JP2007271094A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007271094A
JP2007271094A JP2006093895A JP2006093895A JP2007271094A JP 2007271094 A JP2007271094 A JP 2007271094A JP 2006093895 A JP2006093895 A JP 2006093895A JP 2006093895 A JP2006093895 A JP 2006093895A JP 2007271094 A JP2007271094 A JP 2007271094A
Authority
JP
Japan
Prior art keywords
heat source
air conditioner
indoor
unit
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006093895A
Other languages
Japanese (ja)
Other versions
JP4948016B2 (en
JP2007271094A5 (en
Inventor
Kazutaka Shinozaki
万誉 篠崎
Hirobumi Takashita
博文 高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006093895A priority Critical patent/JP4948016B2/en
Publication of JP2007271094A publication Critical patent/JP2007271094A/en
Publication of JP2007271094A5 publication Critical patent/JP2007271094A5/ja
Application granted granted Critical
Publication of JP4948016B2 publication Critical patent/JP4948016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of improving heating performance by continuing indoor heating even during defrosting an outdoor heat exchanger, though in performing a defrosting operation in a conventional air conditioner, a heating operation at an indoor machine side is temporarily stopped until the defrosting is terminated, and the heating of the indoor air by the indoor-side heat exchanger must be stopped, which causes degradation of average heating performance. <P>SOLUTION: In this air conditioner where a plurality of heat source machines and at least one or more indoor machines are connected through a flow channel switching valve device which constantly keeps a prescribed connection pipe under a low pressure and keeps the other prescribed connection pipe under a high pressure in operation, the plurality of heat source machines are respectively provided with frost formation detecting means, the defrosting operation is performed only in the heat source machine where frost formation is detected, when a state of frost formation is detected in any one of the heat source machines, and the other heat source machines continue the heating operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、複数台の熱源機に対して、複数台の室内機を並列接続してなる空気調和装置に係り,特に各室内機毎に冷房・暖房を選択でき,一方の室内機では冷房を、他方の室内機では暖房を同時に行うことのできる空気調和装置に関するものである。 The present invention relates to an air conditioner in which a plurality of indoor units are connected in parallel to a plurality of heat source units, and in particular, cooling and heating can be selected for each indoor unit. The other indoor unit relates to an air conditioner that can perform heating at the same time.

従来は,圧縮機,四方切換弁,熱源側熱交換器を有する1台の熱源機と,それぞれ流量制御装置及び室内側熱交換器を有する複数の室内機を備え,上記複数の室内機で冷房運転と暖房運転を同時に行える冷媒回路が構成されている空気調和装置である。 Conventionally, a single heat source unit having a compressor, a four-way switching valve, and a heat source side heat exchanger, and a plurality of indoor units each having a flow control device and an indoor side heat exchanger are provided. It is an air conditioner in which a refrigerant circuit that can perform operation and heating operation simultaneously is configured.

この従来の空気調和装置では,暖房運転中,室外の熱源側熱交換器にて冷媒を蒸発させることとなり,外気温度が低いと室外の熱源側熱交換器に着霜してしまい,十分な暖房能力が得られなくなる。従って,これを解消する為に通常,除霜運転が行われる。暖房運転を一時中断し,四方切換弁により冷媒の流れを切り換えることで,圧縮機からの高温ガスを熱源側熱交換器に流し除霜を行う。除霜完了後,再び四方切換弁を元の状態に切り換えて暖房運転を行うものである。なお、参考の特許文献として下記の公報を例示しておく。 In this conventional air conditioner, the refrigerant is evaporated in the outdoor heat source side heat exchanger during the heating operation, and if the outside air temperature is low, the outdoor heat source side heat exchanger is frosted and sufficient heating is performed. The ability cannot be obtained. Therefore, a defrosting operation is usually performed to solve this problem. By temporarily interrupting the heating operation and switching the refrigerant flow using the four-way selector valve, the high-temperature gas from the compressor flows through the heat source side heat exchanger to perform defrosting. After the defrosting is completed, the heating operation is performed by switching the four-way switching valve to the original state again. The following publications are exemplified as reference patent documents.

特開2004−294036号公報JP 2004-294036 A 特開2002−286273号公報JP 2002-286273 A 特開2001−116383号公報JP 2001-116383 A

前記した従来の空気調和装置で除霜運転を行った場合,除霜が完了するまで室内機側の暖房運転を一時中断する為,室内側熱交換器における室内空気の加熱を停止せざるを得なくなり,平均的な暖房能力の低下を招くという問題があった。 When defrosting operation is performed with the above-described conventional air conditioner, heating of the indoor air in the indoor heat exchanger must be stopped because the heating operation on the indoor unit side is temporarily suspended until the defrosting is completed. There was a problem that the average heating capacity declined.

この発明は,上述のような従来の課題を解決する為になされたもので,その目的とするところは熱源側熱交換器の除霜中にも室内機の暖房運転を継続させ,これにより暖房能力の向上を図ることにある。 The present invention has been made to solve the above-described conventional problems, and its object is to continue the heating operation of the indoor unit even during the defrosting of the heat source side heat exchanger, thereby heating the indoor unit. The purpose is to improve ability.

上述の目的を達成するために,請求項1,または2に記載の本発明の空気調和装置は,圧縮機,切換弁及び熱源側熱交換器を内装した複数台の熱源機と,流量制御装置及び室内側熱交換器を内装した少なくとも1台以上の室内機とを,複数の接続配管を介してそれぞれ並列に接続したものにおいて,前記複数の接続配管間に設けて,前記切換弁にて流れる冷媒の方向を切り換えることにより運転時は常に,所定の接続配管を低圧に,他の所定の接続配管を高圧にする複数の逆止弁によって形成された流路切換弁装置と,少なくとも1台以上の室内側熱交換器の一方を前記低圧となる所定の接続配管,または前記高圧となる他の所定の接続配管に切り換え可能となる複数の電磁開閉弁によって形成された第1の分岐部を備え,さらに,前記複数台の熱源機にそれぞれ着霜検知手段を設け,いずれか1台の熱源機が着霜状態であることを検知すると、着霜を検知した熱源機のみが除霜運転を行い、他の熱源機は暖房運転を継続することを特徴とする。 In order to achieve the above-mentioned object, the air conditioner according to the first or second aspect of the present invention includes a plurality of heat source units including a compressor, a switching valve and a heat source side heat exchanger, and a flow rate control device. And at least one indoor unit with a built-in indoor heat exchanger connected in parallel via a plurality of connection pipes, provided between the plurality of connection pipes, and flowing through the switching valve At least one or more flow-path switching valve devices formed by a plurality of check valves that always switch a predetermined connection pipe to a low pressure and other predetermined connection pipes to a high pressure by switching the direction of the refrigerant. A first branch portion formed by a plurality of electromagnetic on-off valves capable of switching one of the indoor side heat exchangers to the predetermined connection pipe having the low pressure or the other predetermined connection pipe having the high pressure. In addition, the heat of the plurality of units Each source unit is provided with frost detection means. When it is detected that any one of the heat source units is in a frosted state, only the heat source unit that has detected frost formation performs a defrosting operation, and the other heat source units are heated. It is characterized by continuing operation.

請求項3に記載の本発明の空気調和装置は、圧縮機、切換弁及び熱源側熱交換器を内装した複数台の熱源機と、流量制御装置及び室内側熱交換器を内装した少なくとも1台以上の室内機とを、複数の接続配管を介してそれぞれ並列に接続したものにおいて、前記複数の接続配管間に設けて、前記切換弁にて流れる冷媒の方向を切り換えることにより運転時は常に、所定の接続配管を低圧に、他の所定の接続配管を高圧にする逆止弁によって形成された流路切換弁装置と、少なくとも1台以上の室内側熱交換器の一方を前記低圧となる所定の接続配管、または前記高圧となる他の所定の接続配管に切り換え可能となる接続する第1の分岐部を備え、さらに、前記複数台の熱源機にそれぞれ着霜検知手段を設け、少なくともいずれか1台以上の熱源機を除く他の熱源機が着霜状態であることを検知すると、着霜を検知した熱源機が除霜運転を行い、他の少なくとも1台以上の熱源機は暖房運転を継続することを特徴とする。 The air conditioner of the present invention according to claim 3 is a plurality of heat source units equipped with a compressor, a switching valve and a heat source side heat exchanger, and at least one unit equipped with a flow rate control device and an indoor side heat exchanger. In the above indoor units connected in parallel through a plurality of connection pipes, provided between the plurality of connection pipes, by switching the direction of the refrigerant flowing in the switching valve, always during operation, One of at least one indoor heat exchanger and a flow path switching valve device formed by a check valve that makes a predetermined connecting pipe low pressure and other predetermined connecting pipe high pressure A first branching portion that can be switched to the above-mentioned connecting pipe, or another predetermined connecting pipe that becomes the high pressure, and further provided with frosting detection means in each of the plurality of heat source units, and at least one of them One or more heat source machine When it is detected that other heat source devices are in a frosted state, the heat source device that has detected frost formation performs a defrosting operation, and at least one other heat source device continues the heating operation. .

請求項4に記載の本発明の空気調和装置は、請求項1に記載の空気調和装置において、複数の熱源機にそれぞれ制御上の優先順位を持たせることで、複数の熱源機が同時に着霜を検知しても、1台ずつ除霜運転を開始及び完了させることを特徴とする。 The air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect, wherein the plurality of heat source units are simultaneously frosted by giving each of the plurality of heat source units a priority in control. Even if it detects, defrosting operation is started and completed one by one.

請求項5に記載の本発明の空気調和装置は、請求項3に記載の空気調和装置において、少なくとも1台以上の熱源機が着霜状態であることを検知しても、除霜運転中の熱源機がある場合、その除霜運転が完了するまでは、他の熱源機の除霜運転を開始しないことを特徴とする。 The air conditioner of the present invention according to claim 5 is the air conditioner according to claim 3, wherein the air conditioner is in a defrosting operation even if it is detected that at least one heat source unit is in a frosted state. When there is a heat source unit, the defrosting operation of other heat source units is not started until the defrosting operation is completed.

請求項6に記載の本発明の空気調和装置は、請求項2または4に記載の空気調和装置において、少なくとも1台以上の熱源機が除霜運転を行い、他の熱源機が暖房運転を継続している際、停止中の室内機に内装した流量制御装置を絞ることで全閉にすることを特徴とする。 An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the second or fourth aspect, wherein at least one heat source unit performs a defrosting operation and another heat source unit continues a heating operation. In this case, the flow control device built in the stopped indoor unit is fully closed by narrowing down.

請求項7に記載の本発明の空気調和装置は、請求項5に記載の空気調和装置において、少なくとも1台以上の熱源機が除霜運転を行い、他の熱源機が暖房運転を継続している際、停止中の室内機に接続された前記第1の分岐部に内装した電磁開閉弁を全閉にすることを特徴とする。 An air conditioner according to a seventh aspect of the present invention is the air conditioner according to the fifth aspect, wherein at least one heat source unit performs the defrosting operation and the other heat source units continue the heating operation. In this case, the electromagnetic on-off valve built in the first branch portion connected to the stopped indoor unit is fully closed.

請求項8に記載の本発明の空気調和装置は、請求項6に記載の空気調和装置において、少なくとも1台以上の熱源機が除霜運転を行い、他の熱源機が暖房運転を継続している際、暖房運転中の熱源機において、目標とする高圧圧力あるいは凝縮温度に応じて圧縮機運転周波数を増減させることを特徴とする。 The air conditioner of the present invention according to claim 8 is the air conditioner according to claim 6, wherein at least one heat source unit performs the defrosting operation, and the other heat source unit continues the heating operation. In the heat source apparatus during heating operation, the compressor operating frequency is increased or decreased according to the target high pressure or condensation temperature.

本発明の空気調和装置は,圧縮機、切換弁、及び熱源側熱交換器を有する熱源機を少なくとも2台以上有し、第1、第2の接続配管内の冷媒が一方向流れであることを利用し、熱源機が暖房運転中,少なくとも1台以上の熱源機を除く他の熱源機が除霜運転を行うと同時に,他の熱源機によって暖房運転を継続させることで,暖房能力の低下を防止することができる。これにより室内側において安定した暖房運転を確保することが可能である。 The air conditioner of the present invention has at least two heat source units including a compressor, a switching valve, and a heat source side heat exchanger, and the refrigerant in the first and second connection pipes flows in one direction. The heat capacity is reduced by continuing the heating operation with other heat source machines at the same time that the other heat source machines perform the defrosting operation while at least one heat source machine is in the heating operation. Can be prevented. This makes it possible to ensure a stable heating operation on the indoor side.

また,複数の熱源機にて除霜運転と暖房運転を同時に行っている際,暖房運転中の熱源機の圧縮機運転周波数を高圧圧力,あるいは凝縮温度に応じて増減させることで,暖房運転中の室内機の凝縮温度を短時間で目標値へ上昇させることで,暖房能力を維持できるとともに,除霜運転中の熱源機の除霜運転時間を短縮することが可能となる。その際,高圧圧力,あるいは凝縮温度に応じて,暖房運転中の熱源機の圧縮機運転周波数をコントロールしているため,高圧過昇を抑制できる。 In addition, when performing defrosting operation and heating operation simultaneously with multiple heat source units, the compressor operating frequency of the heat source unit during heating operation is increased or decreased according to the high pressure or the condensation temperature. By increasing the condensation temperature of the indoor unit to the target value in a short time, the heating capacity can be maintained and the defrosting operation time of the heat source unit during the defrosting operation can be shortened. At that time, since the compressor operating frequency of the heat source unit during heating operation is controlled according to the high pressure or the condensation temperature, the high pressure overheating can be suppressed.

また,少なくとも1台以上の熱源機を除く他の熱源機が除霜運転を行い,他の熱源機が暖房運転を継続している際,停止中の室内機に内装した流量制御装置を全閉,または停止中の室内機に接続された第1の分岐部に内装した電磁開閉弁を全閉にすることで,除霜及び暖房同時運転中の停止室内機を流れる冷媒流動音の発生を防止するとともに,前記流量制御装置及び電磁開閉弁をともに全閉にすることで,停止室内機への冷媒滞留を防止することで,熱源機の冷媒不足を解消することが可能となる。 In addition, at least one heat source unit other than the heat source unit performs defrosting operation, and when the other heat source unit continues heating operation, the flow control device built in the stopped indoor unit is fully closed. Or, by fully closing the electromagnetic on-off valve built in the first branch connected to the stopped indoor unit, the flow of refrigerant flowing through the stopped indoor unit during simultaneous defrosting and heating is prevented. At the same time, by fully closing both the flow control device and the electromagnetic on-off valve, it is possible to prevent the refrigerant shortage in the heat source unit by preventing the refrigerant from staying in the stop indoor unit.

また,少なくとも2台以上の熱源機を同一のサイクルで運転している場合には,最大で複数の熱源機の合計冷媒流量相当の冷房・暖房能力を発揮することができる。 In addition, when at least two heat source units are operated in the same cycle, the cooling / heating capacity equivalent to the total refrigerant flow rate of a plurality of heat source units can be exhibited.

また,少なくとも1台以外の熱源機が故障した場合でも,残りの熱源機を稼動することによりバックアップ運転をすることができる。 In addition, even when at least one heat source unit fails, backup operation can be performed by operating the remaining heat source units.

以下,この発明の空気調和装置の実施例を図面に基づいて説明する。図1〜図3はこの発明の一実施例を示し,図1は冷媒回路図,図2は冷房・暖房同時運転における暖房主体運転時の冷媒の流れを示す冷媒回路図,図3は暖房しながら除霜運転の冷媒の流れを示す冷媒回路図である。なお,この実施例では熱源機2台に室内機3台を接続した場合について説明するが,2台以上の熱源機,及び2台以上の室内機を接続した場合も同様である。 Embodiments of an air conditioner according to the present invention will be described below with reference to the drawings. 1 to 3 show an embodiment of the present invention, FIG. 1 is a refrigerant circuit diagram, FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow during heating main operation in simultaneous cooling and heating operation, and FIG. It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant of a defrost operation, however. In this embodiment, a case where three indoor units are connected to two heat source units will be described, but the same applies to a case where two or more heat source units and two or more indoor units are connected.

図1において,A,Bは並列接続された熱源機,C,D,Eは後述するように互いに並列接続された室内機でそれぞれ同じ構成となっている。Fは後述するように,第1の分岐部10,第2の流量制御装置13,第2の分岐部11,気液分離装置12,第1の熱交換器17,第2の熱交換器16,第3の流量制御装置15を内蔵した中継機である。また,1a,1bは圧縮機,2a,2bは熱源機の冷媒流通方向を切り換える四方切換弁,3a,3bは熱源側熱交換器,4a,4bはアキュムレータで,上記四方切換弁2a,2bを介して圧縮機1a,1bと接続されている。これらによって熱源機A,Bがそれぞれ構成される。また,5c,5d,5eは3台の室内機C,D,Eに設けられた室内側熱交換器,6は熱源機A,Bの四方切換弁2a,2bと中継機Fを後述する逆止弁19a,19b,及び接続配管6a,6bを介して接続する第1の接続配管,6c,6d,6eはそれぞれ室内機C,D,Eはの室内側熱交換器5c,5d,5eと中継機Fを接続し,第1の接続配管6に対応する室内機側の第1の接続配管,7は熱源機A,Bの熱源機側熱交換器3a,3bと中継機Fを後述する第3の逆止弁18a,18bを介して接続する第2の接続配管である。 In FIG. 1, A and B are heat source devices connected in parallel, and C, D, and E are indoor units connected in parallel as described later, and have the same configuration. As will be described later, F represents a first branch unit 10, a second flow rate control device 13, a second branch unit 11, a gas-liquid separator 12, a first heat exchanger 17, and a second heat exchanger 16. , A repeater incorporating a third flow rate control device 15. 1a and 1b are compressors, 2a and 2b are four-way switching valves for switching the refrigerant flow direction of the heat source unit, 3a and 3b are heat source side heat exchangers, 4a and 4b are accumulators, and the four-way switching valves 2a and 2b are connected to each other. Are connected to the compressors 1a and 1b. These constitute the heat source devices A and B, respectively. 5c, 5d, and 5e are indoor heat exchangers installed in the three indoor units C, D, and E, and 6 is a four-way switching valve 2a, 2b of the heat source units A and B and a relay F that are described later. The first connection pipes 6c, 6d and 6e connected via the stop valves 19a and 19b and the connection pipes 6a and 6b are the indoor units C, D and E, respectively, and the indoor heat exchangers 5c, 5d and 5e Connect the relay machine F, the first connection pipe on the indoor unit side corresponding to the first connection pipe 6, 7 is the heat source equipment side heat exchanger 3a, 3b of heat source machine A, B and the relay machine F will be described later This is a second connection pipe connected via the third check valves 18a, 18b.

また,7c,7d,7eはそれぞれ室内機C,D,Eの室内側熱交換器5c,5d,5eと中継機Fを第1の流量制御装置9c,9d,9eを介して接続し,第2の接続配管7に対応する室内機側の第2の接続配管である。
熱源機A及びBは,圧縮機1a,1b,熱源機の冷媒流通方向を切り換える切換弁である四方切換弁2a,2b,熱源側熱交換器3a,3b,アキュムレータ4a,4bを内蔵している。
また,室内機C,D,Eは,第1の流量制御装置9,室内側熱交換器5を内蔵しており,5c,5d,5eは,それぞれ室内機C,D,Eの室内側熱交換器である。6は四方弁2と中継機Fを接続する太い第1の接続配管,6c,6d,6eはそれぞれ室内機C,D,Eの室内側熱交換器5c,5d,5eと中継機Fを接続し,第1の接続配管6に対応する室内機側の第1の接続配管,7は熱源側熱交換器3a,3b中継機Fを接続する前記第1の接続配管6より細い第2の接続配管,7c,7d,7eはそれぞれ室内機C,D,Eの室内側熱交換器5c,5d,5eと中継機Fを接続し,第2の接続配管7に対応する室内機側の第2の接続配管,8c,8d,8e,8f,8g,8hは室内機側の第1の接続配管6c,6d,6eと第1の接続配管6,または,第2の接続配管7側に切り換え可能に接続する第1,第2,第3の電磁弁,9は第1の流量制御装置で,9c,9d,9eは室内側熱交換器5c,5d,5eに近接して接続され,冷房時は室内側熱交換器5の出口側過熱度,暖房時は過冷却度により調整される第1の流量制御装置で,室内機側の第2の接続配管7c,7d,7eに接続される。
7c, 7d, and 7e connect the indoor side heat exchangers 5c, 5d, and 5e of the indoor units C, D, and E to the relay unit F through the first flow control devices 9c, 9d, and 9e, respectively. This is a second connection pipe on the indoor unit side corresponding to the two connection pipes 7.
The heat source machines A and B incorporate compressors 1a and 1b, four-way switching valves 2a and 2b that are switching valves for switching the refrigerant flow direction of the heat source machine, heat source side heat exchangers 3a and 3b, and accumulators 4a and 4b. .
The indoor units C, D, and E incorporate the first flow control device 9 and the indoor heat exchanger 5, and 5c, 5d, and 5e are the indoor heats of the indoor units C, D, and E, respectively. It is an exchanger. 6 is a thick first connection pipe that connects the four-way valve 2 and the relay F, and 6c, 6d, and 6e connect the indoor heat exchangers 5c, 5d, and 5e of the indoor units C, D, and E to the relay F, respectively. The first connection pipe on the indoor unit side corresponding to the first connection pipe 6, 7 is a second connection narrower than the first connection pipe 6 connecting the heat source side heat exchangers 3a, 3b relay F The pipes 7c, 7d, and 7e connect the indoor side heat exchangers 5c, 5d, and 5e of the indoor units C, D, and E to the relay unit F, respectively, and the indoor unit side second corresponding to the second connection pipe 7 is connected. The connecting pipes 8c, 8d, 8e, 8f, 8g, and 8h can be switched to the first connecting pipe 6c, 6d, 6e on the indoor unit side and the first connecting pipe 6 or the second connecting pipe 7 side. 1st, 2nd, 3rd solenoid valves connected to, 9 is the first flow control device, 9c, 9d, 9e are connected in close proximity to the indoor heat exchangers 5c, 5d, 5e, during cooling Is the first flow adjusted by the degree of superheat on the outlet side of the indoor heat exchanger 5 and the degree of supercooling during heating. In the control device, the second connection pipe 7c of the indoor unit side, 7d, is connected to 7e.

10は第1の分岐部で,室内機C,D,Eに対応し,室内機側の第1の接続配管6c,6d,6eと,第1の接続配管6または,第2の接続配管7に切り換え可能に接続する電磁弁8c,8d,8e,8f,8g,8hよりなる第1の分岐部,11は第2の分岐部で,室内機C,D,Eに対応し,室内機側の第2の接続配管7c,7d,7eとその会合部よりなる第2の分岐部,12は第2の接続配管7の途中に設けられた気液分離装置で,その気相分は,第1の分岐部10に接続され,その液相分は第2の分岐部11に接続されている。13は気液分離装置12と第2の分岐部11と前記第1の接続配管を結ぶ第1のバイパス管,15は第3の流量制御装置で,第1のバイパス配管14の途中に設けられた開閉自在な第3の流量制御装置,16は第1のバイパス管14と第3の流量制御装置15の下流に設けられた熱交換器であり,第2の流量制御装置13と第2の分岐部11との間の接続配管と第1のバイパス配管14との間で熱交換を行う第2の熱交換器,17は第1のバイパス配管14と第3の流量制御装置15の下流および第2の熱交換器16の下流に設けられ,気液分離装置12と第2の流量制御装置13とを接続する配管との間で熱交換を行う第1の熱交換器である。 Reference numeral 10 denotes a first branch portion corresponding to the indoor units C, D, and E. The first connection pipes 6c, 6d, and 6e on the indoor unit side and the first connection pipe 6 or the second connection pipe 7 are provided. The first branch part consisting of solenoid valves 8c, 8d, 8e, 8f, 8g, 8h, 11 is a second branch part, corresponding to the indoor units C, D, E, on the indoor unit side The second connecting pipes 7c, 7d, 7e and the second branch part 12 formed by the meeting parts thereof, 12 is a gas-liquid separator provided in the middle of the second connecting pipe 7, and the gas phase component is The liquid phase component is connected to the second branch part 11, which is connected to one branch part 10. 13 is a first bypass pipe connecting the gas-liquid separator 12 and the second branching section 11 and the first connection pipe, and 15 is a third flow rate control apparatus, which is provided in the middle of the first bypass pipe 14. A third flow control device 16 that can be freely opened and closed is a heat exchanger provided downstream of the first bypass pipe 14 and the third flow control device 15, and the second flow control device 13 and the second flow control device 15. A second heat exchanger for exchanging heat between the connecting pipe between the branch section 11 and the first bypass pipe 14, 17 is downstream of the first bypass pipe 14 and the third flow control device 15 and This is a first heat exchanger that is provided downstream of the second heat exchanger 16 and performs heat exchange between a pipe connecting the gas-liquid separator 12 and the second flow rate controller 13.

18は熱源側熱交換器3a,3bと第2の接続配管7との間に設けられた逆止弁であり,熱源側熱交換器3a,3bから第2の接続配管7へのみ冷媒の流通を許容する。19は熱源機AまたはBの四方切換弁2a,2bと第2の接続配管7との間に設けられた逆止弁であり,四方切換弁2a,2bから第2の接続配管7へのみ冷媒の流通を許容する。21は熱源側熱交換器3と第1の接続配管6との間に設けられた逆止弁であり,第1の接続配管6から熱源側熱交換器3へのみ冷媒の流通を許容する。これら18,19,20,21で流路切換弁を構成する。 18 is a check valve provided between the heat source side heat exchangers 3a, 3b and the second connection pipe 7, and the refrigerant flows only from the heat source side heat exchangers 3a, 3b to the second connection pipe 7. Is acceptable. 19 is a check valve provided between the four-way switching valves 2a, 2b of the heat source device A or B and the second connection pipe 7, and refrigerant is supplied only from the four-way switching valves 2a, 2b to the second connection pipe 7. Allow distribution. A check valve 21 is provided between the heat source side heat exchanger 3 and the first connection pipe 6 and permits the refrigerant to flow only from the first connection pipe 6 to the heat source side heat exchanger 3. These 18, 19, 20, and 21 constitute a flow path switching valve.

このように構成された空気調和装置の空調運転について説明する。まず,図3に添って,冷暖房同時運転における暖房主体運転の場合について説明する。ここでは,室内機C,Dが暖房,室内機Eのみが冷房しようとしている場合について説明する。
このとき,室内機に接続された電磁開閉弁8c,8d,8hは閉止,8e,8f,8gは開口される。冷媒の流れを以下に示す。図3に実線矢印で示すように圧縮機1a,1bで圧縮された高温高圧のガス冷媒は四方切換弁2a,2b,逆止弁20a,20bを経て,熱源機A,Bの冷媒が合流し,第2の接続配管7,中継機Fの気液分離装置12,第1の分岐部10へ送られる。第1の分岐部10へ流入した冷媒は,室内機C,Dに流入し,室内熱交換器5c,5dで空気などの利用媒体と熱交換して凝縮液化する。この液状態となった冷媒は,室内側熱交換器5c,5dの出口の過冷却度により制御され,第1の流量調整9c,9dを通り少し減圧されて,高圧と低圧の中間の圧力(中間圧)となり,室内機側の第2の接続配管7c,7dから第2の分岐部11に流入する。
The air conditioning operation of the air conditioner configured as described above will be described. First, according to FIG. 3, the case of heating-main operation in simultaneous cooling and heating operation will be described. Here, the case where the indoor units C and D are heating and only the indoor unit E is going to be cooled will be described.
At this time, the electromagnetic on-off valves 8c, 8d and 8h connected to the indoor unit are closed, and 8e, 8f and 8g are opened. The flow of the refrigerant is shown below. As indicated by solid arrows in FIG. 3, the high-temperature and high-pressure gas refrigerant compressed by the compressors 1a and 1b passes through the four-way switching valves 2a and 2b and the check valves 20a and 20b, and the refrigerant of the heat source machines A and B merges. , The second connecting pipe 7, the gas-liquid separator 12 of the relay F, and the first branching section 10. The refrigerant that has flowed into the first branch section 10 flows into the indoor units C and D, and is heat-exchanged with a utilization medium such as air in the indoor heat exchangers 5c and 5d to be condensed and liquefied. The refrigerant in the liquid state is controlled by the degree of supercooling at the outlets of the indoor heat exchangers 5c and 5d, and is slightly reduced through the first flow rate adjustments 9c and 9d, so that the pressure between the high pressure and the low pressure ( Intermediate pressure) and flows into the second branch portion 11 from the second connection pipes 7c and 7d on the indoor unit side.

冷房しようとしている室内機Eへの冷媒の流れは,第2の分岐部11から室内機側の接続配管7eを通り,室内側熱交換器5eの出口の過熱度により制御される第1の流量制御装置9eにより低圧まで減圧されて室内側熱交換器5eで空気などの利用媒体と熱交換して蒸発・ガス化し,室内機Eに接続された電磁開閉弁8eを介して第1の接続配管6に流入する。冷房しようとしている室内機Eの冷房負荷の大きさに応じて,室内機Eに流入する冷媒流量は決まる。よって,第2の分岐部11から室内機Eに流入する冷媒流量が室内機C,Dから第2の分岐部11へ流入する冷媒流量より多い場合は,室内機C,Dから第2の分岐部11に流入した冷媒の一部は,第2の分岐部11に流入して,室内機C,Dから第2の分岐部11に流入した冷媒と合流して,室内機Eへ流入する。一方,室内機C,Dから第2の分岐部11に流入した他の冷媒は,第1のバイパス配管14を通り,第3の流量制御装置15により低圧まで減圧されて,冷房しようとしている室内機Eを通った冷媒と合流して,太い第1の接続配管6に流入する。その後,熱源機A,Bに分かれて,逆止弁21a,21b,熱源側熱交換器3a,3bに流入して蒸発しガス状態となった冷媒は,四方切換弁2a,2b,アキュムレータ4a,4bを経て圧縮機1に吸入される循環サイクルを構成し,暖房主体運転を行う。 The flow of the refrigerant to the indoor unit E to be cooled is controlled by the superheat degree at the outlet of the indoor heat exchanger 5e through the connecting pipe 7e on the indoor unit side from the second branch part 11 The pressure is reduced to a low pressure by the control device 9e, heat is exchanged with a medium such as air in the indoor heat exchanger 5e, evaporates and gasifies, and the first connection pipe is connected via the electromagnetic on-off valve 8e connected to the indoor unit E Flows into 6. The flow rate of the refrigerant flowing into the indoor unit E is determined according to the cooling load of the indoor unit E to be cooled. Therefore, when the refrigerant flow rate flowing into the indoor unit E from the second branch unit 11 is larger than the refrigerant flow rate flowing into the second branch unit 11 from the indoor units C and D, the second branch is generated from the indoor units C and D. Part of the refrigerant that has flowed into the section 11 flows into the second branch section 11, merges with the refrigerant that has flowed into the second branch section 11 from the indoor units C and D, and flows into the indoor unit E. On the other hand, the other refrigerant that has flowed into the second branch portion 11 from the indoor units C and D passes through the first bypass pipe 14 and is decompressed to a low pressure by the third flow control device 15 to be cooled. The refrigerant passes through the machine E and flows into the thick first connection pipe 6. Thereafter, the refrigerant is divided into heat source devices A and B, and the refrigerant that has flowed into the check source valves 21a and 21b and the heat source side heat exchangers 3a and 3b to evaporate into a gas state is divided into four-way switching valves 2a and 2b, an accumulator 4a, A circulation cycle that is sucked into the compressor 1 through 4b is configured, and heating-main operation is performed.

次に図2に添って,全暖房または,暖房主体運転中,除霜運転と同時に暖房運転を行う場合について説明する。ここでは,室内機C,Dが暖房,室内機Eのみが冷房の暖房主体運転中,熱源機A,Bはそれぞれ着霜を検知する着霜検知手段を有しており,熱源機Aの熱源側熱交換器3aが着霜検知手段によって着霜を検知した場合,熱源機Bは暖房サイクルのまま,熱源機Aを除霜運転,つまりホットガスリバースサイクルに入れる。
このとき,室内機C,D,Eに接続された電磁開閉弁8c,8d,8hは閉止,8e,8f,8gは開口されたままとする。冷媒の流れを図2に実線矢印で示す。熱源機Aが着霜を検知すると,熱源機A,Bの圧縮機1a,1bの運転周波数を一時的に低下させることで,高圧圧力と低圧圧力の差を小さくし,熱源機Aの四方切換弁2aを冷房側へ切り換えて除霜運転を開始する。再び圧縮機1a,1bの運転周波数を増加させ,圧縮された高温高圧のガス冷媒は熱源機Aに関しては,四方切換弁2aを経て,着霜している熱源側熱交換器3aへ流入することで,除霜が行われる。また,熱源機Bに関しては,圧縮機1bによって圧縮された高温高圧のガス冷媒は四方切換弁2b,逆止弁20bを経て,熱源機Aの熱源側熱交換器3aから流出した気液二相冷媒と合流し,第2の接続配管7,中継機Fの気液分離装置12,第1の分岐部10へ送られる。第1の分岐部10へ流入した冷媒は,室内機C,Dに流入し,室内熱交換器5c,5dで空気などの利用媒体と熱交換して凝縮液化する。この液状態となった冷媒は,室内側熱交換器5c,5dの出口の過冷却度により制御され,第1の流量調整9c,9dを通り少し減圧されて,高圧と低圧の中間の圧力(中間圧)となり,室内機側の第2の接続配管7c,7dから第2の分岐部11に流入する。従って,室内機C,D,Eは暖房運転を継続しつつ,いずれか1台の除霜運転を行うことができる為,暖房能力がゼロとなることはない。
Next, referring to FIG. 2, the case where the heating operation is performed simultaneously with the defrosting operation during the whole heating or the heating main operation will be described. Here, while the indoor units C and D are heating and only the indoor unit E is in the heating main operation, the heat source units A and B each have frost detection means for detecting frost formation, and the heat source of the heat source unit A When the side heat exchanger 3a detects frost formation by the frost detection means, the heat source unit B is put into the defrosting operation, that is, the hot gas reverse cycle while the heat source unit B remains in the heating cycle.
At this time, the electromagnetic on-off valves 8c, 8d, and 8h connected to the indoor units C, D, and E are closed, and the 8e, 8f, and 8g are kept open. The flow of the refrigerant is shown by solid line arrows in FIG. When heat source unit A detects frost formation, the operating frequency of compressors 1a and 1b of heat source units A and B is temporarily reduced to reduce the difference between the high and low pressures and switch heat source unit A to four-way. The defrosting operation is started by switching the valve 2a to the cooling side. The operating frequency of the compressors 1a and 1b is increased again, and the compressed high-temperature and high-pressure gas refrigerant flows into the frosted heat source side heat exchanger 3a via the four-way switching valve 2a with respect to the heat source unit A. Then, defrosting is performed. Regarding the heat source unit B, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1b passes through the four-way switching valve 2b and the check valve 20b, and the gas-liquid two-phase flows out of the heat source side heat exchanger 3a of the heat source unit A. The refrigerant merges with the refrigerant, and is sent to the second connection pipe 7, the gas-liquid separator 12 of the relay F, and the first branch section 10. The refrigerant that has flowed into the first branch section 10 flows into the indoor units C and D, and is heat-exchanged with a utilization medium such as air in the indoor heat exchangers 5c and 5d to be condensed and liquefied. The refrigerant in the liquid state is controlled by the degree of supercooling at the outlets of the indoor heat exchangers 5c and 5d, and is slightly depressurized through the first flow rate adjustments 9c and 9d. Intermediate pressure) and flows into the second branch portion 11 from the second connection pipes 7c and 7d on the indoor unit side. Therefore, since the indoor units C, D, and E can perform the defrosting operation of any one unit while continuing the heating operation, the heating capacity does not become zero.

また,上述の除霜手段にて,暖房運転中の熱源機Bの圧縮機1bの運転周波数を目標とする高圧圧力,あるいは凝縮温度に応じて増減させることで,暖房運転中の室内機の凝縮温度を早急に上昇させることができると共に,除霜運転中の熱源機の除霜運転時間を短縮することが可能となる。その際,高圧圧力,あるいは凝縮温度に応じて,暖房運転中の熱源機の圧縮機運転周波数をコントロールしているため,高圧過昇を抑制できる。 In addition, the above defrosting means increases or decreases the operating frequency of the compressor 1b of the heat source B during heating operation according to the target high pressure or the condensation temperature, thereby condensing the indoor unit during heating operation. The temperature can be quickly raised and the defrosting operation time of the heat source unit during the defrosting operation can be shortened. At that time, since the compressor operating frequency of the heat source unit during heating operation is controlled according to the high pressure or the condensation temperature, the high pressure overheating can be suppressed.

また,上述の除霜手段にて,熱源機Aが除霜完了した後,熱源機Aにて暖房運転しつつ,熱源機Bにて除霜運転を開始させることで,除霜運転にて暖房を停止することなく,常時暖房能力を発揮することが可能となる。 In addition, after the defrosting of the heat source unit A is completed by the defrosting means described above, the defrosting operation is started by the heat source unit B while the heating source unit A is performing the heating operation. It is possible to always demonstrate the heating capacity without stopping the operation.

上述の空気調和装置において,いずれか1台の熱源機が除霜中,他の熱源機が着霜検知手段によって,着霜を検知した場合でも,除霜中の熱源機が除霜運転完了するまで,除霜運転に入らないよう制御することで,常に暖房運転を継続させることが可能である。 In the above-described air conditioner, even when any one heat source unit is defrosting and the other heat source unit detects frost formation by the frost detection means, the defrosting operation of the heat source unit being defrosted is completed. Until the defrosting operation is controlled, the heating operation can always be continued.

上述の空気調和装置において,2台以上の熱源機が,それぞれの熱源機の着霜検知手段によって着霜を検知した場合でも,それぞれの熱源機に優先順位を設けた制御にて1台ずつ除霜運転を開始・完了させることで,他の熱源機は暖房運転を継続させることが可能である。 In the air conditioner described above, even if two or more heat source units detect frost formation by the frost detection means of each heat source unit, each unit is removed one by one with priority given to each heat source unit. By starting and completing the frost operation, other heat source machines can continue the heating operation.

この実施の形態では,暖房主体運転を元に説明したが,暖房のみの運転でも同様の効果を奏することができる。また,熱源機2台に室内機3台,中継機1台を接続した場合について説明したが,2台以上の熱源機,1台以上の室内機,及び1台以上の中継機についても同様の効果を奏することができる。また,熱源側熱交換器3a,3bと直列または並列に氷蓄熱層や水蓄熱槽(湯を含む)が設置されても同様の効果を奏することは明らかである。 Although this embodiment has been described based on the heating-main operation, the same effect can be obtained even in the operation only with heating. In addition, the case where three indoor units and one relay unit are connected to two heat source units has been described, but the same applies to two or more heat source units, one or more indoor units, and one or more relay units. There is an effect. It is clear that the same effect can be obtained even if an ice heat storage layer or a water heat storage tank (including hot water) is installed in series or in parallel with the heat source side heat exchangers 3a and 3b.

本発明の実施の形態による空気調和装置の一例として,冷媒回路を示す図。The figure which shows a refrigerant circuit as an example of the air conditioning apparatus by embodiment of this invention. 図1の空気調和装置の暖房しながら除霜運転の冷媒の流れを示す図。FIG. 2 is a diagram illustrating a refrigerant flow in a defrosting operation while heating the air-conditioning apparatus of FIG. 本発明の実施の形態による冷暖房同時運転における暖房主体運転時の流れを示す図。The figure which shows the flow at the time of heating main operation | movement in the air-conditioning simultaneous operation by embodiment of this invention.

符号の説明Explanation of symbols

A,B:熱源機, C,D,E:室内機, F:中継機, 1:圧縮機, 2:四方切換弁, 3:熱源側熱交換器, 4:アキュムレータ, 5:室内側熱交換器, 6,6a,6b,6c,6d,6e:第1の接続配管, 7,7a,7b,7c,7d,7e:第2の接続配管, 8c,8d,8e:第1の電磁開閉弁, 9:第1の流量制御装置, 10:第1の分岐部, 11:第2の分岐部, 12:気液分離装置, 13:第2の流量制御装置, 14:第1のバイパス配管, 15:第3の流量制御装置, 16:第2の熱交換器, 17:第1の熱交換器, 18a,18b:第3の逆止弁, 19a,19b:第4の逆止弁, 20 21:逆止弁, 22c,22d,22e:第2の電磁開閉弁 A, B: Heat source machine, C, D, E: Indoor unit, F: Relay machine, 1: Compressor, 2: Four-way switching valve, 3: Heat source side heat exchanger, 4: Accumulator, 5: Indoor side heat exchange 6, 6a, 6b, 6c, 6d, 6e: First connection piping, 7, 7a, 7b, 7c, 7d, 7e: Second connection piping, 8c, 8d, 8e: First solenoid valve , 9: First flow controller, 10: First branch, 11: Second branch, 12: Gas-liquid separator, 13: Second flow controller, 14: First bypass pipe, 15: Third flow control device, 16: Second heat exchanger, 17: First heat exchanger, 18a, 18b: Third check valve, 19a, 19b: Fourth check valve, 20 21: Check valve, 22c, 22d, 22e: Second solenoid valve

Claims (8)

複数の熱源機と,少なくとも1台以上の室内機とを,高圧管と低圧管を介して接続し,さらに,前記複数台の熱源機にそれぞれ着霜検知手段を設け,いずれか1台の熱源機が着霜状態であることを検知すると,着霜を検知した熱源機のみが除霜運転を行い,他の熱源機は暖房運転を継続することを特徴とする空気調和装置。 A plurality of heat source units and at least one indoor unit are connected via a high-pressure pipe and a low-pressure pipe, and each of the plurality of heat source units is provided with frosting detection means, and any one heat source An air conditioner characterized in that when it is detected that the machine is in a frosting state, only the heat source machine that has detected frosting performs a defrosting operation, and the other heat source machine continues the heating operation. 圧縮機,切換弁及び熱源側熱交換器を内装した複数台の熱源機と,流量制御装置及び室内側熱交換器を内装した少なくとも1台以上の室内機とを,複数の接続配管を介してそれぞれ並列に接続したものにおいて,前記複数の接続配管間に設けて,前記切換弁にて流れる冷媒の方向を切り換えることにより運転時は常に,所定の接続配管を低圧に,他の所定の接続配管を高圧にする複数の逆止弁によって形成された流路切換弁装置と,少なくとも1台以上の室内側熱交換器の一方を前記低圧となる所定の接続配管,または前記高圧となる他の所定の接続配管に切り換え可能となる複数の電磁開閉弁によって形成された第1の分岐部を備えた請求項1に記載の空気調和装置。 A plurality of heat source units equipped with a compressor, a switching valve and a heat source side heat exchanger, and at least one indoor unit equipped with a flow rate controller and an indoor side heat exchanger are connected via a plurality of connection pipes. Each connected in parallel is provided between the plurality of connecting pipes, and by switching the direction of the refrigerant flowing through the switching valve, the predetermined connecting pipe is always kept at a low pressure and other predetermined connecting pipes are operated. One of at least one indoor heat exchanger and a predetermined connection pipe that is at a low pressure, or another predetermined pressure that is at a high pressure. 2. The air conditioner according to claim 1, further comprising a first branch portion formed by a plurality of electromagnetic on-off valves that can be switched to the connection pipe. 圧縮機,切換弁及び熱源側熱交換器を内装した複数台の熱源機と,流量制御装置及び室内側熱交換器を内装した少なくとも1台以上の室内機とを,複数の接続配管を介してそれぞれ並列に接続したものにおいて,前記複数の接続配管間に設けて,前記切換弁にて流れる冷媒の方向を切り換えることにより運転時は常に,所定の接続配管を低圧に,他の所定の接続配管を高圧にする逆止弁によって形成された流路切換弁装置と,少なくとも1台以上の室内側熱交換器の一方を前記低圧となる所定の接続配管,または前記高圧となる他の所定の接続配管に切り換え可能となる接続する第1の分岐部を備え,さらに,前記複数台の熱源機にそれぞれ着霜検知手段を設け,少なくともいずれか1台以上の熱源機を除く他の熱源機が着霜状態であることを検知すると,着霜を検知した熱源機全てが除霜運転を行い,他の少なくとも1台以上の熱源機は暖房運転を継続することを特徴とする空気調和装置。 A plurality of heat source units equipped with a compressor, a switching valve and a heat source side heat exchanger, and at least one indoor unit equipped with a flow rate controller and an indoor side heat exchanger are connected via a plurality of connection pipes. Each connected in parallel is provided between the plurality of connecting pipes, and by switching the direction of the refrigerant flowing through the switching valve, the predetermined connecting pipe is always kept at a low pressure and other predetermined connecting pipes are operated. One of at least one indoor heat exchanger and a predetermined connection pipe that becomes the low pressure, or another predetermined connection that becomes the high pressure A first branching portion that can be switched to a pipe, and further, frosting detection means is provided for each of the plurality of heat source units, and at least one of the other heat source units other than the one is installed. Detecting frost Then, all the heat source equipment which detected frost formation performs a defrost operation, and the other at least 1 heat source machine continues heating operation. 請求項1,または2に記載の空気調和装置において,複数の熱源機にそれぞれ制御上の優先順位を持たせることで,複数の熱源機が同時に着霜を検知しても,1台ずつ除霜運転を開始及び完了させることを特徴とする空気調和装置。 3. The air conditioner according to claim 1 or 2, wherein each of the plurality of heat source units has a control priority, so that even if the plurality of heat source units detect frost formation at the same time, one unit is defrosted. An air conditioner that starts and completes operation. 請求項4に記載の空気調和装置において,少なくとも1台以上の熱源機が着霜状態であることを検知しても,除霜運転中の熱源機がある場合,その除霜運転が完了するまでは,他の熱源機の除霜運転を開始しないことを特徴とする空気調和装置。 5. In the air conditioner according to claim 4, even if it is detected that at least one heat source unit is in a frosted state, if there is a heat source unit in the defrosting operation, the defrosting operation is completed. Is an air conditioner that does not start defrosting operation of other heat source machines. 請求項3,または5に記載の空気調和装置において,少なくとも1台以上の熱源機が除霜運転を行い,他の熱源機が暖房運転を継続している際,停止中の室内機に内装した流量制御装置を絞ることで全閉にすることを特徴とする空気調和装置。 6. The air conditioner according to claim 3 or 5, wherein at least one heat source unit performs a defrosting operation and the other heat source unit is installed in a stopped indoor unit when the heating operation is continued. An air conditioner that is fully closed by restricting a flow control device. 請求項6に記載の空気調和装置において,少なくとも1台以上の熱源機が除霜運転を行い,他の熱源機が暖房運転を継続している際,停止中の室内機に接続された前記第1の分岐部に内装した電磁開閉弁を全閉にすることを特徴とする空気調和装置。 7. The air conditioner according to claim 6, wherein when at least one heat source unit performs a defrosting operation and another heat source unit continues the heating operation, the first unit connected to the stopped indoor unit. 1. An air conditioner characterized by fully closing an electromagnetic on-off valve built in 1 branching section. 請求項7に記載の空気調和装置において,少なくとも1台以上の熱源機が除霜運転を行い,他の熱源機が暖房運転を継続している際,暖房運転中の熱源機において,目標とする高圧圧力あるいは凝縮温度に応じて圧縮機運転周波数を増減させることを特徴とする空気調和装置。 The air conditioner according to claim 7, wherein at least one heat source unit performs a defrosting operation and another heat source unit continues the heating operation, and the target is set in the heat source unit in the heating operation. An air conditioner that increases or decreases a compressor operating frequency according to a high pressure or a condensation temperature.
JP2006093895A 2006-03-30 2006-03-30 Air conditioner Active JP4948016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093895A JP4948016B2 (en) 2006-03-30 2006-03-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093895A JP4948016B2 (en) 2006-03-30 2006-03-30 Air conditioner

Publications (3)

Publication Number Publication Date
JP2007271094A true JP2007271094A (en) 2007-10-18
JP2007271094A5 JP2007271094A5 (en) 2008-10-09
JP4948016B2 JP4948016B2 (en) 2012-06-06

Family

ID=38674090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093895A Active JP4948016B2 (en) 2006-03-30 2006-03-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP4948016B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082325A1 (en) 2009-01-15 2010-07-22 三菱電機株式会社 Air conditioner
JP2012255637A (en) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp Air conditioning system
WO2014020651A1 (en) 2012-08-03 2014-02-06 三菱電機株式会社 Air-conditioning device
WO2014083867A1 (en) 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
WO2014192140A1 (en) 2013-05-31 2014-12-04 三菱電機株式会社 Air conditioner
JP5709838B2 (en) * 2010-03-16 2015-04-30 三菱電機株式会社 Air conditioner
WO2015104862A1 (en) 2014-01-10 2015-07-16 三菱電機株式会社 Heat pump hot and cold water system
CN107120796A (en) * 2017-05-17 2017-09-01 青岛海尔空调器有限总公司 Air conditioner defrosting control method
CN107300240A (en) * 2017-05-17 2017-10-27 青岛海尔空调器有限总公司 Air conditioner defrosting control method
WO2018082281A1 (en) * 2016-11-07 2018-05-11 广东美的暖通设备有限公司 Multi-split system and liquid return prevention control method thereof
CN111780372A (en) * 2020-07-09 2020-10-16 青岛海尔空调器有限总公司 Control method of one-driving-multiple air conditioner
WO2021053710A1 (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093586B1 (en) 2013-10-29 2021-08-25 Mitsubishi Electric Corporation Air conditioning device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493561A (en) * 1990-08-10 1992-03-26 Hitachi Ltd Multiple air-conditioner
JPH04324075A (en) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd Air conditioning apparatus
JPH07146022A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Air-conditioner
JPH07225067A (en) * 1994-02-15 1995-08-22 Sanyo Electric Co Ltd Air conditioner
JPH09229508A (en) * 1997-01-28 1997-09-05 Hitachi Ltd Multi air conditioner
JPH09287856A (en) * 1996-04-18 1997-11-04 Matsushita Refrig Co Ltd Defrosting method for air-conditioner
JP2003106712A (en) * 2001-10-02 2003-04-09 Sanyo Electric Co Ltd Air conditioning device
JP2003130482A (en) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp Air conditioner
JP2005077084A (en) * 2003-08-28 2005-03-24 Samsung Electronics Co Ltd Air-conditioner, and control method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493561A (en) * 1990-08-10 1992-03-26 Hitachi Ltd Multiple air-conditioner
JPH04324075A (en) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd Air conditioning apparatus
JPH07146022A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Air-conditioner
JPH07225067A (en) * 1994-02-15 1995-08-22 Sanyo Electric Co Ltd Air conditioner
JPH09287856A (en) * 1996-04-18 1997-11-04 Matsushita Refrig Co Ltd Defrosting method for air-conditioner
JPH09229508A (en) * 1997-01-28 1997-09-05 Hitachi Ltd Multi air conditioner
JP2003106712A (en) * 2001-10-02 2003-04-09 Sanyo Electric Co Ltd Air conditioning device
JP2003130482A (en) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp Air conditioner
JP2005077084A (en) * 2003-08-28 2005-03-24 Samsung Electronics Co Ltd Air-conditioner, and control method therefor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082325A1 (en) 2009-01-15 2010-07-22 三菱電機株式会社 Air conditioner
US9506674B2 (en) 2009-01-15 2016-11-29 Mitsubishi Electric Corporation Air conditioner including a bypass pipeline for a defrosting operation
JP5709838B2 (en) * 2010-03-16 2015-04-30 三菱電機株式会社 Air conditioner
JP2012255637A (en) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp Air conditioning system
WO2014020651A1 (en) 2012-08-03 2014-02-06 三菱電機株式会社 Air-conditioning device
US10036562B2 (en) 2012-08-03 2018-07-31 Mitsubishi Electric Corporation Air-conditioning apparatus
US10001317B2 (en) 2012-11-29 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus providing defrosting without suspending a heating operation
WO2014083867A1 (en) 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
WO2014192140A1 (en) 2013-05-31 2014-12-04 三菱電機株式会社 Air conditioner
US10465968B2 (en) 2013-05-31 2019-11-05 Mitsubishi Electric Corporation Air-conditioning apparatus having first and second defrosting pipes
WO2015104862A1 (en) 2014-01-10 2015-07-16 三菱電機株式会社 Heat pump hot and cold water system
WO2018082281A1 (en) * 2016-11-07 2018-05-11 广东美的暖通设备有限公司 Multi-split system and liquid return prevention control method thereof
US11098936B2 (en) 2016-11-07 2021-08-24 Gd Midea Heating & Ventilating Equipment Co., Ltd. Multi-split system and liquid return prevention control method thereof
CN107300240A (en) * 2017-05-17 2017-10-27 青岛海尔空调器有限总公司 Air conditioner defrosting control method
CN107120796A (en) * 2017-05-17 2017-09-01 青岛海尔空调器有限总公司 Air conditioner defrosting control method
CN107120796B (en) * 2017-05-17 2020-09-25 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
JPWO2021053710A1 (en) * 2019-09-17 2021-03-25
WO2021053710A1 (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner and control method
CN114402173A (en) * 2019-09-17 2022-04-26 东芝开利株式会社 Air conditioner and control method
JP7210756B2 (en) 2019-09-17 2023-01-23 東芝キヤリア株式会社 Air conditioner and control method
CN114402173B (en) * 2019-09-17 2023-09-12 东芝开利株式会社 Air conditioner and control method
AU2019466418B2 (en) * 2019-09-17 2023-11-30 Toshiba Carrier Corporation Air conditioner and control method
CN111780372A (en) * 2020-07-09 2020-10-16 青岛海尔空调器有限总公司 Control method of one-driving-multiple air conditioner
CN111780372B (en) * 2020-07-09 2021-11-23 青岛海尔空调器有限总公司 Control method of one-driving-multiple air conditioner

Also Published As

Publication number Publication date
JP4948016B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4948016B2 (en) Air conditioner
JP6351848B2 (en) Refrigeration cycle equipment
WO2013111177A1 (en) Air-conditioning unit
JP4254863B2 (en) Air conditioner
JP4989511B2 (en) Air conditioner
JP2007263444A (en) Air conditioning apparatus
WO2015140951A1 (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP2008157558A (en) Air-conditioning system
JP4946948B2 (en) Heat pump air conditioner
JP6161741B2 (en) Air conditioner
JP5258197B2 (en) Air conditioning system
JP5875710B2 (en) Air conditioner
WO2017085859A1 (en) Air conditioner
JP3781046B2 (en) Air conditioner
WO2020194435A1 (en) Air-conditioning device
JP2006258342A (en) Air conditioning system
JP5734205B2 (en) Air conditioner
WO2017037891A1 (en) Refrigeration cycle device
JP2010048506A (en) Multi-air conditioner
JP5573370B2 (en) Refrigeration cycle apparatus and control method thereof
JP2015117847A (en) Air conditioner
US20210048216A1 (en) Air-conditioning apparatus
JP3984250B2 (en) Multi-room air conditioner
EP1669698B1 (en) Cooling/heating system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250