JP2005083616A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005083616A
JP2005083616A JP2003313949A JP2003313949A JP2005083616A JP 2005083616 A JP2005083616 A JP 2005083616A JP 2003313949 A JP2003313949 A JP 2003313949A JP 2003313949 A JP2003313949 A JP 2003313949A JP 2005083616 A JP2005083616 A JP 2005083616A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
heating operation
air conditioner
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313949A
Other languages
Japanese (ja)
Inventor
Kanji Haneda
完爾 羽根田
Takeshi Kawazoe
猛 川添
Yuji Takeda
雄次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003313949A priority Critical patent/JP2005083616A/en
Publication of JP2005083616A publication Critical patent/JP2005083616A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of requiring to stop an indoor air blowing fan in a defrosting period, due to having the possibility of blowing off cold air, since a low temperature refrigerant flows to an indoor heat exchanger when becoming an inverse cycle by a four-way valve in defrosting control at the time of the heating operation in a conventional air conditioner, and causing a factor of a cost increase for requiring an ancillary circuit such as a bypass circuit and a solenoid valve, due to adopting a hot gas defrosting method for defrosting while performing heating operation by a bypass, even in a method of being not set in the inverse cycle. <P>SOLUTION: This air conditioner has a control means for increasing evaporation pressure so that the temperature of a heat exchanger becomes a zero degree or more, after detecting frosting to an outdoor heat exchanger in heating operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮機運転周波数を可変とする空気調和機に関するものであり、より詳しくは、暖房運転時の除霜運転に関するものである。   The present invention relates to an air conditioner having a variable compressor operating frequency, and more particularly to a defrosting operation during heating operation.

従来、空気調和機における暖房運転時の除霜制御においては、除霜方式として逆サイクル方式が多く、除霜中、室内熱交換器に低温の冷媒が流れる構造になっている。また、逆サイクルにしない方法でも、バイパスなどにより暖房運転を行いながら除霜するホットガス除霜方式をとっている。(例えば特許文献1、2参照)。
特開平8−338673号公報 特開平5−106945号公報
Conventionally, in defrosting control during heating operation in an air conditioner, there are many reverse cycle methods as a defrosting method, and a structure in which a low-temperature refrigerant flows through an indoor heat exchanger during defrosting is employed. Moreover, even in a method that does not use a reverse cycle, a hot gas defrosting method is used in which defrosting is performed while performing heating operation by bypass or the like. (For example, refer to Patent Documents 1 and 2).
JP-A-8-338673 Japanese Patent Laid-Open No. 5-106945

しかしながら、上記従来の構成では次のような課題があった。   However, the above conventional configuration has the following problems.

すなわち、上記従来の空気調和機における暖房運転時の除霜制御においては、四方弁により逆サイクルとなって室内熱交換器に低温の冷媒が流れるため、冷風が吹き出す可能性があり、除霜期間中、室内の送風ファンを停止する必要があった。また、逆サイクルにしない方法でも、バイパスなどにより暖房運転を行いながら除霜するホットガス除霜方式をとっており、バイパス回路や電磁弁などの付属回路が必要となり、コストアップの要因が発生していた。   That is, in the defrosting control during the heating operation in the conventional air conditioner described above, because the low-temperature refrigerant flows through the indoor heat exchanger in a reverse cycle by the four-way valve, there is a possibility that cold air may blow out, and the defrosting period Inside, it was necessary to stop the blower fan in the room. In addition, even with a method that does not use a reverse cycle, a hot gas defrosting system that defrosts while performing heating operation by bypass is used, and an additional circuit such as a bypass circuit or a solenoid valve is required, resulting in an increase in cost. It was.

本発明は、このような従来の課題を解決するものであり、除霜運転中も通常の暖房運転が可能であり、しかも、バイパス回路や電磁弁などの付属回路が不要となり、コストアップすることなしに除霜運転を可能にすることを目的とする。   The present invention solves such a conventional problem, and normal heating operation can be performed even during defrosting operation, and additional circuits such as a bypass circuit and a solenoid valve are not required, which increases costs. The purpose is to enable defrosting operation without.

上記課題を解決するために、本発明の空気調和機は、暖房運転時において室外熱交換器への着霜を検知した後に蒸発圧力を熱交換器の温度が零度以上になるように上昇させる制御手段を有するものである。
本構成により、暖房運転をしながら室外熱交換器へ付いた霜をとるこが可能となり、暖房運転を停止することなく快適な空調を実現することができる。
In order to solve the above-described problems, the air conditioner of the present invention is a control for increasing the evaporation pressure so that the temperature of the heat exchanger becomes zero degrees or more after detecting frost formation on the outdoor heat exchanger during heating operation. It has a means.
With this configuration, it is possible to remove frost attached to the outdoor heat exchanger while performing the heating operation, and it is possible to realize comfortable air conditioning without stopping the heating operation.

また、別の発明の空気調和機は、室外温度が所定温度以上の場合に暖房運転時において室外熱交換器への着霜を検知した後に蒸発圧力を熱交換器の温度が零度以上になるように上昇させる制御手段を有するものである。   In another air conditioner according to another aspect of the invention, when the outdoor temperature is equal to or higher than a predetermined temperature, the evaporating pressure is set to zero or higher after detecting frost formation on the outdoor heat exchanger during heating operation. It has a control means which raises it to.

本構成により、暖房運転をしながら室外熱交換器へ付いた霜をとるこがより確実となり、暖房運転を停止することなく快適な空調を実現することができる。   With this configuration, it is more reliable to remove frost attached to the outdoor heat exchanger while performing the heating operation, and comfortable air conditioning can be realized without stopping the heating operation.

また、別の発明の空気調和機は、室外温度が所定温度未満で、かつ室温が設定温度近傍に到達している場合に、暖房運転時において室外熱交換器への着霜を検知した後に蒸発圧力を熱交換器の温度が零度以上になるように所定周期で上昇させる制御手段を有するものである。   An air conditioner according to another invention evaporates after detecting frost formation on an outdoor heat exchanger during heating operation when the outdoor temperature is lower than a predetermined temperature and the room temperature has reached a set temperature. It has a control means which raises a pressure by a predetermined period so that the temperature of a heat exchanger may become zero degree or more.

本構成により、室外熱交換器へ着霜しやすい低外気温時にも、暖房運転を停止することなく快適な空調を実現することができる。   With this configuration, it is possible to realize comfortable air conditioning without stopping the heating operation even at a low outdoor temperature at which the outdoor heat exchanger is likely to be frosted.

また、別の発明の空気調和機は、室外温度が所定温度未満で、かつ室温が設定温度近傍に到達している場合に、凝縮圧力を上昇させながら、所定室内温度範囲内になるように暖房運転時において室外熱交換器への着霜を検知した後に蒸発圧力を熱交換器の温度が零度以上になるように上昇させる制御手段を有するものである。   In another air conditioner according to another aspect of the invention, when the outdoor temperature is less than a predetermined temperature and the room temperature has reached a set temperature, the air conditioner is heated so as to be within a predetermined indoor temperature range while increasing the condensation pressure. It has a control means which raises evaporation pressure so that the temperature of a heat exchanger may become zero degrees or more after detecting frost formation to an outdoor heat exchanger at the time of operation.

本構成により、室外熱交換器へ着霜しやすい低外気温時にも、室内温度を著しく低下させることなく、快適な空調を実現することができる。   With this configuration, it is possible to realize comfortable air conditioning without significantly lowering the indoor temperature even at a low outdoor temperature at which the outdoor heat exchanger is likely to be frosted.

以上のように、本願発明の空気調和機によれば、暖房運転時において室外熱交換器への着霜を検知した後に室外ファンの回転数を上昇させて蒸発圧力を熱交換器の温度が零度以上になるように上昇させ、室外熱交換器に付着した霜を融かして、連続的に暖房運転を続けることが可能となる。   As described above, according to the air conditioner of the present invention, after detecting frost formation on the outdoor heat exchanger during the heating operation, the rotation speed of the outdoor fan is increased, and the evaporation pressure is reduced to 0 degrees. It is possible to continue the heating operation continuously by melting the frost adhering to the outdoor heat exchanger and raising the frost.

以下本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和機の冷凍サイクル図である。図1において、冷房運転時、冷媒は、圧縮機1を吐出された後、四方弁2を通過した後、室外熱交換器3で凝縮し、キャピラリーチューブ4aで減圧され、室内熱交換器5で蒸発し、再び四方弁2を通過して圧縮機1に戻る構成となっている。
(Embodiment 1)
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention. In FIG. 1, during the cooling operation, after the refrigerant is discharged from the compressor 1, the refrigerant passes through the four-way valve 2, condenses in the outdoor heat exchanger 3, is depressurized in the capillary tube 4 a, and then in the indoor heat exchanger 5. It evaporates, passes through the four-way valve 2 again, and returns to the compressor 1.

一方、暖房運転時、冷媒は、圧縮機1を吐出された後、四方弁2を通過した後、室内熱交換器5で凝縮し、キャピラリーチューブ4aで減圧され、室外熱交換器3で蒸発し、再び四方弁2を通過して圧縮機1に戻る。   On the other hand, during the heating operation, the refrigerant is discharged from the compressor 1, passes through the four-way valve 2, condenses in the indoor heat exchanger 5, is depressurized in the capillary tube 4 a, and evaporates in the outdoor heat exchanger 3. Then, it again passes through the four-way valve 2 and returns to the compressor 1.

図2は、暖房運転中の室外ファン6の回転数、冷媒の蒸発圧力、室外熱交換器温度センサー11にて検出する室外熱交換器温度11aのタイムチャートを示す。暖房運転において、冷媒の蒸発側は室外熱交換器であって殆ど二相領域となっており、蒸発圧力に相当する飽和温度が熱交換器温度となっている。   FIG. 2 shows a time chart of the rotational speed of the outdoor fan 6 during the heating operation, the evaporating pressure of the refrigerant, and the outdoor heat exchanger temperature 11 a detected by the outdoor heat exchanger temperature sensor 11. In the heating operation, the evaporation side of the refrigerant is an outdoor heat exchanger, which is almost a two-phase region, and the saturation temperature corresponding to the evaporation pressure is the heat exchanger temperature.

図において、室外熱交換器温度が零度未満を5分連続検知した場合に着霜と判断し、制御装置20から室外ファンへ指令を送り、回転数を200rpm上昇させる。このことにより、空気が冷媒へ与える放熱量と冷媒が空気からもらう吸熱量のバランスを保つため、冷媒の蒸発圧力は上昇して蒸発圧力に相当する飽和温度が零度以上となる。従って、室外熱交換器温度も零度以上となり、この状態が数分継続することにより室外熱交換器についた霜は融解・流下し、暖房運転初期の室外熱交換器の状態となる。こうして、室外熱交換器に付着した霜を融かして、連続的に暖房運転を続けることが可能となる。   In the figure, when the outdoor heat exchanger temperature is continuously detected for less than zero degrees for 5 minutes, it is determined that frost is formed, and a command is sent from the control device 20 to the outdoor fan to increase the rotational speed by 200 rpm. Thus, in order to maintain a balance between the amount of heat released from the air to the refrigerant and the amount of heat absorbed by the refrigerant from the air, the evaporation pressure of the refrigerant rises and the saturation temperature corresponding to the evaporation pressure becomes zero or more. Accordingly, the temperature of the outdoor heat exchanger becomes zero or more, and when this state continues for several minutes, the frost attached to the outdoor heat exchanger is melted and flows down, and the state of the outdoor heat exchanger at the initial stage of the heating operation is obtained. Thus, it is possible to melt the frost adhering to the outdoor heat exchanger and continue the heating operation continuously.

(実施の形態2)
図3は、本発明の実施の形態2における空気調和機の冷凍サイクル図である。同図において、キャピラリーチューブ4aの代わりに膨張弁4bを用い、圧縮機吸入温度12aを検出する圧縮機吸入温度センサー12が追加となっている以外は、図1と同じ番号・同じ機能であるので説明を省略する。また、冷凍サイクルの流れについても同様であるので説明を省略する。
(Embodiment 2)
FIG. 3 is a refrigeration cycle diagram of the air conditioner according to Embodiment 2 of the present invention. In the figure, since the expansion valve 4b is used instead of the capillary tube 4a, and the compressor intake temperature sensor 12 for detecting the compressor intake temperature 12a is added, the same numbers and the same functions as in FIG. Description is omitted. Moreover, since it is the same also about the flow of a refrigerating cycle, description is abbreviate | omitted.

一般に、暖房運転では圧縮機吸入スーパーヒート(以下吸入SHと示す)を約5℃に保つことにより、圧縮機への液圧縮が防止できると共に、室外熱交換器での吸熱にとって最も効率が良いことが知られており、ここでは、膨張弁制御により吸入SHを約5℃に制御している。また、吸入SHは次の式で示す。   In general, by maintaining the compressor suction superheat (hereinafter referred to as suction SH) at about 5 ° C. in heating operation, liquid compression into the compressor can be prevented and the heat absorption by the outdoor heat exchanger is most efficient. Here, suction SH is controlled to about 5 ° C. by expansion valve control. Inhalation SH is expressed by the following equation.

吸入SH=11a−12a
図4は、暖房運転中の室外ファン6の回転数、冷媒の蒸発圧力、室外熱交換器温度センサー11の検出温度、吸入SH、膨張弁開度のタイムチャートを示す。
Inhalation SH = 11a-12a
FIG. 4 shows a time chart of the rotation speed of the outdoor fan 6 during the heating operation, the evaporating pressure of the refrigerant, the detected temperature of the outdoor heat exchanger temperature sensor 11, the suction SH, and the expansion valve opening degree.

暖房運転において、冷媒の蒸発側は室外熱交換器であって殆ど二相領域となっており、蒸発圧力に相当する飽和温度が熱交換器温度となっている。 図において、室外熱交換器温度が零度未満を5分連続検知した場合に着霜と判断し、制御装置20から室外ファンへ指令を送り、回転数を200rpm上昇させる。   In the heating operation, the evaporation side of the refrigerant is an outdoor heat exchanger, which is almost a two-phase region, and the saturation temperature corresponding to the evaporation pressure is the heat exchanger temperature. In the figure, when the outdoor heat exchanger temperature is continuously detected for less than zero degrees for 5 minutes, it is determined that frost is formed, and a command is sent from the control device 20 to the outdoor fan to increase the rotational speed by 200 rpm.

このことにより、空気が冷媒へ与える放熱量と冷媒が空気からもらう吸熱量のバランスを保つため、冷媒の蒸発圧力は上昇する。それと共に、一時的に吸熱量が増加するため、冷媒側のエンタルピも増加して圧縮機吸入温度12aが上昇し、吸入SHも上昇する。   Thus, the evaporation pressure of the refrigerant rises in order to maintain a balance between the amount of heat released by the air to the refrigerant and the amount of heat absorbed by the refrigerant from the air. At the same time, since the amount of heat absorption temporarily increases, the enthalpy on the refrigerant side also increases, the compressor suction temperature 12a rises, and the suction SH also rises.

吸入SHが増加すると、SHを約5℃に保つために膨張弁開度は開かれる。すると、ますます冷媒の蒸発圧力は上昇し、ついには蒸発圧力に相当する飽和温度が零度以上となる。従って、室外熱交換器温度も零度以上となり、この状態が数分継続することにより室外熱交換器についた霜は融解・流下し、暖房運転初期の室外熱交換器の状態となる。こうして、室外熱交換器に付着した霜を融かして、連続的に暖房運転を続けることが可能となる。   As the intake SH increases, the expansion valve opening is opened to keep the SH at about 5 ° C. Then, the evaporating pressure of the refrigerant increases further, and finally the saturation temperature corresponding to the evaporating pressure becomes zero degrees or more. Accordingly, the temperature of the outdoor heat exchanger becomes zero or more, and when this state continues for several minutes, the frost attached to the outdoor heat exchanger is melted and flows down, and the state of the outdoor heat exchanger at the initial stage of the heating operation is obtained. Thus, it is possible to melt the frost adhering to the outdoor heat exchanger and continue the heating operation continuously.

なお、室外温度が4℃以上の場合には、霜を融かすために蒸発圧力が上昇しても十分な吸熱量が確保できるため、暖房能力および室温を著しく低下させることなく室外の熱交換器に付いた霜を取り除くことができる。   When the outdoor temperature is 4 ° C. or higher, a sufficient heat absorption amount can be secured even if the evaporation pressure is increased to melt frost, so that the outdoor heat exchanger is not significantly reduced without significantly reducing the heating capacity and room temperature. Can remove frost on the surface.

一方、室外温度が4℃未満で、室温が設定温度近傍に到達していない場合は高暖房能力運転を行っており、上記制御を行うことにより、設定温度に到達する時間が遅くなったり、著しく室温の低下を招く恐れがある。しかしながら、室外温度が4℃未満で、室温が設定温度近傍に到達している場合は、既に低暖房能力運転を安定的に行っているため、上記制御による暖房能力の低下は限りなく小さい。   On the other hand, when the outdoor temperature is less than 4 ° C. and the room temperature does not reach the set temperature, the high heating capacity operation is performed. By performing the above control, the time to reach the set temperature is delayed or remarkably increased. There is a risk of lowering the room temperature. However, when the outdoor temperature is less than 4 ° C. and the room temperature has reached the vicinity of the set temperature, since the low heating capacity operation has already been stably performed, the decrease in the heating capacity due to the above control is extremely small.

従って、室外温度が4℃未満で、室温が設定温度近傍に到達している場合は、比較的すぐに室外熱交換器に着霜し始めるため、15分に1回の周期で定期的に上記制御を行い、室外熱交換器に付いた霜を取り除くことにより、連続的に暖房運転を続けることが可能となる。
(実施の形態3)
図5は、本発明の実施の形態3における空気調和機の冷凍サイクル図である。同図において、室内ファン7と室内風向羽根8が追加となっている以外は、図3と同じ番号・同じ機能であるので説明を省略する。また、冷凍サイクルの流れについても同様であるので説明を省略する。
Therefore, when the outdoor temperature is less than 4 ° C. and the room temperature has reached the vicinity of the set temperature, the outdoor heat exchanger begins to form frost relatively quickly, so that the above is periodically performed once every 15 minutes. By performing control and removing frost attached to the outdoor heat exchanger, it becomes possible to continue the heating operation continuously.
(Embodiment 3)
FIG. 5 is a refrigeration cycle diagram of the air conditioner according to Embodiment 3 of the present invention. In the same figure, since the same number and the same function as FIG. 3 except the indoor fan 7 and the indoor wind direction blade | wing 8 are added, description is abbreviate | omitted. Moreover, since it is the same also about the flow of a refrigerating cycle, description is abbreviate | omitted.

図6は、本発明の実施の形態3における暖房運転中の室外ファン6の回転数、冷媒の蒸発圧力、室外熱交換器温度センサー11の検出温度、吸入SH、膨張弁開度、室内風量のタイムチャートを示す。なお、暖房運転中の膨張弁制御についは、実施の形態2と同じようにSH制御を行っているものとする。   FIG. 6 shows the rotational speed of the outdoor fan 6 during the heating operation, the evaporating pressure of the refrigerant, the detected temperature of the outdoor heat exchanger temperature sensor 11, the intake SH, the expansion valve opening degree, and the indoor air volume in the third embodiment of the present invention. A time chart is shown. In addition, regarding the expansion valve control during the heating operation, it is assumed that SH control is performed as in the second embodiment.

暖房運転において、冷媒の蒸発側は室外熱交換器であって殆ど二相領域となっており、蒸発圧力に相当する飽和温度が熱交換器温度となっている。 図において、室外熱交換器温度が零度未満を5分連続検知した場合に着霜と判断し、制御装置20から室外ファンへ指令を送り、回転数を200rpm上昇させる。   In the heating operation, the evaporation side of the refrigerant is an outdoor heat exchanger, which is almost a two-phase region, and the saturation temperature corresponding to the evaporation pressure is the heat exchanger temperature. In the figure, when the outdoor heat exchanger temperature is continuously detected for less than zero degrees for 5 minutes, it is determined that frost is formed, and a command is sent from the control device 20 to the outdoor fan to increase the rotational speed by 200 rpm.

このことにより、空気が冷媒へ与える放熱量と冷媒が空気からもらう吸熱量のバランスを保つため、冷媒の蒸発圧力は上昇する。それと共に、一時的に吸熱量が増加するため、冷媒側のエンタルピも増加して圧縮機吸入温度12aが上昇し、吸入SHも上昇する。   Thus, the evaporation pressure of the refrigerant rises in order to maintain a balance between the amount of heat released by the air to the refrigerant and the amount of heat absorbed by the refrigerant from the air. At the same time, since the amount of heat absorption temporarily increases, the enthalpy on the refrigerant side also increases, the compressor suction temperature 12a rises, and the suction SH also rises.

吸入SHが増加すると、SHを約5℃に保つために膨張弁開度は開かれる。すると、ますます冷媒の蒸発圧力は上昇し、ついには蒸発圧力に相当する飽和温度が零度以上となる。この時、凝縮圧力は低下する方向へ動くため、それに伴って暖房能力が低下するのを補うよう、室内ファン7の回転数を低下させるか室内風向羽根角度を変化させるかどちらかにより、室内風量を低下させる。それにより、凝縮圧力を維持して暖房能力ひいては室温を維持することができ、室外熱交換器温度も零度以上となり、この状態が数分継続することにより室外熱交換器についた霜は融解・流下し、暖房運転初期の室外熱交換器の状態となる。こうして、室外熱交換器に付着した霜を融かして、連続的に暖房運転を続けるだけでなく、室温の低下を限りなく小さくすることが可能となる。   As the intake SH increases, the expansion valve opening is opened to keep the SH at about 5 ° C. Then, the evaporating pressure of the refrigerant increases further, and finally the saturation temperature corresponding to the evaporating pressure becomes zero degrees or more. At this time, since the condensing pressure moves in a decreasing direction, the indoor air volume is reduced by either reducing the rotational speed of the indoor fan 7 or changing the indoor wind direction blade angle so as to compensate for the accompanying decrease in the heating capacity. Reduce. As a result, the condensing pressure can be maintained to maintain the heating capacity and thus the room temperature, and the outdoor heat exchanger temperature becomes zero degrees or more, and when this state continues for several minutes, the frost on the outdoor heat exchanger is melted and flowed down. And it will be in the state of the outdoor heat exchanger of the heating operation initial stage. In this way, it is possible not only to melt the frost adhering to the outdoor heat exchanger and continue the heating operation continuously, but also to reduce the decrease in room temperature as much as possible.

本発明の第一の実施形態を示す空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner showing the first embodiment of the present invention 本発明の第一の実施形態を示すタイムチャートTime chart showing the first embodiment of the present invention 本発明の第二の実施形態を示す空気調和機の冷凍サイクル図Refrigeration cycle diagram of an air conditioner showing a second embodiment of the present invention 本発明の第二の実施形態を示すタイムチャートTime chart showing the second embodiment of the present invention 本発明の第三の実施形態を示す空気調和機の冷凍サイクル図Refrigeration cycle diagram of an air conditioner showing a third embodiment of the present invention 本発明の第三の実施形態を示すタイムチャートTime chart showing the third embodiment of the present invention

符号の説明Explanation of symbols

1 圧縮機
6 室外ファン
7 室内ファン
8 室内風向羽根
11 室外熱交換器温度センサー
12 圧縮機吸入温度センサー
DESCRIPTION OF SYMBOLS 1 Compressor 6 Outdoor fan 7 Indoor fan 8 Indoor wind direction blade 11 Outdoor heat exchanger temperature sensor 12 Compressor intake temperature sensor

Claims (4)

室外熱交換器を有し暖房運転を行うことができる冷凍サイクルを有する空気調和機であって、暖房運転時において前記室外熱交換器への着霜を検知した後に蒸発圧力を熱交換器の温度が零度以上になるように上昇させる制御手段を有することを特徴とする空気調和機。 An air conditioner having an outdoor heat exchanger and having a refrigeration cycle capable of performing a heating operation, wherein the evaporating pressure is set to the temperature of the heat exchanger after detecting frost formation on the outdoor heat exchanger during the heating operation. An air conditioner having control means for raising so that the air temperature becomes zero degrees or more. 室外温度が所定温度以上の場合に上記制御手段により蒸発圧力を上昇させることを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the evaporation pressure is increased by the control means when the outdoor temperature is equal to or higher than a predetermined temperature. 室外温度が所定温度未満で、かつ室温が設定温度近傍に到達している場合には、前記制御手段により蒸発圧力を所定周期で上昇させることを特徴とする請求項1に記載の空気調和機。 2. The air conditioner according to claim 1, wherein when the outdoor temperature is lower than a predetermined temperature and the room temperature reaches a set temperature, the control unit increases the evaporation pressure at a predetermined cycle. 室外温度が所定温度未満で、かつ室温が設定温度近傍に到達している場合には、凝縮圧力を上昇させながら所定室内温度範囲内になるように前記制御手段により蒸発圧力を上昇させることを特徴とする請求項1に記載の空気調和機。 When the outdoor temperature is lower than the predetermined temperature and the room temperature has reached the set temperature, the evaporation pressure is increased by the control means so as to be within the predetermined indoor temperature range while increasing the condensation pressure. The air conditioner according to claim 1.
JP2003313949A 2003-09-05 2003-09-05 Air conditioner Pending JP2005083616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313949A JP2005083616A (en) 2003-09-05 2003-09-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313949A JP2005083616A (en) 2003-09-05 2003-09-05 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005083616A true JP2005083616A (en) 2005-03-31

Family

ID=34414718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313949A Pending JP2005083616A (en) 2003-09-05 2003-09-05 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005083616A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008354A (en) * 2007-06-29 2009-01-15 Sharp Corp Air conditioner
JP2010002127A (en) * 2008-06-20 2010-01-07 Denso Corp Refrigerating cycle device
JP2011052883A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Air conditioner
JP2011202812A (en) * 2010-03-24 2011-10-13 Toshiba Carrier Corp Air conditioner
JP2013185804A (en) * 2012-03-12 2013-09-19 Panasonic Corp Heat pump device
JP2014233475A (en) * 2013-06-03 2014-12-15 株式会社東芝 Clothes dryer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008354A (en) * 2007-06-29 2009-01-15 Sharp Corp Air conditioner
JP2010002127A (en) * 2008-06-20 2010-01-07 Denso Corp Refrigerating cycle device
JP2011052883A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Air conditioner
JP2011202812A (en) * 2010-03-24 2011-10-13 Toshiba Carrier Corp Air conditioner
JP2013185804A (en) * 2012-03-12 2013-09-19 Panasonic Corp Heat pump device
JP2014233475A (en) * 2013-06-03 2014-12-15 株式会社東芝 Clothes dryer

Similar Documents

Publication Publication Date Title
JP5709993B2 (en) Refrigeration air conditioner
US9217587B2 (en) Air conditioner
JP2008082589A (en) Air conditioner
AU2002332260B2 (en) Air conditioner
JP4475655B2 (en) Air conditioner
JPWO2019073514A1 (en) Refrigeration cycle device
JP2003240391A (en) Air conditioner
JP5071100B2 (en) Air conditioner
JP4273956B2 (en) How to operate the dehumidifier
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP4328892B2 (en) Temperature and humidity control device and environmental test device
JP4622901B2 (en) Air conditioner
WO2020189586A1 (en) Refrigeration cycle device
JP2003314854A (en) Air conditioner
JP2005083616A (en) Air conditioner
CA2672747C (en) Forced-air cross-defrost type air-conditioning system
CN113669844A (en) Air conditioner and control method thereof
JP2005037052A (en) Air conditioner
JP6895919B2 (en) Environment forming device and environment forming method
JP2005257164A (en) Cooler
JP2007040589A (en) Air conditioner
JP2007010254A (en) Air conditioner
JP2018204935A (en) Freezer
JPH06337176A (en) Air-conditioner
JPH06281273A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217