホットガスバイパス回路を開閉するものである。   The main circuit on / off valves 713a and 713b and the bypass on / off valves 715a and 715b are composed of electromagnetic on / off valves, and open and close the refrigerant main circuit and the hot gas bypass circuit.

空気調和機1における送風装置は、室外機6に収納された室外送風装置63と、室内機2に収納された室内送風装置31とからなっている。   The air blower in the air conditioner 1 includes an outdoor air blower 63 accommodated in the outdoor unit 6 and an indoor air blower 31 accommodated in the indoor unit 2.

室外送風装置63は、室外熱交換器73に室外空気を流通させる室外ファン631と、室外ファン631を駆動する室外送風モータ633とを備えている。室内送風装置31は、室内熱交換器33に室内の空気を流通させる室内ファン311と、室内ファン311を駆動する室内送風モータ313とを備えている。本実施例では、室外ファン631として軸流ファンを使用し、室内ファン311として横流ファンを使用している。   The outdoor blower 63 includes an outdoor fan 631 that causes outdoor air to flow through the outdoor heat exchanger 73, and an outdoor blower motor 633 that drives the outdoor fan 631. The indoor blower 31 includes an indoor fan 311 that causes indoor air to flow through the indoor heat exchanger 33, and an indoor blower motor 313 that drives the indoor fan 311. In this embodiment, an axial fan is used as the outdoor fan 631 and a cross fan is used as the indoor fan 311.

空気調和機1における制御系は、熱交換器温度検知センサ811a、811b及び812と制御手段10とを備えて構成されている。熱交換器温度検知センサ811a、811b及び812は、暖房時の室外熱交換器73の熱交換器731、732の出口温度を検出する熱交換器温度検知センサ811a、811bと、逆サイクル除霜時の室外熱交換器73の出口温度を検出する熱交換器温度検知センサ812とから構成されている。   The control system in the air conditioner 1 includes heat exchanger temperature detection sensors 811a, 811b and 812 and a control means 10. The heat exchanger temperature detection sensors 811a, 811b and 812 are heat exchanger temperature detection sensors 811a and 811b for detecting the outlet temperature of the heat exchangers 731 and 732 of the outdoor heat exchanger 73 during heating, and during reverse cycle defrosting. It is comprised from the heat exchanger temperature detection sensor 812 which detects the exit temperature of the outdoor heat exchanger 73 of this.

制御手段10は、熱交換器温度検知センサ811a、811bおよび812の検出結果や使用者の運転指令に基づいて、圧縮機75、四方弁72、室外送風モータ633、室内送風モータ313、減圧装置74、主回路開閉弁713a、713bバイパス開閉弁715a、715bなどを制御する。なお、本実施例では、制御手段10は、演算する機能を有する制御装置と、各機器を制御する機能を有する制御装置とを一つで示してあるが、これらが分けて構成されていても良く、或いは各機器を制御する機能を有する制御装置がさらに分けて構成されていても良い。   The control means 10 includes a compressor 75, a four-way valve 72, an outdoor fan motor 633, an indoor fan motor 313, and a pressure reducing device 74 based on the detection results of the heat exchanger temperature detection sensors 811a, 811b and 812 and the user's operation command. The main circuit on / off valves 713a and 713b control the bypass on / off valves 715a and 715b. In the present embodiment, the control means 10 is shown as a single control device having a function of calculating and a control device having a function of controlling each device, but these may be configured separately. Alternatively, a control device having a function of controlling each device may be further divided.

次に、空気調和機1の運転動作を図3〜図8を参照しながら説明する。   Next, the operation of the air conditioner 1 will be described with reference to FIGS.

先ず、冷房サイクルにおける冷房運転について図3を用いて説明する。図3は冷房サイクルの構成図である。空気調和機1の冷房運転をする際には、四方弁72を図3のように切換え、主回路開閉弁713a、713bを開、バイパス開閉弁715a、715bを閉にして冷房運転サイクルを形成すると共に、圧縮機75、室外送風モータ633及び室内送風モータ313を運転する。   First, the cooling operation in the cooling cycle will be described with reference to FIG. FIG. 3 is a configuration diagram of the cooling cycle. When the air conditioner 1 is in cooling operation, the four-way valve 72 is switched as shown in FIG. 3, the main circuit on / off valves 713a and 713b are opened, and the bypass on / off valves 715a and 715b are closed to form a cooling operation cycle. At the same time, the compressor 75, the outdoor fan motor 633, and the indoor fan motor 313 are operated.

圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図3の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室外熱交換器73の熱交換器731、732に入り、室外空気との熱交換で冷却されて凝縮し、液または気液混合の冷媒となる。   The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. It enters into heat exchangers 731 and 732 of the vessel 73, is cooled and condensed by heat exchange with outdoor air, and becomes a refrigerant of liquid or gas-liquid mixture.

次いで、冷媒は、主回路開閉弁713a、713bを介して、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図3で低圧冷媒の流れを示す破線の矢印の方向に流れ、室外機6を出て室内機2に入り、蒸発器となる室内熱交換器33に入り、室内空気と熱交換して室内を冷房し、自身は加熱され、ガス冷媒となって圧縮機75に戻る。   Next, the refrigerant enters the decompression device 74 via the main circuit on-off valves 713a and 713b, expands due to decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 3, exits the outdoor unit 6, enters the indoor unit 2, enters the indoor heat exchanger 33 serving as an evaporator, and The inside of the room is cooled by heat exchange with itself, and is heated to return to the compressor 75 as a gas refrigerant.

次に、暖房サイクルにおける暖房運転について図4を用いて説明する。図4は暖房サイクルの構成図である。暖房運転する際には、四方弁72を図4のように切換え、主回路開閉弁713a、713bを開、バイパス開閉弁715a、715bを閉にして暖房運転サイクルを形成すると共に、圧縮機75、室外送風モータ633及び室内送風モータ313を運転する。   Next, the heating operation in the heating cycle will be described with reference to FIG. FIG. 4 is a block diagram of the heating cycle. When the heating operation is performed, the four-way valve 72 is switched as shown in FIG. 4, the main circuit on / off valves 713a and 713b are opened, the bypass on / off valves 715a and 715b are closed to form a heating operation cycle, and the compressor 75, The outdoor fan motor 633 and the indoor fan motor 313 are operated.

圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図4の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室内熱交換器33に入り、室内空気と熱交換で冷却されて凝縮し、液または気液混合の冷媒となる。   The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. It enters into the vessel 33, is cooled and condensed by exchanging heat with room air, and becomes a refrigerant of liquid or gas-liquid mixture.

凝縮して液または気液混合の状態となった冷媒は、室内機2を出て室外機6に入った冷媒は、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図4で低圧冷媒の流れを示す破線の矢印の方向に流れ、主回路開閉弁713a、713bを介して、蒸発器となる室外熱交換器73の熱交換器731、732に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。上述した暖房サイクルにおける暖房運転動作を繰り返すことにより、暖房運転が継続される。   The refrigerant that has condensed and entered the liquid or gas-liquid mixture exits the indoor unit 2 and enters the outdoor unit 6, enters the decompression device 74, expands due to decompression, and forms a low-pressure gas-liquid mixture refrigerant. Become. This gas-liquid mixed refrigerant flows in the direction of the broken-line arrow indicating the flow of the low-pressure refrigerant in FIG. 4, and through the main circuit on-off valves 713a and 713b, the heat exchanger 731 of the outdoor heat exchanger 73 serving as an evaporator, 732, heat is exchanged with outdoor air and heated to return to the compressor 75 as a gas refrigerant. By repeating the heating operation in the heating cycle described above, the heating operation is continued.

このような暖房運転時には、室外熱交換器73は室外空気から熱を汲み上げるため低温になり、0℃以下となって伝熱面に着霜することがある。特に、外気の温度が低く、湿度が高い時にこの現象は顕著になり、室外空気の流通面に付着した霜により、室外空気の流通が妨げられて室外ファン631の風量が減少する。室外ファン631の風量が減少すると室外熱交換器73の温度が更に低下し、益々霜が着きやすくなる。これにより、室外熱交換器73の着霜量は増え続け、空気調和機1が室外空気から汲み上げる熱量が減少し、暖房能力も減少して、室内を十分に暖房できなくなり、暖房の機能が喪失してしまうので、除霜運転が必要になる。   During such a heating operation, the outdoor heat exchanger 73 is cooled to draw up heat from the outdoor air, and may become 0 ° C. or less and frost on the heat transfer surface. In particular, this phenomenon becomes prominent when the temperature of the outside air is low and the humidity is high, and the flow of outdoor air 631 is reduced by the flow of outdoor air being hindered by frost attached to the outdoor air flow surface. When the air volume of the outdoor fan 631 decreases, the temperature of the outdoor heat exchanger 73 further decreases, and frost is more likely to be formed. As a result, the amount of frost formation in the outdoor heat exchanger 73 continues to increase, the amount of heat pumped from the outdoor air by the air conditioner 1 decreases, the heating capacity also decreases, the room cannot be heated sufficiently, and the heating function is lost. Therefore, defrosting operation is necessary.

次に、暖房サイクルにおける除霜と暖房を同時に行う運転(以下、「除霜・暖房運転」という。)について図5〜8を用いて説明する。図5は、第1の熱交換器を除霜する時の冷媒の流れを示す除霜・暖房サイクルの構成図である。図6は、第2の熱交換器を除霜する時の冷媒の流れを示す除霜・暖房サイクルの構成図である。   Next, an operation for simultaneously performing defrosting and heating in the heating cycle (hereinafter referred to as “defrosting / heating operation”) will be described with reference to FIGS. FIG. 5 is a configuration diagram of a defrosting / heating cycle showing a flow of the refrigerant when the first heat exchanger is defrosted. FIG. 6 is a configuration diagram of a defrosting / heating cycle showing the flow of refrigerant when the second heat exchanger is defrosted.

前述のように温度が低い条件で暖房運転をすると、室外熱交換器73に霜が付き、室外熱交換器73の性能悪化により暖房能力が落ちる。その為、本実施例では、熱交換器温度検知センサ812で検知した温度が所定の温度を下回り、かつ、暖房サイクルでの暖房運転を所定の時間以上行っている場合に、着霜の量が所定の量に達したとみなし、除霜・暖房運転を行う。   As described above, when the heating operation is performed under a condition where the temperature is low, the outdoor heat exchanger 73 is frosted, and the heating capacity is reduced due to the deterioration of the performance of the outdoor heat exchanger 73. Therefore, in this embodiment, when the temperature detected by the heat exchanger temperature detection sensor 812 is below a predetermined temperature and the heating operation in the heating cycle is performed for a predetermined time or more, the amount of frost formation is Defrosting / heating operation is performed assuming that the predetermined amount has been reached.

除霜・暖房運転は、図5に示すように四方弁72を暖房運転時と同じ構成(流路)とし、第1主回路開閉弁713aを閉、第2主回路開閉弁713bを開、第1バイパス開閉弁715aを開、第2バイパス開閉弁715bを閉にして、室外熱交換器73の内の第1の熱交換器731を凝縮器として機能させると共に第2の熱交換器732を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、図7に示すように除霜・暖房運転時における室外ファン631(室外送風モータ633)の第2の回転数F3を暖房運転時における室外ファン631の回転数F2よりも下げる。   In the defrosting / heating operation, as shown in FIG. 5, the four-way valve 72 has the same configuration (flow path) as in the heating operation, the first main circuit opening / closing valve 713a is closed, the second main circuit opening / closing valve 713b is opened, The first bypass on / off valve 715a is opened and the second bypass on / off valve 715b is closed to allow the first heat exchanger 731 in the outdoor heat exchanger 73 to function as a condenser and the second heat exchanger 732 to evaporate. It functions as a vessel and forms a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. At this time, as shown in FIG. 7, the second rotational speed F3 of the outdoor fan 631 (outdoor fan motor 633) during the defrosting / heating operation is set lower than the rotational speed F2 of the outdoor fan 631 during the heating operation.

外気温度が所定温度以下である時、図7に示すように除霜・暖房運転時における室外ファン631を停止させてもよい。   When the outside air temperature is equal to or lower than the predetermined temperature, the outdoor fan 631 during the defrosting / heating operation may be stopped as shown in FIG.

又、図8に示すように、除霜・暖房運転時における室外ファン631を外気温度に応じて変化させてもよい。   Further, as shown in FIG. 8, the outdoor fan 631 during the defrosting / heating operation may be changed according to the outside air temperature.

ここで、圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、吐出管711に吐出され、途中で分岐して、一方の冷媒は四方弁72に入り、他方の冷媒はホットガスバイパス管715に入る。   Here, the gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, is discharged to the discharge pipe 711, branches in the middle, and one refrigerant is the four-way valve 72. And the other refrigerant enters the hot gas bypass pipe 715.

四方弁72に入った一方の冷媒は、図5の実線矢印の方向に流れ、室内熱交換器33に入り、室内空気と熱交換し凝縮され、液または気液混合の冷媒となる。この際に室内の暖房が行われる。液または気液混合の冷媒となった冷媒は、室内機2を出て室外機6に入った冷媒は、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図5で低圧冷媒の流れを示す破線の矢印の方向に流れ、第2主回路開閉弁713bを介して、蒸発器となる室外熱交換器73の第2の熱交換器732に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。   One refrigerant that has entered the four-way valve 72 flows in the direction of the solid arrow in FIG. 5, enters the indoor heat exchanger 33, exchanges heat with the indoor air, and is condensed to become a refrigerant of liquid or gas-liquid mixture. At this time, the room is heated. The refrigerant that has become the liquid or gas-liquid mixed refrigerant exits the indoor unit 2 and enters the outdoor unit 6 enters the decompression device 74, expands due to decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 5, and the second heat exchange of the outdoor heat exchanger 73 serving as an evaporator is performed via the second main circuit on-off valve 713b. It enters into the vessel 732 and is heated by exchanging heat with outdoor air, and returns to the compressor 75 as a gas refrigerant.

他方、ホットガスバイパス管715に入った冷媒は、図5の実線矢印の方向に流れ、第1バイパス開閉弁715aを介して室外熱交換器73の第1の熱交換器731に入る。第1の熱交換器731に入った冷媒は、高温高圧であるので第1の熱交換器731に付着した霜を融解して下方に流下させる。流下した融解水は、蒸発器として作用している下側に位置する第2の熱交換器732に流れ込み、第2の熱交換器732の着霜を融かしながら流下する。尚、外気温が低い場合などでは、流下した融解水は、第2の熱交換器732の着霜を融かしながら流下するに従って低温になり、終りには再氷結する。   On the other hand, the refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 5 and enters the first heat exchanger 731 of the outdoor heat exchanger 73 via the first bypass on-off valve 715a. Since the refrigerant that has entered the first heat exchanger 731 has a high temperature and high pressure, the frost adhering to the first heat exchanger 731 is melted and flows downward. The molten water that has flowed down flows into the second heat exchanger 732 located on the lower side that functions as an evaporator, and flows down while melting the frost on the second heat exchanger 732. When the outside air temperature is low, the molten water that has flowed down becomes lower in temperature as it flows down while melting the frost in the second heat exchanger 732, and finally freezes again.

この時、融解水は第2の熱交換器732に熱を与えながら流下し、その熱は第2の熱交換器732内部の冷媒の気化を促進する。つまり、上側にある第1の熱交換器731で着霜の融解に使われた熱の一部が下側にある第2の熱交換器732の着霜を一部融解し、更に内部の冷媒の気化に寄与して回収され、除霜の熱量が有効に使われる。   At this time, the molten water flows down while applying heat to the second heat exchanger 732, and the heat promotes vaporization of the refrigerant inside the second heat exchanger 732. That is, a part of the heat used for melting the frost in the first heat exchanger 731 on the upper side partially melts the frost on the second heat exchanger 732 on the lower side, and further the internal refrigerant It contributes to the vaporization of gas and is recovered, and the amount of heat of defrosting is used effectively.

第1の熱交換器731の霜を除霜した冷媒は第1の熱交換器731から出たところで第2の熱交換器732で気化した冷媒と合流し圧縮機75に戻る。第1の熱交換器731の除霜運転を所定時間または第1の熱交換器731の出口の熱交換器温度検知センサ811aが所定温度まで上昇すると、続いて第2の熱交換器732の除霜を行う。   The refrigerant defrosted from the frost of the first heat exchanger 731 joins the refrigerant vaporized by the second heat exchanger 732 when it comes out of the first heat exchanger 731 and returns to the compressor 75. When the defrosting operation of the first heat exchanger 731 is performed for a predetermined time or when the heat exchanger temperature detection sensor 811a at the outlet of the first heat exchanger 731 rises to a predetermined temperature, the second heat exchanger 732 is subsequently removed. Do frost.

第2の熱交換器732の除霜に切換えるには、第1主回路開閉弁713aを開、第2主回路開閉弁713bを閉、第1バイパス開閉弁715aを閉、第2バイパス開閉弁715bを開にして、室外熱交換器73の内の第2の熱交換器732を凝縮器として機能させると共に、第1の熱交換器731を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転または停止し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   To switch to defrosting of the second heat exchanger 732, the first main circuit on-off valve 713a is opened, the second main circuit on-off valve 713b is closed, the first bypass on-off valve 715a is closed, and the second bypass on-off valve 715b And the second heat exchanger 732 of the outdoor heat exchanger 73 functions as a condenser, and the first heat exchanger 731 functions as an evaporator to perform defrosting and heating simultaneously. Forms a defrosting / heating cycle. At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1の熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図6の破線の矢印の方向に流れ、第1主回路開閉弁713aを介して、蒸発器となる室外熱交換器73の第1の熱交換器731に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。   Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant decompressed by the decompression device 74 flows in the direction of the broken line arrow in FIG. 6, and passes through the first main circuit on-off valve 713a to the first heat exchanger 731 of the outdoor heat exchanger 73 serving as an evaporator. It enters and is heated by exchanging heat with outdoor air, becomes a gas refrigerant and returns to the compressor 75 and returns to the compressor 75.

ホットガスバイパス管715に入った冷媒は、図6の実線矢印の方向に流れ、第2バイパス開閉弁715bを介して室外熱交換器73の第2の熱交換器732に入る。第2の熱交換器732に入った冷媒は、高温高圧であるので、第2の熱交換器732に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第2の熱交換器732の霜を除霜した冷媒は、第2の熱交換器732を出たところで第1の熱交換器731で気化した冷媒と合流し圧縮機75に戻る。第2の熱交換器732の除霜運転が所定時間経過すると、または第2の熱交換器732の出口の熱交換器温度検知センサ811bが所定温度まで上昇すると、第1主回路開閉弁713a・第2主回路開閉弁713bを開、第1バイパス開閉弁715a・第2バイパス開閉弁715bを閉にして、除霜・暖房運転を終了し、直ちに図4の暖房運転に復帰する。   The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 6 and enters the second heat exchanger 732 of the outdoor heat exchanger 73 via the second bypass on-off valve 715b. Since the refrigerant that has entered the second heat exchanger 732 has a high temperature and a high pressure, the frost adhering to the second heat exchanger 732 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant defrosted from the second heat exchanger 732 joins the refrigerant vaporized by the first heat exchanger 731 when it leaves the second heat exchanger 732 and returns to the compressor 75. When the defrosting operation of the second heat exchanger 732 elapses for a predetermined time or when the heat exchanger temperature detection sensor 811b at the outlet of the second heat exchanger 732 rises to a predetermined temperature, the first main circuit on-off valve 713a The second main circuit opening / closing valve 713b is opened, the first bypass opening / closing valve 715a and the second bypass opening / closing valve 715b are closed, the defrosting / heating operation is terminated, and the operation immediately returns to the heating operation of FIG.

ここで、室外熱交換器73の下部は上部から流れてきた除霜時の融解水が通過するため、融解水による除霜が行われる。そこで、室外熱交換器73の除霜を行う時に、第1の熱交換器731・第2の熱交換器732の順に上側から除霜を行う。これにより、室外熱交換器73に着霜し、着霜量が除霜を必要とする所定量に達したときに、上側にある熱交換器から順に部分除霜・暖房運転を行う。上側にある冷媒回路にホットガスを流すので、室外熱交換器73の上側の冷媒回路の空気側伝熱面に付着した霜が融解し、下方に流れ下る。   Here, since the defrosted water that has flowed from the upper part passes through the lower part of the outdoor heat exchanger 73, defrosting with the melted water is performed. Therefore, when the defrosting of the outdoor heat exchanger 73 is performed, the defrosting is performed from the upper side in the order of the first heat exchanger 731 and the second heat exchanger 732. Thus, when the outdoor heat exchanger 73 is frosted and the frost amount reaches a predetermined amount that requires defrosting, the partial defrosting / heating operation is performed in order from the heat exchanger on the upper side. Since hot gas is allowed to flow through the refrigerant circuit on the upper side, frost adhering to the air-side heat transfer surface of the refrigerant circuit on the upper side of the outdoor heat exchanger 73 is melted and flows downward.

この融解水の温度が高い場合は、融解水は下側にある熱交換器の空気側伝熱面の霜に触れ、これを融解水自身の顕熱で溶かしながら更に流れ下る。流れ下る融解水の温度が融解点まで下がると、融解水はそれ以上霜を融解することなく流下し、流下しながら下側にある熱交換器内を流れる下側の冷媒回路の冷媒で冷却されて凝固する。
このとき、融解水の凝固熱は下側の冷媒回路の冷媒を温めるので、上側にある熱交換器で霜の融解に使用された熱量が回収される。上側にある熱交換器の除霜のための除霜・暖房運転が終了すると、順に下側にある熱交換器の除霜を行うための除霜・暖房運転が開始される。除霜を行う冷媒回路に圧縮機75からのホットガスを流すので、該当する冷媒回路の空気側伝熱面に付着した霜が融解し、下方に流れ下る。
When the temperature of the molten water is high, the molten water touches the frost on the air side heat transfer surface of the heat exchanger on the lower side and further flows down while melting it with the sensible heat of the molten water itself. When the temperature of the flowing molten water falls to the melting point, the molten water flows down without further melting of the frost, and is cooled by the refrigerant in the lower refrigerant circuit flowing in the lower heat exchanger while flowing down. Solidify.
At this time, since the heat of solidification of the molten water warms the refrigerant in the lower refrigerant circuit, the amount of heat used to melt the frost is recovered by the heat exchanger on the upper side. When the defrosting / heating operation for defrosting the upper heat exchanger is completed, the defrosting / heating operation for defrosting the lower heat exchanger in order is started. Since hot gas from the compressor 75 is caused to flow through the refrigerant circuit that performs defrosting, the frost attached to the air-side heat transfer surface of the corresponding refrigerant circuit melts and flows downward.

このとき、除霜が終了した直後の熱交換器は、熱伝達の妨害をしていた霜が除かれているので、外気から冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。このように、除霜・暖房運転時でも暖房能力の大幅な低下を抑制しつつ、暖房を継続することができる。   At this time, the heat exchanger immediately after the completion of the defrosting removes the frost that has hindered the heat transfer, so the heat transfer from the outside air to the refrigerant is performed smoothly, and the heat exchange capacity is restored. , Suppresses the decrease in indoor heating capacity. Thus, heating can be continued while suppressing a significant decrease in heating capacity even during defrosting / heating operation.

また、除霜・暖房運転時には、除霜した熱交換器より下側にある熱交換器の着霜量が一時的に増加することがある。しかし、引き続いて下側にある熱交換器の除霜のための除霜・暖房運転が行われるので、下側にある熱交換器も除霜される。したがって下側にある熱交換器の霜が上側の熱交換器の除霜の影響で増え続けることはない。
このようにして除霜・暖房運転の合計所要時間を逆サイクル除霜運転した場合に比べて短縮することができる。また、この時、圧縮機75の吐出温度の低下が抑制されるので、暖房能力の低下も抑制することができる。このため、室内を暖房しながら除霜をすることが可能で、且つ、除霜・暖房運転の所要時間を短縮できる。
Further, during the defrosting / heating operation, the frosting amount of the heat exchanger below the defrosted heat exchanger may temporarily increase. However, since the defrosting / heating operation for defrosting the heat exchanger on the lower side is subsequently performed, the heat exchanger on the lower side is also defrosted. Therefore, the frost of the lower heat exchanger does not continue to increase due to the defrosting of the upper heat exchanger.
In this way, the total time required for the defrosting / heating operation can be shortened compared to the case where the reverse cycle defrosting operation is performed. Moreover, since the fall of the discharge temperature of the compressor 75 is suppressed at this time, the fall of heating capability can also be suppressed. For this reason, defrosting can be performed while heating the room, and the time required for the defrosting / heating operation can be shortened.

本実施例では、空気調和機の暖房サイクルにおける複数に区分された冷媒回路の室外ファンの回転数を変化させた除霜・暖房運転について以下に説明する。   In the present embodiment, a defrosting / heating operation in which the rotation speed of the outdoor fan of the refrigerant circuit divided into a plurality in the heating cycle of the air conditioner is changed will be described below.

図7に示すように、除霜・暖房運転時における室外ファン631の回転数F1を、暖房運転時の室外ファン631の回転数F2よりも低下させ、外気温度が所定値よりも低い場合、室外ファン631を停止させることにより、除霜中のホットガスが流れる熱交換器に流れる外気を抑え、外気に奪われるホットガスの熱量を抑制し、ホットガスによる熱交換器の霜を溶かす除霜効率を高めている。   As shown in FIG. 7, when the rotation speed F1 of the outdoor fan 631 during the defrosting / heating operation is lower than the rotation speed F2 of the outdoor fan 631 during the heating operation, and the outside air temperature is lower than a predetermined value, Defrosting efficiency that suppresses the outside air flowing through the heat exchanger through which the hot gas being defrosted flows by stopping the fan 631, suppresses the amount of heat of the hot gas taken away by the outside air, and dissolves the frost of the heat exchanger by the hot gas Is increasing.

しかし、除霜・暖房運転時において、室外熱交換器73の第1の熱交換器731の除霜中は第2の熱交換器732で冷媒が蒸発を続け、暖房能力を確保する必要がある。その為、第1の熱交換器731の除霜効率を高める為に室外ファン631の回転数を暖房運転時よりも低下させると、蒸発を続けている第2の熱交換器732の蒸発量が低下することになる。従って、除霜・暖房運転時における暖房能力が低下することになる。   However, during the defrosting / heating operation, during the defrosting of the first heat exchanger 731 of the outdoor heat exchanger 73, it is necessary for the refrigerant to continue to evaporate in the second heat exchanger 732 to ensure the heating capacity. . Therefore, if the rotational speed of the outdoor fan 631 is decreased as compared with that during the heating operation in order to increase the defrosting efficiency of the first heat exchanger 731, the evaporation amount of the second heat exchanger 732 that continues to evaporate is increased. Will be reduced. Therefore, the heating capacity at the time of defrosting / heating operation is reduced.

ところで、第1の熱交換器731の除霜開始時は、第1の熱交換器731の伝熱面は霜に覆われており、外気と十分に熱交換できない状態になっている。すなわち、室外ファン631の回転数を低下させなくても、霜が溶ける迄は、霜が第1の熱交換器731と外気との熱交換を遮断する作用を有する為、強制対流による外気へのホットガスの熱の流出への影響は少ない。   By the way, when the defrosting of the first heat exchanger 731 is started, the heat transfer surface of the first heat exchanger 731 is covered with frost, and the heat cannot be sufficiently exchanged with the outside air. That is, even if the rotational speed of the outdoor fan 631 is not reduced, the frost has an action of blocking heat exchange between the first heat exchanger 731 and the outside air until the frost is melted. There is little effect on the outflow of hot gas heat.

そこで、本実施例に係る空気調和機は、図9に示すように、第1の熱交換器731の除霜開始から第1の時間経過する迄の室外ファン631の第1の回転数F1を第1の熱交換器731の除霜開始から第1の時間t1経過した後の室外ファン631の第2の回転数F3よりも高くしている。すなわち、圧縮機75、四方弁72、室内熱交換器33、減圧装置74、及び、並列に接続された第1の熱交換器731と第2の熱交換器732とを有する室外熱交換器73を冷媒配管で接続した主回路と、圧縮機75の吐出側と第1の熱交換器731の暖房運転時入口側、及び、圧縮機75の吐出側と第2の熱交換器732の暖房運転時入口側とを接続するホットガスバイパス回路と、室外ファン631と、第1の熱交換器731と第2の熱交換器732の一方を除霜しつつ、他方を蒸発器とする除霜・暖房運転を行う制御手段10とを備え、制御手段10は、除霜・暖房運転時、第1の熱交換器731の除霜開始から第1の時間t1経過する迄の室外ファン631の第1の回転数F1を第1の熱交換器731の除霜開始から第1の時間t1経過した後の室外ファン631の第2の回転数F3よりも高くする。   Therefore, as shown in FIG. 9, the air conditioner according to the present embodiment sets the first rotational speed F1 of the outdoor fan 631 from the start of defrosting of the first heat exchanger 731 until the first time elapses. It is higher than the second rotational speed F3 of the outdoor fan 631 after the first time t1 has elapsed from the start of defrosting of the first heat exchanger 731. That is, the outdoor heat exchanger 73 having the compressor 75, the four-way valve 72, the indoor heat exchanger 33, the decompression device 74, and the first heat exchanger 731 and the second heat exchanger 732 connected in parallel. Are connected by refrigerant piping, the discharge side of the compressor 75 and the inlet side during the heating operation of the first heat exchanger 731, and the heating operation of the discharge side of the compressor 75 and the second heat exchanger 732 A defrosting / defrosting circuit that defrosts one of the hot gas bypass circuit, the outdoor fan 631, the first heat exchanger 731 and the second heat exchanger 732 while connecting the hour inlet side to the other. And a control means 10 for performing a heating operation. The control means 10 includes a first outdoor fan 631 for a first time t1 from the start of the defrosting of the first heat exchanger 731 during the defrosting / heating operation. Of the first heat exchanger 731 from the start of defrosting for the first time t Higher than the second rotation speed F3 of the outdoor fan 631 after passage.

このような本実施例に係る空気調和機によれば、除霜・暖房運転時に外気に奪われるホットガスの熱量を抑制しつつ、暖房能力の低下を抑制することができる。   According to such an air conditioner according to the present embodiment, it is possible to suppress a decrease in heating capacity while suppressing the amount of heat of hot gas taken by the outside air during the defrosting / heating operation.

さらに、図9に示すように、制御手段10は、第1の回転数F1を暖房運転時における室外ファン631の回転数F2よりも低くしている。
第1の熱交換器731の除霜開始時であっても、第1の熱交換器731と外気との熱交換が霜によって完全に遮断されるわけではない為、強制対流による外気へのホットガスの熱の流出への影響を減らす必要があるからである。
Furthermore, as shown in FIG. 9, the control means 10 makes the first rotation speed F1 lower than the rotation speed F2 of the outdoor fan 631 during the heating operation.
Even at the start of defrosting of the first heat exchanger 731, heat exchange between the first heat exchanger 731 and the outside air is not completely interrupted by the frost. This is because it is necessary to reduce the influence of the heat flow of the gas.

又、除霜・暖房運転時における室外ファン631の第2の回転数F3を0にしてもよい。   Further, the second rotational speed F3 of the outdoor fan 631 during the defrosting / heating operation may be set to zero.

又、除霜・暖房運転の経過とともに、第1の回転数F1を徐々に、又は、段階的に下げるようにしてもよい。除霜が進むにつれ、強制対流による外気へのホットガスの熱の流出量も増加する為、除霜の進行に合わせて第1の回転数F1を下げることで、より最適な回転数にすることができる。   Moreover, you may make it reduce the 1st rotation speed F1 gradually or in steps with progress of a defrost / heating operation. As the defrosting progresses, the amount of hot gas heat flowing out to the outside air by forced convection also increases. Therefore, the first rotation speed F1 is lowered as the defrosting progresses, so that the rotation speed becomes more optimal. Can do.

本実施例では、第1の時間t1を予め定めた一定値にすることを想定しているが、代わりに、図10に示すように、除湿・暖房運転開始時Time0から、第1の熱交換器731の熱交換器温度検知センサ811aの温度が所定の値Temp1に達した時Time1までの時間を第1の時間t1としてもよい。すなわち、第1の室外熱交換器731の温度を検知する第1の温度センサ(熱交換器温度検知センサ811a)を備え、第1の時間t1を第1の室外熱交換器731の除霜開始時Time0から第1の温度センサ(熱交換器温度検知センサ811a)の温度が所定の温度Temp1となる時Time1迄の時間としてもよい。   In the present embodiment, it is assumed that the first time t1 is set to a predetermined constant value. Instead, as shown in FIG. 10, the first heat exchange is started from Time 0 at the start of dehumidification / heating operation. The time until Time1 when the temperature of the heat exchanger temperature detection sensor 811a of the condenser 731 reaches a predetermined value Temp1 may be set as the first time t1. That is, a first temperature sensor (heat exchanger temperature detection sensor 811a) that detects the temperature of the first outdoor heat exchanger 731 is provided, and defrosting of the first outdoor heat exchanger 731 is started at the first time t1. The time from Time 0 to Time 1 when the temperature of the first temperature sensor (heat exchanger temperature detection sensor 811a) reaches a predetermined temperature Temp1 may be used.

尚、熱交換器温度検知センサ811aは、例えば、第1の熱交換器731の出口に設置される。このような構成によれば、第1の時間t1を除霜の進行に合わせて変えることができる。   The heat exchanger temperature detection sensor 811a is installed at the outlet of the first heat exchanger 731, for example. According to such a configuration, the first time t1 can be changed in accordance with the progress of defrosting.

次に、第1の熱交換器731の除霜が終了すると、第2の熱交換器732の除霜を開始し、この除霜中は第1の熱交換器731を蒸発器として使用し暖房能力を確保している。   Next, when the defrosting of the first heat exchanger 731 is completed, the defrosting of the second heat exchanger 732 is started, and heating is performed using the first heat exchanger 731 as an evaporator during the defrosting. We have the ability.

第2の熱交換器732の除霜開始時も第1の熱交換器731の除霜開始時と同様、第2の熱交換器732の伝熱面は霜に覆われており、外気と十分に熱交換できない状態になっている。その為、霜が第2の熱交換器732と外気との熱交換を遮断する作用を有する。   Similarly to the start of defrosting of the first heat exchanger 731, the heat transfer surface of the second heat exchanger 732 is covered with frost at the start of defrosting of the second heat exchanger 732, and is sufficient with the outside air. Heat cannot be exchanged. Therefore, frost has the effect | action which interrupts | blocks the heat exchange with the 2nd heat exchanger 732 and external air.

そこで、本実施例では、第2の熱交換器732の除霜開始と同時に室外ファン631の回転数を上げ、又、外気温度が所定値より低い場合には停止中の室外ファン631を駆動するようにしている。すなわち、圧縮機75、四方弁72、室内熱交換器33、減圧装置74、及び、並列に接続された第1の熱交換器731と第2の熱交換器732とを有する室外熱交換器73を冷媒配管で接続した主回路と、圧縮機75の吐出側と第1の熱交換器731の暖房運転時入口側、及び、圧縮機75の吐出側と第2の熱交換器732の暖房運転時入口側とを接続するホットガスバイパス回路と、室外ファン631と、第1の熱交換器731と第2の熱交換器732の一方を除霜しつつ、他方を蒸発器とする除霜・暖房運転を行う制御手段10とを備え、制御手段10は、除霜・暖房運転時、第2の熱交換器732の除霜開始から第2の時間t2経過する迄の室外ファン631の第1の回転数F1を第2の熱交換器732の除霜開始から第2の時間t2経過した後の室外ファン631の第2の回転数F3よりも高くする。   Therefore, in this embodiment, the rotational speed of the outdoor fan 631 is increased simultaneously with the start of defrosting of the second heat exchanger 732, and when the outdoor air temperature is lower than a predetermined value, the stopped outdoor fan 631 is driven. I am doing so. That is, the outdoor heat exchanger 73 having the compressor 75, the four-way valve 72, the indoor heat exchanger 33, the decompression device 74, and the first heat exchanger 731 and the second heat exchanger 732 connected in parallel. Are connected by refrigerant piping, the discharge side of the compressor 75 and the inlet side during the heating operation of the first heat exchanger 731, and the heating operation of the discharge side of the compressor 75 and the second heat exchanger 732 A defrosting / defrosting circuit that defrosts one of the hot gas bypass circuit, the outdoor fan 631, the first heat exchanger 731 and the second heat exchanger 732 while connecting the hour inlet side to the other. And a control unit 10 that performs a heating operation. The control unit 10 includes a first outdoor fan 631 that has a first defrost / heating operation until the second time t2 elapses from the start of the defrosting of the second heat exchanger 732. Of the second heat exchanger 732 from the start of defrosting for a second time t. Higher than the second rotation speed F3 of the outdoor fan 631 after passage.

このような本実施例に係る空気調和機によれば、除霜・暖房運転時に外気に奪われるホットガスの熱量を抑制しつつ、暖房能力の低下を抑制することができる。   According to such an air conditioner according to the present embodiment, it is possible to suppress a decrease in heating capacity while suppressing the amount of heat of hot gas taken by the outside air during the defrosting / heating operation.

さらに、第1の回転数F1は、暖房運転時における室外ファン631の回転数F2よりも低い値にしている。第2の熱交換器732の除霜開始時であっても、第2の熱交換器732と外気との熱交換が霜によって完全に遮断されるわけではない為、強制対流による外気へのホットガスの熱の流出への影響を減らす必要があるからである。   Further, the first rotation speed F1 is set to a value lower than the rotation speed F2 of the outdoor fan 631 during the heating operation. Even at the start of defrosting of the second heat exchanger 732, the heat exchange between the second heat exchanger 732 and the outside air is not completely blocked by the frost. This is because it is necessary to reduce the influence of the heat flow of the gas.

又、第2の熱交換器732の除霜開始時における室外ファン631の第2の回転数F3を0にしてもよい。   Further, the second rotational speed F3 of the outdoor fan 631 at the start of defrosting of the second heat exchanger 732 may be set to zero.

又、除霜・暖房運転の経過とともに、第1の回転数F1を徐々に、又は、段階的に下げるようにしてもよい。除霜が進むにつれ、強制対流による外気へのホットガスの熱の流出量も増加する為、除霜の進行に合わせて第1の回転数F1を下げることで、より最適な回転数にすることができる。   Moreover, you may make it reduce the 1st rotation speed F1 gradually or in steps with progress of a defrost / heating operation. As the defrosting progresses, the amount of hot gas heat flowing out to the outside air by forced convection also increases. Therefore, the first rotation speed F1 is lowered as the defrosting progresses, so that the rotation speed becomes more optimal. Can do.

本実施例では、第2の時間t2を予め定めた一定値にすることを想定しているが、代わりに、第2の熱交換器732の除霜開始時から第2の熱交換器732の熱交換器温度検知センサ811bの温度が所定の値に達した時までの時間を第2の時間t2としてもよい。すなわち、第2の室外熱交換器732の温度を検知する第2の温度センサ(熱交換器温度検知センサ811b)を備え、第2の時間t2を第2の室外熱交換器732の除霜開始から第2の温度センサ(熱交換器温度検知センサ811b)の温度が所定の温度となる迄の時間としてもよい。   In the present embodiment, it is assumed that the second time t2 is set to a predetermined constant value, but instead, the second heat exchanger 732 starts from the start of defrosting of the second heat exchanger 732. The time until the temperature of the heat exchanger temperature detection sensor 811b reaches a predetermined value may be set as the second time t2. That is, a second temperature sensor (heat exchanger temperature detection sensor 811b) that detects the temperature of the second outdoor heat exchanger 732 is provided, and defrosting of the second outdoor heat exchanger 732 is started at the second time t2. To the time from which the temperature of the second temperature sensor (heat exchanger temperature detection sensor 811b) reaches a predetermined temperature.

尚、熱交換器温度検知センサ811bは、例えば、第2の熱交換器732の出口に設置される。このような構成によれば、第2の時間t2を除霜の進行に合わせて変えることができる。   The heat exchanger temperature detection sensor 811b is installed at the outlet of the second heat exchanger 732, for example. According to such a configuration, the second time t2 can be changed in accordance with the progress of defrosting.

尚、室外熱交換器73が複数段、例えば4段(第1の熱交換器731、第2の熱交換器732、第3の熱交換器733、第4の熱交換器734)で構成される場合、第1の熱交換器731、第2の熱交換器732に加え、第3の熱交換器733、第4の熱交換器734についても同様に除霜の開始から所定時間に限り室外ファン631の回転数を上げる、あるいは駆動させることにより、前記と同様の効果を得ることができる。   The outdoor heat exchanger 73 is composed of a plurality of stages, for example, four stages (a first heat exchanger 731, a second heat exchanger 732, a third heat exchanger 733, and a fourth heat exchanger 734). In addition to the first heat exchanger 731 and the second heat exchanger 732, the third heat exchanger 733 and the fourth heat exchanger 734 are also outdoors only for a predetermined time from the start of defrosting. The same effects as described above can be obtained by increasing or driving the rotational speed of the fan 631.

又、室外ファン631の回転数を上げる、あるいは駆動させる期間は、第3の熱交換器733、第4の熱交換器734についても、所定時間、又は、除霜の開始から熱交換器の出口の熱交換器温度検知センサ811c、8111dが所定値に達するまでに限り室外ファン631の回転数を上げる、あるいは駆動させることにより、前記と同様の効果を得ることができる。   Further, during the period during which the rotational speed of the outdoor fan 631 is increased or driven, the third heat exchanger 733 and the fourth heat exchanger 734 also have a predetermined time or the outlet of the heat exchanger from the start of defrosting. The same effect as described above can be obtained by increasing or driving the outdoor fan 631 only until the heat exchanger temperature detection sensors 811c and 8111d reach the predetermined value.

又、除霜・暖房運転時の室外ファン631の回転数が一定である場合には外気温度が所定値に近くなると、外気に奪われるホットガスの熱量は増えることになる。そこで、外気温度が図9のように、外気温度により室外ファン631の回転数を段階的に低下させ、外気温度が所定値で停止させることにより、外気に奪われるホットガスの熱量を回転が一定の場合よりも抑えることができ、より効率良く除霜ができる。   Further, when the rotational speed of the outdoor fan 631 during the defrosting / heating operation is constant, when the outside air temperature approaches a predetermined value, the amount of heat of the hot gas taken away by the outside air increases. Therefore, as shown in FIG. 9, the rotation speed of the outdoor fan 631 is decreased stepwise depending on the outside air temperature, and the outside air temperature is stopped at a predetermined value, so that the amount of heat of the hot gas deprived by the outside air remains constant. Therefore, defrosting can be performed more efficiently.

又、本実施例では、第1の熱交換器731の除霜時における室外ファン631の回転数と第2の熱交換器732の除霜時における室外ファン631の回転数を同一としているが、異なる回転数にしてもよい。   In this embodiment, the rotational speed of the outdoor fan 631 when the first heat exchanger 731 is defrosted and the rotational speed of the outdoor fan 631 when the second heat exchanger 732 is defrosted are the same. Different rotation speeds may be used.

10…制御手段、75…圧縮機、72…四方弁、73…室外熱交換器、74…減圧装置、33…室内熱交換器、631…室外ファン、731…第1の熱交換器、732…第2の熱交換器、811a…熱交換器温度検知センサ、811b…熱交換器温度検知センサ、F1…除霜・暖房運転時における室外ファンの第1の回転数、F2…暖房運転時における室外ファンの回転数、F3…除霜・暖房運転時における室外ファンの第2の回転数、t1…第1の時間、t2…第2の時間、Time0…除湿・暖房運転開始時、Time1…第1の熱交換器の熱交換器温度検知センサの温度が所定の値に達した時 DESCRIPTION OF SYMBOLS 10 ... Control means, 75 ... Compressor, 72 ... Four-way valve, 73 ... Outdoor heat exchanger, 74 ... Depressurization device, 33 ... Indoor heat exchanger, 631 ... Outdoor fan, 731 ... First heat exchanger, 732 ... Second heat exchanger, 811a ... heat exchanger temperature detection sensor, 811b ... heat exchanger temperature detection sensor, F1 ... first rotational speed of outdoor fan during defrosting / heating operation, F2 ... outdoor during heating operation Fan rotation speed, F3: second rotation speed of outdoor fan during defrosting / heating operation, t1 ... first time, t2 ... second time, Time0 ... dehumidification / heating operation start, Time1 ... first When the temperature of the heat exchanger temperature detection sensor of the heat exchanger reaches a predetermined value

Claims (5)

圧縮機、四方弁、室内熱交換器、減圧装置、及び、並列に接続された第1の熱交換器と第2の熱交換器とを有する室外熱交換器を冷媒配管で接続した主回路と、
前記圧縮機の吐出側と前記第1の熱交換器の暖房運転時入口側、及び、前記圧縮機の吐出側と前記第2の熱交換器の暖房運転時入口側とを接続するホットガスバイパス回路と、
室外ファンと、
前記第1の熱交換器と前記第2の熱交換器の一方を除霜しつつ、他方を蒸発器とする除霜・暖房運転を行う制御手段とを備え、
前記制御手段は、除霜・暖房運転時、前記第1の熱交換器の除霜開始から第1の時間経過する迄の前記室外ファンの第1の回転数を前記第1の熱交換器の除霜開始から前記第1の時間経過した後の前記室外ファンの第2の回転数よりも高くする空気調和機。
A compressor, a four-way valve, an indoor heat exchanger, a decompressor, and a main circuit in which an outdoor heat exchanger having a first heat exchanger and a second heat exchanger connected in parallel is connected by a refrigerant pipe ,
Hot gas bypass connecting the discharge side of the compressor and the inlet side during heating operation of the first heat exchanger, and the discharge side of the compressor and the inlet side during heating operation of the second heat exchanger Circuit,
With outdoor fans,
Control means for performing defrosting / heating operation using one of the first heat exchanger and the second heat exchanger as an evaporator while defrosting the other,
In the defrosting / heating operation, the control means determines the first rotational speed of the outdoor fan from the start of defrosting of the first heat exchanger until the first time elapses. The air conditioner which makes higher than the 2nd rotation speed of the said outdoor fan after the said 1st time has passed since the defrost start.
圧縮機、四方弁、室内熱交換器、減圧装置、及び、並列に接続された第1の熱交換器と第2の熱交換器とを有する室外熱交換器を冷媒配管で接続した主回路と、
前記圧縮機の吐出側と前記第1の熱交換器の暖房運転時入口側、及び、前記圧縮機の吐出側と前記第2の熱交換器の暖房運転時入口側とを接続するホットガスバイパス回路と、
室外ファンと、
前記第1の熱交換器と前記第2の熱交換器の一方を除霜しつつ、他方を蒸発器とする除霜・暖房運転を行う制御手段とを備え、
前記制御手段は、除霜・暖房運転時、前記第2の熱交換器の除霜開始から第2の時間経過する迄の前記室外ファンの第1の回転数を前記第2の熱交換器の除霜開始から前記第2の時間経過した後の前記室外ファンの第2の回転数よりも高くする空気調和機。
A compressor, a four-way valve, an indoor heat exchanger, a decompressor, and a main circuit in which an outdoor heat exchanger having a first heat exchanger and a second heat exchanger connected in parallel is connected by a refrigerant pipe ,
Hot gas bypass connecting the discharge side of the compressor and the inlet side during heating operation of the first heat exchanger, and the discharge side of the compressor and the inlet side during heating operation of the second heat exchanger Circuit,
With outdoor fans,
Control means for performing defrosting / heating operation using one of the first heat exchanger and the second heat exchanger as an evaporator while defrosting one of the first heat exchanger and the second heat exchanger;
In the defrosting / heating operation, the control means determines the first rotational speed of the outdoor fan from the start of defrosting of the second heat exchanger until the second time elapses. The air conditioner which makes higher than the 2nd rotation speed of the said outdoor fan after the said 2nd time passes since a defrost start.
前記制御手段は、前記第1の回転数を暖房運転時の回転数よりも低くすることを特徴とする請求項1又は2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the control means makes the first rotation speed lower than the rotation speed during heating operation. 前記第1の室外熱交換器の温度を検知する第1の温度センサを備え、
前記第1の時間は、前記第1の室外熱交換器の除霜開始から前記第1の温度センサの温度が所定の温度となる迄の時間であることを特徴とする請求項1に記載の空気調和機。
A first temperature sensor for detecting the temperature of the first outdoor heat exchanger;
The said 1st time is time until the temperature of a said 1st temperature sensor turns into predetermined | prescribed temperature from the defrost start of a said 1st outdoor heat exchanger. Air conditioner.
前記第2の室外熱交換器の温度を検知する第2の温度センサを備え、
前記第2の時間は、前記第2の室外熱交換器の除霜開始から前記第2の温度センサの温度が所定の温度となる迄の時間であることを特徴とする請求項2に記載の空気調和機。
A second temperature sensor for detecting the temperature of the second outdoor heat exchanger;
The said 2nd time is a time from the defrost start of a said 2nd outdoor heat exchanger until the temperature of a said 2nd temperature sensor becomes predetermined | prescribed temperature, It is characterized by the above-mentioned. Air conditioner.
JP2014153423A 2014-07-29 2014-07-29 Air conditioner Pending JP2016031182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153423A JP2016031182A (en) 2014-07-29 2014-07-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153423A JP2016031182A (en) 2014-07-29 2014-07-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2016031182A true JP2016031182A (en) 2016-03-07

Family

ID=55441671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153423A Pending JP2016031182A (en) 2014-07-29 2014-07-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2016031182A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288153A (en) * 2016-08-01 2017-01-04 广东美的暖通设备有限公司 A kind of defrosting control method of air-conditioner
CN107023950A (en) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 Air conditioner without shutting Defrost operation method
CN107101328A (en) * 2017-04-21 2017-08-29 青岛海尔空调器有限总公司 Air-conditioning and its control method
CN109237725A (en) * 2018-08-22 2019-01-18 青岛海尔空调电子有限公司 Circuit, method, apparatus and the computer storage medium of air-conditioner defrosting
CN109564032A (en) * 2016-08-22 2019-04-02 三菱电机株式会社 Heat pump assembly, air conditioner and water heater
CN109855236A (en) * 2019-02-01 2019-06-07 青岛海尔空调器有限总公司 The defrosting control method and computer storage medium of air-conditioner with fixed frequency
CN110470009A (en) * 2019-08-02 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
WO2019224944A1 (en) * 2018-05-23 2019-11-28 三菱電機株式会社 Air conditioner
CN110513817A (en) * 2019-08-26 2019-11-29 Tcl空调器(中山)有限公司 A kind of air conditioner heat-production control method and air conditioner
EP3470754A4 (en) * 2016-06-14 2020-02-26 Toshiba Carrier Corporation Refrigeration cycle device
WO2020111479A1 (en) * 2018-11-29 2020-06-04 엘지전자 주식회사 Air conditioner
CN112628942A (en) * 2020-12-11 2021-04-09 珠海格力电器股份有限公司 Defrosting control method and device, storage medium and terminal
WO2023062908A1 (en) * 2021-10-15 2023-04-20 株式会社富士通ゼネラル Air conditioner

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470754A4 (en) * 2016-06-14 2020-02-26 Toshiba Carrier Corporation Refrigeration cycle device
CN106288153A (en) * 2016-08-01 2017-01-04 广东美的暖通设备有限公司 A kind of defrosting control method of air-conditioner
CN106288153B (en) * 2016-08-01 2019-07-23 广东美的暖通设备有限公司 A kind of defrosting control method of air conditioner
CN109564032A (en) * 2016-08-22 2019-04-02 三菱电机株式会社 Heat pump assembly, air conditioner and water heater
CN109564032B (en) * 2016-08-22 2020-11-27 三菱电机株式会社 Heat pump device, air conditioner and water heater
CN107023950B (en) * 2017-04-01 2020-07-31 青岛海尔空调器有限总公司 Defrosting operation method for air conditioner without stopping
CN107023950A (en) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 Air conditioner without shutting Defrost operation method
CN107101328A (en) * 2017-04-21 2017-08-29 青岛海尔空调器有限总公司 Air-conditioning and its control method
JPWO2019224944A1 (en) * 2018-05-23 2021-03-25 三菱電機株式会社 Air conditioner
JP7042906B2 (en) 2018-05-23 2022-03-28 三菱電機株式会社 Air conditioner
WO2019224944A1 (en) * 2018-05-23 2019-11-28 三菱電機株式会社 Air conditioner
CN109237725A (en) * 2018-08-22 2019-01-18 青岛海尔空调电子有限公司 Circuit, method, apparatus and the computer storage medium of air-conditioner defrosting
WO2020111479A1 (en) * 2018-11-29 2020-06-04 엘지전자 주식회사 Air conditioner
US11131472B2 (en) 2018-11-29 2021-09-28 Lg Electronics Inc. Air conditioner and defrost control method therefor
CN109855236A (en) * 2019-02-01 2019-06-07 青岛海尔空调器有限总公司 The defrosting control method and computer storage medium of air-conditioner with fixed frequency
CN110470009A (en) * 2019-08-02 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
CN110513817B (en) * 2019-08-26 2021-05-18 Tcl空调器(中山)有限公司 Air conditioner heating control method and air conditioner
CN110513817A (en) * 2019-08-26 2019-11-29 Tcl空调器(中山)有限公司 A kind of air conditioner heat-production control method and air conditioner
CN112628942A (en) * 2020-12-11 2021-04-09 珠海格力电器股份有限公司 Defrosting control method and device, storage medium and terminal
CN112628942B (en) * 2020-12-11 2021-11-30 珠海格力电器股份有限公司 Defrosting control method and device, storage medium and terminal
WO2023062908A1 (en) * 2021-10-15 2023-04-20 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
JP2016031182A (en) Air conditioner
JP4272224B2 (en) Air conditioner
JP4990221B2 (en) Air conditioner
JP5692302B2 (en) Air conditioner
JP4069947B2 (en) Refrigeration equipment
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP6138711B2 (en) Air conditioner
JP2012013363A (en) Air conditioner
JP5882152B2 (en) Air conditioner
JP5160303B2 (en) Air conditioner
JP5071100B2 (en) Air conditioner
JP6771302B2 (en) Air conditioner
JP2011080733A (en) Air conditioner
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
JP2014085078A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP5313774B2 (en) Air conditioner
JP5992076B1 (en) Refrigeration cycle apparatus, refrigerator equipped with the refrigeration cycle apparatus, and defrosting method for refrigeration cycle apparatus
JP2014077560A (en) Air conditioner
JP2013108729A (en) Air conditioner
WO2016166873A1 (en) Heat pump system
JP5170299B1 (en) Air conditioner
JPWO2016002009A1 (en) Air conditioner
JP2019100592A (en) Air conditioner
JP2014190641A (en) Air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407