JP2012167869A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012167869A
JP2012167869A JP2011029355A JP2011029355A JP2012167869A JP 2012167869 A JP2012167869 A JP 2012167869A JP 2011029355 A JP2011029355 A JP 2011029355A JP 2011029355 A JP2011029355 A JP 2011029355A JP 2012167869 A JP2012167869 A JP 2012167869A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
way valve
refrigerant
decompressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011029355A
Other languages
Japanese (ja)
Inventor
Kazuhiro Taniguchi
和宏 谷口
Atsuo Okaichi
敦雄 岡市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011029355A priority Critical patent/JP2012167869A/en
Publication of JP2012167869A publication Critical patent/JP2012167869A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve further improvement in efficiency, which is necessary to satisfy a demand for energy saving in an air conditioner.SOLUTION: The air conditioner constitutes a heat pump type refrigeration cycle configured by connecting a compressor 5, a four-way valve 6, an indoor heat exchanger 3, a pressure reducer 9 and an outdoor heat exchanger 7. The air conditioner includes: a first bypass circuit 10, which has a first two-way valve 11 and a refrigerant heater 13, and which connects a route between the indoor heat exchanger 3 and the pressure reducer 9 with a suction side of the compressor 5; and a second two-way valve 15. Further, the air conditioner includes: a second bypass circuit 14 for connecting a route between the pressure reducer 9 and the outdoor heat exchanger 7 with a discharge side of the compressor 5; and a third bypass circuit 18 including a flow regulation valve 19 and connecting a route between the pressure reducer 9 and the outdoor heat exchanger 7 to a route between the first two-way valve 11 and the refrigerant heater 13. By bypassing a portion of the refrigerant to the third bypass circuit 18 during a heating operation, pressure loss of the outdoor heat exchanger 7 can be reduced, which increases heating efficiency.

Description

本発明は、主に室内の冷房および暖房を行う空気調和機に関するものである。   The present invention relates to an air conditioner that mainly performs indoor cooling and heating.

従来のホットバイパス除霜を行うためのヒートポンプ式冷凍サイクルについて、図11を用いて説明する。   A heat pump refrigeration cycle for performing conventional hot bypass defrosting will be described with reference to FIG.

図11は、従来の空気調和機の冷凍サイクルを示す構成図である。   FIG. 11 is a configuration diagram showing a refrigeration cycle of a conventional air conditioner.

図11に示すように、室内熱交換器101および減圧器102の間と、四方弁103および圧縮機104の吸入側とを連結する第1のバイパス回路105を設け、第1のバイパス回路105に第1の二方弁106と冷媒加熱器107を設けたエネチャージシステムが提案されている(例えば、特許文献1)。   As shown in FIG. 11, a first bypass circuit 105 is provided to connect between the indoor heat exchanger 101 and the decompressor 102, and the four-way valve 103 and the suction side of the compressor 104. An energy charging system provided with a first two-way valve 106 and a refrigerant heater 107 has been proposed (for example, Patent Document 1).

特開2009−47344号公報JP 2009-47344 A

空気調和機は省エネルギー化することが求められており、更なる効率向上が課題となっている。本発明は、このような従来の課題を解決するものであり、暖房運転時、除霜工程以外で、冷媒加熱器の熱量を有効に利用することで暖房効率を向上させることができる空気調和機を提供する。   The air conditioner is required to save energy, and further efficiency improvement is an issue. The present invention solves such a conventional problem, and an air conditioner that can improve heating efficiency by effectively using the amount of heat of a refrigerant heater in a heating operation other than the defrosting step. I will provide a.

本発明の空気調和機は、上記課題を解決するため、圧縮機、減圧器、室外熱交換器、室内熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、冷房運転時にはヒートポンプ式冷凍サイクルに流れる冷媒の流れ方向を、圧縮機から吐出された冷媒が室外熱交換器、減圧器、室内熱交換器をこの順に通過して圧縮機に戻る第1方向に、暖房運転時には圧縮機から吐出された冷媒が室内熱交換器、減圧器、室外熱交換器をこの順に通過して圧縮機に戻る第2方向との間で切り換える切換手段と、第1の二方弁と冷媒加熱器を有する。さらに、室内熱交換器と減圧器の間の一端と圧縮機の吸入側とを連結する第1のバイパス回路と、第2の二方弁を有し、減圧器と室外熱交換器の間の一端と圧縮機の吐出側とを連結する第2のバイパス回路と、減圧器から室外熱交換器と接続する切換手段の間に設けた第1接続部と、第1接続部から圧縮機の吸入側の間に設けた第2接続部とを連結する第3のバイパス回路を有し、第3のバイパス回路を流れる冷媒を冷媒加熱器で加熱するものである。   In order to solve the above problems, an air conditioner according to the present invention includes a heat pump refrigeration cycle in which a compressor, a decompressor, an outdoor heat exchanger, and an indoor heat exchanger are connected by a refrigerant circuit, and a heat pump refrigeration cycle during cooling operation. In the first direction in which the refrigerant discharged from the compressor passes through the outdoor heat exchanger, the decompressor, and the indoor heat exchanger and returns to the compressor in this order, the refrigerant discharged from the compressor is discharged from the compressor during heating operation. Switching means for switching between the second direction in which the refrigerant passes through the indoor heat exchanger, the decompressor, and the outdoor heat exchanger in this order and returns to the compressor, a first two-way valve, and a refrigerant heater. Furthermore, it has the 1st bypass circuit which connects the one end between an indoor heat exchanger and a pressure reduction device, and the suction side of a compressor, and a 2nd two-way valve, between a pressure reduction device and an outdoor heat exchanger A second bypass circuit that connects one end and the discharge side of the compressor, a first connection portion provided between the switching means that connects the decompressor to the outdoor heat exchanger, and the compressor suction from the first connection portion It has a 3rd bypass circuit which connects with the 2nd connection part provided between the sides, and heats the refrigerant which flows through the 3rd bypass circuit with a refrigerant heater.

本発明によれば、暖房効率を向上させることにより消費電力を低減できるため、省エネルギー化することができる。   According to the present invention, since power consumption can be reduced by improving heating efficiency, energy saving can be achieved.

本発明の実施の形態1に係る空気調和機の冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける切替手段の一例を示す構成図である。It is a block diagram which shows an example of the switching means in the refrigerating cycle of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける運転状態と弁動作の関係を示すマトリクス図である。It is a matrix figure which shows the relationship between the driving | running state and valve operation in the refrigerating cycle of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける流量調整弁の開度制御方法を示すフローチャートである。It is a flowchart which shows the opening degree control method of the flow regulating valve in the refrigerating cycle of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける暖房運転から除霜運転への切替制御を示すフローチャートである。It is a flowchart which shows switching control from the heating operation to the defrost operation in the refrigerating cycle of the air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける冷媒加熱器の熱量と暖房効率(COP)向上率の関係を示すグラフである。It is a graph which shows the relationship between the calorie | heat amount of the refrigerant | coolant heater in a refrigerating cycle of the air conditioner which concerns on Embodiment 1 of this invention, and a heating efficiency (COP) improvement rate. 本発明の実施の形態2に係る空気調和機の冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle of the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和機の冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle of the air conditioner which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和機の冷凍サイクルにおける運転状態と弁動作の関係を示すマトリクス図である。It is a matrix figure which shows the relationship between the driving | running state and valve operation in the refrigerating cycle of the air conditioner concerning Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和機の冷凍サイクルにおける空気調和機の冷凍サイクルの別の一例を示す構成図である。It is a block diagram which shows another example of the refrigerating cycle of the air conditioner in the refrigerating cycle of the air conditioner which concerns on Embodiment 3 of this invention. 従来の空気調和機の冷凍サイクルを示す構成図である。It is a block diagram which shows the refrigerating cycle of the conventional air conditioner.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る空気調和機の冷凍サイクルを示す構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram showing a refrigeration cycle of an air conditioner according to Embodiment 1 of the present invention.

図1に示すように、空気調和機は、室内機1と室外機2を接続している。室内機1は、室内熱交換器3および室内熱交換器3に室内空気を当てて熱交換させる室内送風機4を備えている。一方、室外機2は、冷媒を圧縮する圧縮機5と、圧縮機5により圧縮された冷媒の向きを暖房運転および冷房運転によって切り換える切換手段としての四方弁6と、四方弁6と接続した室外熱交換器7と、室外熱交換器7に外気を当てて熱交換させる室外送風機8と、室外熱交換器7と室内熱交換器3の間に設けた減圧器9とを備えている。   As shown in FIG. 1, the air conditioner connects an indoor unit 1 and an outdoor unit 2. The indoor unit 1 includes an indoor heat exchanger 3 and an indoor fan 4 that heats the indoor heat exchanger 3 by applying indoor air to the indoor heat exchanger 3. On the other hand, the outdoor unit 2 includes a compressor 5 that compresses refrigerant, a four-way valve 6 as switching means that switches the direction of the refrigerant compressed by the compressor 5 between heating operation and cooling operation, and an outdoor unit that is connected to the four-way valve 6. A heat exchanger 7, an outdoor fan 8 that exchanges heat by applying outside air to the outdoor heat exchanger 7, and a decompressor 9 provided between the outdoor heat exchanger 7 and the indoor heat exchanger 3 are provided.

さらに室外機2は、減圧器9と室内熱交換器3の間から分岐して圧縮機5吸入に接続する第1のバイパス回路10と、第1のバイパス回路10の開閉を制御する第1の二方弁11と、圧縮機5の排熱を利用して蓄熱する蓄熱手段12(一例としてブライン)を備え、第1のバイパス回路10を流れる冷媒を蓄熱手段12に蓄えた熱量によって加熱する冷媒加熱器13と、室内熱交換器3と圧縮機5の間から分岐して減圧器9と室外熱交換器7の間に接続する第2のバイパス回路14と、第2のバイパス回路14の開閉を制御する第2の二方弁15を備えている。   Further, the outdoor unit 2 branches from between the decompressor 9 and the indoor heat exchanger 3 and is connected to the compressor 5 suction, and a first bypass circuit 10 that controls opening and closing of the first bypass circuit 10. A refrigerant that includes a two-way valve 11 and heat storage means 12 (brine as an example) that stores heat using exhaust heat of the compressor 5, and that heats the refrigerant flowing through the first bypass circuit 10 by the amount of heat stored in the heat storage means 12. The heater 13, the second bypass circuit 14 branched from between the indoor heat exchanger 3 and the compressor 5 and connected between the decompressor 9 and the outdoor heat exchanger 7, and opening / closing of the second bypass circuit 14 A second two-way valve 15 is provided.

圧縮機5の吸入にはアキュームレータ16を備え、液冷媒を一時的に貯留することで圧縮機5への液戻りを防止している。ここで、切換手段として四方弁6を適用しているが、本発明の切換手段はこれに限られるものではない。   The intake of the compressor 5 is provided with an accumulator 16 to prevent liquid return to the compressor 5 by temporarily storing liquid refrigerant. Here, although the four-way valve 6 is applied as the switching means, the switching means of the present invention is not limited to this.

図2は、本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける切替手段の一例を示す構成図である。例えば、切換手段は、図2(a)に示すような、2つの三方弁17が一対の配管によってループ状に接続した回路であっても良い。あるいは、切換手段は、図2(b)に示すような、いわゆるブリッジ回路であっても良い。冷媒加熱器13の熱源については特に蓄熱手段12に限定するものではなく、別の一例としてヒーターを用いても良いし、環境配慮の観点から太陽熱などの自然エネルギーを用いても良い。   FIG. 2 is a configuration diagram showing an example of switching means in the refrigeration cycle of the air conditioner according to Embodiment 1 of the present invention. For example, the switching means may be a circuit in which two three-way valves 17 are connected in a loop by a pair of pipes as shown in FIG. Alternatively, the switching means may be a so-called bridge circuit as shown in FIG. The heat source of the refrigerant heater 13 is not particularly limited to the heat storage means 12, and a heater may be used as another example, or natural energy such as solar heat may be used from the viewpoint of environmental consideration.

室外機2はさらに、減圧器9から室外熱交換器7と接続する切替手段(ここでは四方弁6)の間に設けた第1接続部Aと、第1接続部Aから圧縮機5の吸入側の間に設けた第2接続部Bとを直結する第3のバイパス回路を備えている。   The outdoor unit 2 further includes a first connection A provided between the switching means (here, the four-way valve 6) connected from the decompressor 9 to the outdoor heat exchanger 7, and the suction of the compressor 5 from the first connection A. A third bypass circuit that directly connects the second connecting portion B provided between the two sides.

すなわち、本発明の実施の形態1では、室外機2はさらに減圧器9から室外熱交換器7までの間から分岐して第1の二方弁11と冷媒加熱器13の間に接続する第3のバイパス回路18と、第3のバイパス回路18を流れる冷媒流量を調整する流量調整弁19を備えている。   That is, in the first embodiment of the present invention, the outdoor unit 2 further branches from the decompressor 9 to the outdoor heat exchanger 7 and is connected between the first two-way valve 11 and the refrigerant heater 13. 3 bypass circuit 18 and a flow rate adjusting valve 19 for adjusting the flow rate of the refrigerant flowing through the third bypass circuit 18.

流量調整弁19の一例として、全閉可能な膨張弁とし、全閉状態から全開状態までを0〜480plsで開度調整できるものを用いることができる。室外機2はさらに、暖房運転時に暖房負荷の大小を検知する暖房負荷検知手段20を備えている。暖房負荷検知手段20の一例として、暖房負荷の大きい場合は冷媒流量が多いため、室外熱交換器7の圧力損失が増加し、流量調整弁19の前後の圧力差が大きくなり、逆に暖房負荷が小さい場合は冷媒流量が少なくなるため、室外熱交換器7の圧力損失が減少し、流量調整弁19の前後の圧力差も小さくなることから、流量調整弁19の前後の差圧を検知する差圧検知手段21(一例として差圧計)を適用することができる(図1では、暖房負荷検知手段20の一例としての差圧検知手段21を図示している。)。また、暖房負荷検知手段20は差圧検知手段21のみに限定するものではなく、別の一例として暖房負荷の増減と共に圧縮機5の回転数や圧縮機5への入力も増減するため、圧縮機5の回転数や圧縮機5への入力を検知する方法でも良い。   As an example of the flow rate adjustment valve 19, an expansion valve that can be fully closed and that can adjust the opening degree from 0 to 480 pls from the fully closed state to the fully open state can be used. The outdoor unit 2 further includes heating load detection means 20 that detects the size of the heating load during the heating operation. As an example of the heating load detection means 20, when the heating load is large, the refrigerant flow rate is large, so the pressure loss of the outdoor heat exchanger 7 increases, the pressure difference before and after the flow rate adjustment valve 19 increases, and conversely the heating load Is small, the flow rate of the refrigerant is reduced, so that the pressure loss of the outdoor heat exchanger 7 is reduced and the pressure difference before and after the flow rate adjustment valve 19 is also reduced. Therefore, the differential pressure before and after the flow rate adjustment valve 19 is detected. A differential pressure detection means 21 (a differential pressure gauge as an example) can be applied (FIG. 1 shows a differential pressure detection means 21 as an example of the heating load detection means 20). Further, the heating load detection means 20 is not limited to the differential pressure detection means 21. As another example, the number of rotations of the compressor 5 and the input to the compressor 5 increase and decrease as the heating load increases and decreases. A method of detecting the number of revolutions of 5 or the input to the compressor 5 may be used.

また、室外機2には外気温度を検知する外気温度検知手段22と、室外熱交温度を検知する室外熱交温度検知手段23と、室外熱交換器7に着霜が発生していることを検知する着霜発生検知手段24と、冷媒加熱器13の温度を検知する冷媒加熱器温度検知手段25と、減圧器と流量調整弁19の間の配管温度を検知する流量調整弁前温度検知手段26と、冷媒加熱器13出口の配管温度を検知する冷媒加熱器出口温度検知手段27とを備える。   Further, in the outdoor unit 2, it is confirmed that frost is generated in the outdoor heat detection means 22 for detecting the outdoor air temperature, the outdoor heat exchange temperature detection means 23 for detecting the outdoor heat exchange temperature, and the outdoor heat exchanger 7. Frost generation detecting means 24 for detecting, refrigerant heater temperature detecting means 25 for detecting the temperature of the refrigerant heater 13, and flow temperature adjusting valve pre-temperature detecting means for detecting the pipe temperature between the pressure reducer and the flow rate adjusting valve 19. 26 and a refrigerant heater outlet temperature detecting means 27 for detecting the pipe temperature at the outlet of the refrigerant heater 13.

室外機2はさらに、各検知手段の検知情報を受けて第1の二方弁11および第2の二方弁15の開閉および流量調整弁19の開度を制御する制御手段28(図示せず)、および時間を計測できる時間計測手段29(図示せず)を備えている。温度検知手段の一例として、例えばサーミスタを用いることができる。着霜発生検知手段24の検知方法の一例として、室外熱交換器7温度が0℃以下で且つ室外熱交換器7温度が外気温度より9℃以上低い場合は着霜発生していると検知することができる。制御手段28の一例として、マイコンを搭載した制御基板を用いることができ、時間計測手段29の一例としてタイマーを用いることができる。   The outdoor unit 2 further receives control information from each detection means and controls the control means 28 (not shown) for controlling the opening / closing of the first two-way valve 11 and the second two-way valve 15 and the opening degree of the flow rate adjusting valve 19. ) And time measuring means 29 (not shown) capable of measuring time. For example, a thermistor can be used as an example of the temperature detecting means. As an example of the detection method of the frost formation detection means 24, when the outdoor heat exchanger 7 temperature is 0 ° C. or lower and the outdoor heat exchanger 7 temperature is 9 ° C. or lower than the outdoor air temperature, it is detected that frost is generated. be able to. As an example of the control means 28, a control board on which a microcomputer is mounted can be used, and as an example of the time measurement means 29, a timer can be used.

次に運転状態とそれぞれの弁動作について説明する。   Next, the operating state and the respective valve operations will be described.

図3は、本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける運転状態と弁動作の関係を示すマトリクス図である。   FIG. 3 is a matrix diagram showing the relationship between the operating state and the valve operation in the refrigeration cycle of the air conditioner according to Embodiment 1 of the present invention.

図3に示すように、冷房運転時は第1の二方弁11および第2の二方弁15を閉塞し、流量調整弁19も閉塞する。かかる弁動作により、圧縮機5から吐出された高温の冷媒は冷房運転状態に切り換えられた四方弁6を経由して室外熱交換器7に流れ、外気と熱交換して凝縮液化する。液化した冷媒は減圧器9により減圧されて低温となり、室内熱交換器3で室内空気と熱交換して蒸発気化した後、四方弁6を経由して圧縮機5に吸入される。このとき、第1の二方弁11、第2の二方弁15、および流量調整弁19は閉塞しているため、各バイパス回路に冷媒は流れない。   As shown in FIG. 3, during the cooling operation, the first two-way valve 11 and the second two-way valve 15 are closed, and the flow rate adjustment valve 19 is also closed. By such valve operation, the high-temperature refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 7 via the four-way valve 6 switched to the cooling operation state, and is condensed and liquefied by exchanging heat with the outside air. The liquefied refrigerant is depressurized by the decompressor 9 to become a low temperature, and after evaporating and evaporating by exchanging heat with indoor air in the indoor heat exchanger 3, the refrigerant is sucked into the compressor 5 via the four-way valve 6. At this time, since the first two-way valve 11, the second two-way valve 15, and the flow rate adjustment valve 19 are closed, the refrigerant does not flow to each bypass circuit.

次に暖房運転時において、特に外気温度が低い場合など、室外熱交換器7に着霜が発生した場合の除霜運転について説明する。   Next, a defrosting operation in the case where frost formation has occurred in the outdoor heat exchanger 7 when the outside air temperature is particularly low during the heating operation will be described.

図3に示すように、除霜運転時は第1の二方弁11および第2の二方弁15を開放し、流量調整弁19は閉塞する。かかる弁動作により、圧縮機5から吐出された一部の高温冷媒は暖房運転状態に切り換えられた四方弁6を経由して室内熱交換器3に流れ、室内空気と熱交換して凝縮液化する。液化した冷媒は第1のバイパス回路10に流れて冷媒加熱器13で加熱され、蒸発気化して圧縮機5に吸入される第1のバイパス運転と、圧縮機5から吐出された残りの高温冷媒は第2のバイパス回路14に流れ、室外熱交換器7で熱交換して除霜し、四方弁6を経由して圧縮機5に吸入される第2のバイパス運転を同時に行うことで、暖房運転を行いつつ室外熱交換器7の除霜を行うことができる。このとき、流量調整弁19は閉塞しているため、第3のバイパス回路18に冷媒は流れない。   As shown in FIG. 3, during the defrosting operation, the first two-way valve 11 and the second two-way valve 15 are opened, and the flow rate adjustment valve 19 is closed. By this valve operation, a part of the high-temperature refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 3 via the four-way valve 6 switched to the heating operation state, and exchanges heat with indoor air to be condensed and liquefied. . The liquefied refrigerant flows into the first bypass circuit 10, is heated by the refrigerant heater 13, evaporates and is evaporated and sucked into the compressor 5, and the remaining high-temperature refrigerant discharged from the compressor 5. Flows into the second bypass circuit 14, defrosts by exchanging heat in the outdoor heat exchanger 7, and simultaneously performs a second bypass operation that is sucked into the compressor 5 via the four-way valve 6, thereby heating The outdoor heat exchanger 7 can be defrosted while operating. At this time, since the flow rate adjusting valve 19 is closed, the refrigerant does not flow into the third bypass circuit 18.

次に暖房運転について説明する。   Next, the heating operation will be described.

図3に示すように、暖房運転時は第1の二方弁11および第2の二方弁15を閉塞し、流量調整弁19は開いて開度を調整する。かかる弁動作により、圧縮機5から吐出された高温の冷媒は暖房運転状態に切り換えられた四方弁6を経由して室内熱交換器3に流れ、室内空気と熱交換して凝縮液化する。液化した冷媒は減圧器9により減圧されて低温となった後、流量調整弁19により一部の冷媒は第3のバイパス回路18に流れ、冷媒加熱器13で加熱され、蒸発気化して圧縮機5に吸入される回路と、第3のバイパス回路18に流れなかった残りの冷媒は室外熱交換器7に流れ、外気と熱交換して蒸発気化した後、四方弁6を経由して圧縮機5に吸入される。このとき、第1の二方弁11、第2の二方弁15は閉塞しているため、第1および第2のバイパス回路14に冷媒は流れない。   As shown in FIG. 3, during the heating operation, the first two-way valve 11 and the second two-way valve 15 are closed, and the flow rate adjustment valve 19 is opened to adjust the opening degree. By such valve operation, the high-temperature refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 3 via the four-way valve 6 switched to the heating operation state, and exchanges heat with indoor air to be condensed and liquefied. After the liquefied refrigerant is decompressed by the decompressor 9 and becomes low temperature, a part of the refrigerant flows to the third bypass circuit 18 by the flow rate adjusting valve 19 and is heated by the refrigerant heater 13 to be evaporated and evaporated. 5 and the remaining refrigerant that has not flowed to the third bypass circuit 18 flow to the outdoor heat exchanger 7, exchange heat with the outside air, evaporate and evaporate, and then the compressor passes through the four-way valve 6. 5 inhaled. At this time, since the first two-way valve 11 and the second two-way valve 15 are closed, the refrigerant does not flow through the first and second bypass circuits 14.

暖房運転時に第3のバイパス回路18へ一部の冷媒を流すことで、室外熱交換器7に流れる冷媒量が減少して圧力損失を低減することができ、圧縮機5の吸入圧力を上昇させることができる。これにより圧縮機5の入力が低減し、暖房効率を向上させ、省エネルギー化できる。   By flowing a part of the refrigerant to the third bypass circuit 18 during the heating operation, the amount of refrigerant flowing to the outdoor heat exchanger 7 can be reduced and the pressure loss can be reduced, and the suction pressure of the compressor 5 is increased. be able to. Thereby, the input of the compressor 5 can be reduced, heating efficiency can be improved, and energy can be saved.

また、本発明の実施の形態1では、冷媒加熱器13の熱源として圧縮機5の排熱を蓄熱手段12により蓄熱して利用するため、暖房運転時に第3のバイパス回路18に冷媒を流して蓄熱手段12の熱量を奪うと、除霜運転に切り替えた場合に、第1のバイパス回路10に冷媒を流す第1のバイパス運転において、蓄熱手段12の熱量が不足するという懸念がある。したがって、暖房負荷検知手段20としての差圧検知手段21により、暖房負荷が大きい場合は除霜運転に切り替える可能性が高いため、流量調整弁19を閉塞することで第3のバイパス回路18に冷媒を流れないようにして蓄熱手段12の熱量を奪わないようにし、暖房負荷が小さい場合は除霜運転に切り替える可能性が低いため、流量調整弁19を開いて第3のバイパス回路18に冷媒を流すように制御することが有効である。ここで、差圧検知手段21による暖房負荷の大小の閾値については、あらかじめ暖房負荷が大きく、除霜が必要な暖房低温条件にて流量調整弁19の前後の差圧を確認して決定しても良いし、実使用環境下で除霜運転に切り替わる直前の差圧を制御手段28に記憶させ、その差圧を閾値にするようにしても良い。   In Embodiment 1 of the present invention, since the exhaust heat of the compressor 5 is stored and used as the heat source of the refrigerant heater 13 by the heat storage means 12, the refrigerant flows through the third bypass circuit 18 during the heating operation. If the heat quantity of the heat storage means 12 is deprived, there is a concern that the heat quantity of the heat storage means 12 is insufficient in the first bypass operation in which the refrigerant flows through the first bypass circuit 10 when switching to the defrosting operation. Therefore, since the differential pressure detection means 21 as the heating load detection means 20 has a high possibility of switching to the defrosting operation when the heating load is large, the refrigerant is supplied to the third bypass circuit 18 by closing the flow rate adjustment valve 19. So that the heat storage means 12 is not deprived of heat and the possibility of switching to the defrosting operation is low when the heating load is small. Therefore, the refrigerant is supplied to the third bypass circuit 18 by opening the flow control valve 19. It is effective to control the flow. Here, the threshold value of the heating load by the differential pressure detecting means 21 is determined by confirming the differential pressure before and after the flow regulating valve 19 under a heating low temperature condition in which the heating load is large and defrosting is necessary. Alternatively, the differential pressure immediately before switching to the defrosting operation in the actual use environment may be stored in the control means 28, and the differential pressure may be set as a threshold value.

次に、暖房運転時の流量調整弁19の開度制御について図4を用いて説明する。   Next, the opening degree control of the flow rate adjustment valve 19 during the heating operation will be described with reference to FIG.

図4は、本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける流量調整弁の開度制御方法を示すフローチャートである。   FIG. 4 is a flowchart showing an opening control method of the flow rate adjustment valve in the refrigeration cycle of the air conditioner according to Embodiment 1 of the present invention.

図4に示すように、暖房運転開始(S0)後、例えば差圧検知手段21で測定した暖房負荷が、所定値以下である場合(S1)は、冷媒加熱器13温度と流量調整弁19前温度の温度を比較(S2)し、冷媒加熱器13温度が流量調整弁19前温度より高い、すなわち流量調整弁19前の冷媒を加熱させることができる場合は次のステップ(S3)に進み、低い場合は流量調整弁19の開度を下げる(S4)。次に、流量調整弁19前温度と冷媒加熱器13出口温度の温度を比較(S3)し、冷媒加熱器13出口温度が高い、すなわち冷媒加熱器13出口で冷媒が蒸発気化している場合は流量調整弁19の開度を上げ(S5)、低い場合は流量調整弁19の開度を下げる(S4)。次に時間計測手段29にて一定の検知間隔時間(一例として10秒)を計測(S6)し、再度温度比較(S2)のフローに戻るようにしている。   As shown in FIG. 4, after the heating operation is started (S0), for example, when the heating load measured by the differential pressure detecting means 21 is equal to or less than a predetermined value (S1), before the refrigerant heater 13 temperature and the flow rate adjustment valve 19 The temperature of the temperature is compared (S2), and when the refrigerant heater 13 temperature is higher than the temperature before the flow rate adjustment valve 19, that is, when the refrigerant before the flow rate adjustment valve 19 can be heated, the process proceeds to the next step (S3), When it is low, the opening degree of the flow regulating valve 19 is lowered (S4). Next, the temperature before the flow rate adjusting valve 19 and the temperature of the refrigerant heater 13 outlet temperature are compared (S3). When the refrigerant heater 13 outlet temperature is high, that is, when the refrigerant evaporates at the refrigerant heater 13 outlet. The opening degree of the flow rate adjusting valve 19 is increased (S5), and if lower, the opening degree of the flow rate adjusting valve 19 is decreased (S4). Next, a fixed detection interval time (10 seconds as an example) is measured by the time measuring means 29 (S6), and the flow returns to the temperature comparison (S2) flow again.

なお、暖房運転開始(S0)後、例えば差圧検知手段21で測定した暖房負荷が、所定値よりも大きい場合(S1)は、流量調整弁の開度を下げる(S4)。   In addition, after heating operation start (S0), when the heating load measured, for example with the differential pressure | voltage detection means 21 is larger than a predetermined value (S1), the opening degree of a flow regulating valve is lowered | hung (S4).

ここで、温度検知手段の検知バラつきを考慮すると、かかる温度の比較については、3℃以上の差を検知した場合に判断するようにし、3℃以内の場合は流量調整弁19の開度を変更しないようにすると良い。   Here, considering the detection variation of the temperature detecting means, such a temperature comparison is judged when a difference of 3 ° C. or more is detected, and when it is within 3 ° C., the opening degree of the flow regulating valve 19 is changed. It is better not to.

また、流量調整弁19の開度調整については、より細かく開度調整するため、1plsずつ変更していくことが望ましい。   In addition, the opening adjustment of the flow rate adjusting valve 19 is desirably changed by 1 pls in order to finely adjust the opening.

次に、暖房運転から除霜運転への切替制御について、図5を用いて説明する。   Next, switching control from the heating operation to the defrosting operation will be described with reference to FIG.

図5は、本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける暖房運転から除霜運転への切替制御を示すフローチャートである。   FIG. 5 is a flowchart showing switching control from the heating operation to the defrosting operation in the refrigeration cycle of the air conditioner according to Embodiment 1 of the present invention.

図5に示すように、暖房運転開始(S11)後、室外熱交換器7に着霜が発生しているかを着霜発生検知手段24により検知し、着霜の発生の有無を判定する着霜発生判定(S12)を行い、着霜が発生していないと判定した場合は、時間計測手段29にて次回の着霜検知まで所定の時間(一例として5分)を検知間隔時間(S14)として待機し、再度着霜発生判定(S12)に戻す。着霜が発生していると判定した場合は第1の二方弁11および第2の二方弁15を開放し、流量調整弁19を閉塞して除霜運転を開始(S13)する。時間計測手段29にて所定時間(一例として5分)経過(S15)した後に再度第1の二方弁11および第2の二方弁15を閉塞し、流量調整弁19を開いて除霜運転終了(S16)し、時間計測手段29により次回の着霜検知まで検知間隔時間計測(S14)した後に着霜発生判定(S12)に戻すように制御している。   As shown in FIG. 5, after the heating operation is started (S <b> 11), the frost formation detection means 24 detects whether frost is generated in the outdoor heat exchanger 7, and determines whether frost is generated or not. When the occurrence determination (S12) is performed and it is determined that frost formation has not occurred, a predetermined time (5 minutes as an example) until the next frost detection is detected by the time measurement means 29 as the detection interval time (S14). It waits and returns to frost formation determination (S12) again. If it is determined that frost formation has occurred, the first two-way valve 11 and the second two-way valve 15 are opened, the flow rate adjustment valve 19 is closed, and the defrosting operation is started (S13). After a predetermined time (as an example, 5 minutes) has elapsed (S15) in the time measuring means 29, the first two-way valve 11 and the second two-way valve 15 are closed again, and the flow rate adjustment valve 19 is opened to perform the defrosting operation. The process is finished (S16), and the time measurement means 29 controls the detection interval time until the next frost detection (S14) and then returns to the frost generation determination (S12).

以上の構成により、暖房運転時において、第3のバイパス回路18に冷媒の一部をバイパスすることにより、室外熱交換器7に流入する冷媒量を低減し、圧力損失を低減することにより、圧縮機5の吸入圧力を上昇させて暖房効率を向上できる。第3のバイパス回路18に流すことができる冷媒流量については、冷媒加熱器13で冷媒を蒸発させるために必要な熱量により決定される。   With the above configuration, during the heating operation, a part of the refrigerant is bypassed to the third bypass circuit 18, thereby reducing the amount of refrigerant flowing into the outdoor heat exchanger 7 and reducing pressure loss, thereby compressing the refrigerant. Heating efficiency can be improved by increasing the suction pressure of the machine 5. The refrigerant flow rate that can be passed through the third bypass circuit 18 is determined by the amount of heat necessary to evaporate the refrigerant in the refrigerant heater 13.

図6は、本発明の実施の形態1に係る空気調和機の冷凍サイクルにおける冷媒加熱器の熱量と暖房効率(COP)向上率の関係を示すグラフである。   FIG. 6 is a graph showing the relationship between the amount of heat of the refrigerant heater and the heating efficiency (COP) improvement rate in the refrigeration cycle of the air-conditioning apparatus according to Embodiment 1 of the present invention.

図6に示すように、冷媒加熱器13の熱量が100W増加する毎に0.5%の暖房効率向上効果がある。   As shown in FIG. 6, every time the amount of heat of the refrigerant heater 13 increases by 100 W, there is an effect of improving the heating efficiency by 0.5%.

(実施の形態2)
実施の形態2において、実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 2)
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図7は、本発明の実施の形態2に係る空気調和機の冷凍サイクルを示す構成図である。   FIG. 7 is a configuration diagram showing a refrigeration cycle of an air conditioner according to Embodiment 2 of the present invention.

図7に示すように、圧縮機5、四方弁6、室内熱交換器3、第1の減圧器30、第2の減圧器31、室外熱交換器7を連結したヒートポンプ式冷凍サイクルを構成し、第1の減圧器30と第2の減圧器31の間に気液分離器33を備え、気液分離器33によって分離されたガス冷媒のみを圧縮機5の吸入にインジェクションするガスインジェクション経路34を備えている。また、室内熱交換器3と第1の減圧器30の間から分岐して圧縮機5吸入に接続する第1のバイパス回路10、第1のバイパス回路10の開閉を制御する第1の二方弁11、第1のバイパス回路10中の冷媒を加熱する蓄熱手段12を備えた冷媒加熱器13、室内熱交換器3と圧縮機5の間から分岐して第2の減圧器31と室外熱交換器7の間に接続する第2のバイパス回路14、第2のバイパス回路14の開閉を制御する第2の二方弁15を備えている。   As shown in FIG. 7, a heat pump refrigeration cycle in which a compressor 5, a four-way valve 6, an indoor heat exchanger 3, a first decompressor 30, a second decompressor 31, and an outdoor heat exchanger 7 are connected is configured. The gas-injection path 34 includes a gas-liquid separator 33 between the first decompressor 30 and the second decompressor 31 and injects only the gas refrigerant separated by the gas-liquid separator 33 into the suction of the compressor 5. It has. A first bypass circuit 10 that branches from between the indoor heat exchanger 3 and the first pressure reducer 30 and is connected to the suction of the compressor 5, and a first two that controls opening and closing of the first bypass circuit 10 The valve 11, the refrigerant heater 13 having the heat storage means 12 for heating the refrigerant in the first bypass circuit 10, and the second decompressor 31 and the outdoor heat are branched from between the indoor heat exchanger 3 and the compressor 5. A second bypass circuit 14 connected between the exchangers 7 and a second two-way valve 15 for controlling opening and closing of the second bypass circuit 14 are provided.

本発明の実施の形態2では、さらに気液分離器と第2の減圧器31の間から分岐し、冷媒加熱器13を介してガスインジェクション経路34に合流する第3のバイパス回路18と、第3のバイパス回路18を流れる冷媒流量を調整する流量調整弁19を備えている。さらに暖房運転時に暖房負荷の大小を検知する暖房負荷検知手段20として、流量調整弁19の前後の差圧を検知する差圧検知手段21を備えている。   In the second embodiment of the present invention, the third bypass circuit 18 is further branched from between the gas-liquid separator and the second pressure reducer 31 and merged into the gas injection path 34 via the refrigerant heater 13, 3 is provided with a flow rate adjusting valve 19 for adjusting the flow rate of the refrigerant flowing through the bypass circuit 18. Further, as the heating load detection means 20 for detecting the magnitude of the heating load during the heating operation, a differential pressure detection means 21 for detecting the differential pressure before and after the flow rate adjustment valve 19 is provided.

次に各運転状態における弁動作については、本発明の実施の形態1と同一であり、図3を参照して説明する。   Next, the valve operation in each operation state is the same as that of the first embodiment of the present invention, and will be described with reference to FIG.

図3に示すように、冷房運転時は第1の二方弁11および第2の二方弁15を閉塞し、流量調整弁19も閉塞する。かかる弁動作により、圧縮機5から吐出された高温高圧の冷媒は冷房運転状態に切り換えられた四方弁6を経由して室外熱交換器7に流れ、外気と熱交換して凝縮液化する。液化した冷媒は第2の減圧器31により一旦中間圧まで減圧されて気液二相状態となり、気液分離器でガス冷媒と液冷媒に分離される。ガス冷媒はガスインジェクション経路34を通過して圧縮機5の吸入に戻され、液冷媒は第1の減圧器でさらに低圧まで減圧される。減圧された冷媒は室内熱交換器3で室内空気と熱交換器して蒸発気化した後、四方弁6を経由し、ガスインジェクション経路34から流れるガス冷媒と合流して圧縮機5に吸入される。このとき、第1の二方弁11、第2の二方弁15、および流量調整弁19は閉塞しているため、各バイパス回路に冷媒は流れない。   As shown in FIG. 3, during the cooling operation, the first two-way valve 11 and the second two-way valve 15 are closed, and the flow rate adjustment valve 19 is also closed. By such valve operation, the high-temperature and high-pressure refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 7 via the four-way valve 6 switched to the cooling operation state, and exchanges heat with the outside air to be condensed and liquefied. The liquefied refrigerant is once decompressed to an intermediate pressure by the second decompressor 31 to be in a gas-liquid two-phase state, and is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator. The gas refrigerant passes through the gas injection path 34 and is returned to the suction of the compressor 5, and the liquid refrigerant is further decompressed to a low pressure by the first decompressor. The depressurized refrigerant is evaporated with the indoor heat exchanger 3 through heat exchange with room air, and then passes through the four-way valve 6 to join with the gas refrigerant flowing from the gas injection path 34 and is sucked into the compressor 5. . At this time, since the first two-way valve 11, the second two-way valve 15, and the flow rate adjustment valve 19 are closed, the refrigerant does not flow to each bypass circuit.

次に暖房運転時において、特に外気温度が低い場合など、室外熱交換器7に着霜が発生した場合の除霜運転について説明する。   Next, a defrosting operation in the case where frost formation has occurred in the outdoor heat exchanger 7 when the outside air temperature is particularly low during the heating operation will be described.

図3に示すように、除霜運転時は第1の二方弁11および第2の二方弁15を開放し、流量調整弁19は閉塞する。かかる弁動作により、圧縮機5から吐出された一部の高温冷媒は暖房運転状態に切り換えられた四方弁6を経由して室内熱交換器3に流れ、室内空気と熱交換して凝縮液化する。液化した冷媒は第1のバイパス回路10に流れ、冷媒加熱器13で加熱され、蒸発気化して圧縮機5に吸入される第1のバイパス運転と、圧縮機5から吐出された残りの高温冷媒は第2のバイパス回路14に流れ、室外熱交換器7で熱交換して除霜し、四方弁6を経由して圧縮機5に吸入される第2のバイパス運転を同時に行うことで、暖房運転を行いつつ室外熱交換器7の除霜を行うことができる。このとき、流量調整弁19は閉塞しているため、第3のバイパス回路18に冷媒は流れない。   As shown in FIG. 3, during the defrosting operation, the first two-way valve 11 and the second two-way valve 15 are opened, and the flow rate adjustment valve 19 is closed. By this valve operation, a part of the high-temperature refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 3 via the four-way valve 6 switched to the heating operation state, and exchanges heat with indoor air to be condensed and liquefied. . The liquefied refrigerant flows into the first bypass circuit 10, is heated by the refrigerant heater 13, vaporizes and evaporates and is sucked into the compressor 5, and the remaining high-temperature refrigerant discharged from the compressor 5. Flows into the second bypass circuit 14, defrosts by exchanging heat in the outdoor heat exchanger 7, and simultaneously performs a second bypass operation that is sucked into the compressor 5 via the four-way valve 6, thereby heating The outdoor heat exchanger 7 can be defrosted while operating. At this time, since the flow rate adjusting valve 19 is closed, the refrigerant does not flow into the third bypass circuit 18.

次に暖房運転について説明する。   Next, the heating operation will be described.

図3に示すように、暖房運転時は第1の二方弁11および第2の二方弁15を閉塞し、流量調整弁19は開いて開度を調整する。かかる弁動作により、圧縮機5から吐出された高温高圧の冷媒は暖房運転状態に切り換えられた四方弁6を経由して室内熱交換器3に流れ、室内空気と熱交換して凝縮液化する。液化した冷媒は第1の減圧器30により一旦中間圧まで減圧されて気液二相状態となり、気液分離器でガス冷媒と液冷媒に分離される。ガス冷媒はガスインジェクション経路34に流れ、液冷媒の一部は流量調整弁19により第3のバイパス回路18に流れて冷媒加熱器13で加熱され、ガスインジェクション経路34に合流した後、圧縮機5の吸入に戻される。残りの液冷媒は第2の減圧器でさらに低圧まで減圧される。減圧された冷媒は室外熱交換器7で外気と熱交換器して蒸発気化した後、四方弁6を経由し、ガスインジェクション経路34から流れるガス冷媒と合流して圧縮機5に吸入される。このとき、第1の二方弁11、第2の二方弁15は閉塞しているため、第1および第2のバイパス回路14に冷媒は流れない。また、暖房負荷検知手段20としての差圧検知手段21により、暖房負荷の大きさによって流量調整弁19の開閉を制御することにより、除霜運転時に必要な蓄熱手段12の熱量を確保することができる。   As shown in FIG. 3, during the heating operation, the first two-way valve 11 and the second two-way valve 15 are closed, and the flow rate adjustment valve 19 is opened to adjust the opening degree. By such valve operation, the high-temperature and high-pressure refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 3 via the four-way valve 6 switched to the heating operation state, and exchanges heat with indoor air to be condensed and liquefied. The liquefied refrigerant is once decompressed to an intermediate pressure by the first decompressor 30 to be in a gas-liquid two-phase state, and is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator. The gas refrigerant flows into the gas injection path 34, and a part of the liquid refrigerant flows into the third bypass circuit 18 by the flow rate adjusting valve 19, is heated by the refrigerant heater 13, and merges with the gas injection path 34, and then the compressor 5 Returned to inhalation. The remaining liquid refrigerant is further decompressed to a low pressure by the second decompressor. The decompressed refrigerant is heat-exchanged with the outside air in the outdoor heat exchanger 7 and evaporated to evaporate, and then merges with the gas refrigerant flowing from the gas injection path 34 via the four-way valve 6 and is sucked into the compressor 5. At this time, since the first two-way valve 11 and the second two-way valve 15 are closed, the refrigerant does not flow through the first and second bypass circuits 14. Further, by controlling the opening and closing of the flow rate adjusting valve 19 according to the size of the heating load by the differential pressure detection means 21 as the heating load detection means 20, it is possible to secure the amount of heat of the heat storage means 12 required during the defrosting operation. it can.

上記記載の様に暖房運転時に第3のバイパス回路18に一部の冷媒を流すことで、室外熱交換器7に流れる冷媒量が減少して圧力損失を低減することができ、圧縮機5の吸入圧力を上昇させることができる。これにより圧縮機5の入力が低減し、暖房効率を向上させて省エネルギー化できる。   By flowing a part of the refrigerant through the third bypass circuit 18 during the heating operation as described above, the amount of refrigerant flowing through the outdoor heat exchanger 7 can be reduced and the pressure loss can be reduced. The suction pressure can be increased. Thereby, the input of the compressor 5 can be reduced, heating efficiency can be improved, and energy can be saved.

暖房運転時の流量調整弁19の開度制御、および暖房運転から除霜運転への切替制御については、実施の形態1に記載の方法を適用することができる。   The method described in Embodiment 1 can be applied to the opening degree control of the flow rate adjusting valve 19 during the heating operation and the switching control from the heating operation to the defrosting operation.

以上の構成により、暖房運転時において、第3のバイパス回路18に冷媒の一部をバイパスすることにより、室外熱交換器7に流入する冷媒量を低減し、圧力損失を低減することにより、圧縮機5の吸入圧力を上昇させて暖房効率を向上させて省エネルギー化できる。   With the above configuration, during the heating operation, a part of the refrigerant is bypassed to the third bypass circuit 18, thereby reducing the amount of refrigerant flowing into the outdoor heat exchanger 7 and reducing pressure loss, thereby compressing the refrigerant. The suction pressure of the machine 5 can be increased to improve the heating efficiency and save energy.

(実施の形態3)
実施の形態3において、実施の形態1および実施の形態2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 3)
In the third embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図8は、本発明の実施の形態3に係る空気調和機の冷凍サイクルを示す構成図である。   FIG. 8 is a configuration diagram illustrating a refrigeration cycle of the air-conditioning apparatus according to Embodiment 3 of the present invention.

図8に示すように、圧縮機5、四方弁6、室内熱交換器3、減圧器9、室外熱交換器7を連結したヒートポンプ式冷凍サイクルを構成し、室内熱交換器3と減圧器9の間から分岐して圧縮機5吸入に接続する第1のバイパス回路10、第1のバイパス回路10の開閉を制御する第1の二方弁11、第1のバイパス回路10中の冷媒を加熱する蓄熱手段12を備えた冷媒加熱器13、室内熱交換器3と圧縮機5の間から分岐して減圧器9と室外熱交換器7の間に接続する第2のバイパス回路14、第2のバイパス回路14の開閉を制御する第2の二方弁15を備えている。   As shown in FIG. 8, a heat pump refrigeration cycle in which a compressor 5, a four-way valve 6, an indoor heat exchanger 3, a decompressor 9, and an outdoor heat exchanger 7 are connected is configured, and the indoor heat exchanger 3 and the decompressor 9 are configured. The first bypass circuit 10 that branches from between and connected to the suction of the compressor 5, the first two-way valve 11 that controls the opening and closing of the first bypass circuit 10, and the refrigerant in the first bypass circuit 10 are heated A refrigerant heater 13 provided with a heat storage means 12, a second bypass circuit 14 branched from between the indoor heat exchanger 3 and the compressor 5 and connected between the decompressor 9 and the outdoor heat exchanger 7, a second The second two-way valve 15 for controlling the opening and closing of the bypass circuit 14 is provided.

本発明の実施の形態3では、さらに減圧器9と室外熱交換器7の間を一端とし、冷媒加熱器13を経由して室外熱交換器7の減圧器9側に他端を連結する第3のバイパス回路18と、第3のバイパス回路18の一端と他端の間に第3の二方弁32とを備えている。さらに暖房運転時に暖房負荷の大小を検知する暖房負荷検知手段20を備えている。   In the third embodiment of the present invention, the first end is connected between the decompressor 9 and the outdoor heat exchanger 7 and the other end is connected to the decompressor 9 side of the outdoor heat exchanger 7 via the refrigerant heater 13. 3 bypass circuit 18, and a third two-way valve 32 between one end and the other end of third bypass circuit 18. Furthermore, the heating load detection means 20 which detects the magnitude of a heating load at the time of heating operation is provided.

次に運転状態とそれぞれの弁動作について説明する。   Next, the operating state and the respective valve operations will be described.

図9は、本発明の実施の形態3に係る空気調和機の冷凍サイクルにおける運転状態と弁動作の関係を示すマトリクス図である。   FIG. 9 is a matrix diagram showing the relationship between the operating state and the valve operation in the refrigeration cycle of the air conditioner according to Embodiment 3 of the present invention.

図9に示すように、冷房運転時は第1の二方弁11および第2の二方弁15を閉塞し、第3の二方弁32は開放する。かかる弁動作により、圧縮機5から吐出された高温高圧の冷媒は冷房運転状態に切り換えられた四方弁6を経由して室外熱交換器7に流れ、外気と熱交換して凝縮液化する。液化した冷媒は第3の二方弁32を通過し、減圧器9により減圧される。このとき、第3のバイパス回路18に冷媒が流れる際の流路損失に対して、第3の二方弁32を冷媒が流れる際の流路損失の方が小さいため、ほとんどの冷媒は第3の二方弁32側に流れ、第3のバイパス回路18には流れない。減圧された冷媒は室内熱交換器3で室内空気と熱交換器して蒸発気化した後、四方弁6を経由して圧縮機5に吸入される。このとき、第1の二方弁11、第2の二方弁15は閉塞しているため、第1のバイパス回路10および第2のバイパス回路14に冷媒は流れない。   As shown in FIG. 9, during the cooling operation, the first two-way valve 11 and the second two-way valve 15 are closed, and the third two-way valve 32 is opened. By such valve operation, the high-temperature and high-pressure refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 7 via the four-way valve 6 switched to the cooling operation state, and exchanges heat with the outside air to be condensed and liquefied. The liquefied refrigerant passes through the third two-way valve 32 and is decompressed by the decompressor 9. At this time, since the flow path loss when the refrigerant flows through the third two-way valve 32 is smaller than the flow path loss when the refrigerant flows through the third bypass circuit 18, most of the refrigerant is the third. Flows to the two-way valve 32 side and does not flow to the third bypass circuit 18. The decompressed refrigerant is evaporated with the indoor heat exchanger 3 through heat exchange with room air, and then sucked into the compressor 5 via the four-way valve 6. At this time, since the first two-way valve 11 and the second two-way valve 15 are closed, the refrigerant does not flow through the first bypass circuit 10 and the second bypass circuit 14.

次に暖房運転時において、特に外気温度が低い場合など、室外熱交換器7に着霜が発生した場合の除霜運転について説明する。   Next, a defrosting operation in the case where frost formation has occurred in the outdoor heat exchanger 7 when the outside air temperature is particularly low during the heating operation will be described.

図9に示すように、除霜運転時は第1の二方弁11、第2の二方弁15、第3の二方弁32をすべて開放する。かかる弁動作により、圧縮機5から吐出された一部の高温冷媒は暖房運転状態に切り換えられた四方弁6を経由して室内熱交換器3に流れ、室内空気と熱交換して凝縮液化する。液化した冷媒は第1のバイパス回路10に流れ、冷媒加熱器13で加熱され、蒸発気化して圧縮機5に吸入される第1のバイパス運転と、圧縮機5から吐出された残りの高温冷媒は第2のバイパス回路14に流れ、第3の二方弁32を通過し、室外熱交換器7で熱交換して除霜し、四方弁6を経由して圧縮機5に吸入される第2のバイパス運転を同時に行うことで、暖房運転を行いつつ室外熱交換器7の除霜を行うことができる。このとき、第3のバイパス回路18には、冷房運転時と同様に流路損失の関係から、第3のバイパス回路18に冷媒は流れない。   As shown in FIG. 9, during the defrosting operation, all of the first two-way valve 11, the second two-way valve 15, and the third two-way valve 32 are opened. By this valve operation, a part of the high-temperature refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 3 via the four-way valve 6 switched to the heating operation state, and exchanges heat with indoor air to be condensed and liquefied. . The liquefied refrigerant flows into the first bypass circuit 10, is heated by the refrigerant heater 13, vaporizes and evaporates and is sucked into the compressor 5, and the remaining high-temperature refrigerant discharged from the compressor 5. Flows through the second bypass circuit 14, passes through the third two-way valve 32, is defrosted by exchanging heat with the outdoor heat exchanger 7, and is sucked into the compressor 5 through the four-way valve 6. By performing the bypass operation 2 at the same time, the outdoor heat exchanger 7 can be defrosted while performing the heating operation. At this time, the refrigerant does not flow into the third bypass circuit 18 due to the flow path loss in the same manner as in the cooling operation.

次に暖房運転について説明する。   Next, the heating operation will be described.

図9に示すように、暖房運転時は第1の二方弁11、第2の二方弁15、第3の二方弁32すべてを閉塞する。かかる弁動作により、圧縮機5から吐出された高温高圧の冷媒は暖房運転状態に切り換えられた四方弁6を経由して室内熱交換器3に流れ、室内空気と熱交換して凝縮液化する。液化した冷媒は減圧器9により減圧されて気液二相状態となり、第3の二方弁32が閉塞しているため、全冷媒が第3のバイパス回路18に流入し、冷媒加熱器13に備えた蓄熱手段12により加熱されて乾き度が上昇した気液二相状態となって室外熱交換器7に流入する。室外熱交換器7で外気と熱交換器して蒸発気化した後、四方弁6を経由して圧縮機5に吸入される。このとき、第1の二方弁11、第2の二方弁15は閉塞しているため、第1および第2のバイパス回路14に冷媒は流れない。また、暖房負荷検知手段20により、暖房負荷の大きさによって第3の二方弁32の開閉を制御することにより、除霜運転時に必要な蓄熱手段12の熱量を確保することができる。   As shown in FIG. 9, during the heating operation, all of the first two-way valve 11, the second two-way valve 15, and the third two-way valve 32 are closed. By such valve operation, the high-temperature and high-pressure refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 3 via the four-way valve 6 switched to the heating operation state, and exchanges heat with indoor air to be condensed and liquefied. The liquefied refrigerant is decompressed by the decompressor 9 to be in a gas-liquid two-phase state, and the third two-way valve 32 is closed, so that all the refrigerant flows into the third bypass circuit 18 and enters the refrigerant heater 13. It becomes a gas-liquid two-phase state heated by the heat storage means 12 provided and having increased in dryness, and flows into the outdoor heat exchanger 7. After evaporating by heat exchange with outside air in the outdoor heat exchanger 7, the air is sucked into the compressor 5 through the four-way valve 6. At this time, since the first two-way valve 11 and the second two-way valve 15 are closed, the refrigerant does not flow through the first and second bypass circuits 14. Further, by controlling the opening and closing of the third two-way valve 32 according to the size of the heating load by the heating load detection means 20, it is possible to ensure the amount of heat of the heat storage means 12 required during the defrosting operation.

上記記載の様に暖房運転時に第3のバイパス回路18に全冷媒を流すことで、室外熱交換器7に流入させる気液二相状態の冷媒の乾き度を上げることができるため、室外熱交換器7で冷媒を蒸発させるために必要な熱量を低減し、圧縮機5の吸入圧力を上昇させることで暖房効率を向上させて省エネルギー化できる。   Since all the refrigerant flows through the third bypass circuit 18 during the heating operation as described above, the dryness of the gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 7 can be increased. By reducing the amount of heat necessary for evaporating the refrigerant in the unit 7 and increasing the suction pressure of the compressor 5, heating efficiency can be improved and energy can be saved.

また、本発明の実施の形態3の別の構成の一例として、図10を示す。   FIG. 10 shows an example of another configuration according to the third embodiment of the present invention.

図10は、本発明の実施の形態3に係る空気調和機の冷凍サイクルにおける空気調和機の冷凍サイクルの別の一例を示す構成図である。   FIG. 10 is a configuration diagram illustrating another example of the refrigeration cycle of the air conditioner in the refrigeration cycle of the air conditioner according to Embodiment 3 of the present invention.

図10に示すように、室外熱交換器7と四方弁6の間を一端とし、冷媒加熱器13を経由して室外熱交換器7の四方弁6側に他端を連結する第3のバイパス回路18と、第3のバイパス回路18の一端と他端の間に第3の二方弁32とを備えた構成としても良い。これにより、暖房運転時、室外熱交換器7出口冷媒を完全にガス化させる必要が無いため、室外熱交換器7で冷媒を蒸発させるために必要な熱量を低減し、圧縮機5の吸入圧力を上昇させることで同様の効果を得ることができる。   As shown in FIG. 10, the third bypass connects one end between the outdoor heat exchanger 7 and the four-way valve 6 and connects the other end to the four-way valve 6 side of the outdoor heat exchanger 7 via the refrigerant heater 13. The circuit 18 and a third two-way valve 32 may be provided between one end and the other end of the third bypass circuit 18. Thereby, since it is not necessary to completely gasify the refrigerant at the outlet of the outdoor heat exchanger 7 during the heating operation, the amount of heat necessary for evaporating the refrigerant in the outdoor heat exchanger 7 is reduced, and the suction pressure of the compressor 5 is reduced. A similar effect can be obtained by raising the value.

本発明にかかる空気調和機は、ヒートポンプ冷凍サイクルを用いた給湯器等にも適用できる。   The air conditioner according to the present invention can also be applied to a water heater using a heat pump refrigeration cycle.

1 室内機
2 室外機
3 室内熱交換器
4 室内送風機
5 圧縮機
6 四方弁
7 室外熱交換器
8 室外送風機
9 減圧器
10 第1のバイパス回路
11 第1の二方弁
12 蓄熱手段
13 冷媒加熱器
14 第2のバイパス回路
15 第2の二方弁
16 アキュームレータ
17 三方弁
18 第3のバイパス回路
19 流量調整弁
20 暖房負荷検知手段
21 差圧検知手段
22 外気温度検知手段
23 室外熱交温度検知手段
24 着霜発生検知手段
25 冷媒加熱器温度検知手段
26 流量調整弁前温度検知手段
27 冷媒加熱器出口温度検知手段
28 制御手段
29 時間計測手段
30 第1の減圧器
31 第2の減圧器
32 第3の二方弁
33 気液分離器
34 ガスインジェクション経路
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 3 Indoor heat exchanger 4 Indoor fan 5 Compressor 6 Four-way valve 7 Outdoor heat exchanger 8 Outdoor fan 9 Decompressor 10 1st bypass circuit 11 1st two-way valve 12 Heat storage means 13 Refrigerant heating 14 Second bypass circuit 15 Second two-way valve 16 Accumulator 17 Three-way valve 18 Third bypass circuit 19 Flow rate adjusting valve 20 Heating load detection means 21 Differential pressure detection means 22 Outside air temperature detection means 23 Outdoor heat exchange temperature detection Means 24 Frosting occurrence detection means 25 Refrigerant heater temperature detection means 26 Flow rate adjusting valve pre-temperature detection means 27 Refrigerant heater outlet temperature detection means 28 Control means 29 Time measurement means 30 First decompressor 31 Second decompressor 32 Third two-way valve 33 Gas-liquid separator 34 Gas injection path

Claims (11)

圧縮機、減圧器、室外熱交換器、室内熱交換器を冷媒回路で連結したヒートポンプ式冷凍サイクルと、
冷房運転時には前記ヒートポンプ式冷凍サイクルに流れる冷媒の流れ方向を、前記圧縮機から吐出された冷媒が前記室外熱交換器、前記減圧器、前記室内熱交換器をこの順に通過して前記圧縮機に戻る第1方向に、暖房運転時には前記圧縮機から吐出された冷媒が前記室内熱交換器、前記減圧器、前記室外熱交換器をこの順に通過して前記圧縮機に戻る第2方向との間で切り換える切換手段と、
第1の二方弁と冷媒加熱器を有し、前記室内熱交換器と前記減圧器の間と前記圧縮機の吸入側とを連結する第1のバイパス回路と、
第2の二方弁を有し、前記減圧器と前記室外熱交換器の間と前記圧縮機の吐出側とを連結する第2のバイパス回路と、
前記減圧器から前記室外熱交換器と接続する切換手段の間に設けた第1接続部と、前記第1接続部から圧縮機の吸入側の間に設けた第2接続部とを連結する第3のバイパス回路を有し、
前記第3のバイパス回路を流れる冷媒を前記冷媒加熱器で加熱する、空気調和機。
A heat pump refrigeration cycle in which a compressor, a decompressor, an outdoor heat exchanger, and an indoor heat exchanger are connected by a refrigerant circuit;
During the cooling operation, the direction of the refrigerant flowing through the heat pump refrigeration cycle is changed so that the refrigerant discharged from the compressor passes through the outdoor heat exchanger, the decompressor, and the indoor heat exchanger in this order to the compressor. During the heating operation, the refrigerant discharged from the compressor passes through the indoor heat exchanger, the decompressor, and the outdoor heat exchanger in this order, and returns to the compressor in the second direction. Switching means for switching with,
A first bypass circuit having a first two-way valve and a refrigerant heater, connecting between the indoor heat exchanger and the decompressor and the suction side of the compressor;
A second bypass circuit having a second two-way valve and connecting between the decompressor and the outdoor heat exchanger and a discharge side of the compressor;
A first connecting part provided between the switching means connected to the outdoor heat exchanger from the decompressor and a second connecting part provided between the first connecting part and the suction side of the compressor are connected. 3 bypass circuits,
An air conditioner that heats the refrigerant flowing through the third bypass circuit with the refrigerant heater.
流量調整弁をさらに有し、
前記第3のバイパス回路は、前記減圧器から前記室外熱交換器までの間と、前記第1の二方弁と前記冷媒加熱器との間を連結する、請求項1に記載の空気調和機。
A flow control valve;
The air conditioner according to claim 1, wherein the third bypass circuit connects between the pressure reducer and the outdoor heat exchanger and between the first two-way valve and the refrigerant heater. .
前記減圧器は、第1の減圧器と第2の減圧器から構成され、
前記第1方向は、前記圧縮機から吐出された冷媒が前記室外熱交換器、前記第2の減圧器、前記第1の減圧器、前記室内熱交換器をこの順に通過して前記圧縮機に戻る第1方向であり、
前記第2方向は、前記室内熱交換器、前記第1の減圧器、前記第2の減圧器、前記室外熱交換器をこの順に通過して前記圧縮機に戻る第2方向であり、
気液分離器と前記圧縮機の吸入側とを連結するガスインジェクション経路と、流量調整弁をさらに有し、
前記第3のバイパス回路は、前記気液分離器から前記第2の減圧器までの間から、前記冷媒加熱器を経由して前記ガスインジェクション経路に接続した、請求項1に記載の空気調和機。
The decompressor is composed of a first decompressor and a second decompressor,
In the first direction, the refrigerant discharged from the compressor passes through the outdoor heat exchanger, the second decompressor, the first decompressor, and the indoor heat exchanger in this order to the compressor. Back in the first direction,
The second direction is a second direction that passes through the indoor heat exchanger, the first decompressor, the second decompressor, and the outdoor heat exchanger in this order and returns to the compressor,
A gas injection path connecting the gas-liquid separator and the suction side of the compressor, and a flow rate adjusting valve;
2. The air conditioner according to claim 1, wherein the third bypass circuit is connected to the gas injection path through the refrigerant heater from between the gas-liquid separator and the second pressure reducer. .
暖房運転時において、除霜運転を行わない場合には、前記第1の二方弁と前記第2の二方弁を閉じ、かつCOPが最適になるように前記流量調整弁の開度を制御する、請求項2または3に記載の空気調和機。   When the defrosting operation is not performed during the heating operation, the first two-way valve and the second two-way valve are closed, and the opening degree of the flow rate adjustment valve is controlled so that the COP is optimal. The air conditioner according to claim 2 or 3. 前記第3のバイパス回路は、前記減圧器から前記室外熱交換器までの間の一端と、前記冷媒加熱器を経由して前記室外熱交換器の前記減圧器側に他端を連結し、
前記第3のバイパス回路の前記一端と前記他端の間に第3の二方弁をさらに備えた、請求項1に記載の空気調和機。
The third bypass circuit connects one end between the decompressor and the outdoor heat exchanger, and the other end to the decompressor side of the outdoor heat exchanger via the refrigerant heater,
The air conditioner according to claim 1, further comprising a third two-way valve between the one end and the other end of the third bypass circuit.
前記第3のバイパス回路は、前記室外熱交換器から前記圧縮機の吸入側までの間の一端と、前記冷媒加熱器を経由して前記一端と前記圧縮機の吸入側までの間に他端を連結し、
前記第3のバイパス回路の前記一端と前記他端の間に第3の二方弁をさらに備えた、請求項1に記載の空気調和機。
The third bypass circuit has one end between the outdoor heat exchanger and the suction side of the compressor, and the other end between the one end and the suction side of the compressor via the refrigerant heater. Concatenate
The air conditioner according to claim 1, further comprising a third two-way valve between the one end and the other end of the third bypass circuit.
暖房運転時において、除霜運転を行わない場合には、前記第1の二方弁と前記第2の二方弁と前記第3の二方弁を閉じる制御を行う、請求項5または6に記載の空気調和機。   In the heating operation, when the defrosting operation is not performed, control is performed to close the first two-way valve, the second two-way valve, and the third two-way valve. The air conditioner described. 前記冷媒加熱器は前記圧縮機の排熱を回収して蓄熱する蓄熱手段である、請求項1から7のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 7, wherein the refrigerant heater is a heat storage unit that recovers and stores heat of exhaust heat of the compressor. 暖房負荷の大きさを検知する暖房負荷検知手段をさらに備え、暖房運転時、前記暖房負荷検知手段が検知した暖房負荷が所定値より大きい場合は前記流量調整弁を閉じる制御を行い、前記暖房負荷検知手段が検知した暖房負荷が所定値以下の場合は前記流量調整弁を開く制御を行う請求項1から7のいずれかに記載の空気調和機。   A heating load detecting means for detecting the size of the heating load is further provided, and during heating operation, when the heating load detected by the heating load detecting means is larger than a predetermined value, the flow control valve is controlled to be closed, and the heating load is controlled. The air conditioner according to any one of claims 1 to 7, wherein when the heating load detected by the detection means is equal to or less than a predetermined value, control is performed to open the flow rate adjustment valve. 前記暖房負荷検知手段は、冷媒回路に接続された前記流量調整弁の前後の管内圧力差を検知する差圧検知手段であり、前記差圧検知手段が検知した差圧が所定値より大きい場合は、前記流量調整弁を閉じる制御を行い、前記差圧検知手段が検知した差圧が所定値以下の場合は、前記流量調整弁を開く制御を行う請求項9に記載の空気調和機。   The heating load detecting means is a differential pressure detecting means for detecting a pressure difference in the pipe before and after the flow rate adjusting valve connected to the refrigerant circuit, and when the differential pressure detected by the differential pressure detecting means is larger than a predetermined value. The air conditioner according to claim 9, wherein control is performed to close the flow rate adjustment valve, and control is performed to open the flow rate adjustment valve when the differential pressure detected by the differential pressure detection means is equal to or less than a predetermined value. 前記冷媒加熱器は圧縮機の排熱を回収して蓄熱する蓄熱手段であり、暖房負荷の大きさを検知する暖房負荷検知手段をさらに備え、暖房運転時、前記暖房負荷検知手段が検知した暖房負荷が所定値より大きい場合は前記第3の二方弁を開く制御を行い、前記暖房負荷検知手段が検知した暖房負荷が所定値以下の場合は前記第3の二方弁を閉じる制御を行う請求項5から7のいずれかに記載の空気調和機。   The refrigerant heater is a heat storage unit that collects and stores the exhaust heat of the compressor, and further includes a heating load detection unit that detects the size of the heating load, and the heating detected by the heating load detection unit during heating operation. When the load is greater than a predetermined value, control is performed to open the third two-way valve, and when the heating load detected by the heating load detection means is less than a predetermined value, control is performed to close the third two-way valve. The air conditioner according to any one of claims 5 to 7.
JP2011029355A 2011-02-15 2011-02-15 Air conditioner Withdrawn JP2012167869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029355A JP2012167869A (en) 2011-02-15 2011-02-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029355A JP2012167869A (en) 2011-02-15 2011-02-15 Air conditioner

Publications (1)

Publication Number Publication Date
JP2012167869A true JP2012167869A (en) 2012-09-06

Family

ID=46972200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029355A Withdrawn JP2012167869A (en) 2011-02-15 2011-02-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP2012167869A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189663A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Heat pump hot water supply system
CN106545964A (en) * 2016-10-26 2017-03-29 珠海格力电器股份有限公司 A kind of compressor electric heating control device, method and air-conditioning
JP2018151082A (en) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 Air conditioner
WO2019222394A1 (en) * 2018-05-15 2019-11-21 Emerson Climate Technologies, Inc. Climate-control system with ground loop
WO2020255454A1 (en) * 2019-06-20 2020-12-24 三菱電機株式会社 Vehicular air-conditioning device
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
CN115717787A (en) * 2022-11-09 2023-02-28 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189663A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Heat pump hot water supply system
JPWO2016189663A1 (en) * 2015-05-26 2018-01-11 三菱電機株式会社 Heat pump hot water supply system
AU2015395825B2 (en) * 2015-05-26 2018-11-08 Mitsubishi Electric Corporation Heat pump hot-water supply system
CN106545964A (en) * 2016-10-26 2017-03-29 珠海格力电器股份有限公司 A kind of compressor electric heating control device, method and air-conditioning
CN106545964B (en) * 2016-10-26 2019-01-29 珠海格力电器股份有限公司 A kind of compressor electric heating control device, method and air-conditioning
JP2018151082A (en) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 Air conditioner
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US10598395B2 (en) 2018-05-15 2020-03-24 Emerson Climate Technologies, Inc. Climate-control system with ground loop
WO2019222394A1 (en) * 2018-05-15 2019-11-21 Emerson Climate Technologies, Inc. Climate-control system with ground loop
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
WO2020255454A1 (en) * 2019-06-20 2020-12-24 三菱電機株式会社 Vehicular air-conditioning device
JPWO2020255454A1 (en) * 2019-06-20 2021-10-21 三菱電機株式会社 Vehicle air conditioner
JP7109671B2 (en) 2019-06-20 2022-07-29 三菱電機株式会社 vehicle air conditioner
CN115717787A (en) * 2022-11-09 2023-02-28 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner

Similar Documents

Publication Publication Date Title
JP2012167869A (en) Air conditioner
EP3734167B1 (en) Air conditioner system
CN211739592U (en) Air conditioning system capable of continuously heating
US9518754B2 (en) Air-conditioning apparatus
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
WO2019091241A1 (en) Cooling circulation system for air conditioning, and air conditioner
KR100821728B1 (en) Air conditioning system
JP2009243793A (en) Heat pump type hot water supply outdoor unit
US11268737B2 (en) Refrigeration cycle apparatus
JP2007271094A (en) Air conditioner
WO2015045247A1 (en) Heat pump system, and heat pump water heater
JP2002081767A (en) Air conditioner
JP2001056159A (en) Air conditioner
CN212538209U (en) Heat pump system, heat pump air conditioner comprising same and heat pump water heater
KR101142914B1 (en) Hot water and cool water product system using 2-steps heat pump cycles
JP2000274859A (en) Refrigerator
JP2015117847A (en) Air conditioner
JP5334554B2 (en) Air conditioner
JP5313774B2 (en) Air conditioner
EP3734192B1 (en) Air conditioner system
KR20100062405A (en) Air conditioner and control method thereof
JP2001296068A (en) Regenerative refrigerating device
JP2011257038A (en) Air conditioner
JP2014031930A (en) Refrigeration cycle device
JP2003106689A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513