WO2016016918A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2016016918A1
WO2016016918A1 PCT/JP2014/069774 JP2014069774W WO2016016918A1 WO 2016016918 A1 WO2016016918 A1 WO 2016016918A1 JP 2014069774 W JP2014069774 W JP 2014069774W WO 2016016918 A1 WO2016016918 A1 WO 2016016918A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermo
indoor unit
temperature
indoor
stop suppression
Prior art date
Application number
PCT/JP2014/069774
Other languages
French (fr)
Japanese (ja)
Inventor
禎夫 関谷
小谷 正直
佐々木 重幸
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to JP2015515733A priority Critical patent/JP6033416B2/en
Priority to CN201480007041.1A priority patent/CN105473946B/en
Priority to PCT/JP2014/069774 priority patent/WO2016016918A1/en
Priority to US14/769,186 priority patent/US20160320113A1/en
Publication of WO2016016918A1 publication Critical patent/WO2016016918A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner.
  • an outdoor unit equipped with a compressor is connected to a plurality of indoor units, and air conditioning operation is performed so that the intake air temperature of each indoor unit becomes a set temperature set for each indoor unit.
  • An air conditioner for performing the operation is known. In such an air conditioner, it is known that the capacity of the compressor is controlled in accordance with the air conditioning load. However, if the air conditioning capacity becomes excessive due to a mismatch with the air conditioning load or the like, the operation and stop of the indoor unit are repeated. It becomes a state.
  • the corresponding indoor unit starts from the thermo-on operation that performs the air-conditioning operation, and the thermo-off that stops the air-conditioning operation. Transition to driving. Thereafter, after the indoor temperature has sufficiently increased due to the indoor load, the indoor unit shifts to the thermo-on operation again and lowers the room temperature.
  • Patent Document 1 in particular, when a plurality of indoor units are installed in a large space, or when the air conditioning loads in each room match, the timings at which the plurality of indoor units enter the thermo-off operation are easily synchronized. .
  • the control unit performs indoor thermo timing change control that changes the thermo temperature range of any of the plurality of indoor units, thereby turning the indoor thermo off and / or the indoor thermo on. Proactively create indoor units that differ in timing from other indoor units. Such control makes it easier to obtain a situation where at least one of the plurality of indoor units is operating.
  • the cooling operation since the operation in which the thermo-off temperature of a certain indoor unit is lowered is continued, the room temperature near the indoor unit is lowered with respect to the set temperature. Therefore, there exists a subject that the cooling load increases and the power consumption of an air conditioner increases. Further, for this reason, since the low-efficiency operation with the lowering of the evaporation temperature is continuously performed, an energy saving effect can be obtained when the start / stop of the compressor can be avoided, while the start / stop of the compressor occurs. In some cases, the power consumption may increase.
  • An object of the present invention is to provide an air conditioner that suppresses an increase in power consumption accompanying the start and stop of a compressor and has high energy saving performance.
  • An air conditioner of the present invention includes a refrigeration cycle device formed by connecting an outdoor unit including a compressor and a plurality of indoor units, and the indoor unit stores temperature difference information between an intake air temperature and a set temperature.
  • the indoor unit A satisfies the thermo-off condition for switching from the thermo-on operation to the thermo-off operation. If there is no indoor unit in the thermo-on operation other than the indoor unit A, the system shifts to a start / stop suppression operation mode in which any of the indoor units is thermo-on operated.
  • thermo-on / thermo-off condition of the indoor unit by appropriately changing the thermo-on / thermo-off condition of the indoor unit, it is possible to reduce the number of times of starting and stopping the compressor and to suppress an increase in power consumption accompanying the starting and stopping of the compressor.
  • a high air conditioner can be provided.
  • Example 1 flow chart The figure which shows the operation example at the time of heating operation The figure which shows the operation example which limited the continuation of start / stop suppression operation mode by temperature The figure which shows the operation example which limited the continuation of start / stop suppression operation mode by time Example 2 flow chart The figure which shows the operation example of Example 2. The figure which shows the operation example of Example 3. The figure which shows the operation example of Example 4.
  • An air conditioner of the present invention includes a refrigeration cycle device formed by connecting an outdoor unit including a compressor and a plurality of indoor units, and the indoor unit stores temperature difference information between an intake air temperature and a set temperature.
  • the indoor unit A satisfies the thermo-off condition for switching from the thermo-on operation to the thermo-off operation. If there is no indoor unit in the thermo-on operation other than the indoor unit A, the system shifts to a start / stop suppression operation mode in which any of the indoor units is thermo-on operated.
  • thermo-off condition for switching from the thermo-on operation to the thermo-off operation
  • any one of the indoor units is thermo-operated.
  • FIG. 1 is a cycle system diagram showing the configuration of the air conditioner in the present embodiment.
  • an example in which two indoor units (91a, 91b) are connected to one outdoor unit 90 is shown.
  • the present invention is not limited to this, and the number of connected units of the outdoor unit 90 and the indoor unit 91 may be different.
  • the two indoor units (91a, 91b) are connected in parallel to the outdoor unit 90 via the liquid pipe 13 and the gas pipe 12.
  • the outdoor unit 90 includes a compressor 1 that compresses a refrigerant (not shown), an outdoor heat exchanger 3 that performs heat exchange between the outdoor air supplied by the outdoor fan 4 and the refrigerant, and a suction port of the compressor 1.
  • a four-way valve 5 for switching one of the discharge ports to the outdoor heat exchanger 3 and connecting the other to the gas pipe 12 is provided.
  • the other end of the outdoor heat exchanger 3 connected to the four-way valve 5 is connected to the liquid pipe 13 via the outdoor expansion valve 8.
  • one of the indoor heat exchangers 16 is connected to the gas pipe 12, and the other is connected to the liquid pipe 13 via the indoor expansion valve 18.
  • the indoor heat exchanger 16 is supplied with the intake air from the indoor space by the indoor fan 17.
  • the user uses the remote controller 92 to start and stop the operation of the indoor unit, specify the cooling and heating operation modes, input the set temperature, and the like.
  • the air conditioning capacity of the air conditioner is determined based on the temperature difference between the set temperature and the temperature detected by the intake air temperature sensor 21 (suction temperature).
  • the refrigerant compressed by the compressor 1 is condensed and liquefied by the outdoor heat exchanger 3 and heat exchange with outdoor air.
  • the liquid refrigerant that has flowed out to the liquid pipe 13 through the fully-expanded outdoor expansion valve 8 is depressurized by the indoor expansion valve 18a and flows into the indoor heat exchanger 16 at a low temperature and a low pressure.
  • the refrigerant that has absorbed heat from the room air evaporates to become superheated gas refrigerant and flows out to the gas pipe 12.
  • the indoor air cooled by this action is supplied to the indoor space to cool the indoor space.
  • the gasified refrigerant passes through the gas pipe 12 and returns to the compressor 1 through the four-way valve 2 in the outdoor unit 90. At this time, the indoor expansion valve 18b is in a fully closed state, and the indoor fan 17b is in a stopped state.
  • the opening of the indoor expansion valve 18b is also adjusted appropriately, the refrigerant in the liquid pipe 13 is decompressed, flows into the indoor heat exchanger 16b, and is supplied by the indoor fan 17b Heat exchange with the room air.
  • the evaporated gas refrigerant merges with the refrigerant evaporated in the indoor unit 92a and returns to the outdoor unit 90.
  • the four-way valve is switched to the circuit indicated by the broken line in FIG. 1, and the outdoor fan 4 and the indoor fan 17 are operated at a predetermined rotational speed.
  • the refrigerant compressed by the compressor 1 flows into the indoor heat exchangers 16a and 16b through the gas pipe 12.
  • the indoor heat exchanger 16 heats the indoor space while condensing and liquefying the refrigerant by releasing heat to the indoor air supplied by the indoor fan 17.
  • the condensed liquid refrigerant merges in the liquid pipe 13 and then is decompressed by the outdoor expansion valve 8 to become a low-temperature / low-pressure refrigerant, which is evaporated by receiving heat from the outdoor air in the outdoor heat exchanger 3. Thereafter, the process returns to the compressor 1 through the four-way valve 2 and the compression process is repeated again.
  • the rotation speed of the compressor 1 is controlled so that the suction air temperature Tin1 detected by the suction thermistor 21 of each indoor unit 91 is equal to the set temperature Ts set by the remote controller.
  • the suction of the indoor unit 91 The air temperature Tin may be lower than the set temperature.
  • thermo-off operation is performed in which the indoor expansion valve 18 of the indoor unit 91 is closed and the cooling operation is stopped.
  • the refrigerant is not supplied to the indoor heat exchanger 16, and therefore the cooling action due to the evaporation of the refrigerant is eliminated. Therefore, the room temperature gradually rises due to the load on the indoor space. Thereafter, when the suction temperature rises to a predetermined temperature, the indoor expansion valve 18 is opened again, and the thermo-on operation is resumed.
  • FIG. 3 is a diagram schematically showing the operation in such conventional control.
  • the horizontal axis represents time, and the vertical axis represents the room temperature (ie, intake air temperature Tin) of the indoor units 91a and 91b, the state of the thermo-on operation and the thermo-off operation, and the operation state of the compressor.
  • the room temperature ie, intake air temperature Tin
  • the indoor unit 91 enters the thermo-off operation when the intake air temperature Tin reaches the thermo-on lower limit value LL, and then enters the thermo-on operation when the temperature reaches the thermo-off upper limit value HL.
  • HL1 is + 2 ° C with respect to the set temperature
  • LL is -1 ° C
  • the temperature width is 3 ° C is shown.
  • a present Example You may add conditions, such as time, not only in intake air temperature Tin.
  • both of the indoor units 91 are operating, but since the intake air temperature Tin1 of the indoor unit 91a has reached the lower limit value LL1 at time t1, the indoor unit 91a is in a thermo-off operation. Thereafter, the operation of one indoor unit 91b is continued, and when the lower limit value LL2 is reached at time t2, the indoor unit 91b also enters the thermo-off operation.
  • the compressor 1 is also stopped. As described above, when the times when the plurality of indoor units 91a and 91b are in the thermo-off operation coincide with each other, the compressor 1 needs to be stopped. When the compressor 1 is in a stopped state, an energy loss such as mixing of a high-temperature refrigerant and a low-temperature refrigerant occurs, so that power consumption increases compared to an operation that does not stop.
  • the room temperature of the indoor unit 91a exceeds the thermo-off upper limit value HL1 at time t3, but the thermo-on cannot be performed until time t4 when the compressor 1 can be started.
  • the room temperature may rise while the compressor 1 is stopped, and there is a problem in terms of comfort.
  • thermo-off operation means for temporarily changing the condition for turning off the indoor unit when all the indoor units satisfy the condition for the thermo-off operation.
  • FIG. 4 An example of the operation in this case is shown in FIG. 4, and a flowchart of this control is shown in FIG.
  • the point that the indoor unit 91b continues to operate with one unit after the indoor unit 91a enters the thermo-off operation at time t1 is the same as the conventional control. Thereafter, when the suction air temperature Tin2 (that is, room temperature) detected by the suction thermistor 21 of the indoor unit 91b reaches the thermo-on lower limit value LL2, the control of the present embodiment is performed. That is, when the controller 60 detects that all the indoor units (91a, 91b) are in the thermo-off operation when the indoor unit 91b is stopped, the indoor unit 91b is shifted to the start / stop suppression operation mode without performing the thermo-off operation. .
  • the suction air temperature Tin2 that is, room temperature
  • thermo-on lower limit value LL2 is lowered by a predetermined temperature (for example, 1 ° C.), and a command is sent to the indoor unit 91b to continue the thermo-on operation.
  • a predetermined temperature for example, 1 ° C.
  • thermo-ON when the indoor unit 91a is thermo-ON, the start / stop suppression operation mode is terminated and the thermo-on lower limit value LL2 is returned to the normal value. Thereby, the indoor unit 91b shifts to the thermo-off operation.
  • thermo-on lower limit value LL returns to the original value after the end of the control, the operation in the normal temperature range is continued after the end of the control. Therefore, the decrease in the room temperature is limited to a temporary one, and there is no inconvenience such as a decrease in the room temperature, and comfort can be maintained.
  • the intake air temperature Tin2 of the indoor unit 91b temporarily decreases. Therefore, in this embodiment, while the operation of the indoor unit 91b is continued, the thermo-off upper limit value HL2 at which the indoor unit 91a in the thermo-off operation is thermo-ON is lowered by a predetermined width (for example, 1 ° C.). Therefore, it is possible to shift to the thermo-on operation even when the temperature difference from the set temperature is small.
  • a predetermined width for example, 1 ° C.
  • the intake air temperature Tin1 of the indoor unit 91a has not reached the temperature at which the normal thermo-on operation is shifted to, but can be shifted to the thermo-on operation at an early stage. Since the indoor unit 91a that has been in the thermo-off operation can be set in the thermo-on operation, this control is terminated at this point, and the operation returns from the start / stop suppression operation mode to the normal operation mode. That is, the control to lower the thermo-off upper limit value HL1 and the thermo-on lower limit value LL2 is canceled and returned to the normal state. For this reason, the indoor unit 91b is in a thermo-off operation. In this way, since this control can suppress the decrease in the intake air temperature Tin2 of the indoor unit 91b, it is possible to reduce the power consumption of the air conditioner while keeping the impact on comfort small.
  • this control is activated when it is determined that all the indoor units 91 are in the thermo-off operation, it is possible to reliably avoid the stop of the compressor 1 when necessary. Therefore, it is possible to obtain an effect of always suppressing start and stop without depending on periodicity or the like in which a plurality of indoor units repeat thermo-on and thermo-off.
  • the start / stop suppression operation mode is terminated when the indoor unit 91a is thermo-ON, but in order to suppress the fluctuation of the refrigeration cycle at the switching timing, the operation time of the indoor units 91a and 91b is reduced. It may be overlapped for a predetermined time.
  • the threshold temperature is changed in order to extend the thermo-on operation time of the indoor unit 91b.
  • the means for extending the thermo-on operation time of the indoor unit 91b may be other means. good. Specifically, a method of extending the time for determining that the thermostat is off after reaching the threshold temperature may be used. Further, when the indoor unit is determined to be thermo-off, a method of performing the same air-conditioning operation as thermo-on by forcibly adjusting the opening of the indoor expansion valve 18 from the outdoor unit may be used.
  • the example in which the start / stop suppression operation mode is entered when the thermo-off condition of the indoor unit 91b is satisfied has been described.
  • the start / stop is performed for each indoor unit. Whether to continue the operation in the suppression operation mode may be set in advance. Therefore, when the operation continuation in the start / stop suppression operation mode is set as possible, the operation is performed as in the present embodiment. In this case, it may be stopped as in FIG.
  • the indoor unit that has been operated last may cause the compressor 1 to stop and the operation to continue.
  • a function that prioritizes the user's comfort according to the installation status of the indoor unit 91 can be provided.
  • Fig. 6 shows the operation during heating operation.
  • the indoor unit 91a enters the thermo-off operation at time t1 when the thermo-on upper limit temperature HL1 is reached.
  • the intake air temperature Tin2 of the indoor unit 91b continues to rise and reaches the thermo-on upper limit temperature HL2 at time t2, but when the indoor unit 91b is thermo-off, all the indoor units 91 are in thermo-off operation, so the thermo-on upper limit temperature of the thermo-on indoor unit 91b Is set higher by a predetermined temperature. Thereby, the indoor unit 91b can continue the thermo-on operation.
  • thermo-off lower limit value of the thermo-off indoor unit 91a is set higher by a predetermined value, the indoor unit 91a can be thermo-ON early, and as a result, the indoor unit 91b can be thermo-off. Therefore, an increase in the intake air temperature Tin2 in the indoor unit 91b can be suppressed.
  • FIG. 7 shows an operation example when the air conditioning load is different. Since all the indoor units 91 satisfy the thermo-off condition at time t2, also in the present embodiment, the start / stop suppression operation mode is entered. Then, the thermo-on lower limit temperature LL2 of the thermo-on indoor unit 91b is lowered, while the thermo-off upper limit temperature HL1 of the indoor unit 91a is lowered.
  • the intake air temperature Tin2 of the indoor unit 91b continues to decrease, so that when the indoor unit 91a takes time to be turned on, a problem becomes greater in terms of comfort. Further, as the intake air temperature Tin2 of the indoor unit 91b decreases, the evaporation temperature of the refrigeration cycle also decreases, the efficiency of the refrigeration cycle also decreases, and power consumption increases. Therefore, there is a possibility that the effect of suppressing power consumption by suppressing the start / stop of the compressor 1 cannot be sufficiently obtained.
  • the start / stop suppression operation mode is terminated when the value of the intake air temperature Tin2 of the indoor unit 91b reaches the corrected thermo-on lower limit value LL2. For this reason, it is possible not only to avoid continuing inefficient driving unnecessarily, but also to prevent a decrease in comfort.
  • FIG. 8 is an example in which, for the same problem, a lower limit value of the intake air temperature Tin2 of the indoor unit 91b is not provided, but a time period during which the start / stop suppression operation mode is continued is limited.
  • the indoor unit 91a cannot be thermo-on at time t3 after a predetermined time limit ⁇ T has elapsed since the timer is counted from the time when the mode is shifted to the start / stop suppression operation mode at time t2, the load on the indoor unit 91a is small.
  • the indoor unit 91b further determines that the energy saving effect is low, cancels this control, and sets the thermo-off upper limit value HL1 of the indoor unit 91a and the thermo-on lower limit value LL2 of the indoor unit 91b to the original values. Then, the indoor unit 91b is thermo-off and the compressor 1 is stopped.
  • FIG. 9 is a flowchart of this control.
  • thermo-on standby state is a state in which the intake air temperature Tin is higher than a predetermined temperature that is set in advance (if it is low in the case of heating).
  • the start of the suppression operation mode is determined.
  • the indoor unit 91a enters the thermo-off operation at time t1, and the indoor unit 91b also satisfies the thermo-off condition at time t2.
  • the indoor unit 91b is maintained in the thermo-on operation until the time limit, but in this embodiment, the state of the thermo-off indoor unit 91a is confirmed.
  • the start / stop suppression operation mode is then determined.
  • Example 1 an operation example for limiting the increase in power consumption and the decrease in comfort due to the start / stop suppression operation mode by setting the time limit and the lower limit value of the room temperature was shown.
  • the indoor unit 91b is maintained in the thermo-on operation.
  • the indoor unit 91b is shifted to the thermo-off operation without shifting to the start / stop suppression operation mode.
  • thermo-off indoor unit 91a In order to determine whether or not the thermo-off indoor unit 91a is in the thermo-on operation at an early stage, in this embodiment, the determination is made using the intake air temperature Tin1 of the indoor unit 91a. That is, a determination temperature TC1 that is higher than the thermo-on lower limit value LL1 and equal to or lower than the thermo-off upper limit value HL1 is defined, and using this determination temperature TC1, it is determined whether or not the thermo-off indoor unit enters the thermo-on operation early.
  • thermo-on standby state is likely to be thermo-ON early, and there is an indoor unit in the thermo-on standby state Only, the thermo-on operation of the indoor unit 91b is continued.
  • the intake air temperature Tin1 of the thermo-off indoor unit 91a is lower than the determination temperature TC1 at time t2, and there is no indoor unit in the thermo-on standby state, so the indoor unit 91b is stopped at time t2. Therefore, after the compressor 1 is stopped as in the normal control, the compressor 1 is restarted at time t3 when the intake air temperature Tin2 of the indoor unit 91b reaches the thermo-off upper limit temperature HL2. As described above, when the operation mode is shifted to the start / stop suppression operation mode, under the condition that the intake air temperature Tin2 of the indoor unit 91b is lowered or the efficiency of the refrigeration cycle is lowered, the compressor 1 is positively stopped temporarily. Avoid problems.
  • the start / stop suppression operation mode when used to suppress the start / stop of the compressor and when the compressor is temporarily stopped without using the start / stop suppression operation mode, the operation is assumed to consume less power. Since a method can be selected, an air conditioner with high energy saving performance can be finally provided.
  • the start / stop suppression operation mode start determination is made when it is determined that there are zero indoor units performing the thermo-on operation. For example, when starting when operating with only one indoor unit, the intake air temperature of the indoor unit is still high, and it takes time to satisfy the thermo-off condition. Therefore, it is difficult to predict the intake air temperature and the like of other indoor units, and such a determination cannot be made.
  • the start of the start / stop suppression operation mode using the information of the other indoor units at that time.
  • the start of the start / stop suppression operation mode it is determined based on whether there is an indoor unit in a thermo-on standby state, but the present invention is not limited thereto, for example, The determination may be made using the change time of the intake air temperature of the indoor unit, the thermo-off time in the past operation, or the like.
  • the start / stop suppression operation mode is determined to be determined, so that it is possible to determine using the information of other indoor units at that time.
  • thermo-on lower limit value is set in two stages. Lowering the thermo-on lower limit value LL temporarily lowers the room temperature. To prevent this, in this embodiment, the second thermo-on lower limit value mL is set to a temperature higher than the normal thermo-on lower limit value LL. did. Normally, the thermo-off is performed when the temperature drops to mL, and the thermo-off threshold is lowered to LL only when the start / stop suppression operation mode is entered.
  • thermo-on lower limit value of the indoor unit 91b is changed from mL2 to LL2, and the cooling operation of the indoor unit 91b is continued. Thereafter, when the indoor unit 91a is thermo-on as the temperature rises, the start / stop suppression operation mode is terminated, and the indoor unit 91b is shifted to the thermo-off state.
  • the suction temperature of the indoor unit 91b is lower than mL2, it does not decrease to LL2. Therefore, an increase in power consumption associated with the stop and start of the compressor can be suppressed without causing discomfort to the user due to a decrease in the blowing temperature of the indoor unit 91b.
  • FIG. 12 is a diagram showing an operation example when the indoor unit to be thermo-ON is fixed in the start / stop suppression operation mode. In this embodiment, a case where three indoor units are connected in parallel is shown as an example. In the present embodiment, in order to prevent all indoor units from being thermo-off, when all the indoor units are thermo-off, the indoor unit 91c is set in advance to be thermo-on.
  • thermo-off condition is satisfied. Since the indoor unit 91c is in the thermo-off state, when the indoor unit 91b is thermo-off at time t2, all the indoor units are in the thermo-off state and the compressor 1 is stopped. Therefore, in this embodiment, by operating the start / stop suppression operation mode, the indoor unit 91c is shifted to the thermo-on state, and the compressor 1 is prevented from stopping.
  • the indoor unit 91c is returned to the thermo-off state.
  • the indoor unit 91c may be kept in the thermo-on state, in this case, since the operation time is long in a state where the suction temperature of the indoor unit 91c is low, it is preferable to make the thermo-off state. In particular, under conditions where the start / stop suppression operation mode frequently occurs, there is a possibility that the state in which the suction temperature of the indoor unit 91c is low may continue, so it is easy to avoid such conditions by returning to the thermo-off state.
  • the indoor unit that is in the thermo-on state in the start / stop suppression operation mode it is possible to prevent the suction temperature from being lowered in the indoor units 91a and 91b. Therefore, when the indoor units 91a and 91b are installed in a place (such as a small room) where it is desired to avoid a decrease in the suction temperature, it is possible to avoid a decrease in room temperature or an excessive increase in such an indoor unit.
  • the compressor can be generated while suppressing discomfort to the user. An increase in power consumption due to a stop can be suppressed.
  • Controller 91a, 91b ... indoor unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention addresses the problem of providing an air conditioner that suppresses an increase in power consumption which accompanies the starting and stopping of a compressor, and that has high energy efficiency. In response to such problem, this air conditioning device is provided with a refrigeration cycle device formed by connecting an outdoor unit equipped with a compressor and a plurality of indoor units. On the basis of the temperature difference information of an intake air temperature and a set temperature, the indoor units perform an air conditioning operation by switching between a thermo-ON operation that performs a cooling operation or a heating operation and a thermo-OFF operation that stops the cooling operation or the heating operation. If an indoor unit (A) satisfies a thermo-OFF condition by which the thermo-ON operation is switched to the thermo-OFF operation and if there is no indoor unit in the thermo-ON operation other than the indoor unit (A), the air conditioning device shifts to a start/stop control operation mode that causes any of the indoor units to perform the thermo-ON operation.

Description

空気調和装置Air conditioner
 本発明は空気調和装置に関する。 The present invention relates to an air conditioner.
 従来から、圧縮機を備えた室外機と複数の室内機とを接続して構成され、各々の室内機の吸込空気温度が各室内機に対して設定される設定温度となるように空調運転をおこなう空調装置が知られている。このような空調装置では、空調負荷に合わせて圧縮機を容量制御するものが知られているが、空調負荷との不一致等により空調能力が過多になると、室内機の運転と停止を繰り返す発停状態となる。 Conventionally, an outdoor unit equipped with a compressor is connected to a plurality of indoor units, and air conditioning operation is performed so that the intake air temperature of each indoor unit becomes a set temperature set for each indoor unit. An air conditioner for performing the operation is known. In such an air conditioner, it is known that the capacity of the compressor is controlled in accordance with the air conditioning load. However, if the air conditioning capacity becomes excessive due to a mismatch with the air conditioning load or the like, the operation and stop of the indoor unit are repeated. It becomes a state.
 具体的には、例えば冷房運転時に、各室内機における吸込空気温度が設定温度に応じて定まる下限値に達すると、対応する室内機は、空調運転をおこなうサーモオン運転から、空調運転を停止するサーモオフ運転へと移行する。その後、室内負荷によって室内温度が十分に上昇した後、室内機は再度サーモオン運転へと移行し、室温を下げる。 Specifically, for example, during the cooling operation, when the intake air temperature in each indoor unit reaches a lower limit value determined according to the set temperature, the corresponding indoor unit starts from the thermo-on operation that performs the air-conditioning operation, and the thermo-off that stops the air-conditioning operation. Transition to driving. Thereafter, after the indoor temperature has sufficiently increased due to the indoor load, the indoor unit shifts to the thermo-on operation again and lowers the room temperature.
 このような空調装置において、すべての室内機がサーモオフ運転となった場合、圧縮機を停止する必要があるので、圧縮機の発停に伴う消費電力の増大や運転効率の低下が生じる。 In such an air conditioner, when all the indoor units are in the thermo-off operation, it is necessary to stop the compressor, so that the power consumption increases and the operation efficiency decreases due to the start / stop of the compressor.
 例えば、特許文献1では、特に大空間に複数の室内機を設置した場合や、各室内の空調負荷が一致するような場合には、複数の室内機がサーモオフ運転となるタイミングが同期しやすくなる。このような課題に対して、特許文献1では、制御部が、複数の室内ユニットのいずれかのサーモ温度幅を変更する室内サーモタイミング変更制御を行うことによって、室内サーモオフ及び/又は室内サーモオンとなるタイミングが他の室内ユニットとは異なる室内ユニットを積極的に作り出す。このような制御により、複数の室内ユニットの少なくとも1つが運転している状況を得やすくすることができるとしている。 For example, in Patent Document 1, in particular, when a plurality of indoor units are installed in a large space, or when the air conditioning loads in each room match, the timings at which the plurality of indoor units enter the thermo-off operation are easily synchronized. . With respect to such a problem, in Patent Document 1, the control unit performs indoor thermo timing change control that changes the thermo temperature range of any of the plurality of indoor units, thereby turning the indoor thermo off and / or the indoor thermo on. Proactively create indoor units that differ in timing from other indoor units. Such control makes it easier to obtain a situation where at least one of the plurality of indoor units is operating.
特開2012-154600号公報JP 2012-154600 A
 しかしながら、上記従来技術には以下のような課題が存在する。すなわち、複数の室内機の負荷が一致している場合には、例えば1台の室内ユニットのサーモオフ温度を下げることによって、同期したタイミングをずらすことができるが、完全には同期していない場合や、異なる部屋に設置される場合など周期が異なる室内機が存在する場合には、十分な効果が得られない可能性がある。 However, there are the following problems in the above prior art. That is, when the loads of a plurality of indoor units are the same, the synchronized timing can be shifted, for example, by lowering the thermo-off temperature of one indoor unit. When there are indoor units with different periods, such as when installed in different rooms, there is a possibility that sufficient effects cannot be obtained.
 また、空調負荷は一定ではなく、時刻とともに変動するので、サーモオフ温度を下げることにより、同期したタイミングをずらすことができたとしても、負荷の変動に伴い、再度同期する可能性がある。このような問題については考慮されておらず、確実性および実用性の面で課題がある。 Also, since the air conditioning load is not constant and fluctuates with time, even if the synchronized timing can be shifted by lowering the thermo-off temperature, there is a possibility that it will synchronize again with the fluctuation of the load. Such problems are not taken into consideration, and there are problems in terms of certainty and practicality.
 また、室内機や室外機の周期性を判断するための運転が必要であるため、所定時間運転を継続した後でなければ制御を開始できないという課題がある。 Also, since operation for judging the periodicity of indoor units and outdoor units is necessary, there is a problem that control cannot be started unless the operation is continued for a predetermined time.
 また、例えば冷房運転では、ある室内機のサーモオフ温度を下げた運転が継続されることになるので、当該室内機近傍の室温が設定温度に対して低下することになる。したがって、冷房負荷が増大して、空調装置の消費電力が増大するという課題を有する。さらに、このために蒸発温度を下げた効率の低い運転を継続して行うことになるので、圧縮機の発停を回避できる場合には省エネ効果が得られる一方、圧縮機の発停が発生する場合には、逆に消費電力が増大する可能性がある。 Also, for example, in the cooling operation, since the operation in which the thermo-off temperature of a certain indoor unit is lowered is continued, the room temperature near the indoor unit is lowered with respect to the set temperature. Therefore, there exists a subject that the cooling load increases and the power consumption of an air conditioner increases. Further, for this reason, since the low-efficiency operation with the lowering of the evaporation temperature is continuously performed, an energy saving effect can be obtained when the start / stop of the compressor can be avoided, while the start / stop of the compressor occurs. In some cases, the power consumption may increase.
 このように、従来例では発停回数を低減できる可能性がある一方で、消費電力を低減するという観点からは課題を有していた。 Thus, while there is a possibility that the number of starts and stops can be reduced in the conventional example, there is a problem from the viewpoint of reducing power consumption.
 本発明は、圧縮機の発停に伴う消費電力の増大を抑制するとともに省エネルギー性の高い空調装置を提供することを課題とする。 An object of the present invention is to provide an air conditioner that suppresses an increase in power consumption accompanying the start and stop of a compressor and has high energy saving performance.
 本発明の空気調和装置は、圧縮機を備えた室外機と複数の室内機とを接続して形成される冷凍サイクル装置を備え、室内機は、吸込空気温度と設定温度との温度差情報を用いて、冷房運転又は暖房運転を行うサーモオン運転と冷房運転又は暖房運転を休止するサーモオフ運転とを切り替えて空調運転する空気調和装置において、室内機Aがサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合であって、室内機A以外にサーモオン運転中の室内機がない場合には、何れかの室内機をサーモオン運転させる発停抑制運転モードに移行する。 An air conditioner of the present invention includes a refrigeration cycle device formed by connecting an outdoor unit including a compressor and a plurality of indoor units, and the indoor unit stores temperature difference information between an intake air temperature and a set temperature. In an air conditioner that switches between a thermo-on operation that performs cooling operation or heating operation and a thermo-off operation that stops cooling operation or heating operation, the indoor unit A satisfies the thermo-off condition for switching from the thermo-on operation to the thermo-off operation. If there is no indoor unit in the thermo-on operation other than the indoor unit A, the system shifts to a start / stop suppression operation mode in which any of the indoor units is thermo-on operated.
 本発明によれば、室内機のサーモオン/サーモオフ条件を適宜変更することで、圧縮機の発停回数を低減して圧縮機の発停に伴う消費電力の増大を抑制することができる省エネルギー性の高い空気調和機を提供することができる。 According to the present invention, by appropriately changing the thermo-on / thermo-off condition of the indoor unit, it is possible to reduce the number of times of starting and stopping the compressor and to suppress an increase in power consumption accompanying the starting and stopping of the compressor. A high air conditioner can be provided.
実施例1の空気調和装置の構成を示す図The figure which shows the structure of the air conditioning apparatus of Example 1. リモコンからの信号、コントローラ及び各アクチュエータとの関係を示す図The figure which shows the relation with the signal from the remote control, the controller and each actuator 従来制御における動作例を示す図Diagram showing an example of operation in conventional control 実施例1の動作例を示す図The figure which shows the operation example of Example 1. 実施例1のフローチャートExample 1 flow chart 暖房運転時の動作例を示す図The figure which shows the operation example at the time of heating operation 発停抑制運転モードの継続を温度により制限した動作例を示す図The figure which shows the operation example which limited the continuation of start / stop suppression operation mode by temperature 発停抑制運転モードの継続を時間により制限した動作例を示す図The figure which shows the operation example which limited the continuation of start / stop suppression operation mode by time 実施例2のフローチャートExample 2 flow chart 実施例2の動作例を示す図The figure which shows the operation example of Example 2. 実施例3の動作例を示す図The figure which shows the operation example of Example 3. 実施例4の動作例を示す図The figure which shows the operation example of Example 4.
 本発明の空気調和装置は、圧縮機を備えた室外機と複数の室内機とを接続して形成される冷凍サイクル装置を備え、室内機は、吸込空気温度と設定温度との温度差情報を用いて、冷房運転又は暖房運転を行うサーモオン運転と冷房運転又は暖房運転を休止するサーモオフ運転とを切り替えて空調運転する空気調和装置において、室内機Aがサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合であって、室内機A以外にサーモオン運転中の室内機がない場合には、何れかの室内機をサーモオン運転させる発停抑制運転モードに移行する。本発明によれば、室内機Aがサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合、室内機A以外にサーモオン運転中の室内機がない場合には、室内機の何れかをサーモオン運転させる発停抑制運転モードを備えることにより、圧縮機の発停回数を低減して圧縮機の発停に伴う消費電力の増大を抑制することができる省エネルギー性の高い空気調和機とすることができる。 An air conditioner of the present invention includes a refrigeration cycle device formed by connecting an outdoor unit including a compressor and a plurality of indoor units, and the indoor unit stores temperature difference information between an intake air temperature and a set temperature. In an air conditioner that switches between a thermo-on operation that performs cooling operation or heating operation and a thermo-off operation that stops cooling operation or heating operation, the indoor unit A satisfies the thermo-off condition for switching from the thermo-on operation to the thermo-off operation. If there is no indoor unit in the thermo-on operation other than the indoor unit A, the system shifts to a start / stop suppression operation mode in which any of the indoor units is thermo-on operated. According to the present invention, when the indoor unit A satisfies the thermo-off condition for switching from the thermo-on operation to the thermo-off operation, if there is no indoor unit in the thermo-on operation other than the indoor unit A, any one of the indoor units is thermo-operated. By providing the start / stop suppression operation mode, it is possible to provide an air conditioner with high energy saving that can reduce the number of start / stop times of the compressor and suppress an increase in power consumption accompanying the start / stop of the compressor.
 本発明の空気調和装置について、図1~図12を用いて、以下詳細に説明する。 The air conditioner of the present invention will be described in detail below with reference to FIGS.
 本発明の第1の実施形態を、図1~図8を用いて説明する。 A first embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施形態における空気調和装置の構成を示すサイクル系統図である。本実施例では1台の室外機90に対して、2台の室内機(91a、91b)が接続された例を示す。本発明はこれに限定されるものではなく、室外機90、室内機91ともに接続台数が異なっていても良い。 FIG. 1 is a cycle system diagram showing the configuration of the air conditioner in the present embodiment. In the present embodiment, an example in which two indoor units (91a, 91b) are connected to one outdoor unit 90 is shown. The present invention is not limited to this, and the number of connected units of the outdoor unit 90 and the indoor unit 91 may be different.
 2台の室内機(91a、91b)は、液管13とガス管12を介して、室外機90に並列に接続される。室外機90は内部に、冷媒(図示せず)を圧縮する圧縮機1、室外ファン4によって供給される室外空気と冷媒との熱交換をおこなう室外熱交換器3、圧縮機1の吸込口と吐出口のうち一方を室外熱交換器3へ他方をガス管12へと切替えて接続させるための四方弁5を備える。四方弁5と接続される室外熱交換器3の他端は室外膨張弁8を介して液管13へ接続される。 The two indoor units (91a, 91b) are connected in parallel to the outdoor unit 90 via the liquid pipe 13 and the gas pipe 12. The outdoor unit 90 includes a compressor 1 that compresses a refrigerant (not shown), an outdoor heat exchanger 3 that performs heat exchange between the outdoor air supplied by the outdoor fan 4 and the refrigerant, and a suction port of the compressor 1. A four-way valve 5 for switching one of the discharge ports to the outdoor heat exchanger 3 and connecting the other to the gas pipe 12 is provided. The other end of the outdoor heat exchanger 3 connected to the four-way valve 5 is connected to the liquid pipe 13 via the outdoor expansion valve 8.
 室内機91では、室内熱交換器16の一方がガス管12へ、他方が室内膨張弁18を介して液管13へと接続される。室内熱交換器16には室内ファン17によって室内空間からの吸込空気が供給される。ユーザが、リモコン92により、室内機の運転開始および停止や、冷房および暖房の運転モードの指定、設定温度の入力等をおこなう。空調機の空調能力は、設定温度と吸込空気温度センサ21の検知温度(吸込温度)との温度差に基づいて決定される。 In the indoor unit 91, one of the indoor heat exchangers 16 is connected to the gas pipe 12, and the other is connected to the liquid pipe 13 via the indoor expansion valve 18. The indoor heat exchanger 16 is supplied with the intake air from the indoor space by the indoor fan 17. The user uses the remote controller 92 to start and stop the operation of the indoor unit, specify the cooling and heating operation modes, input the set temperature, and the like. The air conditioning capacity of the air conditioner is determined based on the temperature difference between the set temperature and the temperature detected by the intake air temperature sensor 21 (suction temperature).
 図2に示すように、リモコン92からコントローラ60に運転開始の信号が入力されると、空調機の運転が開始され、コントローラ60から室外機90および室内機91の各アクチュエータへ制御信号が送られる。 As shown in FIG. 2, when an operation start signal is input from the remote controller 92 to the controller 60, the operation of the air conditioner is started, and control signals are sent from the controller 60 to the actuators of the outdoor unit 90 and the indoor unit 91. .
 リモコン92aから冷房運転の要求がある場合について動作を説明する。この場合、図1において、四方弁2を図の実線で示す回路へ切替え、室外ファン4と室内ファン17aを所定の回転数で動作させる。 The operation will be described when there is a request for cooling operation from the remote controller 92a. In this case, in FIG. 1, the four-way valve 2 is switched to a circuit indicated by a solid line in the figure, and the outdoor fan 4 and the indoor fan 17a are operated at a predetermined rotational speed.
 圧縮機1により圧縮された冷媒は、室外熱交換器3で室外空気と熱交換器することにより凝縮・液化する。全開状態の室外膨張弁8を介して液管13へと流出した液冷媒は、室内膨張弁18aで減圧されて低温・低圧となって室内熱交換器16に流入する。室内空気から吸熱した冷媒は蒸発して過熱ガス冷媒となりガス管12へと流出する。この作用により冷却された室内空気が室内空間へと供給され室内空間を冷房する。ガス化した冷媒は、ガス管12を通って、室外機90内の四方弁2を介して、圧縮機1へと戻る。このとき、室内膨張弁18bは全閉状態であり、室内ファン17bは停止状態である。 The refrigerant compressed by the compressor 1 is condensed and liquefied by the outdoor heat exchanger 3 and heat exchange with outdoor air. The liquid refrigerant that has flowed out to the liquid pipe 13 through the fully-expanded outdoor expansion valve 8 is depressurized by the indoor expansion valve 18a and flows into the indoor heat exchanger 16 at a low temperature and a low pressure. The refrigerant that has absorbed heat from the room air evaporates to become superheated gas refrigerant and flows out to the gas pipe 12. The indoor air cooled by this action is supplied to the indoor space to cool the indoor space. The gasified refrigerant passes through the gas pipe 12 and returns to the compressor 1 through the four-way valve 2 in the outdoor unit 90. At this time, the indoor expansion valve 18b is in a fully closed state, and the indoor fan 17b is in a stopped state.
 リモコン92bからも運転開始信号がある場合には、室内膨張弁18bも適度に開度が調整され、液管13内の冷媒が減圧されて室内熱交換器16bに流入し、室内ファン17bによって供給された室内空気と熱交換する。蒸発したガス冷媒は室内機92aで蒸発した冷媒と合流して、室外機90へと戻る。 When there is an operation start signal also from the remote control 92b, the opening of the indoor expansion valve 18b is also adjusted appropriately, the refrigerant in the liquid pipe 13 is decompressed, flows into the indoor heat exchanger 16b, and is supplied by the indoor fan 17b Heat exchange with the room air. The evaporated gas refrigerant merges with the refrigerant evaporated in the indoor unit 92a and returns to the outdoor unit 90.
 一方、リモコン92aおよび92bから暖房運転の要求がある場合には、四方弁を図1の破線で示す回路へと切替え、室外ファン4と室内ファン17を所定の回転数で動作させる。圧縮機1によって圧縮された冷媒は、ガス管12を通って室内熱交換器16a、16bへと流入する。室内熱交換器16では、室内ファン17によって供給される室内空気へ放熱することによって、冷媒を凝縮・液化させる一方、室内空間を暖房する。凝縮した液冷媒は、液管13で合流した後、室外膨張弁8で減圧され低温・低圧冷媒となり、室外熱交換器3にて室外空気から熱をもらい蒸発する。その後、四方弁2を介して圧縮機1へと戻り、再度圧縮工程を繰り返す。 On the other hand, when there is a request for heating operation from the remote controllers 92a and 92b, the four-way valve is switched to the circuit indicated by the broken line in FIG. 1, and the outdoor fan 4 and the indoor fan 17 are operated at a predetermined rotational speed. The refrigerant compressed by the compressor 1 flows into the indoor heat exchangers 16a and 16b through the gas pipe 12. The indoor heat exchanger 16 heats the indoor space while condensing and liquefying the refrigerant by releasing heat to the indoor air supplied by the indoor fan 17. The condensed liquid refrigerant merges in the liquid pipe 13 and then is decompressed by the outdoor expansion valve 8 to become a low-temperature / low-pressure refrigerant, which is evaporated by receiving heat from the outdoor air in the outdoor heat exchanger 3. Thereafter, the process returns to the compressor 1 through the four-way valve 2 and the compression process is repeated again.
 このような空調機における冷房時の動作について詳細に説明する。圧縮機1の回転数は、各室内機91の吸込サーミスタ21が検知した吸込空気温度Tin1が、リモコンで設定された設定温度Tsと等しくなるように制御される。しかし、室内負荷に対して、空調機の能力が過剰な場合や、圧縮機1の下限能力で運転した際の空調機の能力よりも室内の負荷が小さな場合などには、室内機91の吸込空気温度Tinが設定温度よりも低下する場合がある。 The operation during cooling in such an air conditioner will be described in detail. The rotation speed of the compressor 1 is controlled so that the suction air temperature Tin1 detected by the suction thermistor 21 of each indoor unit 91 is equal to the set temperature Ts set by the remote controller. However, if the capacity of the air conditioner is excessive with respect to the indoor load, or if the indoor load is smaller than the capacity of the air conditioner when operating at the lower limit capacity of the compressor 1, the suction of the indoor unit 91 The air temperature Tin may be lower than the set temperature.
 このような場合には、室内機91の室内膨張弁18を閉止し、冷房動作を休止するサーモオフ運転とする。サーモオフ運転においては、室内熱交換器16へ冷媒が供給されなくなるので、冷媒の蒸発による冷却作用はなくなる。したがって、室内空間の負荷によって室温は徐々に上昇する。その後、所定の温度まで吸い込み温度が高くなると、再度室内膨張弁18を開き、サーモオン運転を再開する。 In such a case, a thermo-off operation is performed in which the indoor expansion valve 18 of the indoor unit 91 is closed and the cooling operation is stopped. In the thermo-off operation, the refrigerant is not supplied to the indoor heat exchanger 16, and therefore the cooling action due to the evaporation of the refrigerant is eliminated. Therefore, the room temperature gradually rises due to the load on the indoor space. Thereafter, when the suction temperature rises to a predetermined temperature, the indoor expansion valve 18 is opened again, and the thermo-on operation is resumed.
 図3はこのような従来制御における動作を模式的に示した図である。横軸が時間、縦軸は室内機91aと91bの室温(すなわち吸込空気温度Tin)と、サーモオン運転およびサーモオフ運転の状態、そして圧縮機の運転状態を示す。 FIG. 3 is a diagram schematically showing the operation in such conventional control. The horizontal axis represents time, and the vertical axis represents the room temperature (ie, intake air temperature Tin) of the indoor units 91a and 91b, the state of the thermo-on operation and the thermo-off operation, and the operation state of the compressor.
 室内機91は、吸込空気温度Tinがサーモオン下限値LLに達した時点でサーモオフ運転となり、その後温度がサーモオフ上限値HLに達した時点でサーモオン運転になる。ここではHL1が設定温度に対して+2℃、LLが-1℃で、温度幅が3℃ある場合について示す。なお、設定温度に対するHLやLLの幅や、サーモオンまたはサーモオフする際の条件については、本実施例は1例であり、吸込空気温度Tinだけでなく時間などの条件を加えても良い。 The indoor unit 91 enters the thermo-off operation when the intake air temperature Tin reaches the thermo-on lower limit value LL, and then enters the thermo-on operation when the temperature reaches the thermo-off upper limit value HL. Here, the case where HL1 is + 2 ° C with respect to the set temperature, LL is -1 ° C, and the temperature width is 3 ° C is shown. In addition, about the width | variety of HL and LL with respect to setting temperature, and the conditions at the time of thermo-ON or thermo-OFF, a present Example is one example, You may add conditions, such as time, not only in intake air temperature Tin.
 図3では、開始時点で、室内機91は2台とも運転しているが、時刻t1に室内機91aの吸込空気温度Tin1が下限値LL1に達したので、室内機91aはサーモオフ運転となる。その後、室内機91bが1台で運転を継続し、時刻t2において下限値LL2に達した時点で、室内機91bもサーモオフ運転となる。 In FIG. 3, at the start time, both of the indoor units 91 are operating, but since the intake air temperature Tin1 of the indoor unit 91a has reached the lower limit value LL1 at time t1, the indoor unit 91a is in a thermo-off operation. Thereafter, the operation of one indoor unit 91b is continued, and when the lower limit value LL2 is reached at time t2, the indoor unit 91b also enters the thermo-off operation.
 この際、室内機91a,91bがともにサーモオフ運転となったので、圧縮機1も停止状態となる。このように、複数の室内機91a,91bがサーモオフ運転となる時間が偶発的に一致すると、圧縮機1を停止させる必要が生じる。圧縮機1が停止状態になると、高温冷媒と低温冷媒が混合するなどエネルギー的なロスが発生するため、停止しない運転に比べて消費電力が増大する。 At this time, since both the indoor units 91a and 91b are in the thermo-off operation, the compressor 1 is also stopped. As described above, when the times when the plurality of indoor units 91a and 91b are in the thermo-off operation coincide with each other, the compressor 1 needs to be stopped. When the compressor 1 is in a stopped state, an energy loss such as mixing of a high-temperature refrigerant and a low-temperature refrigerant occurs, so that power consumption increases compared to an operation that does not stop.
 また、圧縮機1は一旦停止状態になると、圧縮機1出入口の均圧が必要なことから、一般に3分程度は再起動ができない。したがって、時刻t3には室内機91aの室温がサーモオフ上限値HL1を超えるが、圧縮機1の起動が可能な時刻t4までサーモオンすることはできない。 In addition, once the compressor 1 is stopped, it is generally impossible to restart it for about 3 minutes because it is necessary to equalize the pressure at the inlet and outlet of the compressor 1. Accordingly, the room temperature of the indoor unit 91a exceeds the thermo-off upper limit value HL1 at time t3, but the thermo-on cannot be performed until time t4 when the compressor 1 can be started.
 このように従来制御では、圧縮機1が停止している間に室温が上昇する可能性もあり、快適性の面でも課題があった。 As described above, in the conventional control, the room temperature may rise while the compressor 1 is stopped, and there is a problem in terms of comfort.
 そこで本実施例では、全ての室内機がサーモオフ運転になる条件を満たした場合に、一時的に室内機がサーモオフとなる条件を変更する手段を設けた。この場合の動作例を図4に、本制御のフローチャートを図5に示す。 Therefore, in the present embodiment, there is provided means for temporarily changing the condition for turning off the indoor unit when all the indoor units satisfy the condition for the thermo-off operation. An example of the operation in this case is shown in FIG. 4, and a flowchart of this control is shown in FIG.
 時刻t1で室内機91aがサーモオフ運転となったのち、室内機91bが1台で運転を継続する点は従来制御と同様である。その後、室内機91bの吸込サーミスタ21が検知した吸込空気温度Tin2(すなわち室温)がサーモオン下限値LL2に達した時点で、本実施例の制御が実施される。すなわち、コントローラ60において、室内機91bが停止すると全室内機(91a、91b)がサーモオフ運転となることを検知すると、室内機91bをサーモオフ運転とはせずに、発停抑制運転モードに移行する。そしてサーモオン下限値LL2を所定温度(例えば1℃)だけ下げ、室内機91bにサーモオン運転を継続するように指令を送る。これにより、直ちに室内機91bがサーモオフする状態を回避することができ、他の室内機(本実施例では91a)がサーモオンするまで待つことができる。したがって、圧縮機1の発停を抑制することができるので、圧縮動力の増大を回避し、省エネルギー性を高めることができる。 The point that the indoor unit 91b continues to operate with one unit after the indoor unit 91a enters the thermo-off operation at time t1 is the same as the conventional control. Thereafter, when the suction air temperature Tin2 (that is, room temperature) detected by the suction thermistor 21 of the indoor unit 91b reaches the thermo-on lower limit value LL2, the control of the present embodiment is performed. That is, when the controller 60 detects that all the indoor units (91a, 91b) are in the thermo-off operation when the indoor unit 91b is stopped, the indoor unit 91b is shifted to the start / stop suppression operation mode without performing the thermo-off operation. . Then, the thermo-on lower limit value LL2 is lowered by a predetermined temperature (for example, 1 ° C.), and a command is sent to the indoor unit 91b to continue the thermo-on operation. Thereby, it is possible to avoid a state in which the indoor unit 91b is thermo-off immediately, and to wait until another indoor unit (91a in the present embodiment) is thermo-on. Therefore, since the start and stop of the compressor 1 can be suppressed, an increase in compression power can be avoided and energy saving can be improved.
 そして、室内機91aがサーモオンした時点で、発停抑制運転モードを終了させ、サーモオン下限値LL2を通常の値に戻す。これにより、室内機91bはサーモオフ運転へと移行する。 Then, when the indoor unit 91a is thermo-ON, the start / stop suppression operation mode is terminated and the thermo-on lower limit value LL2 is returned to the normal value. Thereby, the indoor unit 91b shifts to the thermo-off operation.
 このようにサーモオン下限値LLは本制御終了後に元の値に戻るので、本制御終了後は、通常の温度範囲での運転を継続する。したがって、室温の低下は一時的なものに限定され、室温が低下したままになるなどの不具合は発生せず、快適性を保つことができる。 As described above, since the thermo-on lower limit value LL returns to the original value after the end of the control, the operation in the normal temperature range is continued after the end of the control. Therefore, the decrease in the room temperature is limited to a temporary one, and there is no inconvenience such as a decrease in the room temperature, and comfort can be maintained.
 ところで、発停抑制運転モードの間は、一時的に室内機91bの吸込空気温度Tin2が低下してしまう。そこで本実施例では、室内機91bの運転を継続させる一方で、サーモオフ運転にある室内機91aがサーモオンするサーモオフ上限値HL2を所定幅(例えば1℃)だけ下げるとした。したがって、設定温度との温度差が小さい状態でもサーモオン運転へ移行することができる。 Incidentally, during the start / stop suppression operation mode, the intake air temperature Tin2 of the indoor unit 91b temporarily decreases. Therefore, in this embodiment, while the operation of the indoor unit 91b is continued, the thermo-off upper limit value HL2 at which the indoor unit 91a in the thermo-off operation is thermo-ON is lowered by a predetermined width (for example, 1 ° C.). Therefore, it is possible to shift to the thermo-on operation even when the temperature difference from the set temperature is small.
 これにより、時刻t3では、室内機91aの吸込空気温度Tin1が通常サーモオン運転へ移行する温度には達していないが、早期にサーモオン運転へ移行させることができる。サーモオフ運転していた室内機91aをサーモオン運転とすることができたので、この時点で本制御を終了とし、発停抑制運転モードから通常の運転モードへと戻る。すなわちサーモオフ上限値HL1、およびサーモオン下限値LL2を下げる制御を解除し、通常状態に戻す。このため室内機91bはサーモオフ運転となる。このように、本制御により室内機91bの吸込空気温度Tin2の低下幅を抑制することができるので、快適性への影響を小さくとどめながら、空調装置の消費電力を低減することができる。 Thus, at time t3, the intake air temperature Tin1 of the indoor unit 91a has not reached the temperature at which the normal thermo-on operation is shifted to, but can be shifted to the thermo-on operation at an early stage. Since the indoor unit 91a that has been in the thermo-off operation can be set in the thermo-on operation, this control is terminated at this point, and the operation returns from the start / stop suppression operation mode to the normal operation mode. That is, the control to lower the thermo-off upper limit value HL1 and the thermo-on lower limit value LL2 is canceled and returned to the normal state. For this reason, the indoor unit 91b is in a thermo-off operation. In this way, since this control can suppress the decrease in the intake air temperature Tin2 of the indoor unit 91b, it is possible to reduce the power consumption of the air conditioner while keeping the impact on comfort small.
 上述のように、本制御は、全室内機91がサーモオフ運転になると判断されるときに作動するので、必要なときに確実に圧縮機1の停止を回避することが可能となる。したがって、複数の室内機がサーモオン・サーモオフを繰り返す周期性等に依存することなく、常に発停を抑制する効果を得ることができる。 As described above, since this control is activated when it is determined that all the indoor units 91 are in the thermo-off operation, it is possible to reliably avoid the stop of the compressor 1 when necessary. Therefore, it is possible to obtain an effect of always suppressing start and stop without depending on periodicity or the like in which a plurality of indoor units repeat thermo-on and thermo-off.
 なお、本実施例では、室内機91aがサーモオンした時点で発停抑制運転モードを終了させるとしたが、切替のタイミングにおいて冷凍サイクルの変動を抑制するために、室内機91aと91bの運転時間を所定時間だけ重複させるとしてもよい。 In the present embodiment, the start / stop suppression operation mode is terminated when the indoor unit 91a is thermo-ON, but in order to suppress the fluctuation of the refrigeration cycle at the switching timing, the operation time of the indoor units 91a and 91b is reduced. It may be overlapped for a predetermined time.
 また、本実施例では室内機91bのサーモオン運転時間を延長するために、閾値の温度を変更するとしたが、室内機91bのサーモオン運転時間を延長するための手段は、他の手段であっても良い。具体的には、閾値温度に達してからサーモオフと判断するための時間を延長する手法であっても良い。また、室内機がサーモオフと判断した場合に、室外機から強制的に室内膨張弁18の開度を調整等して、サーモオンと同様の空調動作をおこなわせる手法であっても良い。 In this embodiment, the threshold temperature is changed in order to extend the thermo-on operation time of the indoor unit 91b. However, the means for extending the thermo-on operation time of the indoor unit 91b may be other means. good. Specifically, a method of extending the time for determining that the thermostat is off after reaching the threshold temperature may be used. Further, when the indoor unit is determined to be thermo-off, a method of performing the same air-conditioning operation as thermo-on by forcibly adjusting the opening of the indoor expansion valve 18 from the outdoor unit may be used.
 また、本実施例では室内機91bのサーモオフ条件を満足した際に、発停抑制運転モードに入る例を説明したが、例えば複数の室内機が接続されている場合に、室内機毎に発停抑制運転モードによる運転継続の可否を予め設定するようにしてもよい。したがって、発停抑制運転モードによる運転継続を可として設定した場合には、本実施例のように動作するが、例えば、室内機91bに発停抑制運転モードによるサーモオン運転の継続を不可として設定した場合には、図3と同様に停止するようにしても良い。この場合には、全室内機91がサーモオフとなる条件を満足した場合に、最後に運転を継続していた室内機によって、圧縮機1が停止する場合と、運転を継続する場合が生じるので、圧縮機1の発停に伴う消費電力の増大を回避できない条件も生じるが、室内機91の設置状況等に応じてユーザ側の快適性を優先する機能を備えることができる。 Further, in this embodiment, the example in which the start / stop suppression operation mode is entered when the thermo-off condition of the indoor unit 91b is satisfied has been described. However, for example, when multiple indoor units are connected, the start / stop is performed for each indoor unit. Whether to continue the operation in the suppression operation mode may be set in advance. Therefore, when the operation continuation in the start / stop suppression operation mode is set as possible, the operation is performed as in the present embodiment. In this case, it may be stopped as in FIG. In this case, when all the indoor units 91 satisfy the conditions for thermo-off, the indoor unit that has been operated last may cause the compressor 1 to stop and the operation to continue. Although there may be a condition in which an increase in power consumption associated with the start / stop of the compressor 1 cannot be avoided, a function that prioritizes the user's comfort according to the installation status of the indoor unit 91 can be provided.
 図6に暖房運転時の動作を示す。暖房時も冷房時と同様に、室内機91aは、サーモオン上限温度HL1に達した時刻t1にサーモオフ運転となる。その後室内機91bの吸込空気温度Tin2は上昇を続け、時刻t2にサーモオン上限温度HL2に達するが、室内機91bがサーモオフすると全室内機91がサーモオフ運転となるので、サーモオン室内機91bのサーモオン上限温度を所定温度だけ高く設定する。これにより、室内機91bはサーモオン運転を継続することができる。さらにサーモオフ室内機91aのサーモオフ下限値を所定値だけ高く設定するので、室内機91aを早期にサーモオンさせることができ、結果として室内機91bをサーモオフさせることができる。したがって、室内機91bにおける吸込空気温度Tin2の上昇を抑制することができる。 Fig. 6 shows the operation during heating operation. As in the case of cooling, the indoor unit 91a enters the thermo-off operation at time t1 when the thermo-on upper limit temperature HL1 is reached. Thereafter, the intake air temperature Tin2 of the indoor unit 91b continues to rise and reaches the thermo-on upper limit temperature HL2 at time t2, but when the indoor unit 91b is thermo-off, all the indoor units 91 are in thermo-off operation, so the thermo-on upper limit temperature of the thermo-on indoor unit 91b Is set higher by a predetermined temperature. Thereby, the indoor unit 91b can continue the thermo-on operation. Furthermore, since the thermo-off lower limit value of the thermo-off indoor unit 91a is set higher by a predetermined value, the indoor unit 91a can be thermo-ON early, and as a result, the indoor unit 91b can be thermo-off. Therefore, an increase in the intake air temperature Tin2 in the indoor unit 91b can be suppressed.
 このように、暖房運転の際にも、快適性を程度保ちながら、圧縮機1の発停を回避することで消費電力の増大を抑制することができ、省エネルギー性の高い空調装置を提供することができる。 Thus, during heating operation, an increase in power consumption can be suppressed by avoiding the start and stop of the compressor 1 while maintaining a degree of comfort, and an air conditioner with high energy savings is provided. Can do.
 図7は、空調負荷が異なる場合の動作例を示している。時刻t2において、全ての室内機91がサーモオフ条件を満たすため、本実施例においても、発停抑制運転モードへ入る。そして、サーモオン室内機91bのサーモオン下限温度LL2を下げる一方、室内機91aのサーモオフ上限温度HL1を下げる。 FIG. 7 shows an operation example when the air conditioning load is different. Since all the indoor units 91 satisfy the thermo-off condition at time t2, also in the present embodiment, the start / stop suppression operation mode is entered. Then, the thermo-on lower limit temperature LL2 of the thermo-on indoor unit 91b is lowered, while the thermo-off upper limit temperature HL1 of the indoor unit 91a is lowered.
 この条件で運転を継続すると、室内機91bの吸込空気温度Tin2が低下し続けるので、室内機91aがサーモオンするまでに時間を要する場合には、快適性の面で課題が大きくなる。また、室内機91bの吸込空気温度Tin2の低下に伴い、冷凍サイクルの蒸発温度も低下することになり、冷凍サイクルの効率も低下して、消費電力が増大する。したがって、圧縮機1の発停を抑制することによる消費電力抑制の効果が十分に得られなくなる可能性がある。 If the operation is continued under these conditions, the intake air temperature Tin2 of the indoor unit 91b continues to decrease, so that when the indoor unit 91a takes time to be turned on, a problem becomes greater in terms of comfort. Further, as the intake air temperature Tin2 of the indoor unit 91b decreases, the evaporation temperature of the refrigeration cycle also decreases, the efficiency of the refrigeration cycle also decreases, and power consumption increases. Therefore, there is a possibility that the effect of suppressing power consumption by suppressing the start / stop of the compressor 1 cannot be sufficiently obtained.
 そこで本実施例では、室内機91bの吸込空気温度Tin2の値が、補正後のサーモオン下限値LL2に達した時点で、発停抑制運転モードを終了させるとした。このため、効率の悪い運転を不要に継続することを回避できるだけでなく、快適性の低下も防ぐことができる。 Therefore, in this embodiment, the start / stop suppression operation mode is terminated when the value of the intake air temperature Tin2 of the indoor unit 91b reaches the corrected thermo-on lower limit value LL2. For this reason, it is possible not only to avoid continuing inefficient driving unnecessarily, but also to prevent a decrease in comfort.
 図8は、同様の課題に対して、室内機91bの吸込空気温度Tin2の下限値を設けるのではなく、発停抑制運転モードを継続する時間に制限を設けた例である。時刻t2に発停抑制運転モードに移行した時点からタイマをカウントし、予め定めておいた制限時間ΔTだけ経過した時刻t3において、室内機91aがサーモオンできない場合には、室内機91aの負荷は小さく、それ以上室内機91bの運転を継続させることは省エネルギー効果が低いと判断し、本制御を解除し、室内機91aのサーモオフ上限値HL1、および室内機91bのサーモオン下限値LL2を元の値に戻し、室内機91bをサーモオフさせて圧縮機1を停止状態とする。 FIG. 8 is an example in which, for the same problem, a lower limit value of the intake air temperature Tin2 of the indoor unit 91b is not provided, but a time period during which the start / stop suppression operation mode is continued is limited. When the indoor unit 91a cannot be thermo-on at time t3 after a predetermined time limit ΔT has elapsed since the timer is counted from the time when the mode is shifted to the start / stop suppression operation mode at time t2, the load on the indoor unit 91a is small. Therefore, continuing the operation of the indoor unit 91b further determines that the energy saving effect is low, cancels this control, and sets the thermo-off upper limit value HL1 of the indoor unit 91a and the thermo-on lower limit value LL2 of the indoor unit 91b to the original values. Then, the indoor unit 91b is thermo-off and the compressor 1 is stopped.
 したがって、冷凍サイクルの効率の悪い状態での圧縮機1の運転を制限することができるので、不要な消費電力の増大を回避することができる。本制御はサーモオフ運転時間が長い場合に特に有効である。 Therefore, since the operation of the compressor 1 can be restricted when the efficiency of the refrigeration cycle is inefficient, an increase in unnecessary power consumption can be avoided. This control is particularly effective when the thermo-off operation time is long.
 次に発停抑制運転モードの開始判定をおこなう場合の制御動作について説明する。図9は本制御のフローチャートである。 Next, the control operation when the start / stop suppression operation mode start determination is performed will be described. FIG. 9 is a flowchart of this control.
 図9のフローチャートでは、実施例1に対して、発停抑制運転モードを開始する前に、サーモオン待機状態の室内機があるか否かの判定ステップを追加した。サーモオン待機状態とは、吸込空気温度Tinが予め定める所定の温度よりも高い状態(暖房の場合には低い場合)を示しており、サーモオンし易い室内機の有無を判断し、それに基づいて発停抑制運転モードの開始を判断する。 In the flowchart of FIG. 9, a step for determining whether or not there is an indoor unit in a thermo-on standby state before the start / stop suppression operation mode is added to the first embodiment. The thermo-on standby state is a state in which the intake air temperature Tin is higher than a predetermined temperature that is set in advance (if it is low in the case of heating). The start of the suppression operation mode is determined.
 図10を用いて、本制御の動作例を説明する。本実施例においても、時刻t1に室内機91aがサーモオフ運転となり、時刻t2において室内機91bもサーモオフ条件を満たす。このような場合に、例えば、実施例1の図7に示した動作例では、制限時間まで室内機91bをサーモオン運転に維持するとしたが、本実施例では、サーモオフ室内機91aの状態を確認して、発停抑制運転モードを開始するか否かを判断する。 An example of this control operation will be described with reference to FIG. Also in the present embodiment, the indoor unit 91a enters the thermo-off operation at time t1, and the indoor unit 91b also satisfies the thermo-off condition at time t2. In such a case, for example, in the operation example shown in FIG. 7 of the first embodiment, the indoor unit 91b is maintained in the thermo-on operation until the time limit, but in this embodiment, the state of the thermo-off indoor unit 91a is confirmed. The start / stop suppression operation mode is then determined.
 実施例1では、制限時間や室温の下限値を設けて、発停抑制運転モードによる消費電力の増大や、快適性の低下を最小限にとどめるための動作例を示した。本実施例では、所定時間内に室内機91aがサーモオン運転に移行するか否かを推定し、室内機91aが早期にサーモオン運転になると判断される場合には、発停抑制運転モードに移行して、室内機91bをサーモオン運転に維持する。一方、室内機91aがサーモオン運転になるまでには時間を要すると判断した場合には、発停抑制運転モードには移行せずに、室内機91bをサーモオフ運転に移行させる。 In Example 1, an operation example for limiting the increase in power consumption and the decrease in comfort due to the start / stop suppression operation mode by setting the time limit and the lower limit value of the room temperature was shown. In this embodiment, it is estimated whether or not the indoor unit 91a shifts to the thermo-on operation within a predetermined time, and when it is determined that the indoor unit 91a enters the thermo-on operation early, the shift to the start / stop suppression operation mode is performed. Thus, the indoor unit 91b is maintained in the thermo-on operation. On the other hand, when it is determined that it takes time for the indoor unit 91a to enter the thermo-on operation, the indoor unit 91b is shifted to the thermo-off operation without shifting to the start / stop suppression operation mode.
 サーモオフ室内機91aが早期にサーモオン運転となるか否かを判断するために、本実施例では室内機91aの吸込空気温度Tin1を用いて判断する。すなわち、サーモオン下限値LL1より高く、かつサーモオフ上限値HL1以下の、判定温度TC1を定義し、この判定温度TC1を用いてサーモオフ室内機が早期にサーモオン運転となるか否かを判断する。より具体的には、サーモオフ室内機91aの吸込空気温度Tin1がTC1以上の場合には、早期にサーモオンする可能性が高いサーモオン待機状態であると判断し、サーモオン待機状態の室内機が存在する場合のみ、室内機91bのサーモオン運転を継続させる。 In order to determine whether or not the thermo-off indoor unit 91a is in the thermo-on operation at an early stage, in this embodiment, the determination is made using the intake air temperature Tin1 of the indoor unit 91a. That is, a determination temperature TC1 that is higher than the thermo-on lower limit value LL1 and equal to or lower than the thermo-off upper limit value HL1 is defined, and using this determination temperature TC1, it is determined whether or not the thermo-off indoor unit enters the thermo-on operation early. More specifically, when the intake air temperature Tin1 of the thermo-off indoor unit 91a is equal to or higher than TC1, it is determined that the thermo-on standby state is likely to be thermo-ON early, and there is an indoor unit in the thermo-on standby state Only, the thermo-on operation of the indoor unit 91b is continued.
 本実施例では、サーモオフ室内機91aの吸込空気温度Tin1は、時刻t2において判定温度TC1よりも低く、サーモオン待機状態の室内機は存在しないので、時刻t2において室内機91bを停止させる。したがって、通常制御同様に圧縮機1を停止させた後、室内機91bの吸込空気温度Tin2がサーモオフ上限温度HL2に達した時刻t3に、圧縮機1を再起動させる。このように、発停抑制運転モードに移行すると室内機91bの吸込空気温度Tin2の低下や、冷凍サイクルの効率が低下するような条件では、積極的に圧縮機1を一旦停止させて、これらの問題を回避する。つまり、発停抑制運転モードを用いて圧縮機の発停を抑制する場合と、発停抑制運転モードを使わずに圧縮機を一旦停止させた場合とで、消費電力が少ないと想定される運転方法を選択することができるので、最終的に省エネルギー性の高い空気調和装置を提供することができる。 In the present embodiment, the intake air temperature Tin1 of the thermo-off indoor unit 91a is lower than the determination temperature TC1 at time t2, and there is no indoor unit in the thermo-on standby state, so the indoor unit 91b is stopped at time t2. Therefore, after the compressor 1 is stopped as in the normal control, the compressor 1 is restarted at time t3 when the intake air temperature Tin2 of the indoor unit 91b reaches the thermo-off upper limit temperature HL2. As described above, when the operation mode is shifted to the start / stop suppression operation mode, under the condition that the intake air temperature Tin2 of the indoor unit 91b is lowered or the efficiency of the refrigeration cycle is lowered, the compressor 1 is positively stopped temporarily. Avoid problems. In other words, when the start / stop suppression operation mode is used to suppress the start / stop of the compressor and when the compressor is temporarily stopped without using the start / stop suppression operation mode, the operation is assumed to consume less power. Since a method can be selected, an air conditioner with high energy saving performance can be finally provided.
 なお、本実施例においては、発停抑制運転モード開始の判断を、サーモオン運転をおこなう室内機が0台になると判断されるときにおこなうとした。例えば、室内機が1台だけで運転する際に開始するとした場合には、該室内機の吸込空気温度もまだ高く、サーモオフ条件を満足するまでには時間を要するので、サーモオフ条件を満足する時点での、他室内機の吸込空気温度等を予測することは困難であり、このような判断をおこなうことはできない。本発明では、サーモオン運転をおこなう室内機が0台になると判断されるときに、そのときの他の室内機の情報を用いて、発停抑制運転モードの開始を判断することができる。 In the present embodiment, the start / stop suppression operation mode start determination is made when it is determined that there are zero indoor units performing the thermo-on operation. For example, when starting when operating with only one indoor unit, the intake air temperature of the indoor unit is still high, and it takes time to satisfy the thermo-off condition. Therefore, it is difficult to predict the intake air temperature and the like of other indoor units, and such a determination cannot be made. In the present invention, when it is determined that the number of indoor units that perform the thermo-on operation is zero, it is possible to determine the start of the start / stop suppression operation mode using the information of the other indoor units at that time.
 なお、本実施例では発停抑制運転モードの開始を判定するために、サーモオン待機状態の室内機があるか否かに基づいて判断するとしたが、本発明はそれに限定されるものではなく、例えば、室内機の吸込空気温度の変化時間や、過去の運転におけるサーモオフ時間等を用いて判断するとしても良い。本発明では、サーモオン室内機が0台になると判断されるときに、発停抑制運転モードの開始を判断するとしたので、その時点における他の室内機の情報を用いて判断することができる。 In this embodiment, in order to determine the start of the start / stop suppression operation mode, it is determined based on whether there is an indoor unit in a thermo-on standby state, but the present invention is not limited thereto, for example, The determination may be made using the change time of the intake air temperature of the indoor unit, the thermo-off time in the past operation, or the like. In the present invention, when it is determined that the number of thermo-on indoor units is zero, the start / stop suppression operation mode is determined to be determined, so that it is possible to determine using the information of other indoor units at that time.
 図11にサーモオン下限値を2段階に設定した場合の実施例を示す。サーモオン下限値LLを下げると、一時的には室温が低下するので、これを防止するために、本実施例では、通常のサーモオン下限値LLよりも高い温度に第2のサーモオン下限値mLを設定した。通常はmLまで温度が低下した時点でサーモオフとし、発停抑制運転モードに入ったときだけ、LLまでサーモオフの閾値を下げる。 Fig. 11 shows an example in which the thermo-on lower limit value is set in two stages. Lowering the thermo-on lower limit value LL temporarily lowers the room temperature. To prevent this, in this embodiment, the second thermo-on lower limit value mL is set to a temperature higher than the normal thermo-on lower limit value LL. did. Normally, the thermo-off is performed when the temperature drops to mL, and the thermo-off threshold is lowered to LL only when the start / stop suppression operation mode is entered.
 図11を用いて動作例について説明する。時刻t1において、室内機91aの吸込み温度Tin1がmL1に達したので、室内機91aをサーモオフ状態とする。その後、室内機91bの吸込温度Tin2は下がり続け、時刻t2にてmL2に達するので、室内機91bはサーモオフ条件を満足する。しかしこのとき、室内機91bをサーモオフさせると、サーモオン室内機が無くなり、圧縮機を停止させなくてはいけなくなるので、発停抑制運転モードに移行する。これにより、室内機91bのサーモオン下限値をmL2からLL2へと変更し、室内機91bの冷房運転を継続させる。その後は、温度上昇に伴い室内機91aがサーモオンすると、発停抑制運転モードを終了し、室内機91bをサーモオフ状態へと移行させる。 An example of operation will be described with reference to FIG. At time t1, since the suction temperature Tin1 of the indoor unit 91a has reached mL1, the indoor unit 91a is brought into a thermo-off state. Thereafter, the suction temperature Tin2 of the indoor unit 91b continues to decrease and reaches mL2 at time t2, so the indoor unit 91b satisfies the thermo-off condition. However, at this time, if the indoor unit 91b is thermo-off, the thermo-on indoor unit disappears and the compressor must be stopped, so that the mode is shifted to the start / stop suppression operation mode. Thereby, the thermo-on lower limit value of the indoor unit 91b is changed from mL2 to LL2, and the cooling operation of the indoor unit 91b is continued. Thereafter, when the indoor unit 91a is thermo-on as the temperature rises, the start / stop suppression operation mode is terminated, and the indoor unit 91b is shifted to the thermo-off state.
 このとき、室内機91bの吸込温度はmL2よりは低下するものの、LL2までは低下しない。したがって、室内機91bの吹出し温度低下により、ユーザに不快感を与えることなく、圧縮機の停止と起動に伴う消費電力の増加を抑えることができる。 At this time, although the suction temperature of the indoor unit 91b is lower than mL2, it does not decrease to LL2. Therefore, an increase in power consumption associated with the stop and start of the compressor can be suppressed without causing discomfort to the user due to a decrease in the blowing temperature of the indoor unit 91b.
 図12は、発停抑制運転モードの際にサーモオンさせる室内機を固定させた場合の動作例を示した図である。本実施例では、室内機が3台並列に接続された場合を例として示す。本実施例では、全ての室内機がサーモオフすることを防止するために、全室内機がサーモオフする場合には、室内機91cがサーモオンするように予め設定する。 FIG. 12 is a diagram showing an operation example when the indoor unit to be thermo-ON is fixed in the start / stop suppression operation mode. In this embodiment, a case where three indoor units are connected in parallel is shown as an example. In the present embodiment, in order to prevent all indoor units from being thermo-off, when all the indoor units are thermo-off, the indoor unit 91c is set in advance to be thermo-on.
 本実施例では、時刻t1で室内機91aの吸込温度Tin1が、時刻t2で室内機91bの吸込温度Tin2がそれぞれサーモオン下限値LLに達したので、サーモオフ条件を満足する。室内機91cはサーモオフ状態となっているので、時刻t2において室内機91bがサーモオフすると、全室内機がサーモオフ状態となり、圧縮機1が停止する。そこで、本実施例では、発停抑制運転モードを作動させることによって、室内機91cをサーモオン状態へと移行させて、圧縮機1が停止することを回避する。そして、室内機91aがサーモオン状態となった時刻t3で、室内機91cをサーモオフ状態へと戻す。室内機91cをサーモオン状態のままとしても良いが、この場合には室内機91cの吸込温度が低い状態での運転時間が長くなるので、サーモオフ状態とする方が望ましい。特に、発停抑制運転モードが頻発するような条件では、室内機91cの吸込温度が低い状態が継続する可能性があるので、サーモオフ状態に戻すことで、このような条件を回避しやすくなる。 In this embodiment, since the suction temperature Tin1 of the indoor unit 91a has reached the thermo-on lower limit value LL at time t1, and the suction temperature Tin2 of the indoor unit 91b has reached the thermo-on lower limit value LL, the thermo-off condition is satisfied. Since the indoor unit 91c is in the thermo-off state, when the indoor unit 91b is thermo-off at time t2, all the indoor units are in the thermo-off state and the compressor 1 is stopped. Therefore, in this embodiment, by operating the start / stop suppression operation mode, the indoor unit 91c is shifted to the thermo-on state, and the compressor 1 is prevented from stopping. Then, at time t3 when the indoor unit 91a is in the thermo-on state, the indoor unit 91c is returned to the thermo-off state. Although the indoor unit 91c may be kept in the thermo-on state, in this case, since the operation time is long in a state where the suction temperature of the indoor unit 91c is low, it is preferable to make the thermo-off state. In particular, under conditions where the start / stop suppression operation mode frequently occurs, there is a possibility that the state in which the suction temperature of the indoor unit 91c is low may continue, so it is easy to avoid such conditions by returning to the thermo-off state.
 このように、発停抑制運転モードで、サーモオン状態となる室内機を固定することで、室内機91aや91bにおいて吸い込み温度が低下することを防止することができる。したがって、室内機91aや91bが吸込温度の低下を避けたい場所(小さな部屋等)に設置されている場合には、このような室内機での室温低下または過昇を避けることができる。また、大空間に設置されている室内機など、1台あたりの吸込温度変化がユーザに与える影響の小さな室内機等を選択することで、ユーザへの不快感を抑制しつつ、圧縮機の発停に伴う消費電力の増大を抑制できる。 Thus, by fixing the indoor unit that is in the thermo-on state in the start / stop suppression operation mode, it is possible to prevent the suction temperature from being lowered in the indoor units 91a and 91b. Therefore, when the indoor units 91a and 91b are installed in a place (such as a small room) where it is desired to avoid a decrease in the suction temperature, it is possible to avoid a decrease in room temperature or an excessive increase in such an indoor unit. In addition, by selecting indoor units that have a small impact on the user due to changes in suction temperature per unit, such as indoor units installed in large spaces, the compressor can be generated while suppressing discomfort to the user. An increase in power consumption due to a stop can be suppressed.
60…コントローラ
91a,91b…室内機
60 ... Controller
91a, 91b ... indoor unit

Claims (11)

  1.  圧縮機を備えた室外機と複数の室内機とを接続して形成される冷凍サイクル装置を備え、
     前記室内機は、吸込空気温度と設定温度との温度差情報を用いて、冷房運転又は暖房運転を行うサーモオン運転と冷房運転又は暖房運転を休止するサーモオフ運転とを切り替えて空調運転する空気調和装置において、
     前記室内機のうち第1室内機がサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合であって、前記第1室内機以外にサーモオン運転中の前記室内機がない場合には、何れかの前記室内機をサーモオン運転させる発停抑制運転モードに移行する
    ことを特徴とする空気調和装置。
    Comprising a refrigeration cycle device formed by connecting an outdoor unit equipped with a compressor and a plurality of indoor units;
    The indoor unit is an air conditioner that performs air-conditioning operation by switching between a thermo-on operation that performs a cooling operation or a heating operation and a thermo-off operation that pauses the cooling operation or the heating operation, using temperature difference information between an intake air temperature and a set temperature. In
    Among the indoor units, when the first indoor unit satisfies a thermo-off condition for switching from the thermo-on operation to the thermo-off operation, and there is no indoor unit in the thermo-on operation other than the first indoor unit, The air conditioner shifts to a start / stop suppression operation mode in which the indoor unit is thermo-operated.
  2.  請求項1において、
     前記室内機のうち第1室内機がサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合であって、前記第1室内機以外にサーモオン運転中の前記室内機がない場合には、前記室内機のうち予め指定した前記室内機をサーモオン運転させる発停抑制運転モードに移行する
    ことを特徴とする空気調和装置。
    In claim 1,
    When the first indoor unit among the indoor units satisfies a thermo-off condition for switching from the thermo-on operation to the thermo-off operation, and there is no indoor unit in the thermo-on operation other than the first indoor unit, the indoor unit The air conditioner shifts to a start / stop suppression operation mode in which the indoor unit specified in advance is thermo-on operated.
  3.  請求項1において、
     前記室内機のうち第1室内機がサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合であって、前記第1室内機以外にサーモオン運転中の前記室内機がない場合には、前記第1室内機をサーモオフ運転へ切り替えずにサーモオン運転を継続させる発停抑制運転モードに移行する
    ことを特徴とする空気調和装置。
    In claim 1,
    When the first indoor unit among the indoor units satisfies a thermo-off condition for switching from the thermo-on operation to the thermo-off operation, and there is no indoor unit in the thermo-on operation other than the first indoor unit, the first An air conditioner that shifts to a start / stop suppression operation mode in which a thermo-on operation is continued without switching the indoor unit to a thermo-off operation.
  4.  請求項3において、
     前記第1室内機がサーモオン運転からサーモオフ運転へ切り替わるサーモオフ条件を満たした場合であって、前記第1室内機以外にサーモオン運転中の前記室内機がない場合であっても、前記第1室内機以外の前記室内機である第2室内機が所定時間内にサーモオン運転に移行しないと判断した場合は、前記第1室内機を前記発停抑制運転モードに移行させない
    ことを特徴とする空気調和装置。
    In claim 3,
    Even if the first indoor unit satisfies a thermo-off condition for switching from a thermo-on operation to a thermo-off operation, and there is no other indoor unit in the thermo-on operation other than the first indoor unit, the first indoor unit When the second indoor unit that is the other indoor unit is determined not to shift to the thermo-on operation within a predetermined time, the first indoor unit is not shifted to the start / stop suppression operation mode. .
  5.  請求項4において、
     前記第2室内機における前記吸込空気温度と前記第2室内機がサーモオン運転に切り替わるサーモオン温度との差が所定値以内である場合は、所定時間内に前記第2室内機がサーモオン運転に移行すると判断し、
     前記第2室内機における前記吸込空気温度と前記第2室内機がサーモオン運転に切り替わるサーモオン温度との差が所定値以上である場合は、所定時間内に前記第2室内機がサーモオン運転に移行しないと判断する
    ことを特徴とする空気調和装置。
    In claim 4,
    When the difference between the intake air temperature in the second indoor unit and the thermo-on temperature at which the second indoor unit switches to the thermo-on operation is within a predetermined value, the second indoor unit shifts to the thermo-on operation within a predetermined time. Judgment
    When the difference between the intake air temperature in the second indoor unit and the thermo-on temperature at which the second indoor unit switches to the thermo-on operation is a predetermined value or more, the second indoor unit does not shift to the thermo-on operation within a predetermined time. It is judged that the air conditioner.
  6.  請求項3乃至5の何れかにおいて、
     前記発停抑制モードへの移行を許可する前記室内機を予め指定し、前記第1室内機が前記発停抑制モードへの移行を許可された室内機である場合のみ、前記発停抑制運転モードに移行させる
    ことを特徴とする空気調和装置。
    In any of claims 3 to 5,
    The start / stop suppression operation mode is specified only when the indoor unit permitting the transition to the start / stop suppression mode is designated in advance and the first indoor unit is an indoor unit permitted to shift to the start / stop suppression mode. An air conditioner characterized by being moved to.
  7.  請求項3乃至6の何れかにおいて、
     前記発停抑制モードでは、前記第1室内機がサーモオフするサーモオフ温度を前記設定温度との差を増大させた第1サーモオフ温度に変更する
    ことを特徴とする空気調和装置。
    In any of claims 3 to 6,
    In the start / stop suppression mode, the air conditioning apparatus is characterized in that a thermo-off temperature at which the first indoor unit is thermo-off is changed to a first thermo-off temperature in which a difference from the set temperature is increased.
  8.  請求項7において、
     前記発停抑制運転モードは、前記第1室内機の前記吸込温度が前記第1サーモオフ温度に到達した時点で終了する
    ことを特徴とする空気調和装置。
    In claim 7,
    The start / stop suppression operation mode ends when the suction temperature of the first indoor unit reaches the first thermo-off temperature.
  9.  請求項3乃至7の何れかにおいて、
     前記発停抑制運転モードは、前記第1室内機以外の何れかの前記室内機がサーモオン運転に切り替わる時点で終了する
    ことを特徴とする空気調和装置。
    In any of claims 3 to 7,
    The start / stop suppression operation mode ends when any one of the indoor units other than the first indoor unit is switched to a thermo-on operation.
  10.  請求項1乃至7の何れかにおいて、
     前記発停抑制運転モードは、前記発停抑制運転モードに移行後所定時間が経過した時点で終了する
    ことを特徴とする空気調和装置。
    In any one of Claims 1 thru | or 7,
    The air conditioning apparatus is characterized in that the start / stop suppression operation mode ends when a predetermined time elapses after shifting to the start / stop suppression operation mode.
  11.  請求項1乃至10の何れかにおいて、
     前記発停抑制運転モードでは、前記第1室内機以外の前記室内機がサーモオンするサーモオン温度を前記設定温度との差を減少させた第1サーモオン温度に変更する、
    ことを特徴とする空気調和装置。
    In any one of Claims 1 thru | or 10,
    In the start / stop suppression operation mode, the thermo-ON temperature at which the indoor unit other than the first indoor unit is thermo-ON is changed to the first thermo-ON temperature in which the difference from the set temperature is reduced.
    An air conditioner characterized by that.
PCT/JP2014/069774 2014-07-28 2014-07-28 Air conditioning device WO2016016918A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015515733A JP6033416B2 (en) 2014-07-28 2014-07-28 Air conditioner
CN201480007041.1A CN105473946B (en) 2014-07-28 2014-07-28 Conditioner
PCT/JP2014/069774 WO2016016918A1 (en) 2014-07-28 2014-07-28 Air conditioning device
US14/769,186 US20160320113A1 (en) 2014-07-28 2014-07-28 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069774 WO2016016918A1 (en) 2014-07-28 2014-07-28 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2016016918A1 true WO2016016918A1 (en) 2016-02-04

Family

ID=55216864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069774 WO2016016918A1 (en) 2014-07-28 2014-07-28 Air conditioning device

Country Status (4)

Country Link
US (1) US20160320113A1 (en)
JP (1) JP6033416B2 (en)
CN (1) CN105473946B (en)
WO (1) WO2016016918A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026731A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Air-conditioning device
JP2020193746A (en) * 2019-05-27 2020-12-03 シャープ株式会社 Air conditioner
JP6994599B1 (en) 2021-08-27 2022-01-14 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170067559A (en) * 2015-12-08 2017-06-16 엘지전자 주식회사 A refrigerator and a method for controlling the same
JP6808033B2 (en) * 2017-06-01 2021-01-06 三菱電機株式会社 Air conditioning system
CN112665204B (en) * 2020-12-25 2022-09-02 青岛海尔空调器有限总公司 Control method and device for double-evaporator air conditioner and double-evaporator air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154600A (en) * 2011-01-28 2012-08-16 Daikin Industries Ltd Air conditioner
JP2013213613A (en) * 2012-04-02 2013-10-17 Fujitsu General Ltd Air conditioner
JP2013249987A (en) * 2012-05-31 2013-12-12 Fujitsu General Ltd Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194384A (en) * 1997-09-26 1999-04-09 Mitsubishi Heavy Ind Ltd Multi-room type air conditioner
JP3864980B2 (en) * 2005-04-18 2007-01-10 ダイキン工業株式会社 Air conditioner
JP2008138979A (en) * 2006-12-04 2008-06-19 Hitachi Appliances Inc Refrigeration system
JP2009144939A (en) * 2007-12-11 2009-07-02 Mitsubishi Heavy Ind Ltd Multiple air conditioning system
JP4503083B2 (en) * 2008-06-18 2010-07-14 株式会社Nttファシリティーズ Air conditioner and operation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154600A (en) * 2011-01-28 2012-08-16 Daikin Industries Ltd Air conditioner
JP2013213613A (en) * 2012-04-02 2013-10-17 Fujitsu General Ltd Air conditioner
JP2013249987A (en) * 2012-05-31 2013-12-12 Fujitsu General Ltd Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026731A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Air-conditioning device
JP2019027687A (en) * 2017-07-31 2019-02-21 ダイキン工業株式会社 Air conditioner
JP2020193746A (en) * 2019-05-27 2020-12-03 シャープ株式会社 Air conditioner
JP7417368B2 (en) 2019-05-27 2024-01-18 シャープ株式会社 air conditioner
JP6994599B1 (en) 2021-08-27 2022-01-14 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2023032411A (en) * 2021-08-27 2023-03-09 日立ジョンソンコントロールズ空調株式会社 air conditioner

Also Published As

Publication number Publication date
CN105473946B (en) 2018-04-06
JPWO2016016918A1 (en) 2017-04-27
US20160320113A1 (en) 2016-11-03
CN105473946A (en) 2016-04-06
JP6033416B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6033416B2 (en) Air conditioner
JP5590980B2 (en) Refrigeration air conditioner
KR100772217B1 (en) Control method of air conditioner
JP5802339B2 (en) Air conditioner
US11262108B2 (en) Refrigeration cycle apparatus
AU2006309913A1 (en) Compressor operating method of refrigeration device, and refrigeration device
WO2014061130A1 (en) Air conditioner
US20200158392A1 (en) Refrigeration device
JP2013178046A (en) Air conditioner
JP2009264715A (en) Heat pump hot water system
JP5872110B1 (en) Air conditioner
JP2011202885A (en) Air conditioner
WO2014122735A1 (en) Refrigeration device
KR100712196B1 (en) Heat pump system and a method for eliminating frost on the outdoor heat exchanger of the heat pump system
JP2005049022A (en) Air conditioner
JP6391977B2 (en) Multi-type air conditioner control device, multi-type air conditioner system including the same, multi-type air conditioner control method, and control program
JP2009264718A (en) Heat pump hot water system
JP2006234295A (en) Multiple air conditioner
JP2015087064A (en) Air conditioning system
KR20070064908A (en) Air conditioner and driving method thereof
JP2004069191A (en) Air conditioner control method
JP2012127542A (en) Air conditioning device
JP6047381B2 (en) air conditioner
JP2009024965A (en) Air conditioner
JP3526393B2 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480007041.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015515733

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769186

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898908

Country of ref document: EP

Kind code of ref document: A1