JP5313774B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5313774B2
JP5313774B2 JP2009137238A JP2009137238A JP5313774B2 JP 5313774 B2 JP5313774 B2 JP 5313774B2 JP 2009137238 A JP2009137238 A JP 2009137238A JP 2009137238 A JP2009137238 A JP 2009137238A JP 5313774 B2 JP5313774 B2 JP 5313774B2
Authority
JP
Japan
Prior art keywords
bypass
electric expansion
heat source
expansion valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009137238A
Other languages
Japanese (ja)
Other versions
JP2010281544A (en
Inventor
直之 伏見
博之 川口
純一郎 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009137238A priority Critical patent/JP5313774B2/en
Publication of JP2010281544A publication Critical patent/JP2010281544A/en
Application granted granted Critical
Publication of JP5313774B2 publication Critical patent/JP5313774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水を熱源とする熱源側熱交換器を備えた空気調和機に係り、熱源側熱交換器に流れる水の凍結防止を行う手段を有する空気調和機に関する。   The present invention relates to an air conditioner including a heat source side heat exchanger using water as a heat source, and more particularly to an air conditioner having means for preventing freezing of water flowing in a heat source side heat exchanger.

近年、環境問題は地球規模での課題となっており、ひとつの解決策として省エネルギー化があげられる。水を熱源とする熱源側熱交換器を備えた空気調和機では、冷却塔設備、ボイラ設備、地下水等から供給される未利用熱源である水が利用できること、また、熱源側熱交換器により水と冷媒との間で熱交換が行われるためにその熱交換効率が良く、一般的な空気を熱源とする熱源側熱交換器を備えた空気調和機より高い省エネルギー性を発揮することで、環境負荷の低い製品と言える。一方、水を熱源とする熱源側熱交換器を備えた空気調和機では、熱源側熱交換器が水と冷媒との間で熱交換を行うため、暖房運転時に冷媒温度がマイナスになると、熱源側熱交換器を流れる水が凍り、凍った水が熱交換器を破損させるおそれがある。   In recent years, environmental problems have become a global issue, and one solution is energy saving. In an air conditioner equipped with a heat source side heat exchanger that uses water as a heat source, water that is an unused heat source supplied from cooling tower equipment, boiler equipment, groundwater, etc. can be used. Since heat exchange is performed between the refrigerant and the refrigerant, its heat exchange efficiency is good, and it is more energy efficient than an air conditioner equipped with a heat source side heat exchanger that uses general air as a heat source. It can be said that the product has a low load. On the other hand, in an air conditioner equipped with a heat source side heat exchanger that uses water as a heat source, the heat source side heat exchanger exchanges heat between water and the refrigerant. Water flowing through the side heat exchanger may freeze and the frozen water may damage the heat exchanger.

従来の、水を熱源とする熱源側熱交換器を備えた空気調和機の凍結防止技術としては、特開2003−294292号公報(特許文献1)に記載されたものがある。この特許文献1の空気調和機では、圧縮機の起動後から所定時間経過後に熱源側熱交換器の出口ガス温度を検知することによって、熱源側熱交換器に十分な水が供給されているかを判断し、水が十分に供給されていないと判断した場合に圧縮機を停止して水の凍結を防止するようにしている。   As a conventional anti-freezing technology for an air conditioner including a heat source side heat exchanger using water as a heat source, there is one disclosed in Japanese Patent Laid-Open No. 2003-294292 (Patent Document 1). In the air conditioner of Patent Document 1, whether or not sufficient water is supplied to the heat source side heat exchanger is detected by detecting the outlet gas temperature of the heat source side heat exchanger after a predetermined time has elapsed since the start of the compressor. When it is determined that water is not sufficiently supplied, the compressor is stopped to prevent water from freezing.

特開2003−294292号公報JP 2003-294292 A

しかしながら、上記特許文献1の空気調和機では、水の凍結を防止するための所定時間及び所定温度を設定することが難しく、これらの設定が適切でないと、規定温度で規定流用の水が流れているのにも関わらず、凍結防止のために圧縮機を停止してしまう可能性がある。凍結防止が不要な場合にもかかわらず圧縮機を停止すると、その間、暖房運転ができなくなり、室内の快適性を確保できなくなるという問題が生ずる。   However, in the air conditioner of Patent Document 1, it is difficult to set a predetermined time and a predetermined temperature for preventing freezing of water, and if these settings are not appropriate, water for a specified flow flows at a specified temperature. Nevertheless, the compressor may be stopped to prevent freezing. If the compressor is stopped even when freezing prevention is not necessary, the heating operation cannot be performed during that time, causing a problem that indoor comfort cannot be ensured.

また、水を熱源とする熱源側熱交換器を備えた空気調和機では、熱源側熱交換器を流れる水の使用範囲はできるだけ大きくとることが望ましく、定常運転状態でぎりぎり成り立つ低い水温を使用範囲とすることが考えられる。このようにした場合、熱源側膨張弁の開度や利用ユニットの据付条件等によっては、暖房運転の圧縮機起動時の圧縮機吸込側圧力が低下し、水が凍結するおそれがあることが分かった。   In addition, in an air conditioner equipped with a heat source side heat exchanger that uses water as a heat source, it is desirable that the range of water flowing through the heat source side heat exchanger be as large as possible. It can be considered. In such a case, depending on the opening degree of the heat source side expansion valve, the installation conditions of the utilization unit, etc., it is understood that the compressor suction side pressure at the time of starting the compressor in the heating operation may decrease and the water may freeze. It was.

本発明の目的は、熱源側熱交換器を流れる水の使用範囲を大きくしつつ、熱源側熱交換器を流れる水の凍結を確実に防止して室内の快適性を向上できる空気調和機を提供することにある。   An object of the present invention is to provide an air conditioner capable of improving indoor comfort by reliably preventing freezing of water flowing through a heat source side heat exchanger while increasing the use range of water flowing through the heat source side heat exchanger. There is to do.

前述の目的を達成するために、本発明では、圧縮機、切換え弁、熱源側電動膨張弁、冷媒が流れる冷媒側流路と水が流れる水側流路とを熱交換可能に設けた水を熱源とする熱源側熱交換器、受液器、高圧圧力センサ及び低圧圧力センサを有する熱源ユニットと、利用側熱交換器及び利用側電動膨張弁を有する利用ユニットと、前記熱源ユニットと前記利用ユニットとを接続するガス接続配管及び液接続配管と、制御装置と、を備え、前記圧縮機、前記切換え弁、前記ガス接続配管、前記利用側熱交換器、前記利用側電動膨張弁、前記液接続配管、前記熱源側電動膨張弁、前記熱源側熱交換器の冷媒側流路、前記受液器、前記切換え弁及び前記圧縮機を順に接続して冷凍サイクルを構成し、暖房運転及び冷房運転が可能な空気調和機において、前記冷凍サイクルは前記熱源側電動膨張弁の液接続配管側の液配管と前記受液器の吸込み側の低圧配管とを連通するバイパス回路を備え、前記バイパス回路はバイパス電動膨張弁を備え、前記液配管に設けられた主回路側流路と前記バイパス電動膨張弁の前記バイパス回路の下流側に設けられたバイパス側流路とを有し、主回路側流路を流れる冷媒とバイパス側流路を流れる冷媒とが熱交換可能なバイパス熱交換器を備え、前記制御装置は、暖房運転の圧縮機起動時に前記バイパス電動膨張弁を開いて前記液配管を流れる冷媒の一部を前記バイパス回路を通して前記低圧配管に流して、前記低圧配管の圧力を前記熱源側熱交換器の冷媒側流路を流れる冷媒の温度がマイナスとなる凍結限界圧力よりも高くなるように制御し、暖房運転の圧縮機起動時から定常運転時に移行しても前記バイパス電動膨張弁を開いておくと共に前記低圧配管の低圧圧力が凍結限界圧力になるまで前記圧縮機の運転周波数を上昇させて暖房能力を高めるように制御する構成にしたことにある。 In order to achieve the above-mentioned object, the present invention provides a compressor, a switching valve, a heat source side electric expansion valve, water provided with a refrigerant side flow path through which a refrigerant flows and a water side flow path through which water flows so that heat can be exchanged. Heat source unit having heat source side heat exchanger, liquid receiver, high pressure sensor and low pressure sensor as heat source, utilization unit having utilization side heat exchanger and utilization side electric expansion valve, heat source unit and utilization unit A gas connection pipe and a liquid connection pipe, and a control device, the compressor, the switching valve, the gas connection pipe, the use side heat exchanger, the use side electric expansion valve, and the liquid connection. Piping, the heat source side electric expansion valve, the refrigerant side flow path of the heat source side heat exchanger, the liquid receiver, the switching valve and the compressor are connected in order to constitute a refrigeration cycle, and heating operation and cooling operation are performed. In possible air conditioners, Serial refrigeration cycle includes a bypass circuit that communicates the low-pressure pipe of the suction side of the liquid receiver and the liquid connection pipe side of the liquid pipe of the heat-source-side electric expansion valve, the bypass circuit comprises a bypass electrically-operated expansion valve, wherein A refrigerant having a main circuit side flow path provided in the liquid pipe and a bypass side flow path provided downstream of the bypass circuit of the bypass electric expansion valve; the includes a refrigerant and heat exchange by-pass heat exchanger flows, wherein the control device, a part of the refrigerant to the bypass electrically-operated expansion valve when the compressor starts the heating operation to open have been flowing through the liquid pipe through the bypass circuit the flowing into the low-pressure pipe, the temperature of the refrigerant pressure of the low-pressure pipe flows through the refrigerant flow path of the heat source-side heat exchanger is controlled to be higher than freezing limit pressure becomes negative, the heating operation the compressor Control is performed to increase the heating capacity by increasing the operating frequency of the compressor until the low-pressure pressure of the low-pressure pipe reaches the freezing limit pressure while the bypass electric expansion valve is kept open even after transition from normal operation to normal operation It is in the structure to do.

また、本発明では、圧縮機、切換え弁、熱源側電動膨張弁、水を熱源とする熱源側熱交換器、受液器、高圧圧力センサ及び低圧圧力センサを有する熱源ユニットと、利用側熱交換器及び利用側電動膨張弁を有する利用ユニットと、前記熱源ユニットと前記利用ユニットとを接続するガス接続配管及び液接続配管と、制御装置と、を備え、前記圧縮機、前記切換え弁、前記ガス接続配管、前記利用側熱交換器、前記利用側電動膨張弁、前記液接続配管、前記熱源側電動膨張弁、前記熱源側熱交換器、前記受液器、前記切換え弁及び前記圧縮機を順に接続して冷凍サイクルを構成し、暖房運転及び冷房運転が可能な空気調和機において、前記冷凍サイクルは前記熱源側電動膨張弁の液接続配管側の液配管と前記受液器の吸込み側の低圧配管とを連通するバイパス回路を備え、前記バイパス回路はバイパス電動膨張弁を備え、前記液配管に設けられた主回路側流路と前記バイパス電動膨張弁の前記バイパス回路の下流側に設けられたバイパス側流路とを有し、主回路側流路を流れる冷媒とバイパス側流路を流れる冷媒とが熱交換可能なバイパス熱交換器を備え、前記熱源ユニットは、前記圧縮機の吐出過熱度を検出する前記高圧圧力センサと、前記バイパス回路の低圧配管側の出口過熱度を検出する温度センサと、を備え、前記制御装置は、前記高圧圧力センサ及び前記温度センサに基づいて、前記バイパス電動膨張弁の開度の上限を前記バイパス回路の低圧配管側の出口温度が冷媒の飽和温度以下で且つ前記受液器に液冷媒が溜まり過ぎない開度に制御すると共に、前記バイパス電動膨張弁の開度の下限を前記バイパス回路の低圧配管側の出口過熱度が所定の値以上で且つ全閉にならない開度に制御すること。 In the present invention, a compressor, a switching valve, a heat source side electric expansion valve, a heat source side heat exchanger using water as a heat source, a receiver, a heat source unit having a high pressure sensor and a low pressure sensor, and a use side heat exchange And a use unit having a use side electric expansion valve, a gas connection pipe and a liquid connection pipe connecting the heat source unit and the use unit, and a control device, the compressor, the switching valve, the gas The connecting pipe, the use side heat exchanger, the use side electric expansion valve, the liquid connection pipe, the heat source side electric expansion valve, the heat source side heat exchanger, the liquid receiver, the switching valve, and the compressor in this order. In an air conditioner that is connected to form a refrigeration cycle and is capable of heating operation and cooling operation, the refrigeration cycle includes a liquid pipe on the liquid connection pipe side of the heat source side electric expansion valve and a low pressure on the suction side of the receiver Connect with piping The bypass circuit includes a bypass electric expansion valve, a main circuit side flow path provided in the liquid pipe, and a bypass side flow path provided downstream of the bypass circuit of the bypass electric expansion valve has the door, the refrigerant flowing through the refrigerant and the bypass-side flow path through the main circuit side flow path comprises a heat exchanger by-pass heat exchanger, the heat source unit detects the discharge superheat of the compressor the A high-pressure sensor, and a temperature sensor that detects an outlet superheat degree on the low-pressure piping side of the bypass circuit, and the control device opens the bypass electric expansion valve based on the high-pressure sensor and the temperature sensor. The upper limit of the degree is controlled so that the outlet temperature on the low-pressure piping side of the bypass circuit is equal to or lower than the saturation temperature of the refrigerant and the liquid refrigerant does not accumulate excessively in the receiver, and the bypass electric expansion Controlling the lower limit of the opening degree of the valve opening the low-pressure pipe side outlet superheat degree of the bypass circuit does not become and fully closed at a predetermined value or more.

かかる本発明の空気調和機によれば、熱源側熱交換器を流れる水の使用範囲を大きくしつつ、熱源側熱交換器を流れる水の凍結を確実に防止して室内の快適性を向上できる。   According to the air conditioner of the present invention, it is possible to improve indoor comfort by reliably preventing freezing of the water flowing through the heat source side heat exchanger while increasing the use range of the water flowing through the heat source side heat exchanger. .

本発明の一実施形態の空気調和機の全体構成図。The whole block diagram of the air conditioner of one Embodiment of this invention. 図1の熱源側熱交換器における冷媒圧力と水温との関係を示す特性図。The characteristic view which shows the relationship between the refrigerant | coolant pressure and water temperature in the heat source side heat exchanger of FIG. 図1のバイパス回路を使用した場合と使用しない場合の圧縮機の起動時の低圧圧力の変化を示す図。The figure which shows the change of the low voltage | pressure pressure at the time of starting of the compressor when not using the case where the bypass circuit of FIG. 1 is used. 本実施形態における暖房運転時の低圧圧力及び圧縮機周波数の変化を示す図。The figure which shows the change of the low pressure and the compressor frequency at the time of heating operation in this embodiment. 本実施形態におけるバイパス電動膨張弁の上限及び下限開度を説明する図。The figure explaining the upper limit and lower limit opening degree of a bypass electric expansion valve in this embodiment. 本実施形態における暖房運転時の制御フローチャート。The control flowchart at the time of heating operation in this embodiment.

以下、本発明の一実施形態の空気調和機を図1から図6を参照して説明する。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.

まず、本実施形態の空気調和機50の全体構成、機能等に関して図1を参照しながら説明する。図1は本実態形態の空気調和機50の全体構成図である。   First, the overall configuration, functions, and the like of the air conditioner 50 of the present embodiment will be described with reference to FIG. FIG. 1 is an overall configuration diagram of an air conditioner 50 according to the present embodiment.

空気調和機50は、室外ユニットである熱源ユニット1と、室内ユニットである複数台(本実施形態では、2台)の利用ユニット23と、熱源ユニット1と利用ユニット23とを接続するガス接続配管21及び液接続配管22とから構成されている。ガス接続配管21は、熱源ユニット1の切換え弁3と利用ユニット23の利用側熱交換器25との間を接続するように設けられている。液接続配管22は、熱源ユニット1の主回路側流路7aと利用ユニット23の利用側電動膨張弁24との間を接続するように設けられている。   The air conditioner 50 includes a heat source unit 1 that is an outdoor unit, a plurality of (two in this embodiment) use units 23 that are indoor units, and a gas connection pipe that connects the heat source unit 1 and the use unit 23. 21 and a liquid connection pipe 22. The gas connection pipe 21 is provided so as to connect between the switching valve 3 of the heat source unit 1 and the use side heat exchanger 25 of the use unit 23. The liquid connection pipe 22 is provided so as to connect between the main circuit side flow path 7 a of the heat source unit 1 and the use side electric expansion valve 24 of the use unit 23.

熱源ユニット1は、圧縮機2、切換え弁3、受液器9、熱源側熱交換器4、熱源側電動膨張弁5、バイパス回路6、バイパス熱交換器7及びバイパス電動膨張弁8等からなる冷凍サイクルの構成機器と、高圧圧力センサ10、低圧圧力センサ11、温度センサ12、13及び制御部20等からなる制御系の構成機器とを備えている。熱源ユニット1は水を熱源としている。   The heat source unit 1 includes a compressor 2, a switching valve 3, a liquid receiver 9, a heat source side heat exchanger 4, a heat source side electric expansion valve 5, a bypass circuit 6, a bypass heat exchanger 7, a bypass electric expansion valve 8, and the like. The refrigeration cycle component device and a control system component device including a high pressure sensor 10, a low pressure sensor 11, temperature sensors 12, 13 and a control unit 20 are provided. The heat source unit 1 uses water as a heat source.

圧縮機2は、その運転周波数がインバータで可変して制御される容量可変式圧縮機で構成されている。切換え弁3は、この圧縮機2から吐出された冷媒の流れ方向及び圧縮機2へ吸い込まれる冷媒の流れ方向を切換える切換え弁であり、本実施形態では四方弁で構成されている。受液器9は、圧縮機2にガス冷媒のみが吸い込まれるようにするため、圧縮機2の吸い込み側の低圧配管15に設けられている。   The compressor 2 is composed of a variable capacity compressor whose operating frequency is controlled by an inverter. The switching valve 3 is a switching valve that switches the flow direction of the refrigerant discharged from the compressor 2 and the flow direction of the refrigerant sucked into the compressor 2, and is constituted by a four-way valve in this embodiment. The liquid receiver 9 is provided in the low-pressure pipe 15 on the suction side of the compressor 2 so that only the gas refrigerant is sucked into the compressor 2.

低圧配管15は圧縮機2の吸い込みパイプと切換え弁3とを接続する冷媒配管である。また、圧縮機2の吐出パイプと切換え弁3とは高圧配管31で接続されている。   The low-pressure pipe 15 is a refrigerant pipe that connects the suction pipe of the compressor 2 and the switching valve 3. Further, the discharge pipe of the compressor 2 and the switching valve 3 are connected by a high-pressure pipe 31.

熱源側熱交換器4は、冷媒・水熱交換器で構成され、冷媒が流れる冷媒側流路4aと、水が流れる水側流路4bとを有している。冷媒側流路4aと水側流路4bとは熱交換可能に設けられ、冷媒側流路4aを流れる冷媒と水側流路4bを流れる水とが熱交換される。切換え弁3と冷媒側流路4aとはガス・液配管32を介して接続されている。   The heat source side heat exchanger 4 is composed of a refrigerant / water heat exchanger, and has a refrigerant side flow path 4a through which the refrigerant flows and a water side flow path 4b through which water flows. The refrigerant side flow path 4a and the water side flow path 4b are provided so that heat exchange is possible, and heat is exchanged between the refrigerant flowing through the refrigerant side flow path 4a and the water flowing through the water side flow path 4b. The switching valve 3 and the refrigerant side flow path 4 a are connected via a gas / liquid pipe 32.

熱源側熱交換器4の水側流路4bには熱源ユニット1の外部より水が供給される。この水は、外部のボイラや冷水設備により、温度と流量が熱源ユニットの規定の使用範囲になるように調整されて送られてくる。   Water is supplied from the outside of the heat source unit 1 to the water side flow path 4b of the heat source side heat exchanger 4. This water is sent by an external boiler or cold water equipment so that the temperature and flow rate are adjusted so as to be within the specified use range of the heat source unit.

熱源側電動膨張弁5は、熱源側熱交換器4の冷媒側流路4aと液接続配管22との間に設けられ、流れる冷媒の減圧を行うものである。熱源側電動膨張弁5は冷媒側流路4aと主回路側流路7aとの間に接続されている。熱源側電動膨張弁5と液接続配管22との間は液配管14で接続されている。   The heat source side electric expansion valve 5 is provided between the refrigerant side flow path 4a of the heat source side heat exchanger 4 and the liquid connection pipe 22, and depressurizes the flowing refrigerant. The heat source side electric expansion valve 5 is connected between the refrigerant side flow path 4a and the main circuit side flow path 7a. The heat source side electric expansion valve 5 and the liquid connection pipe 22 are connected by a liquid pipe 14.

バイパス回路6は、液配管14を流れる冷媒をバイパスして受液器9を介して圧縮機2へ戻すものであり、液配管14と低圧配管15とを連通するように接続されている。バイパス回路6には、バイパス電動膨張弁8及びバイパス熱交換器7のバイパス側流路7bが設けられている。   The bypass circuit 6 bypasses the refrigerant flowing through the liquid pipe 14 and returns it to the compressor 2 via the liquid receiver 9, and is connected so that the liquid pipe 14 and the low-pressure pipe 15 communicate with each other. The bypass circuit 6 is provided with a bypass electric expansion valve 8 and a bypass-side flow path 7 b of the bypass heat exchanger 7.

バイパス電動膨張弁8は、液配管14とバイパス側流路7bとの間に設けられ、バイパス回路6への冷媒のバイパス流量を調整するものである。   The bypass electric expansion valve 8 is provided between the liquid pipe 14 and the bypass-side flow path 7 b and adjusts the bypass flow rate of the refrigerant to the bypass circuit 6.

バイパス熱交換器7は、冷凍サイクルの主回路を構成する液配管14に設けられた主回路側流路7aと、バイパス回路6に設けられたバイパス側流路7bとを有し、主回路側流路7aを流れる冷媒とバイパス側流路7bを流れる冷媒とが熱交換されるようになっている。バイパス熱交換器7は、液配管14からバイパス回路6にバイパスされた冷媒を蒸発させるためのものである。   The bypass heat exchanger 7 includes a main circuit side flow path 7a provided in the liquid pipe 14 constituting the main circuit of the refrigeration cycle, and a bypass side flow path 7b provided in the bypass circuit 6, and the main circuit side Heat is exchanged between the refrigerant flowing through the flow path 7a and the refrigerant flowing through the bypass side flow path 7b. The bypass heat exchanger 7 is for evaporating the refrigerant bypassed from the liquid pipe 14 to the bypass circuit 6.

高圧圧力センサ10は、圧縮機2の吐出側の高圧配管31に設けられ、圧縮機2の吐出側圧力(高圧圧力)を検出する。低圧圧力センサ11は、圧縮機2の吸込み側の低圧配管15に設けられ、圧縮機2の吸込み側圧力(低圧圧力)を検出する。温度センサ12は、バイパス回路6のバイパス側流路7bの出口側に設けられ、主回路側流路7aで蒸発した冷媒温度を測定する。   The high pressure sensor 10 is provided in the high pressure pipe 31 on the discharge side of the compressor 2 and detects the discharge side pressure (high pressure) of the compressor 2. The low pressure sensor 11 is provided in the low pressure pipe 15 on the suction side of the compressor 2 and detects the suction side pressure (low pressure) of the compressor 2. The temperature sensor 12 is provided on the outlet side of the bypass side flow path 7b of the bypass circuit 6, and measures the refrigerant temperature evaporated in the main circuit side flow path 7a.

制御部20は、高圧圧力センサ10、低圧圧力センサ11及び温度センサ12等のセンサや、操作スイッチ等に基づいて空気調和機50を構成する機器の制御を行う。本実施形態では、制御部20が熱源ユニット1にのみに設けられているが、利用ユニット23に設けられた制御装置と協働するようにしてもよい。   The control part 20 controls the apparatus which comprises the air conditioner 50 based on sensors, such as the high pressure sensor 10, the low pressure sensor 11, and the temperature sensor 12, and an operation switch. In the present embodiment, the control unit 20 is provided only in the heat source unit 1, but may cooperate with a control device provided in the utilization unit 23.

2台の利用ユニット23は並列に接続されている。各利用ユニット23は、利用側熱交換器25及び利用側電動膨張弁24等からなる冷凍サイクルの構成機器と、利用側熱交換器25に利用側空気を通風する利用側送風機26とを有している。利用側熱交換器25と利用側電動膨張弁24とは、ガス接続配管21と液接続配管22との間に、直列に接続して設けられている。   The two usage units 23 are connected in parallel. Each usage unit 23 includes a component device of a refrigeration cycle including a usage-side heat exchanger 25, a usage-side electric expansion valve 24, and the like, and a usage-side blower 26 that vents usage-side air to the usage-side heat exchanger 25. ing. The use side heat exchanger 25 and the use side electric expansion valve 24 are connected in series between the gas connection pipe 21 and the liquid connection pipe 22.

暖房運転時には、切換え弁3は実線のように切換えられ、利用側電動膨張弁24は全開とされ、熱源側電動膨張弁5が所定の絞り開度とされることにより、冷媒は冷凍サイクルの主回路を実線矢印のように循環される。   During the heating operation, the switching valve 3 is switched as shown by a solid line, the use-side electric expansion valve 24 is fully opened, and the heat source-side electric expansion valve 5 is set to a predetermined throttle opening, so that the refrigerant is the main refrigeration cycle. The circuit is circulated as shown by solid arrows.

即ち、圧縮機2で圧縮されて高温高圧となった冷媒は、切換え弁3及びガス接続配管21を通って、利用ユニット23の利用側熱交換器25に至り、利用側熱交換器25で凝縮して室内空気に放熱して室内の暖房を行う。凝縮して液化された冷媒は、利用側電動膨張弁24、液接続配管22及び主回路側流路7aを通って熱源側電動膨張弁5に至り、熱源側電動膨張弁5で減圧され、熱源側熱交換器4の冷媒側流路4aで水側流路4bの水から吸熱して蒸発される。蒸発された冷媒は、ガス・液配管32、切換え弁3及び低圧配管15及び受液器9を通って圧縮機2に戻される。   That is, the refrigerant compressed to high temperature and high pressure by the compressor 2 passes through the switching valve 3 and the gas connection pipe 21, reaches the use side heat exchanger 25 of the use unit 23, and condenses in the use side heat exchanger 25. Then, heat is released to the room air to heat the room. The condensed and liquefied refrigerant passes through the use side electric expansion valve 24, the liquid connection pipe 22 and the main circuit side flow path 7a, reaches the heat source side electric expansion valve 5, and is depressurized by the heat source side electric expansion valve 5, and the heat source The refrigerant is evaporated by absorbing heat from the water in the water side channel 4b in the refrigerant side channel 4a of the side heat exchanger 4. The evaporated refrigerant is returned to the compressor 2 through the gas / liquid pipe 32, the switching valve 3, the low pressure pipe 15 and the liquid receiver 9.

次に、暖房運転時における熱源側熱交換器4の水側流路4bの水の凍結について、図1及び図2を参照しながら説明する。図2は図1の熱源側熱交換器4における冷媒圧力と水温との関係を示す特性図である。   Next, freezing of water in the water side flow path 4b of the heat source side heat exchanger 4 during heating operation will be described with reference to FIGS. FIG. 2 is a characteristic diagram showing the relationship between the refrigerant pressure and the water temperature in the heat source side heat exchanger 4 of FIG.

暖房運転時には、熱源側熱交換器4の冷媒側流路4aは蒸発器となり、低圧低温の冷媒が流れ込む。冷媒側流路4aに流れ込んだ冷媒は、外部の設備から供給された水から熱を奪い蒸発する。これによって、熱源側熱交換器4の水側流路4b内を流れる水の温度は低下する。   During the heating operation, the refrigerant side flow path 4a of the heat source side heat exchanger 4 serves as an evaporator, and low-pressure and low-temperature refrigerant flows in. The refrigerant that has flowed into the refrigerant side flow path 4a evaporates by removing heat from the water supplied from the external equipment. As a result, the temperature of the water flowing in the water side flow path 4b of the heat source side heat exchanger 4 is lowered.

熱源側熱交換器4の冷媒側流路4aの入口の冷媒温度(冷媒飽和温度)は圧力に依存し、その圧力は圧縮機2の低圧圧力とほぼ同値になる。熱源側熱交換器4の水側流路4b内の水の最低温度はこの冷媒温度とほぼ同値になると考えられるので、水温と低圧圧力との関係は図2に示すようになる。なお、冷媒温度がマイナスになる圧力をP1と表す。   The refrigerant temperature (refrigerant saturation temperature) at the inlet of the refrigerant side flow path 4 a of the heat source side heat exchanger 4 depends on the pressure, and the pressure is almost the same as the low pressure of the compressor 2. Since the minimum temperature of the water in the water side flow path 4b of the heat source side heat exchanger 4 is considered to be substantially equal to the refrigerant temperature, the relationship between the water temperature and the low pressure is as shown in FIG. The pressure at which the refrigerant temperature becomes negative is represented as P1.

一般的な凍結防止方法として、暖房運転時に、低圧圧力が圧力P1以上を保つように制御部20により圧縮機周波数を制御する方法がある。例えば、圧縮機2の低圧圧力が圧力P1を下回ったら、圧縮機周波数を落として冷媒循環量を減少させ、低圧圧力が圧力P1以上(圧力P1より若干高い圧力)に回復するように制御する。   As a general anti-freezing method, there is a method in which the compressor frequency is controlled by the control unit 20 so that the low-pressure pressure is maintained at the pressure P1 or more during heating operation. For example, when the low pressure of the compressor 2 falls below the pressure P1, the compressor frequency is lowered to reduce the refrigerant circulation rate, and control is performed so that the low pressure is restored to the pressure P1 or higher (slightly higher than the pressure P1).

熱源側熱交換器4の水側流路4bを流れる水の温度が高く流量が多い場合には、水の凍結の可能性は低いが、水温が低く(例えば、熱交換後の水温が0℃に近く)水量が少ない場合には、水側流路4b内部の水流によどみのある部分から凍り始める。凍った箇所が一部であっても熱源側熱交換器4の熱交換性能を低下させるため、さらに低圧圧力の低下と共に蒸発温度が下がり、凍結を促進させるケースもある。この凍結を防止するため、圧縮機周波数を落としたり、暖房運転を停止したりすると、室内の快適性を悪化させることになる。   When the temperature of the water flowing through the water-side flow path 4b of the heat source side heat exchanger 4 is high and the flow rate is large, the possibility of water freezing is low, but the water temperature is low (for example, the water temperature after heat exchange is 0 ° C. When the amount of water is small, it begins to freeze from the stagnation part in the water flow path 4b. In order to reduce the heat exchange performance of the heat source side heat exchanger 4 even if the part is frozen, there is a case where the evaporation temperature is further lowered and the freezing is promoted as the low pressure is lowered. In order to prevent this freezing, if the compressor frequency is lowered or the heating operation is stopped, indoor comfort is deteriorated.

そこで、本実施形態では、暖房運転時にバイパス回路6を動作させて、暖房能力を確保しながら凍結を防止できるようになっている。以下に、バイパス回路6の動作を具体的に説明する。   Therefore, in the present embodiment, the bypass circuit 6 is operated during the heating operation so that freezing can be prevented while securing the heating capacity. The operation of the bypass circuit 6 will be specifically described below.

液配管14に流れている冷媒の圧力は圧縮機2の高圧側圧力より少し低いが、低圧配管15の圧力に比べて十分高いため、バイパス電動膨張弁8を開くと、液配管14を流れている冷媒の一部がバイパス回路6を通して低圧配管15に流れ、低圧配管15の圧力が上昇する。これによって、低圧配管15に連通されるガス・液配管32、熱源側熱交換器4の冷媒側流路4a及び熱源側電動膨張弁5までの配管の冷媒の圧力が上昇する。この冷媒圧力の上昇と共に冷媒温度も上昇をする。 The pressure of the refrigerant flowing through the liquid pipe 14 is slightly lower than the high-pressure side pressure of the compressor 2, for sufficiently high compared to the pressure of the low-pressure pipe 15, open the bypass electric expansion valve 8, flows through the liquid piping 14 A part of the refrigerant flowing flows into the low-pressure pipe 15 through the bypass circuit 6, and the pressure of the low-pressure pipe 15 rises. Accordingly, the pressure of the refrigerant in the gas / liquid pipe 32 communicated with the low pressure pipe 15, the refrigerant side flow path 4 a of the heat source side heat exchanger 4 and the pipe to the heat source side electric expansion valve 5 is increased. As the refrigerant pressure rises, the refrigerant temperature also rises.

液配管14の液冷媒がそのまま低圧配管15に流れ、圧縮機2に吸い込まれるのを防止するため、バイパス回路6中にバイパス熱交換器7が設置されている。このバイパス熱交換器7では、利用ユニット23から戻った液冷媒とバイパス電動膨張弁8を通り減圧された2層冷媒との熱交換が行われる。バイパス電動膨張弁8を通った冷媒は液配管14の液冷媒よりも低温になるため、液配管14の冷媒から熱を奪い蒸発する。これにより圧縮機2の低圧側に液冷媒がそのまま戻らなくなると共に、暖房能力を増大することができる。   In order to prevent the liquid refrigerant in the liquid pipe 14 from flowing into the low-pressure pipe 15 as it is and sucked into the compressor 2, a bypass heat exchanger 7 is installed in the bypass circuit 6. In the bypass heat exchanger 7, heat exchange is performed between the liquid refrigerant returned from the utilization unit 23 and the two-layer refrigerant decompressed through the bypass electric expansion valve 8. Since the refrigerant that has passed through the bypass electric expansion valve 8 has a lower temperature than the liquid refrigerant in the liquid pipe 14, it takes heat from the refrigerant in the liquid pipe 14 and evaporates. As a result, the liquid refrigerant does not return to the low pressure side of the compressor 2 and the heating capacity can be increased.

次に、暖房運転における圧縮機2の起動時の凍結防止について、図1及び図3を参照しながら説明する。図3は図1のバイパス回路6を使用した場合と使用しない場合の圧縮機2の起動時の低圧圧力の変化を示す図である。   Next, prevention of freezing when the compressor 2 is started in the heating operation will be described with reference to FIGS. 1 and 3. FIG. 3 is a diagram showing a change in low-pressure pressure when the compressor 2 is started up when the bypass circuit 6 of FIG. 1 is used and when it is not used.

熱源側電動膨張弁5の開度、利用ユニット23の据付条件によっては、低圧配管15の低圧圧力が圧縮機2の起動時に定常運転状態の圧力より下がることがある。水を熱源とする熱源側熱交換器4を備えた空気調和機50では、水の使用範囲をできるだけ大きくとることが望ましく、定常運転状態でぎりぎり成り立つ低い水温を使用範囲としている。   Depending on the opening degree of the heat source side electric expansion valve 5 and the installation conditions of the utilization unit 23, the low pressure of the low pressure pipe 15 may fall below the pressure in the steady operation state when the compressor 2 is started. In the air conditioner 50 provided with the heat source side heat exchanger 4 that uses water as a heat source, it is desirable to make the use range of water as large as possible, and the use range is a low water temperature that is barely established in a steady operation state.

このため、バイパス回路6を使用しない場合の起動時の低圧圧力は、図3の特性曲線3に示すように、圧力P1を下回ることがある。水が流れている場合は全面的に凍りはしないため、運転が継続されて低圧圧力が上昇してくれば氷は溶けてくるが、その間蒸発能力の低下を招き、暖房能力が低下したままとなり、室内を早期に快適にすることができない。 Therefore, low pressure during startup when not using the bypass circuit 6, as shown in the characteristic curve 3 3 of Figure 3, may be less than the pressure P1. If the water is flowing, it will not freeze completely, so if the operation continues and the low pressure rises, the ice will melt, but during that time the evaporation capacity will decline and the heating capacity will remain lowered. Unable to make the room comfortable early.

そこで、本実施形態では、起動直後にバイパス電動膨張弁8を開き、バイパス回路6を使用することにより、低圧圧力が圧力P1より低下することを防止している。即ち、起動直後にバイパス電動膨張弁8を開くことにより、起動時の低圧圧力は、図3の特性曲線34に示すように、圧力P1より高い圧力P2まで低下するように抑制している。これによって、起動時から定常運転に至るまで圧縮機周波数を落とすことなく、暖房能力を確保することができ、早期に室内を快適な状態とすることができる。   Therefore, in the present embodiment, the bypass electric expansion valve 8 is opened immediately after startup and the bypass circuit 6 is used to prevent the low pressure from dropping below the pressure P1. That is, by opening the bypass electric expansion valve 8 immediately after the start-up, the low-pressure pressure at the start-up is suppressed to drop to a pressure P2 higher than the pressure P1, as shown by the characteristic curve 34 in FIG. Thus, the heating capacity can be ensured without lowering the compressor frequency from the start to the steady operation, and the room can be comfortably brought to an early stage.

また、起動直後は液配管14の温度はあまり上昇しておらず、バイパス回路6の冷媒は、熱交換器7のバイパス側流路7bを通過しても主回路側流路7aの冷媒からの吸熱量が少なく十分な蒸発できずに液冷媒を含んで低圧配管15に戻るおそれがある。そこで、本実施形態では、圧縮機2の吸込み側に受液器9を備え、バイパス回路6から液冷媒を含む冷媒が流れてきても、その液冷媒を受液器9に溜めて圧縮機2に吸い込まれることがないようになっている。 In addition, the temperature of the liquid pipe 14 does not rise so much immediately after the start-up, and the refrigerant in the bypass circuit 6 is separated from the refrigerant in the main circuit side flow path 7a even if it passes through the bypass side flow path 7b of the heat exchanger 7. there is a possibility to return to the low-pressure pipe 15 contains a liquid refrigerant can not sufficiently evaporated endotherm less. Therefore, in the present embodiment, the liquid receiver 9 is provided on the suction side of the compressor 2, and even if a refrigerant containing liquid refrigerant flows from the bypass circuit 6, the liquid refrigerant is accumulated in the liquid receiver 9 and the compressor 2. It is designed not to be inhaled.

次に、バイパス回路6におけるバイパス電動膨張弁8及びバイパス熱交換器7の具体的な動作について、図1を参照しながら説明する。   Next, specific operations of the bypass electric expansion valve 8 and the bypass heat exchanger 7 in the bypass circuit 6 will be described with reference to FIG.

暖房運転時の低圧圧力を上昇させる方法として、圧縮機2の吐出側の高圧配管31から冷媒を吸込み側の低圧配管15に直接バイパスさせることも考えられる。しかし、このバイパス方法では、冷凍サイクルの主回路の高圧側である利用側熱交換器25に流すべき冷媒を低圧側に直接流してしまうため、利用ユニット23を流れる冷媒が減り、冷凍サイクルを有効に利用できないこととなる。   As a method of increasing the low-pressure pressure during the heating operation, it is conceivable to bypass the refrigerant directly from the high-pressure pipe 31 on the discharge side of the compressor 2 to the low-pressure pipe 15 on the suction side. However, in this bypass method, since the refrigerant that should flow to the use side heat exchanger 25 that is the high pressure side of the main circuit of the refrigeration cycle is directly flowed to the low pressure side, the refrigerant flowing through the use unit 23 is reduced, and the refrigeration cycle is effective. Will not be available.

そこで、本実施形態では、暖房運転時に、利用側熱交換器25で室内空気に放熱して凝縮した液冷媒をバイパス回路6に分流し、バイパス電動膨張弁8で減圧し、バイパス側流路7bで蒸発させてバイパス側流路7bより吸熱する(換言すれば、主回路側流路7aを流れる冷媒の熱をバイパス側流路7bの冷媒に放熱する)ようにしているので、バイパスする冷媒の熱量を有効に利用することができる。これによって、冷凍サイクルの暖房能力を向上することができる。   Therefore, in the present embodiment, during the heating operation, the liquid refrigerant radiated and condensed to the indoor air by the use side heat exchanger 25 is diverted to the bypass circuit 6, decompressed by the bypass electric expansion valve 8, and the bypass side flow path 7b. So that the heat is absorbed from the bypass side flow path 7b (in other words, the heat of the refrigerant flowing through the main circuit side flow path 7a is dissipated to the refrigerant of the bypass side flow path 7b). The amount of heat can be used effectively. Thereby, the heating capacity of the refrigeration cycle can be improved.

次に、空気調和機50の暖房運転時の制御動作について、図4から図6を参照しながら具体的に説明する。図4は本実施形態における暖房運転時の低圧圧力及び圧縮機周波数の変化を示す図、図5は本実施形態におけるバイパス電動膨張弁8の上限及び下限開度を説明する図、図6は本実施形態における暖房運転時の制御フローチャートである。   Next, the control operation during the heating operation of the air conditioner 50 will be specifically described with reference to FIGS. 4 to 6. FIG. 4 is a diagram showing changes in low-pressure pressure and compressor frequency during heating operation in the present embodiment, FIG. 5 is a diagram for explaining the upper limit and lower limit opening of the bypass electric expansion valve 8 in the present embodiment, and FIG. It is a control flowchart at the time of heating operation in an embodiment.

暖房運転における圧縮機2の起動時にバイパス回路6を使用すると、図3及び図4に示すように、低圧配管15の低圧圧力をバイパス回路6を使用しない場合の低圧配管15の最も低い低圧圧力P1よりも高い圧力P2に抑えることができる。   When the bypass circuit 6 is used when the compressor 2 is started in the heating operation, as shown in FIGS. 3 and 4, the low pressure of the low pressure pipe 15 is the lowest low pressure P1 when the bypass circuit 6 is not used. Can be suppressed to a higher pressure P2.

本実施形態では、暖房運転の定常運転状態で、この圧力P1より高い分を利用して、低圧配管15の低圧圧力が凍結限界圧力P1になるまで圧縮機周波数を上昇させている。これにより、バイパス回路6を未使用の場合の定常運転状態と同じ低圧圧力を維持しつつ暖房能力を上昇させることができる。   In the present embodiment, the compressor frequency is increased until the low-pressure pressure of the low-pressure pipe 15 reaches the freezing limit pressure P1 by utilizing the amount higher than the pressure P1 in the steady operation state of the heating operation. Thereby, heating capability can be raised, maintaining the low pressure same as the steady operation state in case the bypass circuit 6 is unused.

ここで、バイパス電動膨張弁8を所定以上開いても低圧圧力の上昇に効果はなく、逆にバイパス電動膨張弁8を開き過ぎるとバイパスした冷媒が熱交換器7で蒸発しきれず低圧側に流れ込み受液器2に溜まり込む。そうなると、バイパス出口過熱度の低下を招き、圧縮機2の信頼性を低下させることになる。更に、受液器9に溜まった冷媒は、本来であれば冷凍サイクルの主回路を流れて凝縮圧力を上昇させるのに使われるべきものであり、それがなされないため凝縮圧力が低下し、吹き出し温度も低下し快適性に悪影響を与える。   Here, even if the bypass electric expansion valve 8 is opened more than a predetermined value, there is no effect in increasing the low pressure. Conversely, if the bypass electric expansion valve 8 is opened too much, the bypassed refrigerant cannot be completely evaporated in the heat exchanger 7 and flows into the low pressure side. It collects in the liquid receiver 2. If it becomes so, the fall of a bypass exit superheat will be caused and the reliability of the compressor 2 will be reduced. Further, the refrigerant accumulated in the liquid receiver 9 should be used to increase the condensation pressure by flowing through the main circuit of the refrigeration cycle, and since this is not done, the condensation pressure is reduced and blown out. The temperature is also lowered, adversely affecting comfort.

そのため、本実施形態では、圧縮機2の吐出過熱度及びバイパス出口過熱度が所定の値になるようにバイパス電動膨張弁8の開度を制御部20により調整し、受液器9の冷媒の溜まる量を抑制し、快適性を確保できるようになっている。図6に示す制御フローチャートに沿って具体的に説明する。   Therefore, in this embodiment, the opening degree of the bypass electric expansion valve 8 is adjusted by the control unit 20 so that the discharge superheat degree and the bypass outlet superheat degree of the compressor 2 become predetermined values, and the refrigerant of the liquid receiver 9 is adjusted. The amount that accumulates can be controlled to ensure comfort. A specific description will be given along the control flowchart shown in FIG.

圧縮機2の起動と同時にバイパス電動膨張弁8を所定量開く(ステップS1)。次いで、圧縮機2の吐出過熱度が目標値より高いか低いかを判定する(ステップS2)。この判定で、目標値より高い場合は、現在の開度が上限値でないことを確認し(ステップS3)、上限値以上でない場合に、圧縮機2の過熱度を下げるようにバイパス電動膨張弁8を一定量開き(ステップS4)、ステップS2に戻る。圧縮機2の吐出過熱度は高圧圧力センサ10の測定値より算出する。   Simultaneously with the start of the compressor 2, the bypass electric expansion valve 8 is opened by a predetermined amount (step S1). Next, it is determined whether the discharge superheat degree of the compressor 2 is higher or lower than the target value (step S2). In this determination, if it is higher than the target value, it is confirmed that the current opening degree is not the upper limit value (step S3). Is opened by a certain amount (step S4), and the process returns to step S2. The discharge superheat degree of the compressor 2 is calculated from the measured value of the high pressure sensor 10.

ステップS2で、圧縮機2の吐出過熱度が目標値より低い場合、バイパス出口過熱度が高いか低いかを判定する(ステップS5)。この判定結果に基づいてバイパス電動膨張弁8を制御する。具体的には、バイパス出口過熱度が所定の値より高ければ、バイパス電動膨張弁8を開いても圧縮機2の吐出過熱度を低下させることはないため、バイパス電動膨張弁8を開く(ステップS8)。バイパス出口過熱度が所定の値より低い場合は、バイパス電動膨張弁8の開度が下限値でないことを確認し(ステップS6)、下限値以下でない場合にバイパス電動膨張弁8を所定量閉じる(ステップS7)。バイパス出口過熱度は低圧圧力センサ11及び温度センサ12の測定値より算出する。   If the discharge superheat degree of the compressor 2 is lower than the target value in step S2, it is determined whether the bypass outlet superheat degree is high or low (step S5). The bypass electric expansion valve 8 is controlled based on the determination result. Specifically, if the bypass outlet superheat degree is higher than a predetermined value, even if the bypass electric expansion valve 8 is opened, the discharge superheat degree of the compressor 2 is not lowered. S8). If the bypass outlet superheat degree is lower than the predetermined value, it is confirmed that the opening degree of the bypass electric expansion valve 8 is not the lower limit value (step S6), and if not, the bypass electric expansion valve 8 is closed by a predetermined amount ( Step S7). The bypass outlet superheat degree is calculated from the measured values of the low pressure sensor 11 and the temperature sensor 12.

ここで、バイパス電動膨張弁8の上限値と下限値の設定例を図5に示す。上限値はバイパス回路6のバイパス側流路7bの出口温度が冷媒の飽和温度以下となり且つ受液器9に液冷媒が溜まり過ぎない開度であり、下限値はバイパス回路6のバイパス側流路7b出口過熱度が所定の値以上で且つ全閉にならない開度を設定する。   Here, an example of setting the upper limit value and the lower limit value of the bypass electric expansion valve 8 is shown in FIG. The upper limit is an opening at which the outlet temperature of the bypass-side flow path 7b of the bypass circuit 6 is equal to or lower than the saturation temperature of the refrigerant and the liquid refrigerant does not accumulate in the liquid receiver 9, and the lower-limit value is the bypass-side flow path of the bypass circuit 6. The opening degree which the 7b outlet superheat degree is more than a predetermined value and does not fully close is set.

1…熱源ユニット、2…圧縮機、3…切換え弁、4…熱源側熱交換器、4a…冷媒側流路、4b…水側流路、5…熱源側電動膨張弁、6…バイパス回路、7…バイパス熱交換器、7a…主回路側流路、7b…バイパス側流路、8…バイパス電動膨張弁、9…受液器、10…高圧圧力センサ、11…低圧圧力センサ、12…温度センサ、13…温度センサ、14…液配管、15…低圧配管、20…制御部、21…ガス接続配管、22…液接続配管、23…利用ユニット、24…利用側電動膨張弁、25…利用側熱交換器、26…利用側送風機、31…高圧配管、32…ガス・液配管。   DESCRIPTION OF SYMBOLS 1 ... Heat source unit, 2 ... Compressor, 3 ... Switching valve, 4 ... Heat source side heat exchanger, 4a ... Refrigerant side flow path, 4b ... Water side flow path, 5 ... Heat source side electric expansion valve, 6 ... Bypass circuit, DESCRIPTION OF SYMBOLS 7 ... Bypass heat exchanger, 7a ... Main circuit side flow path, 7b ... Bypass side flow path, 8 ... Bypass electric expansion valve, 9 ... Liquid receiver, 10 ... High pressure sensor, 11 ... Low pressure sensor, 12 ... Temperature Sensor: 13 ... Temperature sensor, 14 ... Liquid pipe, 15 ... Low pressure pipe, 20 ... Control part, 21 ... Gas connection pipe, 22 ... Liquid connection pipe, 23 ... Use unit, 24 ... Use side electric expansion valve, 25 ... Use Side heat exchanger, 26 ... use side blower, 31 ... high pressure piping, 32 ... gas / liquid piping.

Claims (2)

圧縮機、切換え弁、熱源側電動膨張弁、冷媒が流れる冷媒側流路と水が流れる水側流路とを熱交換可能に設けた水を熱源とする熱源側熱交換器、受液器、高圧圧力センサ及び低圧圧力センサを有する熱源ユニットと、利用側熱交換器及び利用側電動膨張弁を有する利用ユニットと、前記熱源ユニットと前記利用ユニットとを接続するガス接続配管及び液接続配管と、制御装置と、を備え、
前記圧縮機、前記切換え弁、前記ガス接続配管、前記利用側熱交換器、前記利用側電動膨張弁、前記液接続配管、前記熱源側電動膨張弁、前記熱源側熱交換器の冷媒側流路、前記受液器、前記切換え弁及び前記圧縮機を順に接続して冷凍サイクルを構成し、
暖房運転及び冷房運転が可能な空気調和機において、
前記冷凍サイクルは前記熱源側電動膨張弁の液接続配管側の液配管と前記受液器の吸込み側の低圧配管とを連通するバイパス回路を備え、
前記バイパス回路はバイパス電動膨張弁を備え、
前記液配管に設けられた主回路側流路と前記バイパス電動膨張弁の前記バイパス回路の下流側に設けられたバイパス側流路とを有し、主回路側流路を流れる冷媒とバイパス側流路を流れる冷媒とが熱交換可能なバイパス熱交換器を備え、
前記制御装置は、
暖房運転の圧縮機起動時に前記バイパス電動膨張弁を開いて前記液配管を流れる冷媒の一部を前記バイパス回路を通して前記低圧配管に流して、前記低圧配管の圧力を前記熱源側熱交換器の冷媒側流路を流れる冷媒の温度がマイナスとなる凍結限界圧力よりも高くなるように制御し、
暖房運転の圧縮機起動時から定常運転時に移行しても前記バイパス電動膨張弁を開いておくと共に前記低圧配管の低圧圧力が凍結限界圧力になるまで前記圧縮機の運転周波数を上昇させて暖房能力を高めるように制御する
ことを特徴とする空気調和機。
A compressor, a switching valve, a heat source side electric expansion valve, a heat source side heat exchanger using water as a heat source, a liquid receiver, and a water side flow path through which a refrigerant flows and a water side flow path through which water flows . A heat source unit having a high pressure sensor and a low pressure sensor, a use unit having a use side heat exchanger and a use side electric expansion valve, a gas connection pipe and a liquid connection pipe connecting the heat source unit and the use unit, A control device,
The compressor, the switching valve, the gas connection pipe, the use side heat exchanger, the use side electric expansion valve, the liquid connection pipe, the heat source side electric expansion valve, and the refrigerant side flow path of the heat source side heat exchanger The refrigeration cycle is configured by sequentially connecting the liquid receiver, the switching valve, and the compressor,
In an air conditioner capable of heating operation and cooling operation,
The refrigeration cycle includes a bypass circuit that communicates a liquid pipe on the liquid connection pipe side of the heat source side electric expansion valve and a low pressure pipe on the suction side of the receiver.
The bypass circuit includes a bypass electric expansion valve,
The main circuit side flow path provided in the liquid piping and the bypass side flow path provided on the downstream side of the bypass circuit of the bypass electric expansion valve, the refrigerant flowing in the main circuit side flow path and the bypass side flow It is equipped with a bypass heat exchanger that can exchange heat with the refrigerant flowing through the path,
The controller is
The part of the refrigerant said bypass electric expansion valve opening have been at compressor start heating operation through the liquid pipe flowing into the low-pressure pipe through the bypass circuit, the refrigerant pressure in the low-pressure pipe of the heat source-side heat exchanger Control so that the temperature of the refrigerant flowing in the side flow path becomes higher than the freezing limit pressure at which it becomes negative ,
Even if the heating operation starts from the start of the compressor to the steady operation, the bypass electric expansion valve is kept open, and the operating frequency of the compressor is increased until the low pressure of the low pressure pipe reaches the freezing limit pressure. The air conditioner is characterized by being controlled so as to enhance the pressure .
圧縮機、切換え弁、熱源側電動膨張弁、水を熱源とする熱源側熱交換器、受液器、高圧圧力センサ及び低圧圧力センサを有する熱源ユニットと、利用側熱交換器及び利用側電動膨張弁を有する利用ユニットと、前記熱源ユニットと前記利用ユニットとを接続するガス接続配管及び液接続配管と、制御装置と、を備え、
前記圧縮機、前記切換え弁、前記ガス接続配管、前記利用側熱交換器、前記利用側電動膨張弁、前記液接続配管、前記熱源側電動膨張弁、前記熱源側熱交換器、前記受液器、前記切換え弁及び前記圧縮機を順に接続して冷凍サイクルを構成し、
暖房運転及び冷房運転が可能な空気調和機において、
前記冷凍サイクルは前記熱源側電動膨張弁の液接続配管側の液配管と前記受液器の吸込み側の低圧配管とを連通するバイパス回路を備え、
前記バイパス回路はバイパス電動膨張弁を備え、
前記液配管に設けられた主回路側流路と前記バイパス電動膨張弁の前記バイパス回路の下流側に設けられたバイパス側流路とを有し、主回路側流路を流れる冷媒とバイパス側流路を流れる冷媒とが熱交換可能なバイパス熱交換器を備え、
前記制御装置は、暖房運転の圧縮機起動時に前記バイパス電動膨張弁を開き、当該バイパス電動膨張弁を開かない場合に比較して前記低圧配管の圧力を高くして前記熱源側熱交換器を流れる冷媒の温度が上昇するように制御すると共に、暖房運転の圧縮機起動時から定常運転時に移行しても前記バイパス電動膨張弁を開いておくと共に前記圧縮機の運転周波数を上昇させて暖房能力を高めるように制御し、
前記熱源ユニットは、前記圧縮機の吐出過熱度を検出する前記高圧圧力センサと、前記バイパス回路の低圧配管側の出口過熱度を検出する温度センサと、を備え、
さらに、前記制御装置は、前記高圧圧力センサ及び前記温度センサに基づいて、前記バイパス電動膨張弁の開度の上限を前記バイパス回路の低圧配管側の出口温度が冷媒の飽和温度以下で且つ前記受液器に液冷媒が溜まり過ぎない開度に制御すると共に、前記バイパス電動膨張弁の開度の下限を前記バイパス回路の低圧配管側の出口過熱度が所定の値以上で且つ全閉にならない開度に制御する
ことを特徴とする空気調和機。
Heat source unit having compressor, switching valve, heat source side electric expansion valve, heat source side heat exchanger using water as heat source, liquid receiver, high pressure sensor and low pressure sensor, user side heat exchanger and user side electric expansion A use unit having a valve, a gas connection pipe and a liquid connection pipe for connecting the heat source unit and the use unit, and a control device,
The compressor, the switching valve, the gas connection pipe, the use side heat exchanger, the use side electric expansion valve, the liquid connection pipe, the heat source side electric expansion valve, the heat source side heat exchanger, the liquid receiver The refrigeration cycle is configured by sequentially connecting the switching valve and the compressor,
In an air conditioner capable of heating operation and cooling operation,
The refrigeration cycle includes a bypass circuit that communicates a liquid pipe on the liquid connection pipe side of the heat source side electric expansion valve and a low pressure pipe on the suction side of the receiver.
The bypass circuit includes a bypass electric expansion valve,
The main circuit side flow path provided in the liquid piping and the bypass side flow path provided on the downstream side of the bypass circuit of the bypass electric expansion valve, the refrigerant flowing in the main circuit side flow path and the bypass side flow It is equipped with a bypass heat exchanger that can exchange heat with the refrigerant flowing through the path,
The control device opens the bypass electric expansion valve when the compressor for heating operation is started, and increases the pressure of the low-pressure pipe to flow through the heat source side heat exchanger as compared with the case where the bypass electric expansion valve is not opened. Control is performed so that the temperature of the refrigerant rises, and even if the compressor is switched from the start-up of the heating operation to the steady operation, the bypass electric expansion valve is kept open and the operating frequency of the compressor is increased to increase the heating capacity. Control to enhance,
The heat source unit includes the high pressure sensor that detects a discharge superheat degree of the compressor, and a temperature sensor that detects an outlet superheat degree on the low pressure piping side of the bypass circuit,
Further, the control device sets the upper limit of the opening degree of the bypass electric expansion valve based on the high pressure sensor and the temperature sensor so that the outlet temperature on the low pressure piping side of the bypass circuit is equal to or lower than the saturation temperature of the refrigerant. The opening is controlled so that the liquid refrigerant does not accumulate too much in the liquidator, and the lower limit of the opening degree of the bypass electric expansion valve is set to an opening degree at which the outlet superheat degree on the low pressure piping side of the bypass circuit is not less than a predetermined value and is not fully closed. An air conditioner that is controlled at a time .
JP2009137238A 2009-06-08 2009-06-08 Air conditioner Active JP5313774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137238A JP5313774B2 (en) 2009-06-08 2009-06-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137238A JP5313774B2 (en) 2009-06-08 2009-06-08 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010281544A JP2010281544A (en) 2010-12-16
JP5313774B2 true JP5313774B2 (en) 2013-10-09

Family

ID=43538438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137238A Active JP5313774B2 (en) 2009-06-08 2009-06-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP5313774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477653A (en) * 2016-07-15 2019-03-15 犬魔建物性能私人有限公司 By the way that the method for having the building of master controller to improve cooling system operational paradigm is transformed

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763361B2 (en) * 2011-02-16 2015-08-12 株式会社コロナ Geothermal heat pump device
JP6071741B2 (en) * 2013-05-16 2017-02-01 株式会社神戸製鋼所 Heat pump system
CN113932335B (en) * 2021-11-01 2023-01-24 宁波奥克斯电气股份有限公司 Compressor starting control method and device, air conditioner and computer storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597634Y2 (en) * 1993-03-17 1999-07-12 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air-conditioning heat pump system
JP2936961B2 (en) * 1993-06-18 1999-08-23 三菱電機株式会社 Air conditioner
JP3804712B2 (en) * 1997-08-29 2006-08-02 東芝キヤリア株式会社 Air conditioner
JP2000111175A (en) * 1998-10-07 2000-04-18 Denso Corp Refrigerating cycle apparatus
JP4036288B2 (en) * 2002-07-11 2008-01-23 株式会社日立製作所 Air conditioner
JP3781046B2 (en) * 2004-07-01 2006-05-31 ダイキン工業株式会社 Air conditioner
JP2006199143A (en) * 2005-01-20 2006-08-03 Sanden Corp Air conditioner for vehicle
JP2008215773A (en) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp Air conditioner
JP2009079813A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Heat source-side unit, air conditioning device and air conditioning system
JP4976970B2 (en) * 2007-09-27 2012-07-18 パナソニック株式会社 Refrigeration cycle equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477653A (en) * 2016-07-15 2019-03-15 犬魔建物性能私人有限公司 By the way that the method for having the building of master controller to improve cooling system operational paradigm is transformed

Also Published As

Publication number Publication date
JP2010281544A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
US9557085B2 (en) Heat pump apparatus
AU2005268223B2 (en) Refrigerating apparatus
KR100821728B1 (en) Air conditioning system
US20110259025A1 (en) Heat pump type speed heating apparatus
KR101190492B1 (en) Hot water supply device associated with heat pump
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP2015078800A (en) Air-conditioning system
JP2011052883A (en) Air conditioner
KR102330339B1 (en) Multi-type air conditioner and control method for the same
JP2017142038A (en) Refrigeration cycle device
JP2017062056A (en) Engine drive-type air conditioning device
JP2010139157A (en) Refrigeration apparatus
JP2010281492A (en) Air conditioner
JP5173857B2 (en) Air conditioner
WO2016059837A1 (en) Heat pump heating apparatus
JP2018013286A (en) Control device, air conditioner, and control method
JP2012167869A (en) Air conditioner
JP4317793B2 (en) Cooling system
JP5313774B2 (en) Air conditioner
JP4549205B2 (en) Engine driven heat pump
JP6448780B2 (en) Air conditioner
JP2018013287A (en) Air conditioner and control method of air conditioner
JP5170299B1 (en) Air conditioner
KR20100036786A (en) Air conditioner and control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250