JP2007040589A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007040589A
JP2007040589A JP2005224253A JP2005224253A JP2007040589A JP 2007040589 A JP2007040589 A JP 2007040589A JP 2005224253 A JP2005224253 A JP 2005224253A JP 2005224253 A JP2005224253 A JP 2005224253A JP 2007040589 A JP2007040589 A JP 2007040589A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
air conditioner
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005224253A
Other languages
Japanese (ja)
Inventor
Tetsuya Sato
哲也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005224253A priority Critical patent/JP2007040589A/en
Publication of JP2007040589A publication Critical patent/JP2007040589A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of reducing refrigerant noise. <P>SOLUTION: When a difference Tmax-Tmin between a max value Tmax and a minimum value Tmin out of outlet temperatures T1-TN of a plurality of refrigerant circuits 8.1-8.N of an outdoor heat exchanger 5 exceeds a predetermined temperature Ts (for example 8°C) (S3), the air conditioner determines that a possibility of occurrence of the refrigerant noise is high because refrigerants in different conditions flow in the refrigerant circuits 8.1-8.N, and reduces a rotation number of a compressor 6 (S4) to reduce a circulating volume of the refrigerant and reduce the refrigerant noise. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は空気調和機に関し、特に、室外熱交換器に着霜した場合に除霜運転を行なう空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that performs a defrosting operation when frost is formed on an outdoor heat exchanger.

従来より、空気調和機では、室内熱交換器で凝縮した冷媒を減圧装置で減圧して室外熱交換器に与え、その室外熱交換器で蒸発した冷媒を圧縮機で圧縮して高温の冷媒を室内熱交換器に与え、室内暖房を行なっている。また、室外熱交換器に着霜した場合は、室外熱交換器で凝縮した冷媒を減圧装置で減圧して室内熱交換器に与え、その室内熱交換器で蒸発した冷媒を圧縮機で圧縮して高温の冷媒を室外熱交換器に与え、室外熱交換器に着霜した霜を解かし除霜運転を行う(たとえば特許文献1参照)。
特開2003−172560号公報
Conventionally, in an air conditioner, the refrigerant condensed in the indoor heat exchanger is decompressed by a decompression device and given to the outdoor heat exchanger, and the refrigerant evaporated in the outdoor heat exchanger is compressed by the compressor to convert the high-temperature refrigerant. It is given to the indoor heat exchanger to heat the room. In addition, when the outdoor heat exchanger is frosted, the refrigerant condensed in the outdoor heat exchanger is decompressed by the decompression device and given to the indoor heat exchanger, and the refrigerant evaporated in the indoor heat exchanger is compressed by the compressor. Then, a high-temperature refrigerant is applied to the outdoor heat exchanger, and the defrosting operation is performed by defrosting the frost formed on the outdoor heat exchanger (see, for example, Patent Document 1).
JP 2003-172560 A

しかし、室外熱交換器が並列接続された複数の冷媒回路(パス)を有する場合は、除霜時において冷媒回路間で冷媒が室外熱交換器に着霜した霜を解かしながら凝縮(液化)していく度合いに差が生じた場合、完全に液化した冷媒、完全に液化していない2相(液とガスが混ざりあった)冷媒、霜を解かし終わった回路を流れるため凝縮しないままの冷媒が冷媒回路の合流部に流れることになる。このような異なる状態の冷媒が合流部、もしくは減圧装置部分(膨張弁やキャピラリチューブ)、室内熱交換器に流れ込むと、その部分での冷媒音の発生の原因となることがある。   However, when the outdoor heat exchanger has a plurality of refrigerant circuits (paths) connected in parallel, the refrigerant is condensed (liquefied) while defrosting the frost formed on the outdoor heat exchanger between the refrigerant circuits during defrosting. If there is a difference in the degree of aging, the refrigerant that is completely liquefied, the two-phase refrigerant that is not completely liquefied (liquid and gas are mixed), and the refrigerant that has not condensed because it flows through the circuit that has defrosted It will flow to the junction of the refrigerant circuit. When the refrigerant in such a different state flows into the merging portion, the decompression device portion (expansion valve or capillary tube), or the indoor heat exchanger, it may cause the generation of refrigerant noise in that portion.

それゆえに、この発明の主たる目的は、冷媒音の軽減化を図ることが可能な空気調和機を提供することである。   Therefore, a main object of the present invention is to provide an air conditioner capable of reducing refrigerant noise.

この発明に係る空気調和機は、暖房時は、室内熱交換器で凝縮した冷媒を減圧装置で減圧して室外熱交換器に与え、該室外熱交換器で蒸発した冷媒を圧縮機で圧縮して室内熱交換器に与え、室外熱交換器の除霜時は、室外熱交換器で凝縮した冷媒を減圧装置で減圧して室内熱交換器に与え、該室内熱交換器で蒸発した冷媒を圧縮機で圧縮して室外熱交換器に与える空気調和機において、室外熱交換器は、並列接続された複数の冷媒回路を含み、空気調和器は、それぞれ複数の冷媒回路の除霜時に冷媒の出口となる部分の温度を検出する複数の温度センサと、室外熱交換器の除霜時に複数の温度センサの検出値の最高値と最低値との差が予め定められた温度を超えたことに応じて、圧縮機の駆動回転数を低下させる制御部とを備えたことを特徴とする。   In the air conditioner according to the present invention, during heating, the refrigerant condensed in the indoor heat exchanger is decompressed by the decompression device and given to the outdoor heat exchanger, and the refrigerant evaporated in the outdoor heat exchanger is compressed by the compressor. When the outdoor heat exchanger is defrosted, the refrigerant condensed in the outdoor heat exchanger is depressurized by the decompression device and applied to the indoor heat exchanger, and the refrigerant evaporated in the indoor heat exchanger is removed. In an air conditioner that is compressed by a compressor and applied to an outdoor heat exchanger, the outdoor heat exchanger includes a plurality of refrigerant circuits connected in parallel, and each of the air conditioners has a refrigerant flow during defrosting of the plurality of refrigerant circuits. The difference between the maximum value and the minimum value of the detection values of the multiple temperature sensors that detect the temperature of the outlet part and the multiple temperature sensors during defrosting of the outdoor heat exchanger exceeded the predetermined temperature. And a controller for reducing the drive rotational speed of the compressor To.

好ましくは、減圧装置は、室内熱交換器と室外熱交換器の間に設けられた膨張弁であり、制御部は、さらに、室外熱交換器の除霜時に複数の温度センサの検出値の最高値と最低値との差が予め定められた温度を超えたことに応じて、膨張弁の開度を閉じる方向に制御する。   Preferably, the decompression device is an expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger, and the control unit further includes a maximum of detection values of the plurality of temperature sensors during defrosting of the outdoor heat exchanger. The opening degree of the expansion valve is controlled to close in response to the difference between the value and the minimum value exceeding a predetermined temperature.

この発明に係る空気調和機は、暖房時は、室内熱交換器で凝縮した冷媒を膨張弁で減圧して室外熱交換器に与え、該室外熱交換器で蒸発した冷媒を圧縮機で圧縮して室内熱交換器に与え、室外熱交換器の除霜時は、室外熱交換器で凝縮した冷媒を膨張弁で減圧して室内熱交換器に与え、該室内熱交換器で蒸発した冷媒を圧縮機で圧縮して室外熱交換器に与える空気調和機において、室外熱交換器は、並列接続された複数の冷媒回路を含み、空気調和器は、それぞれ複数の冷媒回路の除霜時に冷媒の出口となる部分の温度を検出する複数の温度センサと、室外熱交換器の除霜時に複数の温度センサの検出値の最高値と最低値との差が予め定められた温度を超えたことに応じて、膨張弁の開度を閉じる方向に制御する制御部とを備えたことを特徴とする。   In the air conditioner according to the present invention, during heating, the refrigerant condensed in the indoor heat exchanger is decompressed by the expansion valve and supplied to the outdoor heat exchanger, and the refrigerant evaporated in the outdoor heat exchanger is compressed by the compressor. When the outdoor heat exchanger is defrosted, the refrigerant condensed in the outdoor heat exchanger is decompressed by the expansion valve and supplied to the indoor heat exchanger, and the refrigerant evaporated in the indoor heat exchanger is removed. In an air conditioner that is compressed by a compressor and applied to an outdoor heat exchanger, the outdoor heat exchanger includes a plurality of refrigerant circuits connected in parallel, and each of the air conditioners has a refrigerant flow during defrosting of the plurality of refrigerant circuits. The difference between the maximum value and the minimum value of the detection values of the multiple temperature sensors that detect the temperature of the outlet part and the multiple temperature sensors during defrosting of the outdoor heat exchanger exceeded the predetermined temperature. And a control unit that controls the opening degree of the expansion valve in a closing direction. To.

この発明に係る空気調和機では、除霜時において冷媒回路間で冷媒が室外熱交換器に着霜した霜を解かしながら凝縮(液化)していく度合いに差が生じた場合、完全に液化した冷媒の温度は2相状態(液とガスが混ざりあった状態)の冷媒の温度よりも低く、霜を解かし終わった回路を流れる凝縮しないままの冷媒の温度は2相状態の冷媒の温度よりも高い。室外熱交換器の複数の冷媒回路の出口の温度を検知し最高値と最低値との差が予め定められた温度を超えたときに、合流部には異なる状態の冷媒が流れ冷媒音発生の可能性が高いと判断し、圧縮機の駆動回転数を低下させるか、膨張弁の開度を閉じる方向に制御するか、それらの両方を行なって冷媒の循環量を低下させるので、冷媒音の軽減化を図ることができる。   In the air conditioner according to the present invention, when there is a difference in the degree to which the refrigerant is condensed (liquefied) while defrosting the frost formed on the outdoor heat exchanger between the refrigerant circuits during defrosting, the refrigerant is completely liquefied. The temperature of the refrigerant is lower than the temperature of the refrigerant in the two-phase state (a state where the liquid and gas are mixed), and the temperature of the uncondensed refrigerant flowing through the circuit that has finished defrosting is lower than the temperature of the refrigerant in the two-phase state high. When the temperatures at the outlets of the plurality of refrigerant circuits of the outdoor heat exchanger are detected and the difference between the maximum value and the minimum value exceeds a predetermined temperature, refrigerant in different states flows in the junction and refrigerant noise is generated. Since it is judged that the possibility is high and the driving speed of the compressor is reduced, the opening degree of the expansion valve is controlled to close, or both of them are performed to reduce the circulation amount of the refrigerant, Reduction can be achieved.

[実施の形態1]
図1は、この発明の実施の形態1による空気調和機の構成を示す冷媒回路図である。図1において、この空気調和機は、室内送風機1、室内熱交換器2、キャピラリーチューブ3、室外送風機4、室外熱交換器5、圧縮機6、および四方弁7を備える。
[Embodiment 1]
FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner according to Embodiment 1 of the present invention. In FIG. 1, the air conditioner includes an indoor blower 1, an indoor heat exchanger 2, a capillary tube 3, an outdoor blower 4, an outdoor heat exchanger 5, a compressor 6, and a four-way valve 7.

室内送風機1は、室内空気を室内熱交換器2に供給する。室内熱交換器2は、室内送風機1から供給された室内空気と冷媒の熱交換を行なう。キャピラリーチューブ3は、冷媒の圧力を低減させる。室外送風機4は、室外空気を室外熱交換器5に供給する。室外熱交換器5は、室外送風機4から供給された室外空気と冷媒の熱交換を行なう。圧縮機6は、冷媒を圧縮する。四方弁7は、暖房時と除霜時で冷媒の流れる方向を切換える。   The indoor blower 1 supplies room air to the indoor heat exchanger 2. The indoor heat exchanger 2 performs heat exchange between the indoor air supplied from the indoor blower 1 and the refrigerant. The capillary tube 3 reduces the pressure of the refrigerant. The outdoor blower 4 supplies outdoor air to the outdoor heat exchanger 5. The outdoor heat exchanger 5 performs heat exchange between the outdoor air supplied from the outdoor blower 4 and the refrigerant. The compressor 6 compresses the refrigerant. The four-way valve 7 switches the direction of refrigerant flow during heating and defrosting.

暖房時は、四方弁7は図中点線の経路で冷媒を流す。室外熱交換器5で室外空気より熱を吸収し蒸発した冷媒は、四方弁7を介して圧縮機6に与えられる。圧縮機6で圧縮された高温の冷媒は、室内熱交換器2で室内空気に熱を与えて凝縮(液化)する。これにより、室内空気が暖められる。室内熱交換器2で凝縮した冷媒は、キャピラリーチューブ3で減圧されて室外熱交換器5に与えられ、室外熱交換器5を介して室外空気の熱を吸収し、蒸発(気化)する。   At the time of heating, the four-way valve 7 allows the refrigerant to flow along the dotted line in the figure. The refrigerant that has absorbed heat from the outdoor air and evaporated in the outdoor heat exchanger 5 is given to the compressor 6 via the four-way valve 7. The high-temperature refrigerant compressed by the compressor 6 condenses (liquefies) the indoor heat exchanger 2 by applying heat to the indoor air. Thereby, room air is warmed. The refrigerant condensed in the indoor heat exchanger 2 is decompressed by the capillary tube 3 and given to the outdoor heat exchanger 5, absorbs the heat of the outdoor air through the outdoor heat exchanger 5, and evaporates (vaporizes).

室外熱交換器5に霜が付着すると、室外熱交換器5の熱交換効率が低下し暖房の効果も低下する。そこで、たとえば室外熱交換器5の温度が所定値以下になった場合は、室外熱交換器5に着霜したと判断して除霜運転を行う。   When frost adheres to the outdoor heat exchanger 5, the heat exchange efficiency of the outdoor heat exchanger 5 is lowered, and the heating effect is also lowered. Therefore, for example, when the temperature of the outdoor heat exchanger 5 becomes a predetermined value or less, it is determined that the outdoor heat exchanger 5 has been frosted, and the defrosting operation is performed.

除霜時は、四方弁7は図中実線の経路で冷媒を流し、送風機1,4は駆動停止される。室内熱交換器2で蒸発した冷媒は、四方弁7を介して圧縮機6に与えられる。圧縮機6で圧縮された高温の冷媒は、室外熱交換器5に熱を与えて凝縮(液化)する。これにより、室外熱交換器5が暖められて、除霜される。室外熱交換器5で凝縮した冷媒は、キャピラリーチューブ3で減圧されて室内熱交換器2に与えられ、室内熱交換器2を介して室内空気の熱を吸収し、蒸発(気化)する。   At the time of defrosting, the four-way valve 7 causes the refrigerant to flow along the path indicated by the solid line in the figure, and the fans 1 and 4 are stopped. The refrigerant evaporated in the indoor heat exchanger 2 is given to the compressor 6 through the four-way valve 7. The high-temperature refrigerant compressed by the compressor 6 gives heat to the outdoor heat exchanger 5 to condense (liquefy). Thereby, the outdoor heat exchanger 5 is warmed and defrosted. The refrigerant condensed in the outdoor heat exchanger 5 is decompressed by the capillary tube 3 and given to the indoor heat exchanger 2, absorbs the heat of the indoor air through the indoor heat exchanger 2, and evaporates (vaporizes).

図2は、室外熱交換器5の構成を示す図である。図2において、この室外熱交換器5は、並列接続されたN個(ただし、Nは2以上の整数である)の冷媒回路8.1〜8.Nを含む。図2中の矢印は、除霜時において冷媒が流れる方向を示している。冷媒回路8.1〜8.Nの出口の配管には、それぞれ温度センサ9.1〜9.Nが設けられている。各回路の出口配管は合流部にてまとめられ、キャピラリーチューブ3へとつながっている。   FIG. 2 is a diagram illustrating a configuration of the outdoor heat exchanger 5. 2, this outdoor heat exchanger 5 includes N refrigerant circuits 8.1 to 8.N connected in parallel (where N is an integer of 2 or more). N is included. The arrows in FIG. 2 indicate the direction in which the refrigerant flows during defrosting. Refrigerant circuit 8.1-8. N outlet pipes have temperature sensors 9.1 to 9. N is provided. The outlet piping of each circuit is collected at the junction and connected to the capillary tube 3.

図3は、この空気調和機の構成を示すブロック図である。図3において、この空気調和機は、図1および図2で示したものに加え、操作部10および制御部11を備える。操作部10は、電源スイッチ、温度調節キー、風量調節キー、タイマなどを含む。制御部11は、ユーザから操作部10を介して入力された指示、温度センサ9.1〜9.Nの検出結果などに従って、送風機1,4の送風量の制御、圧縮機6の駆動周波数の制御、四方弁7の切換えなどを行なう。   FIG. 3 is a block diagram showing the configuration of the air conditioner. In FIG. 3, the air conditioner includes an operation unit 10 and a control unit 11 in addition to those shown in FIGS. 1 and 2. The operation unit 10 includes a power switch, a temperature adjustment key, an air volume adjustment key, a timer, and the like. The control unit 11 includes instructions input from the user via the operation unit 10 and temperature sensors 9.1 to 9. According to the detection result of N, etc., control of the air volume of the blowers 1 and 4, control of the driving frequency of the compressor 6, switching of the four-way valve 7 and the like are performed.

図4は、除霜運転時における制御部11の動作を示すフローチャートである。制御部11は、ステップS1において圧縮機6の駆動を開始させ、圧縮機6の駆動周波数すなわち回転数を初期値にセットする。ステップS2において温度センサ9.1〜9.Nの検出値T1〜TNのうちの最低値Tminが所定温度Te(たとえば17℃)よりも高いか否かを判別し、Tmin>Teである場合は冷媒回路8.1〜8.Nの霜が取れて温度が高くなったと判断して除霜運転を終了し、Tmin>Teでない場合は霜がまだ取れていない冷媒回路があると判断してステップS3に進む。   FIG. 4 is a flowchart showing the operation of the control unit 11 during the defrosting operation. In step S1, the control unit 11 starts driving the compressor 6, and sets the driving frequency of the compressor 6, that is, the rotation speed, to an initial value. In step S2, the temperature sensors 9.1 to 9. It is determined whether or not the minimum value Tmin among the detected values T1 to TN of N is higher than a predetermined temperature Te (for example, 17 ° C.), and when Tmin> Te, the refrigerant circuits 8.1 to 8. The defrosting operation is terminated by determining that the temperature of the N frost has been removed and the temperature has increased. If Tmin> Te, it is determined that there is a refrigerant circuit in which frost has not yet been removed, and the process proceeds to step S3.

ステップS3において温度センサ9.1〜9.Nの検出値T1〜TNのうちの最高値Tmaxと最低値Tminの差Tmax−Tminが所定温度Ts(たとえば8℃)よりも高いか否かを判別し、Tmax−Tmin>Tsでない場合は冷媒回路8.1〜8.N内において同様の状態の冷媒が流れ冷媒音発生の可能性が低いと判断してステップS2に戻り、Tmax−Tmin>Tsである場合は冷媒回路8.1〜8.N内において異なる状態の冷媒が流れ冷媒音発生の可能性が高いと判断して圧縮機6の回転数を下げる。   In step S3, the temperature sensors 9.1 to 9. It is determined whether or not the difference Tmax−Tmin between the maximum value Tmax and the minimum value Tmin among the detected values T1 to TN of N is higher than a predetermined temperature Ts (for example, 8 ° C.). Circuits 8.1-8. N is determined that the refrigerant in the same state flows in N and the possibility of generation of the refrigerant noise is low, and the process returns to step S2. It is judged that the refrigerants in different states flow in N and the possibility of generating refrigerant noise is high, and the rotational speed of the compressor 6 is lowered.

霜が十分に取れて冷媒がガス状態で出て行く冷媒回路では出口温度が高くなるのに対し、まだ霜が取れておらず冷媒が液化されて出て行く冷媒回路では出口温度が低くなる。したがって、冷媒回路間で出口温度の差が大きい場合は、ガスと液の冷媒がキャピラリーチューブ3を介して室内熱交換器2に供給され、冷媒音が発生する原因となる。そこで、Tmax−Tmin>Tsである場合は、圧縮機6の回転数をあらかじめ設定した回転数に下げて冷媒の循環量を低減化し、冷媒音の発生を緩和する。ステップS5では、Tmin>Teとなるのを待機し、Tmin>Teとなった場合は除霜運転を停止する。   In the refrigerant circuit in which the frost is sufficiently removed and the refrigerant exits in a gas state, the outlet temperature is high, whereas in the refrigerant circuit in which the frost is not yet removed and the refrigerant exits, the outlet temperature is low. Therefore, when the difference in the outlet temperature between the refrigerant circuits is large, the refrigerant of gas and liquid is supplied to the indoor heat exchanger 2 via the capillary tube 3 and causes a refrigerant sound. Therefore, when Tmax−Tmin> Ts, the number of rotations of the compressor 6 is lowered to a preset number of rotations to reduce the circulation amount of the refrigerant, thereby mitigating the generation of refrigerant noise. In step S5, it waits until Tmin> Te, and when Tmin> Te, the defrosting operation is stopped.

図5は温度センサ8.1,8.Nの検出値T1,TNの時間変化を例示するタイムチャートであり、図6はTmax−Tminの時間変化を例示するタイムチャートである。図5および図6において、圧縮機6の回転数が初期値(5000rpm)に設定されて暖かい冷媒が室外熱交換器5に供給されると、冷媒回路8.1〜8.Nの霜が融け始める。霜が融けて生じた冷水は下方に流れ落ちるので、その冷水の影響により、通常は上側の冷媒回路8.1よりも下側の冷媒回路8.Nの方が温度上昇が遅くなることが多い。   FIG. 5 shows temperature sensors 8.1, 8,. FIG. 6 is a time chart illustrating the time change of the detected values T1, TN of N, and FIG. 6 is a time chart illustrating the time change of Tmax−Tmin. 5 and 6, when the rotation speed of the compressor 6 is set to the initial value (5000 rpm) and warm refrigerant is supplied to the outdoor heat exchanger 5, the refrigerant circuits 8.1 to 8. N's frost begins to melt. Since the cold water generated by melting of the frost flows down, the refrigerant circuit 8 is usually lower than the upper refrigerant circuit 8.1 due to the cold water. N often has a slower temperature rise.

図5では、冷媒回路8.1の出口温度T1がまず上昇を開始し、冷媒回路8.Nの出口温度TNが遅れて上昇を開始している状態が示されている。T1−TN=Tmax−Tminが所定温度(Ts=8℃)を超えると、冷媒音が発生すると判断し、圧縮機6の回転数を5000rpmから4000rpmに低下させる。これにより、冷媒の循環量が低下して冷媒音が軽減される。TN=Tminが所定温度(Te=17℃)を超えると、除霜運転を終了する。   In FIG. 5, the outlet temperature T1 of the refrigerant circuit 8.1 first starts to rise, and the refrigerant circuit 8. A state is shown in which the outlet temperature TN of N starts to rise with a delay. When T1-TN = Tmax-Tmin exceeds a predetermined temperature (Ts = 8 ° C.), it is determined that refrigerant noise is generated, and the rotational speed of the compressor 6 is reduced from 5000 rpm to 4000 rpm. Thereby, the circulation amount of a refrigerant | coolant falls and a refrigerant | coolant sound is reduced. When TN = Tmin exceeds a predetermined temperature (Te = 17 ° C.), the defrosting operation is terminated.

[実施の形態2]
図7は、この発明の実施の形態2による空気調和機の構成を示す冷媒回路図であって、図1と対比される図である。図7を参照して、この空気調和機が図1の空気調和機と異なる点は、キャピラリーチューブ3が膨張弁12で置換されている点である。膨張弁12の開度は、図3で示した制御部11によって制御される。膨張弁12は、冷媒の圧力を低減させると共に冷媒の循環量を調整する。
[Embodiment 2]
FIG. 7 is a refrigerant circuit diagram showing a configuration of an air conditioner according to Embodiment 2 of the present invention, and is a diagram contrasted with FIG. With reference to FIG. 7, this air conditioner differs from the air conditioner of FIG. 1 in that the capillary tube 3 is replaced with an expansion valve 12. The opening degree of the expansion valve 12 is controlled by the control unit 11 shown in FIG. The expansion valve 12 adjusts the circulation amount of the refrigerant while reducing the pressure of the refrigerant.

図8は、この空気調和機の制御部11の動作を示すフローチャートであって、図4と対比される図である。図8を参照して図4と異なる点は、ステップS1において膨張弁12の開度を初期値にセットする点と、ステップS4において圧縮機6の回転数を下げる代わりに膨張弁12の開度を下げる点である。膨張弁12の開度を下げる(膨張弁12を閉じる方向に開度を所定値だけ変化させる)ことにより、冷媒の循環量を低下させて冷媒音を軽減させることができる。   FIG. 8 is a flowchart showing the operation of the control unit 11 of the air conditioner, and is a diagram to be compared with FIG. 8 differs from FIG. 4 in that the opening degree of the expansion valve 12 is set to an initial value in step S1, and the opening degree of the expansion valve 12 instead of lowering the rotational speed of the compressor 6 in step S4. It is a point to lower. By lowering the opening degree of the expansion valve 12 (changing the opening degree by a predetermined value in the direction in which the expansion valve 12 is closed), it is possible to reduce the refrigerant circulation amount and reduce the refrigerant sound.

図9は、この実施の形態2の変更例を示すフローチャートである。この変更例では、ステップS4において膨張弁12の開度を下げるとともに圧縮機6の回転数を下げる。図10に示すように、圧縮機6の回転数をA0からA1に下げ、膨張弁12の開度をB0からB1に下げる。   FIG. 9 is a flowchart showing a modification of the second embodiment. In this modified example, in step S4, the opening degree of the expansion valve 12 is lowered and the rotational speed of the compressor 6 is lowered. As shown in FIG. 10, the rotation speed of the compressor 6 is lowered from A0 to A1, and the opening degree of the expansion valve 12 is lowered from B0 to B1.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態1による空気調和機の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the air conditioner by Embodiment 1 of this invention. 図1に示した室外熱交換器の構成を示す図である。It is a figure which shows the structure of the outdoor heat exchanger shown in FIG. 図1に示した空気調和機の構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioner shown in FIG. 図3に示した制御部の除霜時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of defrosting of the control part shown in FIG. 除霜時における冷媒回路の出口温度の時間変化を例示するタイムチャートである。It is a time chart which illustrates the time change of the exit temperature of a refrigerant circuit at the time of defrosting. 除霜時における冷媒回路の出口温度の最高値と最低値の差の時間変化を例示するタイムチャートである。It is a time chart which illustrates the time change of the difference of the maximum value and the minimum value of the exit temperature of a refrigerant circuit at the time of defrosting. この発明の実施の形態2による空気調和機の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the air conditioner by Embodiment 2 of this invention. 図7に示した室外熱交換器の除霜時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of defrosting of the outdoor heat exchanger shown in FIG. 実施の形態2の変更例を示すフローチャートである。10 is a flowchart illustrating a modification example of the second embodiment. 図9で説明した空気調和機における圧縮機の回転数と膨張弁の開度との関係を示す図である。It is a figure which shows the relationship between the rotation speed of the compressor in the air conditioner demonstrated in FIG. 9, and the opening degree of an expansion valve.

符号の説明Explanation of symbols

1 室内送風機、2 室内熱交換器、3 キャピラリーチューブ、4 室外送風機、5 室外熱交換器、6 圧縮機、7 四方弁、8.1〜8.N 冷媒回路、9.1〜9.N 温度センサ、10 操作部、11 制御部、12 膨張弁。   DESCRIPTION OF SYMBOLS 1 Indoor blower, 2 Indoor heat exchanger, 3 Capillary tube, 4 Outdoor blower, 5 Outdoor heat exchanger, 6 Compressor, 7 Four-way valve, 8.1-8. N refrigerant circuit, 9.1-9. N temperature sensor, 10 operation unit, 11 control unit, 12 expansion valve.

Claims (3)

暖房時は、室内熱交換器で凝縮した冷媒を減圧装置で減圧して室外熱交換器に与え、該室外熱交換器で蒸発した冷媒を圧縮機で圧縮して前記室内熱交換器に与え、前記室外熱交換器の除霜時は、前記室外熱交換器で凝縮した冷媒を前記減圧装置で減圧して前記室内熱交換器に与え、該室内熱交換器で蒸発した冷媒を前記圧縮機で圧縮して前記室外熱交換器に与える空気調和機において、
前記室外熱交換器は、並列接続された複数の冷媒回路を含み、
前記空気調和器は、
それぞれ前記複数の冷媒回路の前記除霜時に冷媒の出口となる部分の温度を検出する複数の温度センサと、
前記室外熱交換器の除霜時に前記複数の温度センサの検出値の最高値と最低値との差が予め定められた温度を超えたことに応じて、前記圧縮機の駆動回転数を低下させる制御部とを備えたことを特徴とする、空気調和機。
At the time of heating, the refrigerant condensed in the indoor heat exchanger is decompressed by the decompression device and given to the outdoor heat exchanger, the refrigerant evaporated in the outdoor heat exchanger is compressed by the compressor and given to the indoor heat exchanger, During defrosting of the outdoor heat exchanger, the refrigerant condensed in the outdoor heat exchanger is depressurized by the decompression device and given to the indoor heat exchanger, and the refrigerant evaporated in the indoor heat exchanger is sent by the compressor In the air conditioner that compresses and applies to the outdoor heat exchanger,
The outdoor heat exchanger includes a plurality of refrigerant circuits connected in parallel,
The air conditioner
A plurality of temperature sensors for detecting temperatures of portions serving as refrigerant outlets during the defrosting of the plurality of refrigerant circuits, respectively;
When the difference between the maximum value and the minimum value of the detected values of the plurality of temperature sensors exceeds a predetermined temperature during defrosting of the outdoor heat exchanger, the drive rotational speed of the compressor is decreased. An air conditioner comprising a control unit.
前記減圧装置は、前記室内熱交換器と前記室外熱交換器の間に設けられた膨張弁であり、
前記制御部は、さらに、前記室外熱交換器の除霜時に前記複数の温度センサの検出値の最高値と最低値との差が予め定められた温度を超えたことに応じて、前記膨張弁の開度を閉じる方向に制御する、請求項1に記載の空気調和機。
The decompression device is an expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger,
The control unit further includes the expansion valve in response to a difference between a maximum value and a minimum value detected by the plurality of temperature sensors exceeding a predetermined temperature during defrosting of the outdoor heat exchanger. The air conditioner according to claim 1, wherein the air opening is controlled in a closing direction.
暖房時は、室内熱交換器で凝縮した冷媒を膨張弁で減圧して室外熱交換器に与え、該室外熱交換器で蒸発した冷媒を圧縮機で圧縮して前記室内熱交換器に与え、前記室外熱交換器の除霜時は、前記室外熱交換器で凝縮した冷媒を前記膨張弁で減圧して前記室内熱交換器に与え、該室内熱交換器で蒸発した冷媒を前記圧縮機で圧縮して前記室外熱交換器に与える空気調和機において、
前記室外熱交換器は、並列接続された複数の冷媒回路を含み、
前記空気調和器は、
それぞれ前記複数の冷媒回路の前記除霜時に冷媒の出口となる部分の温度を検出する複数の温度センサと、
前記室外熱交換器の除霜時に前記複数の温度センサの検出値の最高値と最低値との差が予め定められた温度を超えたことに応じて、前記膨張弁の開度を閉じる方向に制御する制御部とを備えたことを特徴とする、空気調和機。
At the time of heating, the refrigerant condensed in the indoor heat exchanger is decompressed by the expansion valve and given to the outdoor heat exchanger, the refrigerant evaporated in the outdoor heat exchanger is compressed by the compressor and given to the indoor heat exchanger, During defrosting of the outdoor heat exchanger, the refrigerant condensed in the outdoor heat exchanger is decompressed by the expansion valve and supplied to the indoor heat exchanger, and the refrigerant evaporated in the indoor heat exchanger is supplied by the compressor. In the air conditioner that compresses and applies to the outdoor heat exchanger,
The outdoor heat exchanger includes a plurality of refrigerant circuits connected in parallel,
The air conditioner
A plurality of temperature sensors for detecting temperatures of portions serving as refrigerant outlets during the defrosting of the plurality of refrigerant circuits, respectively;
When the difference between the maximum value and the minimum value of the detection values of the plurality of temperature sensors exceeds a predetermined temperature during defrosting of the outdoor heat exchanger, the opening degree of the expansion valve is closed. An air conditioner comprising a control unit for controlling.
JP2005224253A 2005-08-02 2005-08-02 Air conditioner Withdrawn JP2007040589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224253A JP2007040589A (en) 2005-08-02 2005-08-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224253A JP2007040589A (en) 2005-08-02 2005-08-02 Air conditioner

Publications (1)

Publication Number Publication Date
JP2007040589A true JP2007040589A (en) 2007-02-15

Family

ID=37798745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224253A Withdrawn JP2007040589A (en) 2005-08-02 2005-08-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP2007040589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
US11226149B2 (en) 2017-11-29 2022-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device
WO2014103407A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Air-conditioning device
JP5855284B2 (en) * 2012-12-28 2016-02-09 三菱電機株式会社 Air conditioner
US11226149B2 (en) 2017-11-29 2022-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
JP5363492B2 (en) Air conditioner
KR101199382B1 (en) Air-conditioner and Controlling Method for the same
JP6338761B2 (en) Air conditioning system
JP6071648B2 (en) Air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
KR100690683B1 (en) Air conditioner and heating operation control method therof
WO2011010506A1 (en) Air conditioner
JP2009092353A (en) Air conditioner
JP4270274B2 (en) Outdoor unit
JP6084297B2 (en) Air conditioner
KR20080017184A (en) Air conditioner and control method thereof
JP2003240391A (en) Air conditioner
WO2016016918A1 (en) Air conditioning device
JP2009058222A (en) Outdoor unit
JP6019773B2 (en) Air conditioner control device
JP4231247B2 (en) Air conditioner
JP2007040589A (en) Air conditioner
JP4830399B2 (en) Air conditioner
JP2007247997A (en) Air conditioner
JP6253731B2 (en) Air conditioner
KR20070030072A (en) Defrost control method of heat pump air-conditioner
JP2000028182A (en) Heat pump type heater
JP2007010254A (en) Air conditioner
JP2005083616A (en) Air conditioner
JP2007187376A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007