JP2011052883A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011052883A
JP2011052883A JP2009201408A JP2009201408A JP2011052883A JP 2011052883 A JP2011052883 A JP 2011052883A JP 2009201408 A JP2009201408 A JP 2009201408A JP 2009201408 A JP2009201408 A JP 2009201408A JP 2011052883 A JP2011052883 A JP 2011052883A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
indoor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009201408A
Other languages
Japanese (ja)
Other versions
JP5213817B2 (en
Inventor
Satoru Yanaike
悟 梁池
Makoto Saito
信 齊藤
Osamu Morimoto
修 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009201408A priority Critical patent/JP5213817B2/en
Publication of JP2011052883A publication Critical patent/JP2011052883A/en
Application granted granted Critical
Publication of JP5213817B2 publication Critical patent/JP5213817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a multi-room type air conditioner performing heating operation of indoor units even during defrosting operation and suppressing deterioration of comfortability in air conditioned spaces (indoor spaces etc.) including the indoor units. <P>SOLUTION: An air conditioner includes a heat source machine A having a plurality of juxtaposed outdoor heat exchangers (3a, 3b) and a plurality of indoor units (13a, 13b, 13c), and enables heating and cooling simultaneous operation. During defrosting operation, defrosting is performed by one outdoor heat exchanger (e.g. the outdoor heat exchanger 3a), and the other heat exchanger (e.g. the outdoor heat exchanger 3b) is used as an evaporator. At this time, heating operation is performed by a predetermined indoor unit (e.g. the indoor unit 13a), and operation of the remaining indoor units is stopped. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数台の室内機を備え、各室内機毎に冷房運転又は暖房運転が選択可能な多室型の空気調和機に関し、特に室内機が暖房運転する際の快適性の向上を図った空気調和機に関する。   The present invention relates to a multi-room type air conditioner that includes a plurality of indoor units and can select a cooling operation or a heating operation for each indoor unit, and in particular, to improve comfort when the indoor unit performs a heating operation. Related to air conditioners.

ヒートポンプユニットを用いた空気調和装置において、複数の室内機を備えた多室型の空気調和機が知られている。また、多室型の空気調和装置の中には、各室内機毎に冷房運転又は暖房運転が選択可能な、いわゆる冷暖房同時運転可能な空気調和機も提案されている。   In an air conditioner using a heat pump unit, a multi-room type air conditioner including a plurality of indoor units is known. Further, among multi-room type air conditioners, there has also been proposed an air conditioner capable of simultaneously operating cooling and heating, in which a cooling operation or a heating operation can be selected for each indoor unit.

ところで、ヒートポンプユニットを用いた空気調和機は、低外気温時に暖房運転を行うと、暖房能力が低下してしまうという問題点があった。そこで、冷暖房同時運転可能な多室型の空気調和機において、低外気温時における暖房能力の低下の抑制を図ったものとして、複数の室外熱交換器と複数の室内熱交換器を備え、室外熱交換器入口から圧縮機の吸入側へ冷媒をバイパスするものが提案されている(例えば特許文献1参照)。   By the way, the air conditioner using the heat pump unit has a problem that the heating capacity is lowered when the heating operation is performed at a low outside temperature. Therefore, in a multi-room type air conditioner that can be operated simultaneously with cooling and heating, it is provided with a plurality of outdoor heat exchangers and a plurality of indoor heat exchangers as an attempt to suppress a decrease in heating capacity at low outdoor temperatures. One that bypasses the refrigerant from the heat exchanger inlet to the suction side of the compressor has been proposed (see, for example, Patent Document 1).

また、ヒートポンプユニットを用いた空気調和機は、低外気温時に暖房運転を行うと、蒸発器として機能する室外熱交換器のフィン表面に霜が付着する。このため、室外熱交換器の風路圧力損失が増大して次第に伝熱性能が低下するので、定期的に除霜運転が必要である。そこで、除霜運転中も暖房運転を可能とした空気調和機として、並列接続された複数台の室外熱交換器と一台の室内熱交換器を備え、各室外熱交換器毎に除霜運転を行うというものが提案されている(例えば特許文献2参照)。   Moreover, when the air conditioner using a heat pump unit performs heating operation at a low outdoor temperature, frost adheres to the fin surface of the outdoor heat exchanger that functions as an evaporator. For this reason, since the air path pressure loss of an outdoor heat exchanger increases and heat transfer performance falls gradually, defrosting operation is required regularly. Therefore, as an air conditioner that enables heating operation even during defrosting operation, it is equipped with multiple outdoor heat exchangers connected in parallel and one indoor heat exchanger, and defrosting operation for each outdoor heat exchanger Has been proposed (see, for example, Patent Document 2).

特開平5−172434号公報(段落0021、図1)JP-A-5-172434 (paragraph 0021, FIG. 1) 特開平9−318206号公報(要約、図1)JP-A-9-318206 (summary, FIG. 1)

しかしながら、従来の多室型空気調和機(例えば特許文献1参照)は、以下のような課題があった。
上述のように、ヒートポンプユニットを用いた空気調和機は、低外気温時に暖房運転を行うと、蒸発器として機能する室外熱交換器のフィン表面に霜が付着する。このため、定期的に除霜運転が必要となる。しかしながら、従来の多室型空気調和機は、除霜運転時、圧縮機から吐出された高温高圧のガス冷媒を全ての室外熱交換器に流入させる。したがって、除霜運転中、室内機が暖房運転を行うことができないという課題があった。
However, the conventional multi-room air conditioner (see, for example, Patent Document 1) has the following problems.
As described above, when an air conditioner using a heat pump unit performs a heating operation at a low outdoor temperature, frost adheres to the fin surface of the outdoor heat exchanger that functions as an evaporator. For this reason, a defrosting operation is required periodically. However, the conventional multi-room air conditioner causes the high-temperature and high-pressure gas refrigerant discharged from the compressor to flow into all the outdoor heat exchangers during the defrosting operation. Accordingly, there is a problem that the indoor unit cannot perform the heating operation during the defrosting operation.

仮に、従来の多室型空気調和機(例えば特許文献1参照)に特許文献2に記載の除霜運転方法を用いることにより、除霜運転中も室内機の暖房運転が可能となる。しかしながら、このように構成された多室型の空気調和装置は、除霜運転中における各室内機の運転状態と除霜運転をしていないときの各室内機の運転状態とを区別していない。また、除霜運転中、圧縮機から吐出された高温高圧のガス冷媒の一部は、除霜が行われる室外熱交換器に流入する。このため、冷媒の高圧が低下し、暖房能力が低下する。したがって、除霜運転中に室内機を暖房運転させると、この室内機が設けられた空気調和空間(室内等)の快適性が低下してしまうという課題があった。   If the conventional defrosting operation method described in Patent Document 2 is used for a conventional multi-room air conditioner (see, for example, Patent Document 1), the indoor unit can be heated even during the defrosting operation. However, the multi-room type air conditioner configured as described above does not distinguish between the operation state of each indoor unit during the defrosting operation and the operation state of each indoor unit when the defrosting operation is not performed. . Further, during the defrosting operation, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor flows into the outdoor heat exchanger where defrosting is performed. For this reason, the high pressure of a refrigerant | coolant falls and a heating capability falls. Therefore, when the indoor unit is heated during the defrosting operation, there is a problem that the comfort of the air-conditioned space (such as the room) in which the indoor unit is provided decreases.

本発明は、上述のような課題を解決するためになされたものであり、除霜運転中も室内機の暖房運転を行うことができ、室内機が設けられた空気調和空間(室内等)の快適性の低下を抑制することが可能な多室型空気調和機を得ることを目的とする。   The present invention has been made in order to solve the above-described problems. The indoor unit can be heated even during the defrosting operation, and the air conditioning space (such as a room) in which the indoor unit is provided is provided. It aims at obtaining the multi-room type air conditioner which can suppress the fall of comfort.

本発明に係る空気調和機は、圧縮機及び並列配置された複数の室外熱交換器を少なくとも備えた熱源機と、室内熱交換器を少なくとも備えた複数の室内機とを有し、室内機のそれぞれにおいて冷房運転又は暖房運転が選択可能な空気調和機であって、室外熱交換器のそれぞれにおいて、室外熱交換器と圧縮機との間の冷媒流路を、室外熱交換器から圧縮機の吸入側へ流れる流路、又は圧縮機の吐出側から室外熱交換器へ流れる流路に切り替える流路変更装置を備え、除霜運転を行う際、複数の室外熱交換器のうちの一部は、流路変更装置が圧縮機の吐出側から室外熱交換器へ流れる流路となって、除霜が行われ、複数の室外熱交換器のうちの他の一部は、流路変更装置が室外熱交換器から圧縮機の吸入側へ流れる流路となって、蒸発器として用いられ、複数の室内機のうち、所定の室内機を暖房運転させるものである。   An air conditioner according to the present invention includes a compressor and a heat source device including at least a plurality of outdoor heat exchangers arranged in parallel, and a plurality of indoor units including at least an indoor heat exchanger. In each of the outdoor heat exchangers, the refrigerant flow path between the outdoor heat exchanger and the compressor is changed from the outdoor heat exchanger to the compressor. A flow path changing device that switches to a flow path that flows to the suction side or a flow path that flows from the discharge side of the compressor to the outdoor heat exchanger. The flow path changing device becomes a flow path that flows from the discharge side of the compressor to the outdoor heat exchanger, defrosting is performed, and the flow path changing device is the other part of the plurality of outdoor heat exchangers. As a flow path that flows from the outdoor heat exchanger to the suction side of the compressor, Irare, among the plurality of indoor units, is intended to heating operation the predetermined indoor unit.

本発明においては、流路変更装置が設けられているので、一部の室外熱交換器の除霜を行い、他の一部の室外熱交換器を蒸発器として用いることができる。このため、除霜運転中においても、室内機は暖房運転を継続することができる。また、除霜運転中、優先度の高い(所定の)室内機の暖房運転を継続させ、優先度の低い室内機の暖房運転を停止する。このため、除霜運転中であっても(つまり暖房能力が低下した状態であっても)、優先度の高い室内機が設けられた空気調和空間の快適性の低下を抑制することができる。   In the present invention, since the flow path changing device is provided, a part of the outdoor heat exchangers can be defrosted and the other part of the outdoor heat exchangers can be used as an evaporator. For this reason, the indoor unit can continue the heating operation even during the defrosting operation. Further, during the defrosting operation, the heating operation of the (predetermined) indoor unit having a high priority is continued, and the heating operation of the indoor unit having a low priority is stopped. For this reason, even during the defrosting operation (that is, even when the heating capacity is reduced), it is possible to suppress a decrease in comfort of the air-conditioned space in which the indoor unit having a high priority is provided.

本発明の実施の形態に係る空気調和機の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の全冷房運転モードを表す冷媒回路図である。It is a refrigerant circuit figure showing the cooling only operation mode of the air conditioner concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和機の冷房主体運転モードを表す冷媒回路図である。It is a refrigerant circuit figure showing the cooling main operation mode of the air conditioner concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和機の通常時における全暖房運転モードを表す冷媒回路図である。It is a refrigerant circuit figure showing the heating only operation mode in the normal time of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の、インジェクションを行う際の絞り装置5a及び絞り装置5b、開閉弁23、流量調整装置24の設定方法(制御方法)を示すフローチャートである。It is a flowchart which shows the setting method (control method) of the expansion apparatus 5a and the expansion apparatus 5b, the on-off valve 23, and the flow volume adjustment apparatus 24 at the time of performing the injection of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機のインジェクション時における全暖房運転モードを表す冷媒回路図である。It is a refrigerant circuit figure showing the heating only operation mode at the time of injection of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の、インジェクションを行った全暖房運転時の冷媒の状態変化を示すp−h線図である。It is the ph diagram which shows the state change of the refrigerant | coolant at the time of the heating only operation which performed the injection of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の通常時における暖房主体運転モードを表す冷媒回路図である。It is a refrigerant circuit figure showing the heating main operation mode in the normal time of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機のガスバイパス時における暖房主体運転モードを表す冷媒回路図である。It is a refrigerant circuit figure showing the heating main operation mode at the time of gas bypass of the air conditioner concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和機の、ガスバイパスを行う際の絞り装置5a及び絞り装置5bの設定方法(制御方法)を示すフローチャートである。It is a flowchart which shows the setting method (control method) of the expansion apparatus 5a and the expansion apparatus 5b at the time of performing the gas bypass of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の、ガスバイパスを行う際の開閉弁26の設定方法(制御方法)を示すフローチャートである。It is a flowchart which shows the setting method (control method) of the on-off valve 26 at the time of performing the gas bypass of the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の、ガスバイパスを行った暖房主体運転時の冷媒の状態変化を示すp−h線図である。It is a ph diagram which shows the state change of the refrigerant at the time of heating main operation which performed gas bypass of the air harmony machine concerning an embodiment of the invention. 実施の形態に係る空気調和機の暖房除霜混在運転を表す冷媒回路図である。It is a refrigerant circuit figure showing the heating defrost mixed operation of the air conditioner concerning an embodiment. 本発明の実施の形態に係る空気調和機における暖房除霜混在運転時の各要素の設定方法(制御方法)を示すフローチャートである。It is a flowchart which shows the setting method (control method) of each element at the time of heating defrost mixed operation in the air conditioner which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和機の暖房除霜混在運転時の冷媒の状態変化を示すp−h線図である。It is a ph diagram which shows the state change of the refrigerant at the time of heating defrost mixed operation of the air harmony machine concerning an embodiment of the invention.

実施の形態.
図1は、本発明の実施の形態に係る空気調和機の一例を示す冷媒回路図である。本実施の形態に係る空気調和機100は、各室内機毎に冷房運転又は暖房運転が選択可能な多室型の空気調和機である。この空気調和機100は、熱源機A、分流コントローラーB、及び複数の室内機を有する室内機群Cが配管接続されて構成されている。
なお、本実施の形態では、3つの室内機(室内機13a、室内機13b、室内機13c)が設けられているが、室内機の数は2つ以上であれば任意である。また、熱源機A、分流コントローラーB、及び室内機群Cの接続方法については後述する。
Embodiment.
FIG. 1 is a refrigerant circuit diagram illustrating an example of an air conditioner according to an embodiment of the present invention. The air conditioner 100 according to the present embodiment is a multi-room type air conditioner in which a cooling operation or a heating operation can be selected for each indoor unit. The air conditioner 100 includes a heat source device A, a shunt controller B, and an indoor unit group C having a plurality of indoor units connected by piping.
In the present embodiment, three indoor units (indoor unit 13a, indoor unit 13b, and indoor unit 13c) are provided. However, the number of indoor units is arbitrary as long as it is two or more. Moreover, the connection method of the heat-source equipment A, the shunt controller B, and the indoor unit group C is mentioned later.

熱源機Aは、圧縮機1、流路切替装置2、室外熱交換器3a、室外熱交換器3b、室外送風機4a、室外送風機4b、絞り装置5a、絞り装置5b、流路切替装置6、低圧連絡配管20、高圧連絡配管21、流路切替装置22a、ガスバイパス配管23a、開閉弁23、流路切替装置22b、インジェクション配管24a、流量調整装置24、気液分離器25、ガスバイパス配管26a、及び開閉弁26等を備えている。
なお、本実施の形態では、2つの室外熱交換器(室外熱交換器3a、室外熱交換器3b)が設けられているが、室外熱交換器の数は2つ以上であれば任意である。
The heat source machine A includes a compressor 1, a flow path switching device 2, an outdoor heat exchanger 3a, an outdoor heat exchanger 3b, an outdoor fan 4a, an outdoor fan 4b, a throttling device 5a, a throttling device 5b, a flow path switching device 6, a low pressure Connecting pipe 20, high-pressure connecting pipe 21, flow path switching device 22a, gas bypass piping 23a, on-off valve 23, flow path switching device 22b, injection piping 24a, flow rate adjusting device 24, gas-liquid separator 25, gas bypass piping 26a, And an on-off valve 26 and the like.
In the present embodiment, two outdoor heat exchangers (outdoor heat exchanger 3a and outdoor heat exchanger 3b) are provided, but the number of outdoor heat exchangers is arbitrary as long as it is two or more. .

圧縮機1の吐出側には、例えば四方弁である流路切替装置2が接続されている。この流路切替装置2は、圧縮機1の流入側及び流路切替装置6とも接続されている。つまり、流路切替装置2は、圧縮機1から吐出された冷媒が流路切替装置6へ流入する流路と、流路切替装置6から流出した冷媒が圧縮機1へ吸入される流路とを切り替える。
なお、流路切替装置2は、四方弁に限らず、例えば二方弁を組み合わせて構成してもよい。
On the discharge side of the compressor 1, for example, a flow path switching device 2 that is a four-way valve is connected. The flow path switching device 2 is also connected to the inflow side of the compressor 1 and the flow path switching device 6. That is, the flow path switching device 2 includes a flow path in which the refrigerant discharged from the compressor 1 flows into the flow path switching device 6, and a flow path in which the refrigerant that flows out of the flow path switching device 6 is sucked into the compressor 1. Switch.
The flow path switching device 2 is not limited to a four-way valve, and may be configured by combining two-way valves, for example.

流路切替装置6は、接続配管8及び接続配管9を介して、分流コントローラーBと接続されている。より詳しくは、流路切替装置6は、逆止弁7a、逆止弁7b、逆止弁7c及び逆止弁7dを備えている。逆止弁7aは流路切替装置2と接続配管9とを接続する配管に設けられており、冷媒が流路切替装置2の方向にのみ流れるようになっている。逆止弁7bは、逆止弁7aの流出側と逆止弁7dの流出側を接続する配管に設けられており、冷媒が逆止弁7dの流出側のみに流れるようになっている。逆止弁7cは、逆止弁7aの流入側と逆止弁7dの流入側を接続する配管に設けられており、冷媒が逆止弁7dの流入側のみに流れるようになっている。逆止弁7dは後述する気液分離器25と接続配管8とを接続する配管に設けられており、冷媒が接続配管8(分流コントローラーB)の方向にのみ流れるようになっている。このような流路切替装置6を室外ユニットに設けることによって、圧縮機1から吐出された冷媒は常に接続配管8を通って分流コントローラーBに流入し、分流コントローラーBから流出する冷媒は常に接続配管9を通ることとなる。   The flow path switching device 6 is connected to the diversion controller B via the connection pipe 8 and the connection pipe 9. More specifically, the flow path switching device 6 includes a check valve 7a, a check valve 7b, a check valve 7c, and a check valve 7d. The check valve 7 a is provided in a pipe connecting the flow path switching device 2 and the connection pipe 9 so that the refrigerant flows only in the direction of the flow path switching device 2. The check valve 7b is provided in a pipe connecting the outflow side of the check valve 7a and the outflow side of the check valve 7d, and the refrigerant flows only to the outflow side of the check valve 7d. The check valve 7c is provided in a pipe connecting the inflow side of the check valve 7a and the inflow side of the check valve 7d, and the refrigerant flows only to the inflow side of the check valve 7d. The check valve 7d is provided in a pipe that connects a gas-liquid separator 25 and a connection pipe 8, which will be described later, so that the refrigerant flows only in the direction of the connection pipe 8 (diversion controller B). By providing such a flow path switching device 6 in the outdoor unit, the refrigerant discharged from the compressor 1 always flows into the diversion controller B through the connection pipe 8, and the refrigerant flowing out of the diversion controller B always remains in the connection pipe. 9 will be passed.

流路切替装置22aは、例えば四方弁であり、室外熱交換器3aと接続されている。また、流路切替装置22aは、高圧連絡配管21を介して圧縮機1の吐出側に接続されており、低圧連絡配管20を介して圧縮機1の吸入側に接続されている。つまり、流路切替装置22aは、室外熱交換器3aから圧縮機1の吸入側へ冷媒が流れる流路と、又は圧縮機1の吐出側から室外熱交換器3aへ冷媒が流れる流路とを切り替える。
流路切替装置22bは、例えば四方弁であり、室外熱交換器3bと接続されている。また、流路切替装置22bは、高圧連絡配管21を介して圧縮機1の吐出側に接続されており、低圧連絡配管20を介して圧縮機1の吸入側に接続されている。つまり、流路切替装置22bは、室外熱交換器3bから圧縮機1の吸入側へ冷媒が流れる流路と、又は圧縮機1の吐出側から室外熱交換器3bへ冷媒が流れる流路とを切り替える。
なお、流路切替装置22a及び流路切替装置22bは、四方弁に限らず、例えば二方弁を組み合わせて構成してもよい。
The flow path switching device 22a is a four-way valve, for example, and is connected to the outdoor heat exchanger 3a. Further, the flow path switching device 22 a is connected to the discharge side of the compressor 1 via the high-pressure connection pipe 21 and is connected to the suction side of the compressor 1 via the low-pressure connection pipe 20. That is, the flow path switching device 22a has a flow path through which refrigerant flows from the outdoor heat exchanger 3a to the suction side of the compressor 1 or a flow path through which refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3a. Switch.
The flow path switching device 22b is a four-way valve, for example, and is connected to the outdoor heat exchanger 3b. Further, the flow path switching device 22 b is connected to the discharge side of the compressor 1 via the high-pressure connection pipe 21 and connected to the suction side of the compressor 1 via the low-pressure connection pipe 20. That is, the flow path switching device 22b has a flow path through which refrigerant flows from the outdoor heat exchanger 3b to the suction side of the compressor 1 or a flow path through which refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3b. Switch.
Note that the flow path switching device 22a and the flow path switching device 22b are not limited to four-way valves, and may be configured by combining two-way valves, for example.

室外熱交換器3aは、例えばフィンチューブ型熱交換器であり、他方(流路切替装置22a接続側の反対側)が気液分離器25と接続されている。室外熱交換器3aと気液分離器25との間には、絞り装置5aが設けられている。また、室外熱交換器3aの近傍には、室外熱交換器3aに外気を送る室外送風機4aが設けられている。
室外熱交換器3bは、例えばフィンチューブ型熱交換器であり、他方(流路切替装置22b接続側の反対側)が気液分離器25と接続されている。室外熱交換器3bと気液分離器25との間には、絞り装置5bが設けられている。また、室外熱交換器3bの近傍には、室外熱交換器3bに外気を送る室外送風機4bが設けられている。
The outdoor heat exchanger 3a is, for example, a fin tube heat exchanger, and the other (the side opposite to the connection side of the flow path switching device 22a) is connected to the gas-liquid separator 25. A throttle device 5a is provided between the outdoor heat exchanger 3a and the gas-liquid separator 25. Moreover, the outdoor air blower 4a which sends outside air to the outdoor heat exchanger 3a is provided in the vicinity of the outdoor heat exchanger 3a.
The outdoor heat exchanger 3b is, for example, a fin tube type heat exchanger, and the other (the side opposite to the connection side of the flow path switching device 22b) is connected to the gas-liquid separator 25. An expansion device 5b is provided between the outdoor heat exchanger 3b and the gas-liquid separator 25. Moreover, the outdoor air blower 4b which sends outside air to the outdoor heat exchanger 3b is provided in the vicinity of the outdoor heat exchanger 3b.

気液分離器25は、上述のように、室外熱交換器3a、室外熱交換器3b及び流路切替装置6と接続されている。また、気液分離器25は、ガスバイパス配管26aによって、圧縮機1の吸入側と接続されている。ガスバイパス配管26aには、開閉弁26が設けられている。ここで、開閉弁26が、本発明の第1の流量調整装置に相当する。なお、第1の流量調整装置は、開閉弁26に限らず、ガスバイパス配管26aを流れるガス冷媒の流量を弁開度等によって調整できるものであればよい。   The gas-liquid separator 25 is connected to the outdoor heat exchanger 3a, the outdoor heat exchanger 3b, and the flow path switching device 6 as described above. The gas-liquid separator 25 is connected to the suction side of the compressor 1 by a gas bypass pipe 26a. An open / close valve 26 is provided in the gas bypass pipe 26a. Here, the on-off valve 26 corresponds to the first flow rate adjusting device of the present invention. The first flow rate adjusting device is not limited to the on-off valve 26, and may be any device that can adjust the flow rate of the gas refrigerant flowing through the gas bypass pipe 26a by the valve opening degree or the like.

気液分離器25と開閉弁26との間のガスバイパス配管26aには、ガスバイパス配管23aの一方の端部が接続されている。このガスバイパス配管23aには、開閉弁23が設けられている。なお、開閉弁23は、ガスバイパス配管23aを流れるガス冷媒の流量を弁開度等によって調整できる流量調整装置でもよい。
また、ガスバイパス配管23aの他方は、インジェクション配管24aに接続されている。このインジェクション配管24aは、室外熱交換器3a及び室外熱交換器3bと気液分離器25との間と、圧縮機1の圧縮部とを接続している。また、インジェクション配管24aには、流量調整装置24が設けられている。
One end of the gas bypass pipe 23 a is connected to the gas bypass pipe 26 a between the gas-liquid separator 25 and the on-off valve 26. The gas bypass pipe 23 a is provided with an on-off valve 23. The on-off valve 23 may be a flow rate adjusting device that can adjust the flow rate of the gas refrigerant flowing through the gas bypass pipe 23a by the valve opening degree or the like.
The other side of the gas bypass pipe 23a is connected to the injection pipe 24a. The injection pipe 24 a connects the outdoor heat exchanger 3 a, the outdoor heat exchanger 3 b, and the gas-liquid separator 25 to the compression unit of the compressor 1. Further, a flow rate adjusting device 24 is provided in the injection pipe 24a.

ここで、インジェクション配管24a、気液分離器25及びガスバイパス配管23aが、本発明のインジェクション回路に相当する。また、開閉弁23及び流量調整装置24が、本発明の第2の流量調整装置に相当する。なお、本実施の形態では、気液二相冷媒を圧縮機1の圧縮部にインジェクション(供給)している。このため、気液分離器25及びガスバイパス配管23aによりインジェクション回路を構成している。これに限らず、例えば気液分離器25が設けられていない場合等(インジェクション配管24aに気液二相冷媒が流れる構成の場合)、インジェクション配管24aのみでインジェクション配管を構成してもよい。このとき、流量調整装置24が本発明の第2の流量調整装置に相当することとなる。   Here, the injection pipe 24a, the gas-liquid separator 25, and the gas bypass pipe 23a correspond to the injection circuit of the present invention. The on-off valve 23 and the flow rate adjusting device 24 correspond to the second flow rate adjusting device of the present invention. In the present embodiment, the gas-liquid two-phase refrigerant is injected (supplied) into the compression section of the compressor 1. For this reason, the gas-liquid separator 25 and the gas bypass pipe 23a constitute an injection circuit. For example, when the gas-liquid separator 25 is not provided (in the case where the gas-liquid two-phase refrigerant flows through the injection pipe 24a), the injection pipe may be configured only by the injection pipe 24a. At this time, the flow rate adjusting device 24 corresponds to the second flow rate adjusting device of the present invention.

また、熱源機Aには、各部の温度を検知する手段として、ガス管温度検知手段31a、液管温度検知手段32a、ガス管温度検知手段31b、液管温度検知手段32b及び吐出温度検知手段33が設けられている。また、各部の圧力を検出する手段として、吐出圧力検知手段34、吸入圧力検知手段35及び中間圧力検知手段36、外気温度検知手段38が設けられている。   In the heat source machine A, gas pipe temperature detecting means 31a, liquid pipe temperature detecting means 32a, gas pipe temperature detecting means 31b, liquid pipe temperature detecting means 32b and discharge temperature detecting means 33 are used as means for detecting the temperature of each part. Is provided. Further, as means for detecting the pressure of each part, a discharge pressure detection means 34, a suction pressure detection means 35, an intermediate pressure detection means 36, and an outside air temperature detection means 38 are provided.

例えば温度センサー等のガス管温度検知手段31aは、室外熱交換器3aと流路切替装置22aとの間に設けられており、室外熱交換器3aと流路切替装置22aとの間を流れる冷媒の温度(又はこの冷媒が流れる配管の温度)を検知する。
例えば温度センサー等の液管温度検知手段32aは、室外熱交換器3aと絞り装置5aとの間に設けられており、室外熱交換器3aと絞り装置5aとの間を流れる冷媒の温度(又はこの冷媒が流れる配管の温度)を検知する。
例えば温度センサー等のガス管温度検知手段31bは、室外熱交換器3bと流路切替装置22bとの間に設けられており、室外熱交換器3bと流路切替装置22bとの間を流れる冷媒の温度(又はこの冷媒が流れる配管の温度)を検知する。
例えば温度センサー等の液管温度検知手段32bは、室外熱交換器3bと絞り装置5bとの間に設けられており、室外熱交換器3bと絞り装置5bとの間を流れる冷媒の温度(又はこの冷媒が流れる配管の温度)を検知する。
例えば温度センサー等の吐出温度検知手段33は、圧縮機1の吐出側に設けられており、圧縮機1が吐出した冷媒の温度(又はこの冷媒が流れる配管の温度)を検知する。
For example, the gas pipe temperature detection means 31a such as a temperature sensor is provided between the outdoor heat exchanger 3a and the flow path switching device 22a, and flows between the outdoor heat exchanger 3a and the flow path switching device 22a. (Or the temperature of the pipe through which this refrigerant flows) is detected.
For example, the liquid pipe temperature detection means 32a such as a temperature sensor is provided between the outdoor heat exchanger 3a and the expansion device 5a, and the temperature of the refrigerant flowing between the outdoor heat exchanger 3a and the expansion device 5a (or The temperature of the pipe through which this refrigerant flows is detected.
For example, the gas pipe temperature detection means 31b such as a temperature sensor is provided between the outdoor heat exchanger 3b and the flow path switching device 22b, and flows between the outdoor heat exchanger 3b and the flow path switching device 22b. (Or the temperature of the pipe through which this refrigerant flows) is detected.
For example, the liquid pipe temperature detection means 32b such as a temperature sensor is provided between the outdoor heat exchanger 3b and the expansion device 5b, and the temperature of the refrigerant flowing between the outdoor heat exchanger 3b and the expansion device 5b (or The temperature of the pipe through which this refrigerant flows is detected.
For example, the discharge temperature detection means 33 such as a temperature sensor is provided on the discharge side of the compressor 1 and detects the temperature of the refrigerant discharged from the compressor 1 (or the temperature of the pipe through which the refrigerant flows).

なお、本実施の形態では、温度センサー等によって配管温度を測定し、配管温度に基づいて冷媒の温度を検知している。これに限らず、熱電対等を用いて、冷媒の温度を直接検知してもよい。   In the present embodiment, the pipe temperature is measured by a temperature sensor or the like, and the refrigerant temperature is detected based on the pipe temperature. Not limited to this, the temperature of the refrigerant may be directly detected using a thermocouple or the like.

例えば圧力センサー等の吐出圧力検知手段34は、圧縮機1の吐出側に設けられており、圧縮機1が吐出した冷媒の圧力を検知する。
例えば圧力センサー等の吸入圧力検知手段35は、圧縮機1の吸入側に設けられており、圧縮機1が吸入する冷媒の圧力を検知する。
例えば圧力センサー等の中間圧力検知手段36は、気液分離器25の近傍(本実施の形態では、気液分離器25と流路切替装置6との間)に設けられており、気液分離器25近傍を流れる冷媒の圧力を検知する。
For example, the discharge pressure detection means 34 such as a pressure sensor is provided on the discharge side of the compressor 1 and detects the pressure of the refrigerant discharged by the compressor 1.
For example, the suction pressure detection means 35 such as a pressure sensor is provided on the suction side of the compressor 1 and detects the pressure of the refrigerant sucked by the compressor 1.
For example, the intermediate pressure detection means 36 such as a pressure sensor is provided in the vicinity of the gas-liquid separator 25 (between the gas-liquid separator 25 and the flow path switching device 6 in the present embodiment), and the gas-liquid separation is performed. The pressure of the refrigerant flowing in the vicinity of the vessel 25 is detected.

分流コントローラーBは、各室内機の冷暖房を切替える機能を備えており、気液分離器10、冷暖房切替弁11a、冷暖房切替弁11b、冷暖房切替弁11c、絞り装置18、絞り装置19及び分岐部17を備えている。   The shunt controller B has a function of switching between heating and cooling of each indoor unit. The gas-liquid separator 10, the cooling / heating switching valve 11 a, the cooling / heating switching valve 11 b, the cooling / heating switching valve 11 c, the throttle device 18, the throttle device 19, and the branching unit 17. It has.

冷暖房切替弁11aは、開閉弁12a及び開閉弁12bを備えている。開閉弁12aの一方の接続口は、接続配管9と接続されている。開閉弁12aの他方の接続口は、室内熱交換器14aと接続されている。また、開閉弁12bの一方の接続口は、気液分離器10と接続されている。開閉弁12bの他方の接続口は、室内熱交換器14a(より詳しくは、室内熱交換器14aと開閉弁12aとの間)に接続されている。
冷暖房切替弁11bは、開閉弁12c及び開閉弁12dを備えている。開閉弁12cの一方の接続口は、接続配管9と接続されている。開閉弁12cの他方の接続口は、室内熱交換器14bと接続されている。また、開閉弁12dの一方の接続口は、気液分離器10と接続されている。開閉弁12dの他方の接続口は、室内熱交換器14b(より詳しくは、室内熱交換器14bと開閉弁12cとの間)に接続されている。
冷暖房切替弁11cは、開閉弁12e及び開閉弁12fを備えている。開閉弁12eの一方の接続口は、接続配管9と接続されている。開閉弁12eの他方の接続口は、室内熱交換器14cと接続されている。また、開閉弁12fの一方の接続口は、気液分離器10と接続されている。開閉弁12fの他方の接続口は、室内熱交換器14c(より詳しくは、室内熱交換器14cと開閉弁12eとの間)に接続されている。
The air conditioning switching valve 11a includes an on-off valve 12a and an on-off valve 12b. One connection port of the on-off valve 12 a is connected to the connection pipe 9. The other connection port of the on-off valve 12a is connected to the indoor heat exchanger 14a. One connection port of the on-off valve 12b is connected to the gas-liquid separator 10. The other connection port of the on-off valve 12b is connected to the indoor heat exchanger 14a (more specifically, between the indoor heat exchanger 14a and the on-off valve 12a).
The air conditioning switching valve 11b includes an on-off valve 12c and an on-off valve 12d. One connection port of the on-off valve 12 c is connected to the connection pipe 9. The other connection port of the on-off valve 12c is connected to the indoor heat exchanger 14b. One connection port of the on-off valve 12d is connected to the gas-liquid separator 10. The other connection port of the on-off valve 12d is connected to the indoor heat exchanger 14b (more specifically, between the indoor heat exchanger 14b and the on-off valve 12c).
The air conditioning switching valve 11c includes an on / off valve 12e and an on / off valve 12f. One connection port of the on-off valve 12 e is connected to the connection pipe 9. The other connection port of the on-off valve 12e is connected to the indoor heat exchanger 14c. One connection port of the on-off valve 12f is connected to the gas-liquid separator 10. The other connection port of the on-off valve 12f is connected to the indoor heat exchanger 14c (more specifically, between the indoor heat exchanger 14c and the on-off valve 12e).

気液分離器10は、上述のように、冷暖房切替弁11aの開閉弁12b、冷暖房切替弁11bの開閉弁12d、冷暖房切替弁11cの開閉弁12f、及び接続配管8と接続されている。また、気液分離器10は、分岐部17と接続されている。気液分離器10と分岐部17との間には、絞り装置19が設けられている。この絞り装置19と分岐部17との間は、接続配管9に配管接続されている。この配管には、絞り装置18が設けられている。
分岐部17は室内機の数に対応する配管が設けられており、各配管は、室内熱交換器14a、室内熱交換器14b及び室内熱交換器14cのそれぞれに接続されている。
As described above, the gas-liquid separator 10 is connected to the open / close valve 12b of the cooling / heating switching valve 11a, the open / close valve 12d of the cooling / heating switching valve 11b, the open / close valve 12f of the cooling / heating switching valve 11c, and the connection pipe 8. Further, the gas-liquid separator 10 is connected to the branch portion 17. A throttle device 19 is provided between the gas-liquid separator 10 and the branch portion 17. A pipe is connected to the connection pipe 9 between the expansion device 19 and the branch portion 17. A throttle device 18 is provided in this pipe.
The branch portion 17 is provided with pipes corresponding to the number of indoor units, and each pipe is connected to the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c.

なお、分流コントローラーBの各構成要素は、熱源機Aや後述の室内機群Cに設けられてもよい。   In addition, each component of the shunt controller B may be provided in the heat source machine A or an indoor unit group C described later.

室内機群Cは、室内機13a、室内機13b及び室内機13cを備えている。
室内機13aは、室内熱交換器14a、室内送風機15a及び絞り装置16aを有している。例えばフィンチューブ型熱交換器である室内熱交換器14aは、一方の接続口が分流コントローラーBの冷暖房切替弁11aと接続されている。また、室内熱交換器14aの他方の接続口は、分流コントローラーBの分岐部17と接続されている。室内熱交換器14aと分岐部17との間には、絞り装置16aが設けられている。また、室内熱交換器14aの近傍には室内送風機15aが設けられており、室内熱交換器14aに室内空気を送る。
The indoor unit group C includes an indoor unit 13a, an indoor unit 13b, and an indoor unit 13c.
The indoor unit 13a includes an indoor heat exchanger 14a, an indoor blower 15a, and an expansion device 16a. For example, the indoor heat exchanger 14a, which is a fin-tube heat exchanger, has one connection port connected to the cooling / heating switching valve 11a of the diversion controller B. The other connection port of the indoor heat exchanger 14a is connected to the branching portion 17 of the diversion controller B. An expansion device 16a is provided between the indoor heat exchanger 14a and the branch portion 17. In addition, an indoor fan 15a is provided in the vicinity of the indoor heat exchanger 14a, and sends indoor air to the indoor heat exchanger 14a.

室内機13bは、室内熱交換器14b、室内送風機15b及び絞り装置16bを有している。例えばフィンチューブ型熱交換器である室内熱交換器14bは、一方の接続口が分流コントローラーBの冷暖房切替弁11bと接続されている。また、室内熱交換器14bの他方の接続口は、分流コントローラーBの分岐部17と接続されている。室内熱交換器14bと分岐部17との間には、絞り装置16bが設けられている。また、室内熱交換器14bの近傍には室内送風機15bが設けられており、室内熱交換器14bに室内空気を送る。   The indoor unit 13b includes an indoor heat exchanger 14b, an indoor blower 15b, and an expansion device 16b. For example, the indoor heat exchanger 14b, which is a fin-tube heat exchanger, has one connection port connected to the cooling / heating switching valve 11b of the diversion controller B. The other connection port of the indoor heat exchanger 14b is connected to the branching portion 17 of the diversion controller B. An expansion device 16b is provided between the indoor heat exchanger 14b and the branch portion 17. Moreover, the indoor air blower 15b is provided in the vicinity of the indoor heat exchanger 14b, and indoor air is sent to the indoor heat exchanger 14b.

室内機13cは、室内熱交換器14c、室内送風機15c及び絞り装置16cを有している。例えばフィンチューブ型熱交換器である室内熱交換器14cは、一方の接続口が分流コントローラーBの冷暖房切替弁11cと接続されている。また、室内熱交換器14cの他方の接続口は、分流コントローラーBの分岐部17と接続されている。室内熱交換器14cと分岐部17との間には、絞り装置16cが設けられている。また、室内熱交換器14cの近傍には室内送風機15cが設けられており、室内熱交換器14cに室内空気を送る。   The indoor unit 13c includes an indoor heat exchanger 14c, an indoor blower 15c, and a throttle device 16c. For example, the indoor heat exchanger 14c, which is a fin-tube heat exchanger, has one connection port connected to the cooling / heating switching valve 11c of the diversion controller B. The other connection port of the indoor heat exchanger 14c is connected to the branching portion 17 of the diversion controller B. An expansion device 16c is provided between the indoor heat exchanger 14c and the branch portion 17. In addition, an indoor fan 15c is provided in the vicinity of the indoor heat exchanger 14c, and sends indoor air to the indoor heat exchanger 14c.

また、空気調和機100には、例えば熱源機Aに、制御装置37が設けられている。制御装置37は、各ユニット(熱源機A、分流コントローラーB及び室内機群C)に設けられた、流路切替装置の流路、絞り装置の開度、流量調整装置の開度、開閉弁の開閉、圧縮機1の回転周波数、送風機の回転数等を制御する。   In the air conditioner 100, for example, the control device 37 is provided in the heat source unit A. The control device 37 is provided in each unit (the heat source device A, the shunt controller B, and the indoor unit group C), the flow path of the flow path switching device, the opening degree of the throttle device, the opening degree of the flow rate adjusting device, Controls opening and closing, the rotational frequency of the compressor 1, the rotational speed of the blower, and the like.

<運転動作>
次に、本実施の形態における空気調和機100の運転動作について説明する。空気調和機100の運転動作には、全冷房運転モード、全暖房運転モード、冷房主体運転モード及び暖房主体運転モードの4つのモードがある。
全冷房運転モードとは、室内機は冷房のみが可能な運転モードである。全暖房運転モードとは、室内機は暖房のみが可能な運転モードである。冷房主体運転モードは、室内機毎に冷房運転と暖房運転を選択できる運転モードであり、暖房負荷に比べて冷房負荷が大きいときに使用するモードである。暖房主体運転モードは、室内ユニット30n毎に冷房運転と暖房運転を選択できる運転モードであり、冷房負荷に比べて暖房負荷が大きいときに使用するモードである。
<Driving action>
Next, the operation | movement operation | movement of the air conditioner 100 in this Embodiment is demonstrated. There are four modes of operation of the air conditioner 100: a cooling only operation mode, a heating only operation mode, a cooling main operation mode, and a heating main operation mode.
The all-cooling operation mode is an operation mode in which the indoor unit can only be cooled. The all-heating operation mode is an operation mode in which the indoor unit can only be heated. The cooling main operation mode is an operation mode in which a cooling operation and a heating operation can be selected for each indoor unit, and is a mode used when the cooling load is larger than the heating load. The heating main operation mode is an operation mode in which a cooling operation and a heating operation can be selected for each indoor unit 30n, and is a mode used when the heating load is larger than the cooling load.

(全冷房運転モード)
まず、全冷房運転モードについて説明する。
図2は、本発明の実施の形態に係る空気調和機の全冷房運転モードを表す冷媒回路図である。なお、図2を含めて以下の図では、冷媒の流れ方向を矢印で示している。また、冷媒の流れない開閉弁や逆止弁等を黒塗りで示している。
(Cooling mode only)
First, the cooling only operation mode will be described.
FIG. 2 is a refrigerant circuit diagram showing a cooling only operation mode of the air conditioner according to the embodiment of the present invention. In the following drawings including FIG. 2, the flow direction of the refrigerant is indicated by arrows. In addition, on-off valves and check valves that do not flow refrigerant are shown in black.

室内機13a、室内機13b及び室内機13cの全てが冷房運転を行う場合、流路切替装置2は、流路切替装置6から流出した冷媒が圧縮機1へ吸入される流路に切り替わる。流路切替装置22aは、圧縮機1の吐出側から室外熱交換器3aへ冷媒が流れる流路に切り替わる。流路切替装置22bは、圧縮機1の吐出側から室外熱交換器3bへ冷媒が流れる流路に切り替わる。つまり、室内熱交換器14a、室内熱交換器14b及び室内熱交換器14cは、蒸発器として機能する。また、室外熱交換器3a及び室外熱交換器3bは、凝縮器として機能する。   When all of the indoor unit 13a, the indoor unit 13b, and the indoor unit 13c perform the cooling operation, the flow path switching device 2 is switched to a flow path where the refrigerant flowing out of the flow path switching device 6 is sucked into the compressor 1. The flow path switching device 22a switches to a flow path through which refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3a. The flow path switching device 22b switches to the flow path through which the refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3b. That is, the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c function as an evaporator. Moreover, the outdoor heat exchanger 3a and the outdoor heat exchanger 3b function as a condenser.

また、絞り装置5a及び絞り装置5bは所定の開度(例えば全開)とする。流量調整装置24は閉じた状態とする。開閉弁23は閉じた状態とする。開閉弁26は閉じた状態とする。開閉弁12a、開閉弁12c及び開閉弁12eは開いた状態とする。開閉弁12b、開閉弁12d及び開閉弁12fは閉じた状態とする。絞り装置18は閉じた状態とする。絞り装置19は、絞り装置19前後の差圧が所定値となるよう、開度が設定される。絞り装置16a、絞り装置16b及び絞り装置16cは、各絞り装置前後の差圧が所定値となるよう、開度が設定される。   Further, the expansion device 5a and the expansion device 5b are set to a predetermined opening (for example, fully open). The flow rate adjusting device 24 is in a closed state. The on-off valve 23 is closed. The on-off valve 26 is closed. The on-off valve 12a, the on-off valve 12c, and the on-off valve 12e are opened. The on-off valve 12b, on-off valve 12d, and on-off valve 12f are closed. The aperture device 18 is closed. The opening degree of the expansion device 19 is set so that the differential pressure before and after the expansion device 19 becomes a predetermined value. The opening degree of the expansion device 16a, the expansion device 16b, and the expansion device 16c is set so that the differential pressure before and after each expansion device becomes a predetermined value.

圧縮機1から吐出された高温高圧のガス冷媒は、流路切替装置2を通って、流路切替装置22a及び流路切替装置22bに流入する。そして、流路切替装置22aを流出した高温高圧のガス冷媒は室外熱交換器3aに流入し、流路切替装置22bを流出した高温高圧のガス冷媒は室外熱交換器3bに流入する。室外熱交換器3aに流入した高温高圧のガス冷媒は、凝縮して(外気に放熱して)高圧の液冷媒となる。同様に、室外熱交換器3bに流入した高温高圧のガス冷媒は、凝縮して(外気に放熱して)高圧の液冷媒となる。室外熱交換器3aを流出して絞り装置5aを通った高圧の液冷媒と、室外熱交換器3bを流出して絞り装置5bを通った高圧の液冷媒とは、合流して気液分離器25に流入する。そして、気液分離器25から流出した高圧の液冷媒は、流路切替装置6の逆止弁7d及び接続配管8を通って、気液分離器10へと流入する。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the flow path switching device 22a and the flow path switching device 22b. The high-temperature and high-pressure gas refrigerant flowing out of the flow path switching device 22a flows into the outdoor heat exchanger 3a, and the high-temperature and high-pressure gas refrigerant flowing out of the flow path switching device 22b flows into the outdoor heat exchanger 3b. The high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 3a condenses (dissipates heat to the outside air) and becomes high-pressure liquid refrigerant. Similarly, the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 3b condenses (dissipates heat to the outside air) and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 3a and passes through the expansion device 5a and the high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 3b and passes through the expansion device 5b merge to form a gas-liquid separator. 25. The high-pressure liquid refrigerant that has flowed out of the gas-liquid separator 25 flows into the gas-liquid separator 10 through the check valve 7d and the connection pipe 8 of the flow path switching device 6.

気液分離器10から流出した冷媒は、絞り装置19で所定の圧力に調整された後、各室内機の絞り装置(絞り装置16a、絞り装置16b、絞り装置16c)で減圧され、低圧の気液二相状態で各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)に流入する。各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)に流入した低圧気液二相状態の冷媒は、蒸発することで室内の冷房を行い(室内空気から吸熱し)、低圧のガス冷媒となる。各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)から流出した低圧のガス冷媒は、開閉弁12a、開閉弁12c及び開閉弁12eを通って接続配管9に流入する。この冷媒は、流路切替装置6の逆止弁7a及び流路切替装置2を通って、圧縮機1に吸入される。   The refrigerant flowing out of the gas-liquid separator 10 is adjusted to a predetermined pressure by the expansion device 19 and then reduced in pressure by the expansion devices (the expansion device 16a, the expansion device 16b, and the expansion device 16c) of each indoor unit. It flows into each indoor heat exchanger (indoor heat exchanger 14a, indoor heat exchanger 14b, indoor heat exchanger 14c) in a liquid two-phase state. The refrigerant in the low-pressure gas-liquid two-phase state that has flowed into each indoor heat exchanger (the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c) cools the room by evaporating (from the indoor air). Absorbs heat) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out from each indoor heat exchanger (the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c) passes through the on-off valve 12a, the on-off valve 12c, and the on-off valve 12e, and is connected to the connecting pipe 9 Flow into. The refrigerant is sucked into the compressor 1 through the check valve 7 a of the flow path switching device 6 and the flow path switching device 2.

(冷房主体運転モード)
次に、冷房主体運転モードについて説明する。
図3は、本発明の実施の形態に係る空気調和機の冷房主体運転モードを表す冷媒回路図である。
(Cooling operation mode)
Next, the cooling main operation mode will be described.
FIG. 3 is a refrigerant circuit diagram showing a cooling main operation mode of the air conditioner according to the embodiment of the present invention.

室内機13a及び室内機13bが冷房運転を行い、室内機13cが暖房運転を行う場合、流路切替装置2は、流路切替装置6から流出した冷媒が圧縮機1へ吸入される流路に切り替わる。流路切替装置22aは、圧縮機1の吐出側から室外熱交換器3aへ冷媒が流れる流路に切り替わる。流路切替装置22bは、圧縮機1の吐出側から室外熱交換器3bへ冷媒が流れる流路に切り替わる。つまり、室内熱交換器14a及び室内熱交換器14bは、蒸発器として機能する。また、室内熱交換器14c、室外熱交換器3a及び室外熱交換器3bは、凝縮器として機能する。   When the indoor unit 13a and the indoor unit 13b perform a cooling operation, and the indoor unit 13c performs a heating operation, the flow path switching device 2 has a flow path through which the refrigerant flowing out of the flow path switching device 6 is sucked into the compressor 1. Switch. The flow path switching device 22a switches to a flow path through which refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3a. The flow path switching device 22b switches to the flow path through which the refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3b. That is, the indoor heat exchanger 14a and the indoor heat exchanger 14b function as an evaporator. Moreover, the indoor heat exchanger 14c, the outdoor heat exchanger 3a, and the outdoor heat exchanger 3b function as a condenser.

また、絞り装置5a及び絞り装置5bは所定の開度(例えば全開)とする。流量調整装置24は閉じた状態とする。開閉弁23は閉じた状態とする。開閉弁26は閉じた状態とする。冷房運転する室内機13a及び室内機13bと接続された冷暖房切替弁11a及び冷暖房切替弁11bは、開閉弁12a及び開閉弁12cを開いた状態とし、開閉弁12b及び開閉弁12dを閉じた状態とする。暖房運転する室内機13cと接続された冷暖房切替弁11cは、開閉弁12fを開いた状態とし、開閉弁12eを閉じた状態とする。絞り装置18は閉じた状態とする。絞り装置19は、絞り装置19前後の差圧が所定値となるよう、開度が設定される。絞り装置16a、絞り装置16b及び絞り装置16cは、各絞り装置前後の差圧が所定値となるよう、開度が設定される。   Further, the expansion device 5a and the expansion device 5b are set to a predetermined opening (for example, fully open). The flow rate adjusting device 24 is in a closed state. The on-off valve 23 is closed. The on-off valve 26 is closed. The cooling / heating switching valve 11a and the cooling / heating switching valve 11b connected to the indoor unit 13a and the indoor unit 13b that perform cooling operation are in a state in which the on-off valve 12a and the on-off valve 12c are opened, and the on-off valve 12b and the on-off valve 12d are closed. To do. The cooling / heating switching valve 11c connected to the indoor unit 13c that performs the heating operation sets the on-off valve 12f to an open state and closes the on-off valve 12e. The aperture device 18 is closed. The opening degree of the expansion device 19 is set so that the differential pressure before and after the expansion device 19 becomes a predetermined value. The opening degree of the expansion device 16a, the expansion device 16b, and the expansion device 16c is set so that the differential pressure before and after each expansion device becomes a predetermined value.

圧縮機1から吐出された高温高圧のガス冷媒は、流路切替装置2を通って、流路切替装置22a及び流路切替装置22bに流入する。そして、流路切替装置22aを流出した高温高圧のガス冷媒は室外熱交換器3aに流入し、流路切替装置22bを流出した高温高圧のガス冷媒は室外熱交換器3bに流入する。室外熱交換器3aに流入した高温高圧のガス冷媒は、一部凝縮して(外気に放熱して)高圧の気液二相冷媒となる。同様に、室外熱交換器3bに流入した高温高圧のガス冷媒は、一部凝縮して(外気に放熱して)高圧の気液二相冷媒となる。室外熱交換器3aを流出して絞り装置5aを通った高圧の気液二相冷媒と、室外熱交換器3bを流出して絞り装置5bを通った高圧の気液二相冷媒とは、合流して気液分離器25に流入する。そして、気液分離器25から流出した高圧の気液二相冷媒は、流路切替装置6の逆止弁7d及び接続配管8を通って、気液分離器10へと流入する。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the flow path switching device 22a and the flow path switching device 22b. The high-temperature and high-pressure gas refrigerant flowing out of the flow path switching device 22a flows into the outdoor heat exchanger 3a, and the high-temperature and high-pressure gas refrigerant flowing out of the flow path switching device 22b flows into the outdoor heat exchanger 3b. The high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 3a is partially condensed (dissipated to the outside air) to become a high-pressure gas-liquid two-phase refrigerant. Similarly, the high-temperature and high-pressure gas refrigerant flowing into the outdoor heat exchanger 3b is partially condensed (dissipated to the outside air) to become a high-pressure gas-liquid two-phase refrigerant. The high-pressure gas-liquid two-phase refrigerant that flows out of the outdoor heat exchanger 3a and passes through the expansion device 5a, and the high-pressure gas-liquid two-phase refrigerant that flows out of the outdoor heat exchanger 3b and passes through the expansion device 5b And flows into the gas-liquid separator 25. The high-pressure gas-liquid two-phase refrigerant that has flowed out of the gas-liquid separator 25 flows into the gas-liquid separator 10 through the check valve 7 d and the connection pipe 8 of the flow path switching device 6.

気液分離器10に流入した高圧の気液二相冷媒は、高温高圧のガス冷媒と高圧の液冷媒とに分離される。
気液分離器10を流出した高圧の液冷媒は、絞り装置19、絞り装置16a及び絞り装置16bで減圧され、低圧の気液二相状態で室内熱交換器14a及び室内熱交換器14bに流入する。室内熱交換器14a及び室内熱交換器14bに流入した低圧気液二相状態の冷媒は、蒸発することで室内の冷房を行い(室内空気から吸熱し)、低圧のガス冷媒となる。室内熱交換器14a及び室内熱交換器14bから流出した低圧のガス冷媒は、開閉弁12a及び開閉弁12cを通って接続配管9に流入する。この冷媒は、流路切替装置6の逆止弁7a及び流路切替装置2を通って、圧縮機1に吸入される。
The high-pressure gas-liquid two-phase refrigerant that has flowed into the gas-liquid separator 10 is separated into a high-temperature and high-pressure gas refrigerant and a high-pressure liquid refrigerant.
The high-pressure liquid refrigerant that has flowed out of the gas-liquid separator 10 is decompressed by the expansion device 19, the expansion device 16a, and the expansion device 16b, and flows into the indoor heat exchanger 14a and the indoor heat exchanger 14b in a low-pressure gas-liquid two-phase state. To do. The low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 14a and the indoor heat exchanger 14b evaporates to cool the room (absorbs heat from the room air) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out from the indoor heat exchanger 14a and the indoor heat exchanger 14b flows into the connection pipe 9 through the on-off valve 12a and the on-off valve 12c. The refrigerant is sucked into the compressor 1 through the check valve 7 a of the flow path switching device 6 and the flow path switching device 2.

一方、気液分離器10を流出した高温高圧のガス冷媒は、開閉弁12fを通って、室内熱交換器14cに流入する。室内熱交換器14cに流入した冷媒は、凝縮することで室内の暖房を行い(室内空気に放熱し)、高圧の液状冷媒となる。このとき、室内熱交換器14cを流れる冷媒は、絞り装置16cで所定の過冷却度に調整される。室内熱交換器14cを流出した高圧の液状冷媒は、絞り装置16cを通って、分岐部17に流入する。そして、この冷媒は、気液分離器10から流出した高圧の液冷媒と合流し、室内熱交換器14a及び室内熱交換器14bに流入する。   On the other hand, the high-temperature and high-pressure gas refrigerant that has flowed out of the gas-liquid separator 10 flows into the indoor heat exchanger 14c through the on-off valve 12f. The refrigerant that has flowed into the indoor heat exchanger 14c condenses to heat the room (dissipates heat to the room air) and becomes a high-pressure liquid refrigerant. At this time, the refrigerant flowing through the indoor heat exchanger 14c is adjusted to a predetermined degree of supercooling by the expansion device 16c. The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 14c flows into the branching portion 17 through the expansion device 16c. And this refrigerant | coolant merges with the high voltage | pressure liquid refrigerant which flowed out from the gas-liquid separator 10, and flows in into the indoor heat exchanger 14a and the indoor heat exchanger 14b.

冷房主体運転を行う際、室外熱交換器3a及び室外熱交換器3bでの放熱量が大きいと、室内の暖房を行うのに十分な熱量を持ったガス冷媒が暖房運転中の室内機(例えば室内機13c)へ流入しない場合がある。このような場合、室外送風機4a及び室外送風機4bの風量を減少させて、室外熱交換器3a及び室外熱交換器3bの放熱量を抑えてもよい。また、圧縮機1から吐出した高温高圧のガス冷媒が一方の室外熱交換器(例えば室外熱交換器3a)へ流入しないように、一方の絞り装置(例えば絞り装置5a)を閉止してもよい。このとき、閉止された絞り装置(例えば絞り装置5a)と接続された流路切替装置(例えば流路切替装置22a)の流路を、圧縮機1の吸入側へ冷媒が流れる流路に切り替えてもよい。   When the cooling main operation is performed, if the amount of heat released by the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is large, the gas refrigerant having a sufficient amount of heat for heating the indoor unit is heated in the indoor unit (for example, In some cases, the air does not flow into the indoor unit 13c). In such a case, the heat radiation of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b may be suppressed by reducing the air volume of the outdoor fan 4a and the outdoor fan 4b. Further, one expansion device (for example, the expansion device 5a) may be closed so that the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 does not flow into one outdoor heat exchanger (for example, the outdoor heat exchanger 3a). . At this time, the flow path of the flow path switching apparatus (for example, the flow path switching apparatus 22a) connected to the closed expansion apparatus (for example, the expansion apparatus 5a) is switched to the flow path through which the refrigerant flows to the suction side of the compressor 1. Also good.

(全暖房運転モード)
次に、全暖房運転モードについて説明する。
図4は、本発明の実施の形態に係る空気調和機の通常時における全暖房運転モードを表す冷媒回路図である。
(All heating operation mode)
Next, the heating only operation mode will be described.
FIG. 4 is a refrigerant circuit diagram illustrating a heating only operation mode of the air conditioner according to the embodiment of the present invention at normal times.

室内機13a、室内機13b及び室内機13cの全てが暖房運転を行う場合、流路切替装置2は、圧縮機1から吐出された冷媒が流路切替装置6へ流入する流路に切り替わる。流路切替装置22aは、室外熱交換器3aから圧縮機1の吸入側へ冷媒が流れる流路に切り替わる。流路切替装置22bは、室外熱交換器3bから圧縮機1の吸入側へ冷媒が流れる流路に切り替わる。つまり、室内熱交換器14a、室内熱交換器14b及び室内熱交換器14cは、凝縮器として機能する。また、室外熱交換器3a及び室外熱交換器3bは、蒸発器として機能する。   When all of the indoor unit 13a, the indoor unit 13b, and the indoor unit 13c perform the heating operation, the flow path switching device 2 is switched to a flow path through which the refrigerant discharged from the compressor 1 flows into the flow path switching device 6. The flow path switching device 22a switches to a flow path through which refrigerant flows from the outdoor heat exchanger 3a to the suction side of the compressor 1. The flow path switching device 22b switches to a flow path through which the refrigerant flows from the outdoor heat exchanger 3b to the suction side of the compressor 1. That is, the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c function as a condenser. Moreover, the outdoor heat exchanger 3a and the outdoor heat exchanger 3b function as an evaporator.

また、絞り装置5a及び絞り装置5bは所定の開度(例えば全開)とする。開閉弁26は閉じた状態とする。開閉弁12a、開閉弁12c及び開閉弁12eは閉じた状態とする。開閉弁12b、開閉弁12d及び開閉弁12fは開いた状態とする。絞り装置18は、絞り装置18前後の差圧が所定値となるよう、開度が設定される。絞り装置19は閉じた状態とする。絞り装置16a、絞り装置16b及び絞り装置16cは、各絞り装置前後の差圧が所定値となるよう、開度が設定される。
また、通常(インジェクションを行わない場合)、流量調整装置24及び開閉弁23は閉じた状態とする。インジェクションを行う場合、流量調整装置24は、圧縮機1の吐出温度や吐出圧力が過度に低下しない開度に設定する。このとき、開閉弁23を開いた状態に設定する。
Further, the expansion device 5a and the expansion device 5b are set to a predetermined opening (for example, fully open). The on-off valve 26 is closed. The on-off valve 12a, the on-off valve 12c, and the on-off valve 12e are closed. The on-off valve 12b, the on-off valve 12d, and the on-off valve 12f are opened. The opening degree of the expansion device 18 is set so that the differential pressure before and after the expansion device 18 becomes a predetermined value. The aperture device 19 is in a closed state. The opening degree of the expansion device 16a, the expansion device 16b, and the expansion device 16c is set so that the differential pressure before and after each expansion device becomes a predetermined value.
Normally (when injection is not performed), the flow rate adjusting device 24 and the on-off valve 23 are closed. When performing the injection, the flow rate adjusting device 24 is set to an opening degree at which the discharge temperature and the discharge pressure of the compressor 1 do not decrease excessively. At this time, the on-off valve 23 is set in an open state.

インジェクションを行わない場合、空気調和機100の冷媒流れは、次のようになる。
圧縮機1から吐出された高温高圧のガス冷媒は、流路切替装置2、流路切替装置6の逆止弁7d及び接続配管8を通って、気液分離器10に流入する。気液分離器10から流出した高温高圧のガス冷媒は、開閉弁12b、開閉弁12d及び開閉弁12fを通って、各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)に流入する。各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)に流入した冷媒は、凝縮することで各室内の暖房を行い(室内空気に放熱し)、高圧の液状冷媒となる。このとき、各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)を流れる冷媒は、各室内熱交換器に接続された絞り装置(絞り装置16a、絞り装置16b、絞り装置16c)で所定の過冷却度に調整される。
When the injection is not performed, the refrigerant flow of the air conditioner 100 is as follows.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the gas-liquid separator 10 through the flow path switching device 2, the check valve 7 d of the flow path switching device 6 and the connection pipe 8. The high-temperature and high-pressure gas refrigerant that has flowed out of the gas-liquid separator 10 passes through the on-off valve 12b, the on-off valve 12d, and the on-off valve 12f, and passes through the indoor heat exchangers (indoor heat exchanger 14a, indoor heat exchanger 14b, indoor heat). Flows into the exchanger 14c). The refrigerant that has flowed into each indoor heat exchanger (the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c) condenses to heat each room (dissipates heat into the room air), It becomes a liquid refrigerant. At this time, the refrigerant flowing through each indoor heat exchanger (the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c) is supplied to the expansion device (the expansion device 16a, the expansion device) connected to each indoor heat exchanger. 16b, the throttle device 16c) is adjusted to a predetermined degree of supercooling.

各室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)から流出した高圧の液冷媒は、分岐部17で合流して、絞り装置18に流入する。絞り装置18に流入した高圧の液冷媒は、絞り装置18前後の差圧が所定値となるよう減圧され、低圧の気液二相状態となって接続配管9に流入する。そして、この冷媒は、流路切替装置6の逆止弁7c、気液分離器25、絞り装置5a及び絞り装置5bを通って、室外熱交換器3a及び室外熱交換器3bへ流入する。室外熱交換器3a及び室外熱交換器3bへ流入した低圧気液二相状態の冷媒は、蒸発して(外気から吸熱して)、低圧のガス冷媒となる。室外熱交換器3a及び室外熱交換器3bを流出した低圧のガス冷媒は、流路切替装置22a、流路切替装置22b及び低圧連絡配管20を通って、圧縮機1に吸入される。   The high-pressure liquid refrigerant that has flowed out of the indoor heat exchangers (the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c) joins at the branch portion 17 and flows into the expansion device 18. The high-pressure liquid refrigerant that has flowed into the expansion device 18 is depressurized so that the differential pressure across the expansion device 18 reaches a predetermined value, and enters a connection pipe 9 in a low-pressure gas-liquid two-phase state. And this refrigerant | coolant flows in into the outdoor heat exchanger 3a and the outdoor heat exchanger 3b through the non-return valve 7c of the flow-path switching apparatus 6, the gas-liquid separator 25, the expansion device 5a, and the expansion device 5b. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 3a and the outdoor heat exchanger 3b evaporates (heats are absorbed from the outside air) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is sucked into the compressor 1 through the flow path switching device 22a, the flow path switching device 22b, and the low pressure communication pipe 20.

全暖房運転でインジェクションを行う場合について説明する。低外気温時に暖房運転を行う場合は暖房能力を得にくいことから、圧縮機1の運転周波数を上昇させる。圧縮機1の運転周波数を上昇させると、圧縮機1が吐出する冷媒の温度(以後、吐出温度ともいう)も上昇してしまい、圧縮機1に焼き付きなどが生じてしまうことがある。そこで、本実施の形態では、圧縮機1の圧縮部の中間部に気液二相冷媒をインジェクションすることで、吐出温度が過度に上昇することを抑えている。   The case where injection is performed in the all-heating operation will be described. When the heating operation is performed at a low outside temperature, it is difficult to obtain the heating capacity, so that the operation frequency of the compressor 1 is increased. When the operating frequency of the compressor 1 is increased, the temperature of the refrigerant discharged from the compressor 1 (hereinafter also referred to as discharge temperature) increases, and the compressor 1 may be seized. Therefore, in the present embodiment, an excessive increase in the discharge temperature is suppressed by injecting the gas-liquid two-phase refrigerant into the intermediate portion of the compression portion of the compressor 1.

図5は、本発明の実施の形態に係る空気調和機の、インジェクションを行う際の絞り装置5a及び絞り装置5b、開閉弁23、流量調整装置24の設定方法(制御方法)を示すフローチャートである。   FIG. 5 is a flowchart showing a setting method (control method) of the expansion device 5a and the expansion device 5b, the on-off valve 23, and the flow rate adjustment device 24 when performing the injection of the air conditioner according to the embodiment of the present invention. .

ステップ1で全暖房運転と判断されると、吐出温度検知手段33で、圧縮機1から吐出される冷媒の温度(吐出温度)を検知する(ステップ2)。   When it is determined in step 1 that the heating operation is performed, the discharge temperature detecting means 33 detects the temperature (discharge temperature) of the refrigerant discharged from the compressor 1 (step 2).

ステップ3では、吐出温度が所定値a以下であるかを判断する。吐出温度が所定値aよりも大きい場合は、ステップ2に戻る。吐出温度が所定値a以下の場合は、ステップ4へ進む。   In step 3, it is determined whether the discharge temperature is equal to or lower than a predetermined value a. If the discharge temperature is higher than the predetermined value a, the process returns to step 2. If the discharge temperature is equal to or lower than the predetermined value a, the process proceeds to step 4.

ステップ4では、中間圧力検知手段36で、気液分離器10近傍を流れる冷媒の圧力(以後、中間圧力ともいう)を検知する。また、吸入圧力検知手段35で、圧縮機1が吸入する冷媒の圧力(以後、吸入圧力ともいう)を検知する。   In step 4, the intermediate pressure detection means 36 detects the pressure of the refrigerant flowing in the vicinity of the gas-liquid separator 10 (hereinafter also referred to as intermediate pressure). Further, the suction pressure detection means 35 detects the pressure of the refrigerant sucked by the compressor 1 (hereinafter also referred to as suction pressure).

ステップ5では、吸入圧力からインジェクション圧力(圧縮機1の圧縮部の中間部の圧力)を演算する。中間圧力がインジェクション圧力より低いと、気液分離器25から圧縮機1の圧縮部の中間部へ冷媒をインジェクションできないためである。
なお、インジェクション圧力は、「圧縮機1の吸入圧力」と、「圧縮機1の圧縮部における冷媒吸入時の圧縮室体積と圧縮機1の圧縮部における中間部の圧縮室体積との比」とから求まる。
In step 5, the injection pressure (pressure at the intermediate portion of the compression portion of the compressor 1) is calculated from the suction pressure. This is because if the intermediate pressure is lower than the injection pressure, the refrigerant cannot be injected from the gas-liquid separator 25 to the intermediate portion of the compression portion of the compressor 1.
The injection pressure is “the suction pressure of the compressor 1” and “the ratio of the compression chamber volume at the time of refrigerant suction in the compression portion of the compressor 1 to the compression chamber volume in the intermediate portion in the compression portion of the compressor 1”. Obtained from

ステップ6では、中間圧力がインジェクション圧力以上であるかの判定を行う。中間圧力がインジェクション圧力以上であればステップ8に進む。中間圧力がインジェクション圧力より小さければ、絞り装置5a及び絞り装置5bの開度を減少して(ステップ7)、ステップ4へ戻る。   In step 6, it is determined whether the intermediate pressure is equal to or higher than the injection pressure. If the intermediate pressure is equal to or higher than the injection pressure, the process proceeds to step 8. If the intermediate pressure is smaller than the injection pressure, the opening degree of the expansion device 5a and the expansion device 5b is decreased (step 7), and the process returns to step 4.

ステップ8では、圧縮機1の圧縮部の中間部へ冷媒をインジェクションするため、開閉弁23を開き、流量調整装置24を初期開度に設定する。   In step 8, in order to inject the refrigerant into the intermediate part of the compressor of the compressor 1, the on-off valve 23 is opened and the flow rate adjusting device 24 is set to the initial opening.

ステップ9では、圧縮機1の吐出温度を検知する。   In step 9, the discharge temperature of the compressor 1 is detected.

ステップ10では、ステップ9で検知した吐出温度が所定値a以下であるかを判断する。吐出温度が所定値a以下であれば、ステップ12に進む。吐出温度が所定値aよりも大きければ、流量調整装置24の開度を増加させ(ステップ11)、ステップ11に戻る。圧縮機1の吐出温度を下げるために、冷媒のインジェクション量を増加させる必要があるからである。   In step 10, it is determined whether or not the discharge temperature detected in step 9 is a predetermined value a or less. If the discharge temperature is equal to or lower than the predetermined value a, the process proceeds to step 12. If the discharge temperature is higher than the predetermined value a, the opening degree of the flow rate adjusting device 24 is increased (step 11), and the process returns to step 11. This is because in order to lower the discharge temperature of the compressor 1, it is necessary to increase the injection amount of the refrigerant.

ステップ12では、吐出温度が所定値b以上であるかを判断する。吐出温度が所定値b以上であれば、ステップ9に戻る。吐出温度が所定値bより小さければ、冷媒のインジェクション量を減少させるために流量調整装置24の開度を減少させ(ステップ13)、ステップ14に進む。
つまり、吐出温度が所定値b以上で所定値a以下となるように、流量調整装置24の開度を調整している。ここで、所定値b以上で所定値a以下となる範囲が、本発明の第3の所定範囲に相当する。なお、流量調整装置24の開度は、圧縮機1が吐出する冷媒の圧力に基づいて調整されてもよい。つまり、圧縮機1が吐出する冷媒の圧力が所定範囲(本発明の第4の所定範囲に相当)となるように、流量調整装置24の開度を調整してもよい。
In step 12, it is determined whether the discharge temperature is equal to or higher than a predetermined value b. If the discharge temperature is equal to or higher than the predetermined value b, the process returns to step 9. If the discharge temperature is lower than the predetermined value b, the opening degree of the flow rate adjusting device 24 is decreased to decrease the refrigerant injection amount (step 13), and the process proceeds to step 14.
That is, the opening degree of the flow rate adjusting device 24 is adjusted so that the discharge temperature is not less than the predetermined value b and not more than the predetermined value a. Here, the range from the predetermined value b to the predetermined value a corresponds to the third predetermined range of the present invention. The opening degree of the flow rate adjusting device 24 may be adjusted based on the pressure of the refrigerant discharged from the compressor 1. That is, the opening degree of the flow rate adjusting device 24 may be adjusted so that the pressure of the refrigerant discharged from the compressor 1 falls within a predetermined range (corresponding to the fourth predetermined range of the present invention).

ステップ14では、流量調整装置24の開度が下限値に達しているかの判定を行う。流量調整装置24の開度が下限値であれば、開閉弁23を閉じて(ステップ15)、ステップ2へ戻る。流量調整装置24の開度が下限値に達していない場合は、ステップ9へ戻る。   In step 14, it is determined whether the opening degree of the flow rate adjusting device 24 has reached the lower limit value. If the opening degree of the flow rate adjusting device 24 is the lower limit value, the on-off valve 23 is closed (step 15), and the process returns to step 2. When the opening degree of the flow rate adjusting device 24 has not reached the lower limit value, the process returns to Step 9.

全暖房運転において、インジェクションを行う場合の冷媒の流れを図6に示す。
図6は、本発明の実施の形態に係る空気調和機のインジェクション時における全暖房運転モードを表す冷媒回路図である。基本的な冷媒の流れは、通常の全暖房運転と同様である。しかしながら、インジェクションを行う場合、気液分離器25で分離されたガス冷媒は、ガスバイパス配管26a及びガスバイパス配管23a(開閉弁23)を介して、圧縮機1へインジェクションされる。また、気液分離器25を通過した液冷媒の一部は、インジェクション配管24a(流量調整装置24)を介して、圧縮機1へインジェクションされる。この点が、通常の全暖房運転と異なる。
FIG. 6 shows the flow of the refrigerant when performing injection in the all-heating operation.
FIG. 6 is a refrigerant circuit diagram showing a heating only operation mode at the time of injection of the air conditioner according to the embodiment of the present invention. The basic refrigerant flow is the same as in normal heating operation. However, when performing injection, the gas refrigerant separated by the gas-liquid separator 25 is injected into the compressor 1 via the gas bypass pipe 26a and the gas bypass pipe 23a (open / close valve 23). A part of the liquid refrigerant that has passed through the gas-liquid separator 25 is injected into the compressor 1 through the injection pipe 24a (flow rate adjusting device 24). This point is different from normal heating only operation.

続いて、インジェクションを行った全暖房運転における冷媒の状態変化を、図7に示したp−h線図に従って説明する。   Subsequently, the state change of the refrigerant in the heating only operation with injection will be described with reference to the ph diagram shown in FIG.

圧縮機1で圧縮された高温高圧のガス冷媒(点a)は、室内熱交換器14a、室内熱交換器14b及び室内熱交換器14cで凝縮し、高温の液冷媒(点b)となる。そして、絞り装置16a、絞り装置16b及び絞り装置16cで減圧され、中間圧力Pmの気液二相冷媒(点c)となる。この中間圧力Pmの気液二相冷媒は、絞り装置18、接続配管9、及び流路切替装置6の逆止弁7cを通って、気液分離器25に流入する。気液分離器25に流入した中間圧力Pmの気液二相冷媒は、ガス冷媒(点d)と液冷媒(点e)に分離される。   The high-temperature and high-pressure gas refrigerant (point a) compressed by the compressor 1 is condensed in the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c, and becomes a high-temperature liquid refrigerant (point b). Then, the pressure is reduced by the expansion device 16a, the expansion device 16b, and the expansion device 16c, and becomes a gas-liquid two-phase refrigerant (point c) having an intermediate pressure Pm. The gas-liquid two-phase refrigerant having the intermediate pressure Pm flows into the gas-liquid separator 25 through the expansion device 18, the connection pipe 9, and the check valve 7 c of the flow path switching device 6. The gas-liquid two-phase refrigerant having an intermediate pressure Pm flowing into the gas-liquid separator 25 is separated into a gas refrigerant (point d) and a liquid refrigerant (point e).

気液分離器25を通過した液冷媒(点e)の一部は、インジェクション配管24a(流量調整装置24)を通過し、圧縮機1の圧縮部の中間部(点i)へと吸入される。気液分離器25を通過した液冷媒(点e)の残りの一部は、絞り装置5a及び絞り装置5bでさらに減圧され、低圧の気液二相冷媒(点f)となる。この低圧の気液二相冷媒は、室外熱交換器3a及び室外熱交換器3bで蒸発して低圧のガス冷媒(点g)となり、圧縮機1へ吸入される。
一方、気液分離器25で分離されたガス冷媒(点d)は、ガスバイパス配管26a及びガスバイパス配管23a(開閉弁23)を通り、圧縮機1の圧縮部の中間部(点i)へ吸入される。
Part of the liquid refrigerant (point e) that has passed through the gas-liquid separator 25 passes through the injection pipe 24a (flow rate adjusting device 24) and is sucked into the intermediate portion (point i) of the compressor portion of the compressor 1. . The remaining part of the liquid refrigerant (point e) that has passed through the gas-liquid separator 25 is further decompressed by the expansion device 5a and the expansion device 5b to become a low-pressure gas-liquid two-phase refrigerant (point f). This low-pressure gas-liquid two-phase refrigerant evaporates in the outdoor heat exchanger 3a and the outdoor heat exchanger 3b to become a low-pressure gas refrigerant (point g) and is sucked into the compressor 1.
On the other hand, the gas refrigerant (point d) separated by the gas-liquid separator 25 passes through the gas bypass pipe 26a and the gas bypass pipe 23a (open / close valve 23) to the intermediate portion (point i) of the compressor portion of the compressor 1. Inhaled.

なお、室外熱交換器3a及び室外熱交換器3bが蒸発器として機能する場合、室外熱交換器3a及び室外熱交換器3bへの冷媒分配の不均一が起こり、一方の熱交換器の性能を十分に発揮できないことがある。   In addition, when the outdoor heat exchanger 3a and the outdoor heat exchanger 3b function as an evaporator, non-uniform distribution of refrigerant to the outdoor heat exchanger 3a and the outdoor heat exchanger 3b occurs, and the performance of one heat exchanger is reduced. It may not be able to fully demonstrate.

この場合には、室外熱交換器3aから流出した冷媒の過熱度(以後、出口過熱度ともいう)と室外熱交換器3bの出口過熱度との差が所定の範囲(本発明の第1の所定範囲に相当)内となるように、絞り装置5a及び絞り装置5bの絞り開度を調整するとよい。室外熱交換器3a及び室外熱交換器3bの性能を十分に発揮させることができ、空気調和機の効率を上昇させることができる。なお、本実施の形態では、室外熱交換器3aの出口過熱度を、吸入圧力検知手段35の検知圧力から換算される冷媒の飽和温度と、ガス管温度検知手段31aの検知温度との差として求めている。また、室外熱交換器3bの出口過熱度を、吸入圧力検知手段35の検知圧力から換算される冷媒の飽和温度と、ガス管温度検知手段31bの検知温度との差として求めている。   In this case, the difference between the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger 3a (hereinafter also referred to as outlet superheat degree) and the degree of outlet superheat of the outdoor heat exchanger 3b is within a predetermined range (first of the present invention). It is preferable to adjust the apertures of the expansion device 5a and the expansion device 5b so as to be within the predetermined range. The performance of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b can be sufficiently exhibited, and the efficiency of the air conditioner can be increased. In the present embodiment, the degree of superheat at the outlet of the outdoor heat exchanger 3a is defined as the difference between the refrigerant saturation temperature converted from the detected pressure of the suction pressure detecting means 35 and the detected temperature of the gas pipe temperature detecting means 31a. Seeking. Further, the degree of superheat at the outlet of the outdoor heat exchanger 3b is obtained as the difference between the refrigerant saturation temperature converted from the detected pressure of the suction pressure detecting means 35 and the detected temperature of the gas pipe temperature detecting means 31b.

(暖房主体運転モード)
次に、暖房主体運転モードについて説明する。
図8は、本発明の実施の形態に係る空気調和機の通常時における暖房主体運転モードを表す冷媒回路図である。
(Heating main operation mode)
Next, the heating main operation mode will be described.
FIG. 8 is a refrigerant circuit diagram showing a heating main operation mode in the normal time of the air conditioner according to the embodiment of the present invention.

室内機13a及び室内機13bが暖房運転を行い、室内機13cが冷房運転を行う場合、流路切替装置2は、圧縮機1から吐出された冷媒が流路切替装置6へ流入する流路に切り替わる。流路切替装置22aは、室外熱交換器3aから圧縮機1の吸入側へ冷媒が流れる流路に切り替わる。流路切替装置22bは、室外熱交換器3bから圧縮機1の吸入側へ冷媒が流れる流路に切り替わる。つまり、室内熱交換器14a及び室内熱交換器14bは、凝縮器として機能する。また、室内熱交換器14c、室外熱交換器3a及び室外熱交換器3bは、蒸発器として機能する。   When the indoor unit 13a and the indoor unit 13b perform the heating operation and the indoor unit 13c performs the cooling operation, the flow path switching device 2 is connected to the flow path into which the refrigerant discharged from the compressor 1 flows into the flow path switching device 6. Switch. The flow path switching device 22a switches to a flow path through which refrigerant flows from the outdoor heat exchanger 3a to the suction side of the compressor 1. The flow path switching device 22b switches to a flow path through which the refrigerant flows from the outdoor heat exchanger 3b to the suction side of the compressor 1. That is, the indoor heat exchanger 14a and the indoor heat exchanger 14b function as a condenser. Moreover, the indoor heat exchanger 14c, the outdoor heat exchanger 3a, and the outdoor heat exchanger 3b function as an evaporator.

また、絞り装置5a及び絞り装置5bは所定の開度(例えば全開)とする。暖房運転する室内機13a及び室内機13bと接続された冷暖房切替弁11a及び冷暖房切替弁11bは、開閉弁12a及び開閉弁12cを閉じた状態とし、開閉弁12b及び開閉弁12dを開いた状態とする。冷房運転する室内機13cと接続された冷暖房切替弁11cは、開閉弁12fを閉じた状態とし、開閉弁12eを開いた状態とする。絞り装置18は、絞り装置18前後の差圧が所定値となるよう、開度が設定される。絞り装置19は閉じた状態とする。絞り装置16a、絞り装置16b及び絞り装置16cは、各絞り装置前後の差圧が所定値となるよう、開度が設定される。
また、通常(インジェクションを行わない場合)、流量調整装置24、開閉弁23及び開閉弁26は閉じた状態とする。インジェクションを行う場合、流量調整装置24は、圧縮機1の吐出温度や吐出圧力が過度に低下しない開度に設定する。このとき、開閉弁26を開いた状態に設定する。また、ガス冷媒をバイパスする場合、開閉弁26を開いた状態に設定する。
Further, the expansion device 5a and the expansion device 5b are set to a predetermined opening (for example, fully open). The heating / cooling switching valve 11a and the cooling / heating switching valve 11b connected to the indoor unit 13a and the indoor unit 13b that perform heating operation are in a state in which the on-off valve 12a and the on-off valve 12c are closed and the on-off valve 12b and the on-off valve 12d are opened. To do. The cooling / heating switching valve 11c connected to the indoor unit 13c that performs the cooling operation has the open / close valve 12f closed and the open / close valve 12e open. The opening degree of the expansion device 18 is set so that the differential pressure before and after the expansion device 18 becomes a predetermined value. The aperture device 19 is in a closed state. The opening degree of the expansion device 16a, the expansion device 16b, and the expansion device 16c is set so that the differential pressure before and after each expansion device becomes a predetermined value.
Normally (when injection is not performed), the flow rate adjusting device 24, the on-off valve 23, and the on-off valve 26 are closed. When performing the injection, the flow rate adjusting device 24 is set to an opening degree at which the discharge temperature and the discharge pressure of the compressor 1 do not decrease excessively. At this time, the on-off valve 26 is set in an open state. When the gas refrigerant is bypassed, the on-off valve 26 is set in an open state.

インジェクション及びガス冷媒のバイパスを行わない場合、空気調和機100の冷媒流れは、次のようになる。
圧縮機1から吐出された高温高圧のガス冷媒は、流路切替装置2、流路切替装置6の逆止弁7d及び接続配管8を通って、気液分離器10に流入する。気液分離器10から流出した高温高圧のガス冷媒は、開閉弁12b及び開閉弁12dを通って、室内熱交換器14a及び室内熱交換器14bに流入する。室内熱交換器14a及び室内熱交換器14bに流入した冷媒は、凝縮することで各室内の暖房を行い(室内空気に放熱し)、高圧の液状冷媒となる。このとき、室内熱交換器14a及び室内熱交換器14bを流れる冷媒は、各室内熱交換器に接続された絞り装置(絞り装置16a及び絞り装置16b)で所定の過冷却度に調整される。
When the injection and the bypass of the gas refrigerant are not performed, the refrigerant flow of the air conditioner 100 is as follows.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the gas-liquid separator 10 through the flow path switching device 2, the check valve 7 d of the flow path switching device 6 and the connection pipe 8. The high-temperature and high-pressure gas refrigerant flowing out of the gas-liquid separator 10 flows into the indoor heat exchanger 14a and the indoor heat exchanger 14b through the on-off valve 12b and the on-off valve 12d. The refrigerant that has flowed into the indoor heat exchanger 14a and the indoor heat exchanger 14b condenses to heat each room (dissipates heat to the room air) and becomes a high-pressure liquid refrigerant. At this time, the refrigerant flowing through the indoor heat exchanger 14a and the indoor heat exchanger 14b is adjusted to a predetermined degree of supercooling by the expansion devices (the expansion device 16a and the expansion device 16b) connected to the indoor heat exchangers.

室内熱交換器14a及び室内熱交換器14bから流出した高圧の液冷媒は、分岐部17に流入して合流する。分岐部17に流入した高圧の液冷媒は、冷房運転の室内熱交換器14cへ流入する冷媒と、絞り装置18へ流入する冷媒とに分かれる。
室内熱交換器14cへ流入した高圧の液冷媒は、絞り装置16cで所定値に減圧され、低圧気液二相状態の冷媒となって室内熱交換器14cに流入する。室内熱交換器14cに流入した低圧気液二相状態の冷媒は、蒸発することで室内の冷房を行い(室内空気から吸熱し)、低圧のガス冷媒となる。この低圧のガス冷媒は、絞り装置18で所定値に減圧された冷媒と合流し、低圧気液二相冷媒の冷媒となって接続配管9へ流入する。
The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 14a and the indoor heat exchanger 14b flows into the branch portion 17 and joins. The high-pressure liquid refrigerant that has flowed into the branching portion 17 is divided into a refrigerant that flows into the indoor heat exchanger 14 c in the cooling operation and a refrigerant that flows into the expansion device 18.
The high-pressure liquid refrigerant flowing into the indoor heat exchanger 14c is depressurized to a predetermined value by the expansion device 16c, and flows into the indoor heat exchanger 14c as a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 14c evaporates to cool the room (absorbs heat from room air) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant merges with the refrigerant decompressed to a predetermined value by the expansion device 18 and flows into the connection pipe 9 as a low-pressure gas-liquid two-phase refrigerant.

接続配管9へ流入した低圧気液二相状態の冷媒は、流路切替装置6の逆止弁7c、気液分離器25、絞り装置5a及び絞り装置5bを通って、室外熱交換器3a及び室外熱交換器3bへ流入する。室外熱交換器3a及び室外熱交換器3bへ流入した低圧気液二相状態の冷媒は、蒸発して(外気から吸熱して)、低圧のガス冷媒となる。室外熱交換器3a及び室外熱交換器3bを流出した低圧のガス冷媒は、流路切替装置22a、流路切替装置22b及び低圧連絡配管20を通って、圧縮機1に吸入される。   The low-pressure gas-liquid two-phase refrigerant flowing into the connection pipe 9 passes through the check valve 7c, the gas-liquid separator 25, the expansion device 5a, and the expansion device 5b of the flow path switching device 6, and passes through the outdoor heat exchanger 3a and It flows into the outdoor heat exchanger 3b. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 3a and the outdoor heat exchanger 3b evaporates (heats are absorbed from the outside air) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is sucked into the compressor 1 through the flow path switching device 22a, the flow path switching device 22b, and the low pressure communication pipe 20.

なお、暖房主体運転におけるインジェクション方法は、全暖房運転におけるインジェクション方法と同様である。   Note that the injection method in the heating-main operation is the same as the injection method in the all-heating operation.

上述のように、暖房主体運転では、冷房運転に用いられる室内熱交換器14cと室外熱交換器3a及び室外熱交換器3bとが蒸発器として機能する。このとき、室内熱交換器14cと室外熱交換器3a及び室外熱交換器3bとは、気液分離器25、絞り装置5a及び絞り装置5b等を介して、直列に接続されている。このため、低外気温時に暖房主体運転を行う場合、外気から採熱するために室外熱交換器3a及び室外熱交換器3bを流れる冷媒の蒸発温度が低下するので、直列に接続された室内熱交換器14cを流れる冷媒の蒸発温度も低下する。室内熱交換器14cを流れる冷媒の蒸発温度過度に低下すると、室内機13cが凍結してしまう場合もある。   As described above, in the heating main operation, the indoor heat exchanger 14c, the outdoor heat exchanger 3a, and the outdoor heat exchanger 3b used for the cooling operation function as an evaporator. At this time, the indoor heat exchanger 14c, the outdoor heat exchanger 3a, and the outdoor heat exchanger 3b are connected in series via the gas-liquid separator 25, the expansion device 5a, the expansion device 5b, and the like. For this reason, when performing a heating main operation at a low outside air temperature, the evaporation temperature of the refrigerant flowing in the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is decreased in order to collect heat from the outside air. The evaporation temperature of the refrigerant flowing through the exchanger 14c also decreases. If the evaporating temperature of the refrigerant flowing through the indoor heat exchanger 14c is excessively lowered, the indoor unit 13c may freeze.

空気調和機の室外機は通常、凍結しても問題ない構造となっているが、室内機は凍結すると破壊する危険性がある。このため、室内機が凍結することは、空気調和機の信頼性を著しく損なうことになる。   An outdoor unit of an air conditioner has a structure that does not cause any problem even if it is frozen, but there is a risk that the indoor unit will be destroyed if it is frozen. For this reason, freezing of the indoor unit significantly impairs the reliability of the air conditioner.

熱源機Aを流れる冷媒の蒸発温度が0℃を下回る場合にも、室内機13cの凍結を防止するためには、室内熱交換器14cの蒸発温度を少なくとも0℃以上に保つ必要がある。   Even when the evaporation temperature of the refrigerant flowing through the heat source device A is lower than 0 ° C., it is necessary to keep the evaporation temperature of the indoor heat exchanger 14c at least 0 ° C. or higher in order to prevent the indoor unit 13c from freezing.

そこで、冷房運転に用いられる室内熱交換器14cを流れる冷媒の蒸発温度を室外熱交換器3a及び室外熱交換器3bより高く保つために、絞り装置5a及び絞り装置5bの開度調整を行うことが有効である。   Therefore, in order to keep the evaporation temperature of the refrigerant flowing through the indoor heat exchanger 14c used for the cooling operation higher than that of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b, the opening adjustments of the expansion device 5a and the expansion device 5b are performed. Is effective.

冷媒の流れは、次のようになる。室内熱交換器14cから流出した冷媒は、室外熱交換器3a及び室外熱交換器3bへと向かって流れる。このとき、室外熱交換器3a及び室外熱交換器3bの上流側に絞り装置5a及び絞り装置5bが接続されているので、室内熱交換器14cから流出した冷媒は、絞り装置5a及び絞り装置5bで減圧されて、室外熱交換器3a及び室外熱交換器3bへと流入する。これにより、室内熱交換器14cの蒸発温度は、室外熱交換器3a及び室外熱交換器3bよりも高くできる。なお、絞り装置5a及び絞り装置5bの制御方法は、図10で後述する。   The flow of the refrigerant is as follows. The refrigerant that has flowed out of the indoor heat exchanger 14c flows toward the outdoor heat exchanger 3a and the outdoor heat exchanger 3b. At this time, since the expansion device 5a and the expansion device 5b are connected to the upstream side of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b, the refrigerant flowing out of the indoor heat exchanger 14c is extracted from the expansion device 5a and the expansion device 5b. The pressure is reduced and flows into the outdoor heat exchanger 3a and the outdoor heat exchanger 3b. Thereby, the evaporation temperature of the indoor heat exchanger 14c can be made higher than the outdoor heat exchanger 3a and the outdoor heat exchanger 3b. A method for controlling the diaphragm device 5a and the diaphragm device 5b will be described later with reference to FIG.

また、冷房運転に用いられる室内熱交換器14cの負荷が大きくなると、冷媒が室内熱交換器14cで大量に蒸発する。このため、接続配管9に流れ込む冷媒のクオリティ(冷媒中に占めるガス冷媒の体制流量比)が高くなる。冷媒のクオリティが高くなるにつれて平均流速が上がるため、圧力損失が増加する。特に、絞り装置5a及び絞り装置5bは絞り機構となっているため、圧力損失が大きい。絞り装置5a及び絞り装置5bでの圧力損失が大きいと、室内熱交換器14cを流れる蒸発温度が過度に上昇してしまい、冷房能力不足となってしまう。   Further, when the load on the indoor heat exchanger 14c used for the cooling operation increases, a large amount of refrigerant evaporates in the indoor heat exchanger 14c. For this reason, the quality of the refrigerant flowing into the connection pipe 9 (the system flow rate ratio of the gas refrigerant in the refrigerant) is increased. Since the average flow rate increases as the quality of the refrigerant increases, the pressure loss increases. In particular, since the expansion device 5a and the expansion device 5b are an expansion mechanism, the pressure loss is large. If the pressure loss in the expansion device 5a and the expansion device 5b is large, the evaporation temperature flowing through the indoor heat exchanger 14c will rise excessively, resulting in insufficient cooling capacity.

このような場合には、気液分離器25からガス冷媒を圧縮機1の吸入側へバイパスすることにより、絞り装置5a及び絞り装置5bへ流入する冷媒のクオリティを下げることができる。また、室外熱交換器3a及び室外熱交換器3bへ流入する冷媒のクオリティを下げることで、室外熱交換器3a及び室外熱交換器3bの蒸発エンタルピー差を大きくできるため、暖房能力を増加させるのにも有効である。   In such a case, the quality of the refrigerant flowing into the expansion device 5a and the expansion device 5b can be lowered by bypassing the gas refrigerant from the gas-liquid separator 25 to the suction side of the compressor 1. Moreover, since the vaporization enthalpy difference of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b can be increased by lowering the quality of the refrigerant flowing into the outdoor heat exchanger 3a and the outdoor heat exchanger 3b, the heating capacity is increased. Also effective.

暖房主体運転において、圧縮機1の吸入側へガス冷媒のバイパスを行う場合の冷媒流れを図9に示す。
図9は、本発明の実施の形態に係る空気調和機のガスバイパス時における暖房主体運転モードを表す冷媒回路図である。
基本的な冷媒の流れは、通常の暖房主体運転と同様である。しかしながら、圧縮機1の吸入側へガス冷媒のバイパスを行う場合、気液分離器25で分離されたガス冷媒は、ガスバイパス配管26a(開閉弁26)を通過し、圧縮機1の吸入側へバイパスされる。この点が、通常の暖房主体運転と異なる。
FIG. 9 shows a refrigerant flow when the gas refrigerant is bypassed to the suction side of the compressor 1 in the heating main operation.
FIG. 9 is a refrigerant circuit diagram illustrating a heating main operation mode during gas bypass of the air conditioner according to the embodiment of the present invention.
The basic refrigerant flow is the same as in the normal heating main operation. However, when the gas refrigerant is bypassed to the suction side of the compressor 1, the gas refrigerant separated by the gas-liquid separator 25 passes through the gas bypass pipe 26 a (the on-off valve 26) and goes to the suction side of the compressor 1. Bypassed. This is different from normal heating-dominated operation.

低外気温時に暖房主体運転を行う際の、絞り装置5a、絞り装置5b及び開閉弁26の設定方法(制御方法)は次のようになる。
図10は、本発明の実施の形態に係る空気調和機の、ガスバイパスを行う際の絞り装置5a及び絞り装置5bの設定方法(制御方法)を示すフローチャートである。また、図11は、本発明の実施の形態に係る空気調和機の、ガスバイパスを行う際の開閉弁26の設定方法(制御方法)を示すフローチャートである。
The setting method (control method) of the expansion device 5a, the expansion device 5b, and the on-off valve 26 when performing the heating main operation at a low outside temperature is as follows.
FIG. 10 is a flowchart illustrating a setting method (control method) of the expansion device 5a and the expansion device 5b when performing gas bypassing in the air conditioner according to the embodiment of the present invention. FIG. 11 is a flowchart showing a setting method (control method) of the on-off valve 26 when performing gas bypass in the air conditioner according to the embodiment of the present invention.

まずは、図10を用いて、絞り装置5a及び絞り装置5bの設定方法について説明する。   First, the setting method of the diaphragm | throttle device 5a and the diaphragm | throttle device 5b is demonstrated using FIG.

ステップ20で暖房主体運転と判断されると、ステップ21では、中間圧力検知手段36で中間圧力を検知する。また、ステップ22では、ステップ21で得られた中間圧力から、室内熱交換器14cを流れる冷媒の蒸発温度を演算する。なお、中間圧力は冷房運転に用いられる室内熱交換器14cの蒸発温度とほぼ等価であるので、中間圧力から室内熱交換器14cを流れる冷媒の蒸発温度を演算している。   If it is determined in step 20 that the heating-main operation is performed, in step 21, the intermediate pressure is detected by the intermediate pressure detector 36. In step 22, the evaporation temperature of the refrigerant flowing through the indoor heat exchanger 14c is calculated from the intermediate pressure obtained in step 21. Since the intermediate pressure is substantially equivalent to the evaporation temperature of the indoor heat exchanger 14c used for the cooling operation, the evaporation temperature of the refrigerant flowing through the indoor heat exchanger 14c is calculated from the intermediate pressure.

ステップ23では、ステップ22で演算した蒸発温度が、所定値c以上であるかを判断する。つまり、室内熱交換器14cを流れる蒸発温度が、室内機13cを凍結させない温度となっているかを判断する。蒸発温度が所定値c以上であれば、ステップ21に戻る。蒸発温度が所定値cよりも小さければ、室内熱交換器14cを流れる冷媒の蒸発温度を高めるため、絞り装置5a及び絞り装置5bの開度を小さくする(ステップ24)。   In step 23, it is determined whether the evaporation temperature calculated in step 22 is equal to or higher than a predetermined value c. That is, it is determined whether the evaporation temperature flowing through the indoor heat exchanger 14c is a temperature at which the indoor unit 13c is not frozen. If the evaporation temperature is equal to or higher than the predetermined value c, the process returns to step 21. If the evaporation temperature is lower than the predetermined value c, the opening degree of the expansion device 5a and the expansion device 5b is decreased in order to increase the evaporation temperature of the refrigerant flowing through the indoor heat exchanger 14c (step 24).

ステップ25では、再び中間圧力検知手段36で中間圧力を検知する。そして、ステップ26では、中間圧力から、室内熱交換器14cを流れる冷媒の蒸発温度を演算する。その後、ステップ27へ進む。   In step 25, the intermediate pressure is again detected by the intermediate pressure detecting means 36. In step 26, the evaporation temperature of the refrigerant flowing through the indoor heat exchanger 14c is calculated from the intermediate pressure. Then, it progresses to step 27.

ステップ27では、ステップ26で演算した蒸発温度が、所定値d以下であるかを判断する。つまり、室内熱交換器14cを流れる蒸発温度が、十分な冷房能力を発揮できる温度となっているかを判断する。蒸発温度が所定値d以下であれば、ステップ21に戻る。蒸発温度が所定値dよりも大きければ、冷房運転の室内熱交換器14cの蒸発温度を低くするため、絞り装置5a及び絞り装置5bの開度を大きくする(ステップ28)。そして、ステップ21に戻る。
つまり、蒸発温度が所定値c以上で所定値d以下となるように、絞り装置5a及び絞り装置5bの開度を調整している。ここで、所定値c以上で所定値d以下となる範囲が、本発明の第2の所定範囲に相当する。
In step 27, it is determined whether the evaporation temperature calculated in step 26 is equal to or lower than a predetermined value d. That is, it is determined whether the evaporation temperature flowing through the indoor heat exchanger 14c is a temperature at which sufficient cooling capacity can be exhibited. If the evaporation temperature is equal to or lower than the predetermined value d, the process returns to step 21. If the evaporation temperature is higher than the predetermined value d, the opening degree of the expansion device 5a and the expansion device 5b is increased in order to lower the evaporation temperature of the indoor heat exchanger 14c in the cooling operation (step 28). Then, the process returns to step 21.
That is, the opening degree of the expansion device 5a and the expansion device 5b is adjusted so that the evaporation temperature is not less than the predetermined value c and not more than the predetermined value d. Here, the range from the predetermined value c to the predetermined value d corresponds to the second predetermined range of the present invention.

次に、図11を用いて、開閉弁26の設定方法について説明する。   Next, the setting method of the on-off valve 26 is demonstrated using FIG.

ステップ30で暖房主体運転であると判断されると、中間圧力検知手段36で中間圧力を検知し、吸入圧力検知手段35で吸入圧力を検知する(ステップ31)。   If it is determined in step 30 that the heating-main operation is performed, the intermediate pressure is detected by the intermediate pressure detector 36, and the suction pressure is detected by the suction pressure detector 35 (step 31).

ステップ32では、中間圧力と吸入圧力の差を演算し、その圧力差が所定値e以上であるかを判断する。中間圧力と吸入圧力との圧力差が所定値e以上の場合、絞り装置5a及び絞り装置5bに流入する冷媒のクオリティが高いと判断され、ステップ33へ進む。中間圧力と吸入圧力との圧力差が所定値eよりも小さい場合は、ステップ31へ戻る。   In step 32, the difference between the intermediate pressure and the suction pressure is calculated, and it is determined whether the pressure difference is equal to or greater than a predetermined value e. If the pressure difference between the intermediate pressure and the suction pressure is greater than or equal to the predetermined value e, it is determined that the quality of the refrigerant flowing into the expansion device 5a and the expansion device 5b is high, and the routine proceeds to step 33. If the pressure difference between the intermediate pressure and the suction pressure is smaller than the predetermined value e, the process returns to step 31.

ステップ33では、吐出温度検知手段33又は吐出圧力検知手段34で、圧縮機1の吐出温度又は圧縮機1が吐出する冷媒の圧力(以後、吐出圧力ともいう)を検知する。   In step 33, the discharge temperature detection means 33 or the discharge pressure detection means 34 detects the discharge temperature of the compressor 1 or the pressure of the refrigerant discharged by the compressor 1 (hereinafter also referred to as discharge pressure).

ステップ34では、圧縮機1の吐出温度が所定値f(所定温度)以上であるかを判断する。なお、ステップ34で、吐出圧力が所定値g(所定圧力)以上であるかを判断してもよい。
圧縮機1の吐出温度が所定値f以上(又は吐出圧力が所定値g以上)の場合、ステップ36で開閉弁26を開き、ステップ31に戻る。圧縮機1の吸入側に液冷媒が戻っていないと判断されるため、開閉弁26を開いても問題ないからである。圧縮機1の吐出温度が所定値fより小さい(又は吐出圧力が所定値gより小さい)場合、ステップ35で開閉弁26を閉じ、ステップ31に戻る。
In step 34, it is determined whether the discharge temperature of the compressor 1 is equal to or higher than a predetermined value f (predetermined temperature). In step 34, it may be determined whether the discharge pressure is equal to or greater than a predetermined value g (predetermined pressure).
If the discharge temperature of the compressor 1 is equal to or higher than the predetermined value f (or the discharge pressure is equal to or higher than the predetermined value g), the on-off valve 26 is opened in step 36 and the process returns to step 31. This is because it is determined that the liquid refrigerant has not returned to the suction side of the compressor 1, and there is no problem even if the on-off valve 26 is opened. When the discharge temperature of the compressor 1 is lower than the predetermined value f (or the discharge pressure is lower than the predetermined value g), the on-off valve 26 is closed at step 35 and the process returns to step 31.

なお、室外熱交換器3a及び室外熱交換器3bが蒸発器として機能する場合、室外熱交換器3a及び室外熱交換器3bへの冷媒分配の不均一が起こり、一方の熱交換器の性能を十分に発揮できないことがある。   In addition, when the outdoor heat exchanger 3a and the outdoor heat exchanger 3b function as an evaporator, non-uniform distribution of refrigerant to the outdoor heat exchanger 3a and the outdoor heat exchanger 3b occurs, and the performance of one heat exchanger is reduced. It may not be able to fully demonstrate.

この場合には、室外熱交換器3aの出口過熱度と室外熱交換器3bの出口過熱度との差が所定の範囲内となるように、絞り装置5a及び絞り装置5bの絞り開度を調整するとよい。室外熱交換器3a及び室外熱交換器3bの性能を十分に発揮させることができ、空気調和機の効率を上昇させることができる。なお、本実施の形態では、室外熱交換器3aの出口過熱度を、吸入圧力検知手段35の検知圧力から換算される冷媒の飽和温度と、ガス管温度検知手段31aの検知温度との差として求めている。また、室外熱交換器3bの出口過熱度を、吸入圧力検知手段35の検知圧力から換算される冷媒の飽和温度と、ガス管温度検知手段31bの検知温度との差として求めている。   In this case, the throttle openings of the expansion devices 5a and 5b are adjusted so that the difference between the outlet superheat degree of the outdoor heat exchanger 3a and the outlet superheat degree of the outdoor heat exchanger 3b is within a predetermined range. Good. The performance of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b can be sufficiently exhibited, and the efficiency of the air conditioner can be increased. In the present embodiment, the degree of superheat at the outlet of the outdoor heat exchanger 3a is defined as the difference between the refrigerant saturation temperature converted from the detected pressure of the suction pressure detecting means 35 and the detected temperature of the gas pipe temperature detecting means 31a. Seeking. Further, the degree of superheat at the outlet of the outdoor heat exchanger 3b is obtained as the difference between the refrigerant saturation temperature converted from the detected pressure of the suction pressure detecting means 35 and the detected temperature of the gas pipe temperature detecting means 31b.

続いて、ガスバイパスを行った暖房主体運転における冷媒の状態変化を、図12に示したp−h線図に従って説明する。   Subsequently, the state change of the refrigerant in the heating main operation in which the gas bypass is performed will be described according to the ph diagram shown in FIG.

圧縮機1で圧縮された高温高圧のガス冷媒(点j)は、暖房運転に用いられる室内熱交換器14a及び室内熱交換器14bで凝縮し、高温の液冷媒(点k)となる。
この高温の液冷媒の一部は、絞り装置18で減圧され、中間圧力Pmの気液二相冷媒(点l)となる。
この高温の液冷媒の他の一部は、絞り装置16cで減圧され、中間圧力Pmの気液二相冷媒となる。そして、絞り装置16cで減圧され、室内熱交換器14cで蒸発して中間圧力Pmの気液二相冷媒(点m)となる。
気液二相冷媒(点l)と気液二相冷媒(点m)とは、合流して、中間圧力Pmの気液二相冷媒(点n)となる。この中間圧力Pmの気液二相冷媒は、接続配管9、及び流路切替装置6の逆止弁7cを通って、気液分離器25に流入する。気液分離器25に流入した中間圧力Pmの気液二相冷媒は、ガス冷媒(点p)と液冷媒(点o)に分離される。
The high-temperature and high-pressure gas refrigerant (point j) compressed by the compressor 1 is condensed in the indoor heat exchanger 14a and the indoor heat exchanger 14b used for heating operation, and becomes a high-temperature liquid refrigerant (point k).
A part of the high-temperature liquid refrigerant is decompressed by the expansion device 18 and becomes a gas-liquid two-phase refrigerant (point l) having an intermediate pressure Pm.
Another part of the high-temperature liquid refrigerant is decompressed by the expansion device 16c, and becomes a gas-liquid two-phase refrigerant having an intermediate pressure Pm. Then, the pressure is reduced by the expansion device 16c and evaporated by the indoor heat exchanger 14c to become a gas-liquid two-phase refrigerant (point m) having an intermediate pressure Pm.
The gas-liquid two-phase refrigerant (point l) and the gas-liquid two-phase refrigerant (point m) merge to become a gas-liquid two-phase refrigerant (point n) having an intermediate pressure Pm. The gas-liquid two-phase refrigerant having the intermediate pressure Pm flows into the gas-liquid separator 25 through the connection pipe 9 and the check valve 7c of the flow path switching device 6. The gas-liquid two-phase refrigerant having an intermediate pressure Pm flowing into the gas-liquid separator 25 is separated into a gas refrigerant (point p) and a liquid refrigerant (point o).

気液分離器25を通過した液冷媒(点o)は、絞り装置5a及び絞り装置5bでさらに減圧され、低圧の気液二相冷媒(点q)となる。この低圧の気液二相冷媒は、室外熱交換器3a及び室外熱交換器3bで蒸発して低圧のガス冷媒となる。そして、この低圧のガス冷媒は、圧縮機1の吸入側で気液分離器25で分離されたガス冷媒(点p)と合流し(点r)、圧縮機1へ吸入される。
一方、気液分離器25で分離されたガス冷媒(点p)は、ガスバイパス配管26a(開閉弁26)を通り、圧縮機1の吸入側へ流入する。そしてこのガス冷媒は、室外熱交換器3a及び室外熱交換器3bで蒸発した低圧のガス冷媒と合流し(点r)、圧縮機1へ吸入される。
The liquid refrigerant (point o) that has passed through the gas-liquid separator 25 is further depressurized by the expansion device 5a and the expansion device 5b to become a low-pressure gas-liquid two-phase refrigerant (point q). This low-pressure gas-liquid two-phase refrigerant evaporates in the outdoor heat exchanger 3a and the outdoor heat exchanger 3b to become a low-pressure gas refrigerant. The low-pressure gas refrigerant merges with the gas refrigerant (point p) separated by the gas-liquid separator 25 on the suction side of the compressor 1 (point r) and is sucked into the compressor 1.
On the other hand, the gas refrigerant (point p) separated by the gas-liquid separator 25 flows into the suction side of the compressor 1 through the gas bypass pipe 26a (open / close valve 26). Then, this gas refrigerant merges with the low-pressure gas refrigerant evaporated in the outdoor heat exchanger 3a and the outdoor heat exchanger 3b (point r), and is sucked into the compressor 1.

なお、室外熱交換器3a及び室外熱交換器3bが蒸発器として機能する場合、室外熱交換器3a及び室外熱交換器3bへの冷媒分配の不均一が起こり、一方の熱交換器の性能を十分に発揮できないことがある。   In addition, when the outdoor heat exchanger 3a and the outdoor heat exchanger 3b function as an evaporator, non-uniform distribution of refrigerant to the outdoor heat exchanger 3a and the outdoor heat exchanger 3b occurs, and the performance of one heat exchanger is reduced. It may not be able to fully demonstrate.

この場合には、室外熱交換器3aの出口過熱度と室外熱交換器3bの出口過熱度との差が所定の範囲内となるように、絞り装置5a及び絞り装置5bの絞り開度を調整するとよい。室外熱交換器3a及び室外熱交換器3bの性能を十分に発揮させることができ、空気調和機の効率を上昇させることができる。なお、本実施の形態では、室外熱交換器3aの出口過熱度を、吸入圧力検知手段35の検知圧力から換算される冷媒の飽和温度と、ガス管温度検知手段31aの検知温度との差として求めている。また、室外熱交換器3bの出口過熱度を、吸入圧力検知手段35の検知圧力から換算される冷媒の飽和温度と、ガス管温度検知手段31bの検知温度との差として求めている。   In this case, the throttle openings of the expansion devices 5a and 5b are adjusted so that the difference between the outlet superheat degree of the outdoor heat exchanger 3a and the outlet superheat degree of the outdoor heat exchanger 3b is within a predetermined range. Good. The performance of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b can be sufficiently exhibited, and the efficiency of the air conditioner can be increased. In the present embodiment, the degree of superheat at the outlet of the outdoor heat exchanger 3a is defined as the difference between the refrigerant saturation temperature converted from the detected pressure of the suction pressure detecting means 35 and the detected temperature of the gas pipe temperature detecting means 31a. Seeking. Further, the degree of superheat at the outlet of the outdoor heat exchanger 3b is obtained as the difference between the refrigerant saturation temperature converted from the detected pressure of the suction pressure detecting means 35 and the detected temperature of the gas pipe temperature detecting means 31b.

(除霜運転)
上述のように、ガスバイパスやインジェクションを行うことは、暖房能力を向上させる上で有効である。しかしながら、低外気時の全暖房運転や暖房優先運転では、室外熱交換器3a及び室外熱交換器3bの蒸発温度が0℃を下回るため、室外熱交換器3a及び室外熱交換器3bの表面に、空気中の水分が霜となって付着する。
(Defrosting operation)
As described above, performing gas bypass and injection is effective in improving the heating capacity. However, in the all heating operation or the heating priority operation in the low outdoor air, the evaporation temperature of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is lower than 0 ° C., so that the surface of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b The moisture in the air adheres as frost.

室外熱交換器3a及び室外熱交換器3bに着霜すると、フィン間の風路が狭まったり、霜が熱抵抗となることで、室外熱交換器3a及び室外熱交換器3bの伝熱性能が低下する。   When the frost is formed on the outdoor heat exchanger 3a and the outdoor heat exchanger 3b, the air passage between the fins is narrowed or the frost becomes a heat resistance, so that the heat transfer performance of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is improved. descend.

そこで、着霜が起こる場合、室外熱交換器3a及び室外熱交換器3bに付着した霜を定期的に取り除く必要がある。   Therefore, when frost formation occurs, it is necessary to periodically remove frost attached to the outdoor heat exchanger 3a and the outdoor heat exchanger 3b.

除霜を行う場合、通常は暖房の場合と冷媒の流れを逆転させ、圧縮機1から吐出された高温高圧の吐出ガスを室外熱交換器3a及び室外熱交換器3bに流入させる。これにより、室外熱交換器3a及び室外熱交換器3bに付着した霜を融解して取り除く。   When defrosting is performed, the refrigerant flow is usually reversed as in the case of heating, and the high-temperature and high-pressure discharge gas discharged from the compressor 1 is caused to flow into the outdoor heat exchanger 3a and the outdoor heat exchanger 3b. Thereby, the frost adhering to the outdoor heat exchanger 3a and the outdoor heat exchanger 3b is melted and removed.

しかしながら、除霜中に圧縮機1から吐出された高温高圧の吐出ガスを室外熱交換器3a及び室外熱交換器3bの双方に流入させると、室内の暖房を行うことができなくなる。また、このとき室内熱交換器(室内熱交換器14a、室内熱交換器14b、室内熱交換器14c)は蒸発器として機能するので、室内温度が低下し、居室者の快適性が損なわれる。特に、外気を加熱して室内に供給する構成の室内機が停止すると、冷たい外気が室内に直接流入するため、室内の温度低下が著しい。   However, if the high-temperature and high-pressure discharge gas discharged from the compressor 1 during defrosting flows into both the outdoor heat exchanger 3a and the outdoor heat exchanger 3b, the room cannot be heated. At this time, the indoor heat exchanger (the indoor heat exchanger 14a, the indoor heat exchanger 14b, and the indoor heat exchanger 14c) functions as an evaporator, so that the indoor temperature is lowered and the comfort of the occupants is impaired. In particular, when an indoor unit configured to heat and supply outside air to the room is stopped, cold outside air directly flows into the room, so that the temperature drop in the room is significant.

そこで、本実施の形態に係る空気調和機100は、一部の室外熱交換器(例えば室外熱交換器3a)の除霜を行い、他の一部の室外熱交換器(例えば室外熱交換器3b)が蒸発器として機能するように、流路切替装置22a及び流路切替装置22bの流路を切り替える。具体的には、除霜を行う室外熱交換器(例えば室外熱交換器3a)に接続された流路切替装置(例えば流路切替装置22a)の流路を、圧縮機1の吐出側から室外熱交換器へ冷媒が流れる流路とする。また、蒸発器として機能する室外熱交換器(例えば室外熱交換器3b)に接続された流路切替装置(例えば流路切替装置22b)の流路を、室外熱交換器から圧縮機1の吸入側へ冷媒が流れる流路とする。
このような除霜運転を行うことで、除霜中も常に室外熱交換器の一部が蒸発器として機能するため、除霜中も室内の暖房を継続できる。
Therefore, the air conditioner 100 according to the present embodiment performs defrosting of some outdoor heat exchangers (for example, the outdoor heat exchanger 3a), and other partial outdoor heat exchangers (for example, the outdoor heat exchanger). The flow paths of the flow path switching device 22a and the flow path switching device 22b are switched so that 3b) functions as an evaporator. Specifically, the flow path of the flow path switching device (for example, the flow path switching device 22a) connected to the outdoor heat exchanger (for example, the outdoor heat exchanger 3a) that performs defrosting is connected to the outdoor side from the discharge side of the compressor 1. A flow path through which the refrigerant flows to the heat exchanger. Further, the flow path of the flow path switching device (for example, the flow path switching device 22b) connected to the outdoor heat exchanger (for example, the outdoor heat exchanger 3b) functioning as an evaporator is sucked into the compressor 1 from the outdoor heat exchanger. A flow path through which the refrigerant flows is set.
By performing such a defrosting operation, a part of the outdoor heat exchanger always functions as an evaporator even during defrosting, so that indoor heating can be continued even during defrosting.

ここで、一部の室外熱交換器の除霜を行う(凝縮機として機能させる)と、室内機より低温となっている室外熱交換器に、圧縮機1から吐出された高温高圧の吐出ガスが流入するため、冷媒の高圧が低下する。このため、暖房能力が不足するとともに、室内機の吹出し温度が低下する。したがって、外気より高温であるが体温より低い温度の風が室内に吹き込むこととなり、居室者に冷風感を生じさせてしまう。   Here, when a part of the outdoor heat exchanger is defrosted (functions as a condenser), the high-temperature and high-pressure discharge gas discharged from the compressor 1 is discharged to the outdoor heat exchanger having a temperature lower than that of the indoor unit. Flows in, the high pressure of the refrigerant decreases. For this reason, the heating capacity is insufficient and the blowing temperature of the indoor unit is lowered. Therefore, wind at a temperature higher than the outside air but lower than the body temperature is blown into the room, causing a sense of cold air to the occupants.

そこで、本実施の形態に係る空気調和機100は、優先度の高い室内機の暖房運転を継続させ、その他の(例えば優先度の低い)室内機の暖房運転を停止させる。これにより、除霜運転によって空気調和機100の暖房能力が低下した場合でも、凝縮器として機能する室内熱交換器の台数が減少し、冷媒の高圧が過度に低下することを抑制できる。このため、優先度の高い室内機の暖房能力を確保でき、優先度の高い室内機が設けられた室内の快適性の低下を抑制することができる。
なお、以下では、外気を加熱して室内に供給する構成の室内機を優先度の高い室内機として説明する。外気を加熱して室内に供給する構成の室内機が停止すると、冷たい外気が室内に直接流入するため、室内の温度低下が著しいからである。
Therefore, the air conditioner 100 according to the present embodiment continues the heating operation of the indoor unit having a high priority and stops the heating operation of other (for example, low priority) indoor units. Thereby, even when the heating capacity of the air conditioner 100 is reduced by the defrosting operation, the number of indoor heat exchangers functioning as a condenser can be reduced, and the high pressure of the refrigerant can be suppressed from being excessively reduced. For this reason, the heating capability of an indoor unit with a high priority can be ensured, and the fall of the indoor comfort provided with the indoor unit with a high priority can be suppressed.
In the following description, an indoor unit configured to heat the outside air and supply it indoors will be described as an indoor unit having a high priority. This is because when the indoor unit configured to heat and supply the outside air to the room is stopped, cold outside air directly flows into the room, so that the temperature in the room is significantly reduced.

図13は、本発明の実施の形態に係る空気調和機の暖房除霜混在運転を表す冷媒回路図である。この図13は、インジェクションやガスバイパスを行っていない状態を示している。
また、図13は、室外熱交換器3aの除霜を行い、室外熱交換器3bが蒸発器として機能する場合を示している。また、室内機13aが外気を加熱して室内に供給する構成の室内機、室内機13b及び室内機13cが室内空気を加熱する構成の室内機とする。
なお、室外熱交換器3bの除霜を行い、室外熱交換器3aが蒸発器として機能する場合も、基本的な動作は同様である。
また、図13は、全暖房運転中に暖房除霜混在運転を行う場合を示している。なお、暖房主体運転中に暖房除霜混在運転を行う場合、分流コントローラーB及び冷房運転中の室内機の冷媒流れは、暖房除霜混在運転を行っていない暖房主体運転と同様である。
FIG. 13 is a refrigerant circuit diagram illustrating a heating / defrosting mixed operation of the air conditioner according to the embodiment of the present invention. FIG. 13 shows a state where no injection or gas bypass is performed.
FIG. 13 shows a case where the outdoor heat exchanger 3a is defrosted and the outdoor heat exchanger 3b functions as an evaporator. The indoor unit 13a is configured to heat the outside air and supply the indoor air, and the indoor unit 13b and the indoor unit 13c are configured to heat the indoor air.
Note that the basic operation is the same when the outdoor heat exchanger 3b is defrosted and the outdoor heat exchanger 3a functions as an evaporator.
Moreover, FIG. 13 has shown the case where heating defrost mixed operation is performed during all heating operation. In addition, when performing heating defrost mixed operation during heating main operation, the refrigerant | coolant flow of the shunt controller B and the indoor unit in air_conditionaing | cooling operation is the same as that of heating main operation which is not performing heating defrost mixed operation.

全暖房運転中に暖房除霜混在運転を行う場合、流路切替装置2は、圧縮機1から吐出された冷媒が流路切替装置6へ流入する流路に切り替わる。流路切替装置22aは、圧縮機1の吐出側から室外熱交換器3aへ冷媒が流れる流路に切り替わる。流路切替装置22bは、室外熱交換器3bから圧縮機1の吸入側へ冷媒が流れる流路に切り替わる。絞り装置5a及び絞り装置5bは所定の開度とする。   When the heating / defrosting mixed operation is performed during the all-heating operation, the flow path switching device 2 is switched to a flow path into which the refrigerant discharged from the compressor 1 flows into the flow path switching device 6. The flow path switching device 22a switches to a flow path through which refrigerant flows from the discharge side of the compressor 1 to the outdoor heat exchanger 3a. The flow path switching device 22b switches to a flow path through which the refrigerant flows from the outdoor heat exchanger 3b to the suction side of the compressor 1. The expansion device 5a and the expansion device 5b have a predetermined opening.

外気を加熱して室内に供給する室内機13aに接続された冷暖房切替弁11aは、開閉弁12aを閉じた状態とし、開閉弁12bを開いた状態とする。室内機13aの絞り装置16aは、絞り装置16a前後の差圧が所定値となるよう、開度が設定される。室内空気を加熱する室内機13bに接続された冷暖房切替弁11bは、室内熱交換器14bに冷媒を流通させないようにするため、開閉弁12c及び開閉弁12dを閉じた状態とする。また、室内機13bの絞り装置16bは、室内熱交換器14bに冷媒を流通させないようにするため、閉じる。室内空気を加熱する室内機13cに接続された冷暖房切替弁11cも、室内熱交換器14cに冷媒を流通させないようにするため、開閉弁12e及び開閉弁12fを閉じた状態とする。また、室内機13cの絞り装置16cも、室内熱交換器14cに冷媒を流通させないようにするため、閉じる。
なお、冷暖房切替弁の開閉弁又は室内機の絞り装置の一方を閉じて、室内熱交換器に冷媒を流通させないようにしてもよい。
The cooling / heating switching valve 11a connected to the indoor unit 13a that heats the outside air and supplies it to the room is in a state in which the on-off valve 12a is closed and the on-off valve 12b is in an open state. The opening degree of the expansion device 16a of the indoor unit 13a is set so that the differential pressure before and after the expansion device 16a becomes a predetermined value. The cooling / heating switching valve 11b connected to the indoor unit 13b for heating the indoor air keeps the on-off valve 12c and the on-off valve 12d closed so that the refrigerant does not flow through the indoor heat exchanger 14b. Moreover, the expansion device 16b of the indoor unit 13b is closed to prevent the refrigerant from flowing through the indoor heat exchanger 14b. The cooling / heating switching valve 11c connected to the indoor unit 13c for heating the indoor air is also in a state in which the on-off valve 12e and the on-off valve 12f are closed in order to prevent the refrigerant from flowing through the indoor heat exchanger 14c. The expansion device 16c of the indoor unit 13c is also closed to prevent the refrigerant from flowing through the indoor heat exchanger 14c.
Note that one of the on-off valve of the air conditioning switching valve or the expansion device of the indoor unit may be closed so that the refrigerant does not flow through the indoor heat exchanger.

絞り装置18は、絞り装置18前後の差圧が所定値となるよう、開度が設定される。絞り装置19は閉じた状態とする。
また、通常(インジェクションを行わない場合)、流量調整装置24、開閉弁23及び開閉弁26は閉じた状態とする。インジェクションを行う場合、流量調整装置24は、圧縮機1の吐出温度や吐出圧力が過度に低下しない開度に設定する。このとき、開閉弁26を開いた状態に設定する。また、ガス冷媒をバイパスする場合、開閉弁26を開いた状態に設定する。
The opening degree of the expansion device 18 is set so that the differential pressure before and after the expansion device 18 becomes a predetermined value. The aperture device 19 is in a closed state.
Normally (when injection is not performed), the flow rate adjusting device 24, the on-off valve 23, and the on-off valve 26 are closed. When performing the injection, the flow rate adjusting device 24 is set to an opening degree at which the discharge temperature and the discharge pressure of the compressor 1 do not decrease excessively. At this time, the on-off valve 26 is set in an open state. When the gas refrigerant is bypassed, the on-off valve 26 is set in an open state.

圧縮機1から吐出された高温高圧のガス冷媒は、室内を暖房する冷媒流路と除霜を行う冷媒流路とに分岐される。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is branched into a refrigerant channel that heats the room and a refrigerant channel that performs defrosting.

まずは、室内を暖房する冷媒流路について説明する。圧縮機1から吐出された高温高圧のガス冷媒は、流路切替装置2、流路切替装置6の逆止弁7d及び接続配管8を通って、気液分離器10に流入する。気液分離器10から流出した高温高圧のガス冷媒は、開閉弁12bを通って、外気加熱型(外気を加熱して室内に供給する)室内機13aの室内熱交換器14aに流入する。室内熱交換器14aに流入した冷媒は、凝縮することで室内の暖房を行い(室内空気に放熱し)、高圧の液状冷媒となる。このとき、室内熱交換器14aを流れる冷媒は、絞り装置16aで所定の過冷却度に調整される。   First, the refrigerant flow path for heating the room will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the gas-liquid separator 10 through the flow path switching device 2, the check valve 7 d of the flow path switching device 6 and the connection pipe 8. The high-temperature and high-pressure gas refrigerant that has flowed out of the gas-liquid separator 10 passes through the on-off valve 12b and flows into the indoor heat exchanger 14a of the outdoor unit 13a that heats the outside air (heats the outside air and supplies it to the room). The refrigerant flowing into the indoor heat exchanger 14a condenses to heat the room (dissipates heat to the room air) and becomes a high-pressure liquid refrigerant. At this time, the refrigerant flowing through the indoor heat exchanger 14a is adjusted to a predetermined degree of supercooling by the expansion device 16a.

室内熱交換器14aから流出した高圧の液冷媒は、分岐部17を通って絞り装置18に流入する。絞り装置18に流入した高圧の液冷媒は、絞り装置18前後の差圧が所定値となるよう減圧され、低圧の気液二相状態となって接続配管9に流入する。そして、この冷媒は、流路切替装置6の逆止弁7c、気液分離器25及び絞り装置5bを通って、室外熱交換器3bへ流入する。室外熱交換器3bへ流入した低圧気液二相状態の冷媒は、蒸発して(外気から吸熱して)、低圧のガス冷媒となる。室外熱交換器3bを流出した低圧のガス冷媒は、流路切替装置22b及び低圧連絡配管20を通って、圧縮機1に吸入される。   The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 14 a flows into the expansion device 18 through the branch portion 17. The high-pressure liquid refrigerant that has flowed into the expansion device 18 is depressurized so that the differential pressure across the expansion device 18 reaches a predetermined value, and enters a connection pipe 9 in a low-pressure gas-liquid two-phase state. And this refrigerant | coolant flows in into the outdoor heat exchanger 3b through the non-return valve 7c of the flow-path switching apparatus 6, the gas-liquid separator 25, and the expansion device 5b. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 3b evaporates (heat is absorbed from the outside air) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the outdoor heat exchanger 3b is sucked into the compressor 1 through the flow path switching device 22b and the low-pressure connection pipe 20.

続いて、室外熱交換器3aの除霜を行う冷媒流路について説明する。圧縮機1から吐出された高温高圧のガス冷媒は、高圧連絡配管21及び流路切替装置22aを通って、室外熱交換器3aへ流入する。室外熱交換器3aに流入した高温高圧のガス冷媒は、霜を融解することで除霜を行う。そして、絞り装置5aを通って、室内の暖房に用いられた冷媒と合流する。その後、絞り装置5bを通って、室外熱交換器3bへ流入する。室外熱交換器3bへ流入した低圧気液二相状態の冷媒は、蒸発して(外気から吸熱して)、低圧のガス冷媒となる。室外熱交換器3bを流出した低圧のガス冷媒は、流路切替装置22b及び低圧連絡配管20を通って、圧縮機1に吸入される。   Then, the refrigerant | coolant flow path which defrosts the outdoor heat exchanger 3a is demonstrated. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3a through the high-pressure connection pipe 21 and the flow path switching device 22a. The high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 3a performs defrosting by melting frost. And it merges with the refrigerant | coolant used for the indoor heating through the expansion apparatus 5a. Then, it flows into the outdoor heat exchanger 3b through the expansion device 5b. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 3b evaporates (heat is absorbed from the outside air) and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the outdoor heat exchanger 3b is sucked into the compressor 1 through the flow path switching device 22b and the low-pressure connection pipe 20.

図14は、本発明の実施の形態に係る空気調和機における暖房除霜混在運転時の各要素の設定方法(制御方法)を示すフローチャートである。この図14は、インジェクション及びガスバイパスを行わない場合について示している。   FIG. 14 is a flowchart showing a setting method (control method) of each element during heating and defrosting mixed operation in the air conditioner according to the embodiment of the present invention. FIG. 14 shows a case where injection and gas bypass are not performed.

ステップ40で全暖房運転又は暖房主体運転と判断されると、吸入圧力検知手段35で圧縮機1の吸入圧力を検知し(ステップ41)、この吸入圧力を飽和温度に換算する。吸入圧力から換算した飽和温度は、蒸発器として機能する室外熱交換器の蒸発温度とほぼ等価の温度である。   If it is determined in step 40 that the heating operation or heating-main operation is performed, the suction pressure detection means 35 detects the suction pressure of the compressor 1 (step 41), and converts this suction pressure into a saturation temperature. The saturation temperature converted from the suction pressure is substantially equivalent to the evaporation temperature of the outdoor heat exchanger functioning as an evaporator.

ステップ43では外気温度検知手段38で外気温度を検知し、吸入圧力から換算した飽和温度と外気温度との差を演算する(ステップ44)。   In step 43, the outside air temperature detecting means 38 detects the outside air temperature, and calculates the difference between the saturation temperature converted from the suction pressure and the outside air temperature (step 44).

空気調和機100の暖房運転は、外気から吸収した熱を冷媒が輸送し、室内の暖房を行う運転である。このとき、室外熱交換器に着霜が生じていない場合、蒸発温度と外気温度との差が略一定の値となる。室外熱交換器に着霜すると、熱交換器の伝熱性能が低下するため、蒸発温度が低下する。このため、蒸発温度と外気温度との差が大きくなる。そこで、ステップ45では、蒸発温度と外気温度との差に基づいて、室外熱交換器に着霜しているか否か(除霜運転が必要か否か)を判断している。   The heating operation of the air conditioner 100 is an operation in which the refrigerant transports heat absorbed from outside air to heat the room. At this time, when frost formation has not occurred in the outdoor heat exchanger, the difference between the evaporation temperature and the outside air temperature becomes a substantially constant value. When frost is formed on the outdoor heat exchanger, the heat transfer performance of the heat exchanger is lowered, and the evaporation temperature is lowered. For this reason, the difference between the evaporation temperature and the outside air temperature increases. Therefore, in Step 45, it is determined whether or not the outdoor heat exchanger is frosted (whether defrosting operation is necessary) based on the difference between the evaporation temperature and the outside air temperature.

具体的には、ステップ45では、吸入圧力から換算した飽和温度と外気温度の差が所定値h以上であるかを判断する。
飽和温度と外気温度の差が所定値h以上の場合、室外熱交換器の除霜が必要であると判断され、外気加熱型の室内機以外は停止される(ステップ46)。そして、ステップ47で流路切替装置22aを、圧縮機1から吐出された高温高圧の冷媒が室外熱交換器3aに流入するよう切り替えられる。その後、ステップ48へ進む。
一方、飽和温度と外気の差が所定値hよりも小さければ、除霜は必要ないと判断され、ステップ41へ戻る。
Specifically, in step 45, it is determined whether the difference between the saturation temperature converted from the suction pressure and the outside air temperature is equal to or greater than a predetermined value h.
When the difference between the saturation temperature and the outside air temperature is equal to or greater than the predetermined value h, it is determined that the outdoor heat exchanger needs to be defrosted, and all the units other than the outside air heating type indoor unit are stopped (step 46). In step 47, the flow path switching device 22a is switched so that the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3a. Thereafter, the process proceeds to step 48.
On the other hand, if the difference between the saturation temperature and the outside air is smaller than the predetermined value h, it is determined that defrosting is not necessary, and the process returns to step 41.

ステップ48では、液管温度検知手段32aで、室外熱交換器3aから流出した冷媒の温度を検知する。液管温度検知手段(32a)で検知される温度は、除霜が行われている室外熱交換器3a内で凝縮して液となった冷媒の温度であり、室外熱交換器3aを流れる冷媒温度の中で一番低い温度である。   In step 48, the temperature of the refrigerant flowing out of the outdoor heat exchanger 3a is detected by the liquid pipe temperature detecting means 32a. The temperature detected by the liquid pipe temperature detection means (32a) is the temperature of the refrigerant condensed into liquid in the outdoor heat exchanger 3a where defrosting is performed, and the refrigerant flowing through the outdoor heat exchanger 3a. It is the lowest temperature.

ステップ49では、ステップ48で得られた液管温度検知手段32aの検知温度(室外熱交換器3aから流出した冷媒の温度)が所定値i以上であるかを判断する。
液管温度検知手段32aの検知温度が所定値i以上であれば、室外熱交換器3aが十分に加熱されて霜が融解していると判断され、ステップ50へ進む。なお、実験では、液管温度検知手段32aの検知温度が8℃以上になれば、霜が融解していることが観察された。
液管温度検知手段32aの検知温度が所定値i以下であれば、霜が融解していないと判断され、ステップ48へ戻る。
In step 49, it is determined whether or not the temperature detected by the liquid tube temperature detecting means 32a obtained in step 48 (the temperature of the refrigerant flowing out of the outdoor heat exchanger 3a) is equal to or higher than a predetermined value i.
If the detected temperature of the liquid pipe temperature detecting means 32a is equal to or higher than the predetermined value i, it is determined that the outdoor heat exchanger 3a is sufficiently heated and the frost is melted, and the process proceeds to step 50. In the experiment, it was observed that frost was melted when the temperature detected by the liquid tube temperature detecting means 32a was 8 ° C. or higher.
If the detected temperature of the liquid tube temperature detecting means 32a is equal to or lower than the predetermined value i, it is determined that the frost has not melted and the process returns to step 48.

ステップ50では、続いて室外熱交換器3bの除霜を行うため、流路切替装置22a及び流路切替装置22bの流路を切り替える。具体的には、室外熱交換器3aを蒸発器として機能させるため、流路切替装置22aの流路を、室外熱交換器3aから圧縮機1の吸入側へ冷媒が流れる流路へ切り替える。また、室外熱交換器3bの除霜を行うため、流路切替装置22bの流路を、圧縮機1の吐出側から室外熱交換器3bへ冷媒が流れる流路へと切り替える。   In step 50, in order to perform defrosting of the outdoor heat exchanger 3b subsequently, the flow paths of the flow path switching device 22a and the flow path switching device 22b are switched. Specifically, in order to cause the outdoor heat exchanger 3a to function as an evaporator, the flow path of the flow path switching device 22a is switched to a flow path through which refrigerant flows from the outdoor heat exchanger 3a to the suction side of the compressor 1. Moreover, in order to defrost the outdoor heat exchanger 3b, the flow path of the flow path switching device 22b is switched from the discharge side of the compressor 1 to the flow path through which the refrigerant flows to the outdoor heat exchanger 3b.

ステップ51では、液管温度検知手段32bで、室外熱交換器3bから流出した冷媒の温度を検知する。
ステップ52では、ステップ51で得られた液管温度検知手段32bの検知温度が所定値i以上であるかを判断する。液管温度検知手段32bの検知温度が所定値i以上であれば、室外熱交換器3bの除霜が完了したと判断され、ステップ53へ進む。液管温度検知手段32bの検知温度が所定値i以下であれば、室外熱交換器3bの除霜が完了していないと判断され、ステップ51へ戻る。
In step 51, the temperature of the refrigerant flowing out of the outdoor heat exchanger 3b is detected by the liquid pipe temperature detecting means 32b.
In step 52, it is determined whether the detected temperature of the liquid tube temperature detecting means 32b obtained in step 51 is equal to or higher than a predetermined value i. If the detected temperature of the liquid pipe temperature detecting means 32b is equal to or higher than the predetermined value i, it is determined that the defrosting of the outdoor heat exchanger 3b is completed, and the process proceeds to step 53. If the detected temperature of the liquid pipe temperature detecting means 32b is equal to or lower than the predetermined value i, it is determined that the defrosting of the outdoor heat exchanger 3b is not completed, and the process returns to step 51.

ステップ53では、室外熱交換器3bを蒸発器として機能させるため、流路切替装置22bの流路を、室外熱交換器3bから圧縮機1の吸入側へ冷媒が流れる流路へ切り替える。そして、暖房運転を停止させていた室内機13b及び室内機13cの暖房運転を再開する。   In step 53, in order to make the outdoor heat exchanger 3b function as an evaporator, the flow path of the flow path switching device 22b is switched to a flow path through which refrigerant flows from the outdoor heat exchanger 3b to the suction side of the compressor 1. And the heating operation of the indoor unit 13b and the indoor unit 13c which has stopped the heating operation is restarted.

続いて、暖房除霜混在運転における冷媒の状態変化を、図15に示したp−h線図に従って説明する。本発明に係る暖房除霜混在運転を行った場合のサイクルを図13に示したp−h線図に従って説明する。   Then, the refrigerant | coolant state change in heating defrost mixed operation is demonstrated according to the ph diagram shown in FIG. A cycle in the case of performing the heating / defrosting mixed operation according to the present invention will be described with reference to the ph diagram shown in FIG.

圧縮機1で圧縮された高温高圧のガス冷媒(点s)は、暖房運転用の冷媒(室内熱交換器14aに流入する冷媒)と、除霜用の冷媒(室外熱交換器3aに流入する冷媒)とに分けられる。
室内熱交換器14aに流入した冷媒は、室内熱交換器14aで凝縮し、高温の液冷媒(点t)となる。そして、絞り装置18で減圧され、中間圧力Pmの気液二相冷媒(点u)となって、接続配管9を通過する。
一方、室外熱交換器3aに流入した冷媒は、室外熱交換器3aで凝縮し、高温の液冷媒(点v)となる。そして、絞り装置5aで減圧され、中間圧力Pmの液冷媒(点w)となる。
The high-temperature and high-pressure gas refrigerant (point s) compressed by the compressor 1 flows into the heating operation refrigerant (the refrigerant flowing into the indoor heat exchanger 14a) and the defrosting refrigerant (the outdoor heat exchanger 3a). Refrigerant).
The refrigerant that has flowed into the indoor heat exchanger 14a condenses in the indoor heat exchanger 14a and becomes a high-temperature liquid refrigerant (point t). Then, the pressure is reduced by the expansion device 18 to become a gas-liquid two-phase refrigerant (point u) having an intermediate pressure Pm, and passes through the connection pipe 9.
On the other hand, the refrigerant flowing into the outdoor heat exchanger 3a condenses in the outdoor heat exchanger 3a and becomes a high-temperature liquid refrigerant (point v). Then, the pressure is reduced by the expansion device 5a to become a liquid refrigerant (point w) having an intermediate pressure Pm.

中間圧力Pmの気液二相冷媒(点u)と中間圧力Pmの液冷媒(点w)とは、合流して中間圧力Pmの気液二相冷媒(点x)となる。この中間圧力Pmの気液二相冷媒は、絞り装置5bに流入し、さらに減圧され、低圧の気液二相冷媒(点y)となる。この低圧の気液二相冷媒は、室外熱交換器3bで蒸発して低圧のガス冷媒(点z)となり、圧縮機1へ吸入される。   The gas-liquid two-phase refrigerant (point u) at the intermediate pressure Pm and the liquid refrigerant (point w) at the intermediate pressure Pm merge to become a gas-liquid two-phase refrigerant (point x) at the intermediate pressure Pm. The gas-liquid two-phase refrigerant having the intermediate pressure Pm flows into the expansion device 5b and is further decompressed to become a low-pressure gas-liquid two-phase refrigerant (point y). This low-pressure gas-liquid two-phase refrigerant evaporates in the outdoor heat exchanger 3 b to become a low-pressure gas refrigerant (point z) and is sucked into the compressor 1.

暖房除霜混在運転中、除霜が行われている室外熱交換器(例えば室外熱交換器3a)に接続された絞り装置(例えば絞り装置5a)の開度設定によって、除霜が行われている室外熱交換器に流入する冷媒(圧縮機1から吐出された高温高圧のガス冷媒)に対する抵抗値が変化する。このため、除霜が行われている室外熱交換器の除霜時間を短時間で完了したい場合には、除霜が行われている室外熱交換器への高温高圧のガス冷媒の流入量を増加させるため、絞り装置の開度を大きく設定するとよい。また、室内機の暖房能力を大きくしたい場合には、除霜が行われている室外熱交換器への高温高圧のガス冷媒の流入量を減少させるため、絞り装置の開度を小さく設定するとよい。   During the heating and defrosting mixed operation, defrosting is performed by setting the opening degree of the expansion device (for example, the expansion device 5a) connected to the outdoor heat exchanger (for example, the outdoor heat exchanger 3a) where defrosting is performed. The resistance value with respect to the refrigerant (the high-temperature and high-pressure gas refrigerant discharged from the compressor 1) flowing into the outdoor heat exchanger is changed. For this reason, when it is desired to complete the defrosting time of the outdoor heat exchanger where defrosting is performed in a short time, the amount of high-temperature and high-pressure gas refrigerant flowing into the outdoor heat exchanger where defrosting is performed is reduced. In order to increase, the opening degree of the expansion device should be set large. Further, when it is desired to increase the heating capacity of the indoor unit, the opening degree of the expansion device may be set small in order to reduce the amount of high-temperature and high-pressure gas refrigerant flowing into the outdoor heat exchanger where defrosting is performed. .

また、室外熱交換器3a及び室外熱交換器3bの着霜量が片側の室外熱交換器に片寄らないように、室外送風機4a及び室外送風機4bの回転数を調整してもよい。   Moreover, you may adjust the rotation speed of the outdoor air blower 4a and the outdoor air blower 4b so that the amount of frost formation of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b may not deviate to the outdoor heat exchanger of one side.

また、暖房除霜混在運転中に、インジェクションやガスバイパスの制御を同時に行ってもよい。   Further, during the heating and defrosting mixed operation, the injection and gas bypass may be controlled simultaneously.

以上、このように構成された空気調和機100においては、暖房除霜混在運転中、外気加熱型の室内機の暖房運転を行い、その他の室内機の暖房運転を停止する。室内の温度低下が著しい外気加熱型の室内機の暖房運転を継続させることにより、居住者が冷風感を生じることを低減でき、居室者の快適性を向上できる。   As described above, in the air conditioner 100 configured as described above, the heating operation of the outdoor air heating type indoor unit is performed during the heating and defrosting mixed operation, and the heating operation of the other indoor units is stopped. By continuing the heating operation of the outdoor air heating type indoor unit in which the temperature drop in the room is remarkable, it is possible to reduce the occupant's feeling of cold air and improve the comfort of the occupants.

なお、本実施の形態では優先度の高い(暖房運転を継続させる)室内機として外気加熱型の室内機を示したが、優先度の高い(暖房運転を継続させる)室内機の選び方は任意である。
例えば、暖房除霜混在運転中、設定温度と室内温度の差が所定値以上となっている室内機の暖房運転を継続させてもよい。また、設定温度と室内温度の差が最も大きい室内機の暖房運転を継続させてもよい。居住者が冷風感を生じることを低減でき、居室者の快適性を向上できる。
In the present embodiment, an outdoor air heating type indoor unit is shown as an indoor unit having a high priority (continuing the heating operation), but the method of selecting an indoor unit having a high priority (continuing the heating operation) is arbitrary. is there.
For example, during the heating and defrosting mixed operation, the heating operation of the indoor unit in which the difference between the set temperature and the room temperature is a predetermined value or more may be continued. Further, the heating operation of the indoor unit having the largest difference between the set temperature and the room temperature may be continued. It is possible to reduce the occupant's feeling of cold wind and improve the comfort of the occupants.

また、暖房除霜混在運転中、暖房除霜混在運転中も運転を行うよう設定された室内機の暖房運転を継続させてもよい。この室内機が設置された室内の居室者の快適性を向上できる。   Moreover, you may continue the heating operation of the indoor unit set to operate also during heating defrost mixed operation and heating defrost mixed operation. The comfort of the occupants in the room where this indoor unit is installed can be improved.

また、暖房除霜混在運転中、センサー等の人体検出手段により室内に居室者の有無を検知し、居室者がいる室内に設けられた室内機の暖房運転を継続させてもよい。居住者が冷風感を生じることを低減でき、居室者の快適性を向上できる。   Further, during the heating / defrosting mixed operation, the presence / absence of a occupant in the room may be detected by a human body detection unit such as a sensor, and the heating operation of the indoor unit provided in the room where the occupant is present may be continued. It is possible to reduce the occupant's feeling of cold wind and improve the comfort of the occupants.

また、このように構成された空気調和機100においては、室外熱交換器が蒸発器として機能する場合、室外熱交換器3aの出口過熱度と室外熱交換器3bの出口過熱度との差が所定の範囲内となるように、絞り装置5a及び絞り装置5bの絞り開度を調整する。このため、室外熱交換器3a及び室外熱交換器3bへの冷媒分配の不均一を抑制でき、室外熱交換器3a及び室外熱交換器3bの性能を十分に発揮させることができる。   Further, in the air conditioner 100 configured as described above, when the outdoor heat exchanger functions as an evaporator, the difference between the outlet superheat degree of the outdoor heat exchanger 3a and the outlet superheat degree of the outdoor heat exchanger 3b is The apertures of the expansion device 5a and the expansion device 5b are adjusted so as to be within a predetermined range. For this reason, the non-uniformity of the refrigerant | coolant distribution to the outdoor heat exchanger 3a and the outdoor heat exchanger 3b can be suppressed, and the performance of the outdoor heat exchanger 3a and the outdoor heat exchanger 3b can fully be exhibited.

また、暖房主体運転において、冷房運転に用いられる室内熱交換器を流れる冷媒の蒸発温度が所定の範囲となるように、絞り装置5a及び絞り装置5bの開度を調整している。これにより、冷房運転をしている室内機の凍結を防止することができる。   In the heating main operation, the opening degree of the expansion device 5a and the expansion device 5b is adjusted so that the evaporation temperature of the refrigerant flowing through the indoor heat exchanger used for the cooling operation is within a predetermined range. Thereby, freezing of the indoor unit which is performing the cooling operation can be prevented.

また、室外熱交換器が蒸発器として機能する場合、ガス冷媒を圧縮機1の吸入側へバイパスすることにより、絞り装置5a及び絞り装置5bに流入する冷媒のクオリティを下げることができる。このため、絞り装置5a及び絞り装置5bでの圧損を低減でき、さらに室外熱交換器で蒸発する冷媒の蒸発エンタルピー差を拡大できる。したがって、全暖房運転時や暖房主体運転時における空気調和機100の能力や性能を拡大することができる。
特に、暖房主体運転時にガスバイパスを行うことにより、冷房運転の室内熱交換器の蒸発温度が過度に上昇することを防止でき、室内機が十分な冷房能力を発揮できる。
When the outdoor heat exchanger functions as an evaporator, the quality of the refrigerant flowing into the expansion device 5a and the expansion device 5b can be lowered by bypassing the gas refrigerant to the suction side of the compressor 1. For this reason, the pressure loss in the expansion device 5a and the expansion device 5b can be reduced, and further, the evaporation enthalpy difference of the refrigerant evaporated in the outdoor heat exchanger can be expanded. Therefore, the capability and performance of the air conditioner 100 at the time of all heating operation or heating main operation can be expanded.
In particular, by performing the gas bypass during the heating main operation, it is possible to prevent the evaporation temperature of the indoor heat exchanger in the cooling operation from excessively rising, and the indoor unit can exhibit a sufficient cooling capacity.

また、気液二相状態の冷媒を圧縮機1の圧縮部の中間部にインジェクションすることで、圧縮機1から吐出される冷媒の温度が過度に上昇することを抑制できる。   Moreover, it can suppress that the temperature of the refrigerant | coolant discharged from the compressor 1 rises excessively by injecting the refrigerant | coolant of a gas-liquid two-phase state to the intermediate part of the compression part of the compressor 1. FIG.

A 熱源機、B 分流コントローラー、C 室内機群、1 圧縮機、2 流路切替装置、3a 室外熱交換器、3b 室外熱交換器、4a 室外送風機、4b 室外送風機、5a 絞り装置、5b 絞り装置、6 流路切替装置、7a 逆止弁、7b 逆止弁、7c 逆止弁、7d 逆止弁、8 接続配管、9 接続配管、10 気液分離器、11a 冷暖房切替弁、11b 冷暖房切替弁、11c 冷暖房切替弁、12a 開閉弁、12b 開閉弁、12c 開閉弁、12d 開閉弁、12e 開閉弁、12f 開閉弁、13a 室内機、13b 室内機、13c 室内機、14a 室内熱交換器、14b 室内熱交換器、14c 室内熱交換器、15a 室内送風機、15b 室内送風機、15c 室内送風機、16a 絞り装置、16b 絞り装置、16c 絞り装置、17 分岐部、18 絞り装置、19 絞り装置、20 低圧連絡配管、21 高圧連絡配管、22a 流路切替装置、22b 流路切替装置、23 開閉弁、23a ガスバイパス配管、24 流量調整装置、24a インジェクション配管、25 気液分離器、26 開閉弁、26a ガスバイパス配管、31a ガス管温度検知手段、31b ガス管温度検知手段、32a 液管温度検知手段、32b 液管温度検知手段、33 吐出温度検知手段、34 吐出圧力検知手段、35 吸入圧力検知手段、36 中間圧力検知手段、37 制御装置、38 外気温度検知手段、100 空気調和機。   A heat source machine, B shunt controller, C indoor unit group, 1 compressor, 2 flow path switching device, 3a outdoor heat exchanger, 3b outdoor heat exchanger, 4a outdoor blower, 4b outdoor blower, 5a throttle device, 5b throttle device , 6 Channel switching device, 7a check valve, 7b check valve, 7c check valve, 7d check valve, 8 connection piping, 9 connection piping, 10 gas-liquid separator, 11a air conditioning switching valve, 11b air conditioning switching valve 11c Air-conditioning switching valve, 12a On-off valve, 12b On-off valve, 12c On-off valve, 12d On-off valve, 12e On-off valve, 12f On-off valve, 13a Indoor unit, 13b Indoor unit, 13c Indoor unit, 14a Indoor heat exchanger, 14b Indoor Heat exchanger, 14c indoor heat exchanger, 15a indoor fan, 15b indoor fan, 15c indoor fan, 16a throttle device, 16b throttle device, 16c throttle , 17 branching section, 18 throttling device, 19 throttling device, 20 low pressure communication piping, 21 high pressure communication piping, 22a flow path switching device, 22b flow path switching device, 23 on-off valve, 23a gas bypass piping, 24 flow rate adjustment device, 24a injection piping, 25 gas-liquid separator, 26 on-off valve, 26a gas bypass piping, 31a gas pipe temperature detection means, 31b gas pipe temperature detection means, 32a liquid pipe temperature detection means, 32b liquid pipe temperature detection means, 33 discharge temperature Detection means, 34 Discharge pressure detection means, 35 Suction pressure detection means, 36 Intermediate pressure detection means, 37 Control device, 38 Outside air temperature detection means, 100 Air conditioner.

Claims (10)

圧縮機及び並列配置された複数の室外熱交換器を少なくとも備えた熱源機と、
室内熱交換器を少なくとも備えた複数の室内機と、
を有し、
前記室内機のそれぞれにおいて冷房運転又は暖房運転が選択可能な空気調和機であって、
前記室外熱交換器のそれぞれにおいて、前記室外熱交換器と前記圧縮機との間の冷媒流路を、前記室外熱交換器から前記圧縮機の吸入側へ流れる流路、又は前記圧縮機の吐出側から前記室外熱交換器へ流れる流路に切り替える流路変更装置を備え、
除霜運転を行う際、
複数の前記室外熱交換器のうちの一部は、前記流路変更装置が前記圧縮機の吐出側から前記室外熱交換器へ流れる流路となって、除霜が行われ、
複数の前記室外熱交換器のうちの他の一部は、前記流路変更装置が前記室外熱交換器から前記圧縮機の吸入側へ流れる流路となって、蒸発器として用いられ、
複数の前記室内機のうち、所定の前記室内機を暖房運転させることを特徴とする空気調和機。
A heat source device comprising at least a compressor and a plurality of outdoor heat exchangers arranged in parallel;
A plurality of indoor units including at least an indoor heat exchanger;
Have
Each of the indoor units is an air conditioner capable of selecting a cooling operation or a heating operation,
In each of the outdoor heat exchangers, a refrigerant flow path between the outdoor heat exchanger and the compressor flows through the refrigerant flow path from the outdoor heat exchanger to the suction side of the compressor, or the discharge of the compressor A flow path changing device for switching to a flow path flowing from the side to the outdoor heat exchanger,
When performing defrosting operation,
A part of the plurality of outdoor heat exchangers is a flow path in which the flow path changing device flows from the discharge side of the compressor to the outdoor heat exchanger, and defrosting is performed.
The other part of the plurality of outdoor heat exchangers is used as an evaporator, the flow path changing device becomes a flow path from the outdoor heat exchanger to the suction side of the compressor,
Of the plurality of indoor units, an air conditioner characterized in that a predetermined indoor unit is heated.
前記室外熱交換器のそれぞれには絞り装置が接続され、
蒸発器として用いられる前記室外熱交換器を流れる冷媒の過熱度が第1の所定範囲となるように、前記絞り装置の開度を調整することを特徴とする請求項1に記載の空気調和機。
A throttle device is connected to each of the outdoor heat exchangers,
The air conditioner according to claim 1, wherein the opening degree of the expansion device is adjusted so that the degree of superheat of the refrigerant flowing through the outdoor heat exchanger used as an evaporator falls within a first predetermined range. .
前記室外熱交換器のそれぞれには絞り装置が接続され、
複数の前記室内機のうち、少なくとも1つが冷房運転を行う場合、
冷房運転を行う前記室内機の室内熱交換器を流れる冷媒の蒸発温度が第2の所定範囲となるように、前記絞り装置の開度を調整することを特徴とする請求項1に記載の空気調和機。
A throttle device is connected to each of the outdoor heat exchangers,
When at least one of the plurality of indoor units performs a cooling operation,
2. The air according to claim 1, wherein the opening degree of the expansion device is adjusted so that the evaporation temperature of the refrigerant flowing through the indoor heat exchanger of the indoor unit performing the cooling operation falls within a second predetermined range. Harmony machine.
複数の前記室内機のうち、少なくとも1つが冷房運転を行う場合、
冷房運転を行う前記室内機の室内熱交換器を流れる冷媒の蒸発温度が第2の所定範囲となるように、前記絞り装置の開度を調整することを特徴とする請求項2に記載の空気調和機。
When at least one of the plurality of indoor units performs a cooling operation,
3. The air according to claim 2, wherein the opening degree of the expansion device is adjusted so that the evaporation temperature of the refrigerant flowing through the indoor heat exchanger of the indoor unit performing the cooling operation falls within a second predetermined range. Harmony machine.
前記室外熱交換器と前記室内機とを接続する配管に設けられた気液分離器と、
該気液分離器と前記圧縮機の吸入側とを接続し、前記気液分離器で分離されたガス冷媒が流れるガスバイパス配管と、
該ガスバイパス配管に設けられ、該ガスバイパス配管を流れるガス冷媒の流量を調整する第1の流量調整装置と、
を備え、
前記ガスバイパス配管を流れるガス冷媒の流量を調整することを特徴とする請求項3又は請求項4に記載の空気調和機。
A gas-liquid separator provided in a pipe connecting the outdoor heat exchanger and the indoor unit;
A gas bypass pipe that connects the gas-liquid separator and the suction side of the compressor, and through which the gas refrigerant separated by the gas-liquid separator flows;
A first flow rate adjusting device which is provided in the gas bypass pipe and adjusts the flow rate of the gas refrigerant flowing through the gas bypass pipe;
With
The air conditioner according to claim 3 or 4, wherein a flow rate of the gas refrigerant flowing through the gas bypass pipe is adjusted.
前記室外熱交換器と前記室内機との間と、前記圧縮機の圧縮部と、を接続するインジェクション回路と、
該インジェクション回路に設けられ、該インジェクション回路に流れる冷媒の流量を調整する第2の流量調整装置と、
を備え、
前記圧縮機から吐出される冷媒の温度が第3の所定範囲となるように、又は前記圧縮機から吐出される冷媒の圧力が第4の所定範囲となるように、前記インジェクション回路を流れる冷媒の流量を調整することを特徴とする請求項1〜請求項5のいずれか一項に記載の空気調和機。
An injection circuit that connects between the outdoor heat exchanger and the indoor unit, and a compression unit of the compressor;
A second flow rate adjusting device that is provided in the injection circuit and adjusts the flow rate of the refrigerant flowing through the injection circuit;
With
The refrigerant flowing through the injection circuit so that the temperature of the refrigerant discharged from the compressor falls within a third predetermined range, or the pressure of the refrigerant discharged from the compressor falls within a fourth predetermined range. The air conditioner according to any one of claims 1 to 5, wherein a flow rate is adjusted.
前記室内機のうちの少なくとも1つは、外気を加熱して室内に供給する構成の室内機であり、
除霜運転を行う際、
外気を加熱して室内に供給する構成の前記室内機を暖房運転させることを特徴とする請求項1〜請求項6のいずれか一項に記載の空気調和機。
At least one of the indoor units is an indoor unit configured to heat and supply outside air to the room,
When performing defrosting operation,
The air conditioner according to any one of claims 1 to 6, wherein the indoor unit configured to heat and supply outside air to the room is heated.
除霜運転を行う際、
設定温度と室内温度との差が所定値以上となっている前記室内機を暖房運転させることを特徴とする請求項1〜請求項7のいずれか一項に記載の空気調和機。
When performing defrosting operation,
The air conditioner according to any one of claims 1 to 7, wherein a heating operation is performed on the indoor unit in which a difference between a set temperature and a room temperature is equal to or greater than a predetermined value.
除霜運転を行う際、
除霜運転中も運転するように設定されている前記室内機を暖房運転させることを特徴とする請求項1〜請求項8のいずれか一項に記載の空気調和機。
When performing defrosting operation,
The air conditioner according to any one of claims 1 to 8, wherein the indoor unit that is set to operate during the defrosting operation is heated.
人の存否を検出する人体検出手段を備え、
除霜運転を行う際、
人の存在する室内に設けられた室内機を暖房運転させることを特徴とする請求項1〜請求項9のいずれか一項に記載の空気調和機。
Equipped with human body detecting means for detecting the presence or absence of a person,
When performing defrosting operation,
The air conditioner according to any one of claims 1 to 9, wherein an indoor unit provided in a room where a person exists is heated.
JP2009201408A 2009-09-01 2009-09-01 Air conditioner Active JP5213817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201408A JP5213817B2 (en) 2009-09-01 2009-09-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201408A JP5213817B2 (en) 2009-09-01 2009-09-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011052883A true JP2011052883A (en) 2011-03-17
JP5213817B2 JP5213817B2 (en) 2013-06-19

Family

ID=43942073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201408A Active JP5213817B2 (en) 2009-09-01 2009-09-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP5213817B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160597A1 (en) * 2011-05-23 2012-11-29 三菱電機株式会社 Air conditioning device
CN103148543A (en) * 2011-12-07 2013-06-12 珠海格力电器股份有限公司 Outdoor heat exchange device and air conditioning system
WO2013164936A1 (en) * 2012-05-01 2013-11-07 ダイキン工業株式会社 Air conditioning system and defrosting operation method
KR20140125524A (en) * 2013-04-19 2014-10-29 엘지전자 주식회사 An air conditioning system
WO2014192140A1 (en) * 2013-05-31 2014-12-04 三菱電機株式会社 Air conditioner
EP2778567A4 (en) * 2011-11-07 2015-07-08 Mitsubishi Electric Corp Air-conditioning apparatus
WO2016113851A1 (en) * 2015-01-13 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JP5980349B2 (en) * 2012-11-29 2016-08-31 三菱電機株式会社 Air conditioner
WO2017006596A1 (en) * 2015-07-06 2017-01-12 三菱電機株式会社 Refrigeration cycle device
CN109458700A (en) * 2018-11-08 2019-03-12 珠海格力电器股份有限公司 Multi-online defrosting method and device, storage medium, computer equipment and air conditioner
EP3517859A1 (en) 2018-01-24 2019-07-31 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle apparatus
WO2019146139A1 (en) * 2018-01-26 2019-08-01 三菱電機株式会社 Refrigeration cycle device
CN112212467A (en) * 2020-11-02 2021-01-12 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioning unit
WO2021038660A1 (en) * 2019-08-23 2021-03-04 三菱電機株式会社 Air conditioner
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
CN113439188A (en) * 2019-02-27 2021-09-24 三菱电机株式会社 Air conditioner
JP2022003302A (en) * 2018-12-11 2022-01-11 三菱電機株式会社 Air conditioner

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195758A (en) * 1982-05-10 1983-11-15 株式会社東芝 Control system of air conditioner
JPS5926558U (en) * 1982-08-11 1984-02-18 株式会社東芝 air conditioner
JPS59210278A (en) * 1984-04-11 1984-11-28 松下精工株式会社 Controller for refrigerant of heat pump type air conditioner
JPH0420764A (en) * 1990-05-16 1992-01-24 Hitachi Ltd Air conditioner
JPH05280837A (en) * 1992-03-30 1993-10-29 Daikin Ind Ltd Air conditioner
JPH07294070A (en) * 1994-04-27 1995-11-10 Kajima Corp Outside air treating unit
JPH08291952A (en) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp Air conditioner
JPH11132575A (en) * 1997-10-23 1999-05-21 Daikin Ind Ltd Air conditioner
JP2001108319A (en) * 1999-10-06 2001-04-20 Matsushita Refrig Co Ltd Refrigerator
JP2002106917A (en) * 2000-09-28 2002-04-10 Hitachi Ltd Regenerative heat pump air conditioner for cold region
JP2003120987A (en) * 2001-10-15 2003-04-23 Funai Electric Co Ltd Air conditioning equipment
JP2005083616A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195758A (en) * 1982-05-10 1983-11-15 株式会社東芝 Control system of air conditioner
JPS5926558U (en) * 1982-08-11 1984-02-18 株式会社東芝 air conditioner
JPS59210278A (en) * 1984-04-11 1984-11-28 松下精工株式会社 Controller for refrigerant of heat pump type air conditioner
JPH0420764A (en) * 1990-05-16 1992-01-24 Hitachi Ltd Air conditioner
JPH08291952A (en) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp Air conditioner
JPH05280837A (en) * 1992-03-30 1993-10-29 Daikin Ind Ltd Air conditioner
JPH07294070A (en) * 1994-04-27 1995-11-10 Kajima Corp Outside air treating unit
JPH11132575A (en) * 1997-10-23 1999-05-21 Daikin Ind Ltd Air conditioner
JP2001108319A (en) * 1999-10-06 2001-04-20 Matsushita Refrig Co Ltd Refrigerator
JP2002106917A (en) * 2000-09-28 2002-04-10 Hitachi Ltd Regenerative heat pump air conditioner for cold region
JP2003120987A (en) * 2001-10-15 2003-04-23 Funai Electric Co Ltd Air conditioning equipment
JP2005083616A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494348B2 (en) 2011-05-23 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012160597A1 (en) * 2011-05-23 2012-11-29 三菱電機株式会社 Air conditioning device
EP2716998A1 (en) * 2011-05-23 2014-04-09 Mitsubishi Electric Corporation Air conditioning device
JPWO2012160597A1 (en) * 2011-05-23 2014-07-31 三菱電機株式会社 Air conditioner
EP2716998A4 (en) * 2011-05-23 2014-10-22 Mitsubishi Electric Corp Air conditioning device
EP2778567A4 (en) * 2011-11-07 2015-07-08 Mitsubishi Electric Corp Air-conditioning apparatus
US9797610B2 (en) 2011-11-07 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus with regulation of injection flow rate
CN103148543B (en) * 2011-12-07 2015-08-12 珠海格力电器股份有限公司 Outdoor heat exchange device and air conditioning system
CN103148543A (en) * 2011-12-07 2013-06-12 珠海格力电器股份有限公司 Outdoor heat exchange device and air conditioning system
CN104246389A (en) * 2012-05-01 2014-12-24 大金工业株式会社 Air conditioning system and defrosting operation method
JP2013231564A (en) * 2012-05-01 2013-11-14 Daikin Industries Ltd Air conditioning system and defrosting operation method
EP2857770A4 (en) * 2012-05-01 2016-05-11 Daikin Ind Ltd Air conditioning system and defrosting operation method
KR101621645B1 (en) * 2012-05-01 2016-05-16 다이킨 고교 가부시키가이샤 Air conditioning system and defrosting operation method
WO2013164936A1 (en) * 2012-05-01 2013-11-07 ダイキン工業株式会社 Air conditioning system and defrosting operation method
JP5980349B2 (en) * 2012-11-29 2016-08-31 三菱電機株式会社 Air conditioner
JPWO2014083650A1 (en) * 2012-11-29 2017-01-05 三菱電機株式会社 Air conditioner
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
KR20140125524A (en) * 2013-04-19 2014-10-29 엘지전자 주식회사 An air conditioning system
KR102136589B1 (en) * 2013-04-19 2020-07-22 엘지전자 주식회사 An air conditioning system
WO2014192140A1 (en) * 2013-05-31 2014-12-04 三菱電機株式会社 Air conditioner
JP5968534B2 (en) * 2013-05-31 2016-08-10 三菱電機株式会社 Air conditioner
JPWO2014192140A1 (en) * 2013-05-31 2017-02-23 三菱電機株式会社 Air conditioner
US10465968B2 (en) 2013-05-31 2019-11-05 Mitsubishi Electric Corporation Air-conditioning apparatus having first and second defrosting pipes
WO2016113851A1 (en) * 2015-01-13 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JPWO2016113851A1 (en) * 2015-01-13 2017-06-29 三菱電機株式会社 Refrigeration cycle equipment
WO2017006596A1 (en) * 2015-07-06 2017-01-12 三菱電機株式会社 Refrigeration cycle device
JPWO2017006596A1 (en) * 2015-07-06 2017-10-26 三菱電機株式会社 Refrigeration cycle equipment
EP3517859A1 (en) 2018-01-24 2019-07-31 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle apparatus
JP2019128094A (en) * 2018-01-24 2019-08-01 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus
RU2744114C1 (en) * 2018-01-26 2021-03-02 Мицубиси Электрик Корпорейшн Refrigeration cycle device
CN111630331A (en) * 2018-01-26 2020-09-04 三菱电机株式会社 Refrigeration cycle device
CN111630331B (en) * 2018-01-26 2022-04-08 三菱电机株式会社 Refrigeration cycle device
WO2019146139A1 (en) * 2018-01-26 2019-08-01 三菱電機株式会社 Refrigeration cycle device
US11236934B2 (en) 2018-01-26 2022-02-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2019146139A1 (en) * 2018-01-26 2020-11-19 三菱電機株式会社 Refrigeration cycle equipment
CN109458700A (en) * 2018-11-08 2019-03-12 珠海格力电器股份有限公司 Multi-online defrosting method and device, storage medium, computer equipment and air conditioner
JP2022003302A (en) * 2018-12-11 2022-01-11 三菱電機株式会社 Air conditioner
CN113439188A (en) * 2019-02-27 2021-09-24 三菱电机株式会社 Air conditioner
EP3933300A4 (en) * 2019-02-27 2022-03-09 Mitsubishi Electric Corporation Air-conditioning device
US12104818B2 (en) 2019-02-27 2024-10-01 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2021038660A1 (en) * 2019-08-23 2021-12-09 三菱電機株式会社 Air conditioner
WO2021038660A1 (en) * 2019-08-23 2021-03-04 三菱電機株式会社 Air conditioner
CN112212467B (en) * 2020-11-02 2021-11-02 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioning unit
CN112212467A (en) * 2020-11-02 2021-01-12 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioning unit

Also Published As

Publication number Publication date
JP5213817B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5213817B2 (en) Air conditioner
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
US8302413B2 (en) Air conditioner
WO2018002983A1 (en) Refrigeration cycle device
WO2012168971A1 (en) Refrigeration air-conditioning device
JP4969608B2 (en) Air conditioner
JP6880204B2 (en) Air conditioner
KR102330339B1 (en) Multi-type air conditioner and control method for the same
JPH1068553A (en) Air conditioner
WO2021014640A1 (en) Refrigeration cycle device
CN108151350B (en) Three-control multi-split system and control method thereof
JP2008157557A (en) Air-conditioning system
WO2017168681A1 (en) Air conditioner
JP5734205B2 (en) Air conditioner
JP2015117894A (en) Air conditioner outdoor unit
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JP5523296B2 (en) Air conditioner
JP6448780B2 (en) Air conditioner
US11486591B2 (en) Air conditioner capable of performing dehumidification while maintaining a temperature of indoor air at a constant level
WO2021019686A1 (en) Air-conditioning device and control method therefor
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP6591071B2 (en) Air conditioner
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP7258129B2 (en) air conditioner
KR102250983B1 (en) Method for controlling multi-type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250