JP2013178046A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2013178046A
JP2013178046A JP2012042688A JP2012042688A JP2013178046A JP 2013178046 A JP2013178046 A JP 2013178046A JP 2012042688 A JP2012042688 A JP 2012042688A JP 2012042688 A JP2012042688 A JP 2012042688A JP 2013178046 A JP2013178046 A JP 2013178046A
Authority
JP
Japan
Prior art keywords
temperature
compressor
expansion valve
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012042688A
Other languages
Japanese (ja)
Inventor
Hirotaka Furuta
裕貴 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012042688A priority Critical patent/JP2013178046A/en
Priority to CN2013100536226A priority patent/CN103292527A/en
Publication of JP2013178046A publication Critical patent/JP2013178046A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02B30/72

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of improving heating start-up performance or defrost restoration performance.SOLUTION: An air conditioner includes: a compressor to compress a refrigerant; an indoor heat exchanger where the refrigerant compressed by the compressor flows when heating is operating; an electrically-driven expansion valve where the refrigerant condensed by the indoor heat exchanger flows; an outdoor heat exchanger where the refrigerant expanded by the electrically-driven expansion valve flows; an outdoor temperature detection means to detect outside air temperatures; and a control section to control the opening degree of the electrically-driven expansion valve. The control section controls the opening degree of the electrically-driven expansion valve to fix at a set time and a set opening degree when operation of heating starts to change the set opening degree depending on the difference between the temperature detected by the outdoor temperature detection means at the time of starting the heating operation and a temperature of gas saturation on an intake side of the compressor.

Description

本発明は、空気調和装置に関する。   The present invention relates to an air conditioner.

暖房運転が可能である空気調和装置について、暖房起動時特に暖房低温時または除霜復帰時の立ち上がり能力が十分に得られない場合がある。たとえば特許文献1では、「暖房起動時に温風を供給するために要する冷媒圧力の確保を簡易な構成によって迅速に行うことが可能な空気調和装置を提供する。圧縮機、室内熱交換器、室内ファン、室外電動膨張弁および室外熱交換器を少なくとも含んで冷凍サイクルを行う空気調和装置であって、亜室内熱交温度センサおよび制御部を備えている。制御部は、室内熱交温度センサの検知値から冷媒の過冷却度を把握する。制御部は、過冷却度に応じて室外電動膨張弁の開度を調整する制御と、室外電動膨張弁の開度を固定開度DSとして維持したままで圧縮機を起動する制御を行う。」と記載されている。   About the air conditioner which can perform heating operation, the start-up capability at the time of heating start-up, especially at the time of heating low temperature, or at the time of defrost return may not be obtained sufficiently. For example, Patent Document 1 provides “an air-conditioning apparatus that can quickly secure a refrigerant pressure required for supplying hot air when heating is started with a simple configuration. Compressor, indoor heat exchanger, indoor An air conditioner that performs a refrigeration cycle including at least a fan, an outdoor electric expansion valve, and an outdoor heat exchanger, and includes a sub-room heat exchange temperature sensor and a control unit. The control unit grasps the degree of supercooling of the refrigerant from the detected value, and the control unit adjusts the opening degree of the outdoor electric expansion valve according to the degree of subcooling and maintains the opening degree of the outdoor electric expansion valve as the fixed opening degree DS. The control to start the compressor is performed as it is ".

特開2010−223457号公報JP 2010-223457 A

上記特許文献においては、起動時において室外電動膨張弁の開度を固定開度としているが、暖房起動時に電動膨張弁を絞りすぎると、熱交SH(蒸発器過熱度)が大きくなり、圧縮機吸入圧力が低下し、立ち上がり性能が低下する。一方で室外電動膨張弁の開度を開きすぎると圧縮機の吸入口が湿り状態となり、信頼性を損ねるという問題がある。すなわち、特許文献1の電動膨張弁の開度制御では、運転状態(例えば外気温度が異なる場合等)によっては、熱交SHを最適にして立ち上がり性能を確保するためのものではなくなってしまう。   In the above-mentioned patent document, the opening degree of the outdoor electric expansion valve is fixed at the time of starting, but if the electric expansion valve is excessively throttled at the time of heating starting, the heat exchange SH (evaporator superheat degree) becomes large, and the compressor The suction pressure decreases and the start-up performance decreases. On the other hand, when the opening degree of the outdoor electric expansion valve is opened too much, there is a problem that the suction port of the compressor becomes wet and the reliability is impaired. That is, in the opening control of the electric expansion valve of Patent Document 1, depending on the operation state (for example, when the outside air temperature is different), the heat exchange SH is not optimized and the start-up performance is not ensured.

また特許文献1において、起動時の電動膨張弁に与える固定開度は、予測値であるため、実際の最適固定開度に対し、隔たりが生じる虞があること、さらに固定開度から通常のフィードバック制御に移行した時に、目標値に対し、偏差が大きいために修正するまでに時間が掛かってしまう懸念があり、暖房立ち上がり性能を低下させてしまうという問題も生じ得る。   Further, in Patent Document 1, since the fixed opening given to the electric expansion valve at the time of startup is a predicted value, there is a possibility that a gap may occur with respect to the actual optimum fixed opening, and further normal feedback from the fixed opening. When shifting to control, there is a concern that it takes a long time to correct the target value because the deviation is large, and there may be a problem that the heating start-up performance is deteriorated.

そこで本発明は暖房立ち上がり性能又は除霜復帰性能を向上させることができる空気調和装置を提供することを目的とする。   Then, an object of this invention is to provide the air conditioning apparatus which can improve heating start-up performance or a defrost return performance.

上記目的を達成するために、本発明は、冷媒を圧縮する圧縮機と、暖房運転時に、前記圧縮機により圧縮された冷媒が流れる室内熱交換器と、該室内熱交換器により凝縮された冷媒が流れる電動膨張弁と、該電動膨張弁により膨張した冷媒が流れる室外熱交換器と、外気の温度を検出する外気温度検出手段と、前記電動膨張弁の開度を制御する制御部と、を備えた空気調和装置において、前記制御部は、前記電動膨張弁の開度を、暖房運転の起動時に設定時間、設定開度で固定するように制御し、暖房運転の起動時の前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差に応じて前記設定開度を変化させることを特徴とする。   To achieve the above object, the present invention provides a compressor for compressing a refrigerant, an indoor heat exchanger through which the refrigerant compressed by the compressor flows during heating operation, and a refrigerant condensed by the indoor heat exchanger An electric expansion valve through which the refrigerant flows, an outdoor heat exchanger through which the refrigerant expanded by the electric expansion valve flows, an outside air temperature detecting means for detecting the temperature of the outside air, and a control unit for controlling the opening degree of the electric expansion valve. In the air conditioner provided, the control unit controls the opening of the electric expansion valve to be fixed at a set time and a set opening when the heating operation is started, and detects the outside air temperature when the heating operation is started. The set opening is changed in accordance with a temperature difference between the temperature detected by the means and the gas saturation temperature on the suction side of the compressor.

本発明によれば、暖房立ち上がり性能および除霜復帰性能を向上させることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, heating start-up performance and defrost return performance can be improved. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本実施例による冷凍サイクル系統図である。It is a refrigerating cycle system diagram by a present Example. 本実施例による機能構成ブロック図である。It is a functional block diagram by a present Example. 本実施例による冷房運転時の冷凍サイクル系統図である。It is a refrigerating cycle system diagram at the time of air_conditionaing | cooling operation by a present Example. 本実施例による暖房運転時の冷凍サイクル系統図である。It is a refrigerating cycle system diagram at the time of heating operation by a present Example. 本実施例による制御フローチャートである。It is a control flowchart by a present Example.

以下、本発明の実施例について図を用いて説明する。各図における同一符号は同一物または相当物を示す。
図1は本実施例のマルチ型空調システムの冷凍サイクル系統図である。本実施例におけるマルチ型空調システムは、室外ユニット11と、3台の室内ユニット15a、15b、15cで構成されるマルチ型空調システムと、これらを制御する図示しないコントローラ(制御装置)とを備えて構成される。このマルチ型空調システムは、室外ユニット11の接続台数は複数でも良く、室内ユニット15の接続台数も3台より多くても少なくても良い。また、なお、符号15a〜15cなどに付けたアルファベットの添え字は、各部品を総称的に表わす場合などに省略して用いることがある。
Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals in the drawings indicate the same or equivalent.
FIG. 1 is a refrigeration cycle system diagram of a multi-type air conditioning system of the present embodiment. The multi-type air conditioning system in the present embodiment includes an outdoor unit 11, a multi-type air conditioning system including three indoor units 15a, 15b, and 15c, and a controller (control device) (not shown) that controls these units. Composed. In this multi-type air conditioning system, the number of connected outdoor units 11 may be plural, and the number of connected indoor units 15 may be more or less than three. In addition, the alphabetic suffixes attached to the reference numerals 15a to 15c may be omitted when the parts are represented generically.

室外ユニット11は、標準的な空気調和装置の室外ユニットと同様に、それぞれに室外熱交換器6と、冷暖切換用四方弁4とを備え、圧縮機構である圧縮機1a、1bは容量可変型とし、圧縮機吸入配管には気液分離器10が接続されている。四方弁4はコントローラ(制御装置)により冷房運転側と暖房運転側とに切り換え可能である。接続される配管はガス配管16と、液配管17で、ガス阻止弁18a、18b、液阻止弁19a、19bとでそれぞれ接続される。室内ユニット15a、15b、15cはそれぞれ熱交換器12a、12b、12cと、送風機13a、13b、13cと、電動膨張弁14a、14b、14cとそれらを制御するコントローラ21a、21b、21c(制御装置)で構成される。   The outdoor unit 11 includes an outdoor heat exchanger 6 and a cooling / heating switching four-way valve 4 as in the case of a standard air conditioner outdoor unit. The compressors 1a and 1b, which are compression mechanisms, are variable capacity type. The gas-liquid separator 10 is connected to the compressor suction pipe. The four-way valve 4 can be switched between a cooling operation side and a heating operation side by a controller (control device). The pipes to be connected are the gas pipe 16 and the liquid pipe 17, which are connected by the gas blocking valves 18a and 18b and the liquid blocking valves 19a and 19b, respectively. The indoor units 15a, 15b, and 15c include heat exchangers 12a, 12b, and 12c, blowers 13a, 13b, and 13c, electric expansion valves 14a, 14b, and 14c, and controllers 21a, 21b, and 21c (control devices) that control them. Consists of.

図2に本実施例の機器構成ブロック図を示す。
室外ユニット11はそれぞれ圧縮機1、電動膨張弁5、電動膨張弁9、送風機7、四方弁4を室外コントローラ20にて制御するように構成される。制御情報として圧縮機用温度センサ22、外気センサ23、高圧圧力センサ24、低圧圧力センサ25、配管温度センサ26を備え、各センサの読み取り値より予めプログラムされた圧力及び温度目標となるように各構成部品を制御する。また室外ユニット11は伝送線32を介して通信され、室外ユニット11が複数台接続する場合は室外コントローラ11aを初期設定時に室外コントローラ20aから親機設定することで、室外ユニット11を複数台接続時の統合システム制御を担当するコントローラ20aに決定され、初期設定時に子機設定された室外ユニット11bの室外コントローラ20bは親機設定された室外ユニットの室外コントローラ20aの指令に従い、子機設定された室外ユニット内の各部品を制御する。
FIG. 2 shows a block diagram of the device configuration of this embodiment.
The outdoor unit 11 is configured to control the compressor 1, the electric expansion valve 5, the electric expansion valve 9, the blower 7, and the four-way valve 4 by the outdoor controller 20, respectively. Control information includes a compressor temperature sensor 22, an outside air sensor 23, a high pressure sensor 24, a low pressure sensor 25, and a pipe temperature sensor 26, and each pressure and temperature target is preprogrammed from the readings of each sensor. Control component parts. Further, the outdoor units 11 are communicated via the transmission line 32. When a plurality of outdoor units 11 are connected, the outdoor controller 11a is set as a master unit from the outdoor controller 20a at the initial setting, so that a plurality of outdoor units 11 are connected. The outdoor controller 20b of the outdoor unit 11b that is determined by the controller 20a in charge of the integrated system control of the outdoor unit and set as the slave unit at the initial setting is in accordance with a command from the outdoor controller 20a of the outdoor unit that is set as the master unit. Control each part in the unit.

室内ユニット15は室外ユニット11aと伝送線33を介して通信される。複数の室外ユニットを接続している場合は親機設定された室外ユニット11と伝送線33を介して通信される。リモコン31の発停信号により、室内コントローラ21は送風機を制御し、リモコン31よって設定された温度条件を室外コントローラ20aに送信する。また、冷媒状態を把握するためのガス温度センサ27、液温度センサ28、空気状態を把握するための吸い込み温度センサ29、吹出し温度センサ30の計測値を室外コントローラ20aに送信し、室外コントローラ20aは最適な冷媒状態に調整するための電動膨張弁14の開度指令を室内コントローラ21に送信する。室内コントローラ21は室外コントローラ20aの指令に従い、電動膨張弁14を制御する。   The indoor unit 15 communicates with the outdoor unit 11a via the transmission line 33. When a plurality of outdoor units are connected, communication is performed via the transmission line 33 with the outdoor unit 11 set as the master unit. The indoor controller 21 controls the blower according to the start / stop signal of the remote controller 31, and transmits the temperature condition set by the remote controller 31 to the outdoor controller 20a. Further, the measured values of the gas temperature sensor 27, the liquid temperature sensor 28 for grasping the refrigerant state, the suction temperature sensor 29 for grasping the air state, and the blowing temperature sensor 30 are transmitted to the outdoor controller 20a. An opening command of the electric expansion valve 14 for adjusting to the optimum refrigerant state is transmitted to the indoor controller 21. The indoor controller 21 controls the electric expansion valve 14 in accordance with a command from the outdoor controller 20a.

図3に本実施例の冷房運転における冷媒の流れを説明する。冷媒は図3で実線矢印の方向に流れ、圧縮機1から吐出されたガス冷媒は四方弁4を通過し、冷媒通路で構成する室外側機熱交換器6で凝縮する。凝縮された液冷媒は、過冷却回路8を通過するが、過冷却回路上流で分岐された液冷媒が電動弁9で減圧され低圧側配管とバイパスされ、過冷却回路8にて熱交換される。これにより液阻止弁19を通過する冷媒は過冷却状態となり、分岐された冷媒は過熱状態となり気液分離器10へ戻る。この過冷却回路の効果により、熱交換器6にて熱交換するよりも、より冷媒の過冷却度が増し、より効率のよい運転が可能となる。液配管17を通過した冷媒は室内ユニットの電動膨張弁14に入る。電動膨張弁9は任意の絞り量設定可能な膨張装置であり、電動膨張弁9にて減圧された冷媒は、蒸発器となる室内側熱交換器12に送られ、冷媒が蒸発し、室内空気は冷却される。室内側熱交換器12で蒸発した冷媒はガス配管16を流れ気液分離器10にて適切な吸入かわき度に調整され圧縮機1の吸入側に戻る。   FIG. 3 illustrates the refrigerant flow in the cooling operation of this embodiment. The refrigerant flows in the direction of the solid arrow in FIG. 3, and the gas refrigerant discharged from the compressor 1 passes through the four-way valve 4 and condenses in the outdoor unit heat exchanger 6 constituted by the refrigerant passage. The condensed liquid refrigerant passes through the supercooling circuit 8, but the liquid refrigerant branched upstream of the supercooling circuit is depressurized by the motor-operated valve 9 and bypassed from the low-pressure side pipe, and heat is exchanged in the supercooling circuit 8. . As a result, the refrigerant passing through the liquid blocking valve 19 becomes supercooled, and the branched refrigerant becomes superheated and returns to the gas-liquid separator 10. Due to the effect of this supercooling circuit, the degree of supercooling of the refrigerant increases more than when heat is exchanged in the heat exchanger 6, and more efficient operation is possible. The refrigerant that has passed through the liquid pipe 17 enters the electric expansion valve 14 of the indoor unit. The electric expansion valve 9 is an expansion device in which an arbitrary throttle amount can be set. The refrigerant decompressed by the electric expansion valve 9 is sent to the indoor heat exchanger 12 serving as an evaporator, and the refrigerant evaporates. Is cooled. The refrigerant evaporated in the indoor heat exchanger 12 flows through the gas pipe 16 and is adjusted to an appropriate suction degree by the gas-liquid separator 10 and returns to the suction side of the compressor 1.

ここで室内側の負荷状況に応じて室内側容量を低減させる場合、室内側負荷変動により容量可変式圧機容量を低減させる、または室外側送風機風量を低下させて室外側熱交換量を低減させることができるが、室内側負荷が熱源側容量に対して極端に小さくなった場合、かつ室外ユニットが複数台接続されている場合は上記手段だけでなく、室外ユニットの運転台数を低減させる。   Here, when reducing the indoor capacity according to the load condition on the indoor side, the capacity variable pressure machine capacity is reduced by the fluctuation of the indoor load, or the outdoor fan air volume is reduced to reduce the outdoor heat exchange amount. However, when the indoor load becomes extremely small relative to the heat source side capacity and when a plurality of outdoor units are connected, not only the above means but also the number of operating outdoor units is reduced.

図4に本実施例の暖房運転における冷媒の流れを説明する。冷媒は図4で破線矢印の方向に流れ、圧縮機1から吐出されたガス冷媒は、ガス配管16を流れ、室内ユニット15に流れる。室内ユニット15にて複数の冷媒通路で構成する熱交換器12で凝縮し、電動膨張弁14にて任意の過冷却度を確保すべく、絞り量を任意に調整する。このとき熱交換器12にて放熱され暖房がなされる。凝縮された液冷媒は、室外ユニット11と室内ユニット15を接続する液接続配管17を通過し液阻止弁19を介して過冷却回路9を通過し、電動膨張弁5に入る。電動膨張弁5は任意の絞り量設定可能な膨張装置であり、電動膨張弁5にて減圧された冷媒は、蒸発器となる室外側熱交換器6に送られ、冷媒が蒸発する。蒸発した冷媒は四方弁4を経由し、気液分離器10にて適切な吸入かわき度に調整され圧縮機1の吸入側に戻る。   FIG. 4 illustrates the refrigerant flow in the heating operation of this embodiment. The refrigerant flows in the direction of the broken line arrow in FIG. 4, and the gas refrigerant discharged from the compressor 1 flows through the gas pipe 16 and flows into the indoor unit 15. The indoor unit 15 condenses in the heat exchanger 12 composed of a plurality of refrigerant passages, and the electric expansion valve 14 adjusts the throttle amount arbitrarily in order to ensure an arbitrary degree of subcooling. At this time, heat is dissipated by the heat exchanger 12 and heating is performed. The condensed liquid refrigerant passes through the liquid connection pipe 17 that connects the outdoor unit 11 and the indoor unit 15, passes through the supercooling circuit 9 through the liquid blocking valve 19, and enters the electric expansion valve 5. The electric expansion valve 5 is an expansion device capable of setting an arbitrary throttle amount, and the refrigerant decompressed by the electric expansion valve 5 is sent to the outdoor heat exchanger 6 serving as an evaporator, and the refrigerant evaporates. The evaporated refrigerant passes through the four-way valve 4 and is adjusted to an appropriate suction degree by the gas-liquid separator 10 and returns to the suction side of the compressor 1.

ここで利用側の負荷状況に応じて室内側容量を低減させる場合、利用側負荷変動により容量可変式圧縮機容量を低減させる、または熱源側送風機風量を低下させて熱源側熱交換量を低減させることができるが、利用側負荷が熱源側容量に対して極端に小さくなった場合、上記手段だけでなく、冷房時同様に室外ユニットの運転台数を低減させる。   Here, when the indoor capacity is reduced according to the load situation on the use side, the capacity variable compressor capacity is reduced due to the use side load fluctuation, or the heat source side blower air volume is reduced to reduce the heat source side heat exchange amount. However, when the use side load becomes extremely small with respect to the heat source side capacity, not only the above-mentioned means but also the number of operating outdoor units is reduced as in the case of cooling.

図5は本実施例による暖房運転起動時(あるいは除霜運転復帰時)の制御フローチャートを説明するための図である。図5の点線内の電動膨張弁5の初期開度決定後から起動制御終了までが本実施例の特徴を示している。本実施例では、暖房運転起動時(あるいは除霜運転復帰時)は、まず電動膨張弁5の初期開度が決定され、この初期開度を固定開度として保持するように制御される。この電動膨張弁5の初期開度は、開度が大きすぎ圧縮機吸入側に液が戻らないように設定される。しかし、このように常に同じ初期開度で固定開度となるように保持すると、初期開度が小さすぎる場合(絞りすぎる場合)に、熱交SH(蒸発器過熱度)が大きくなり、圧縮機吸入圧力が低下し、立ち上がり性能が低下する。一方で初期開度が大き過ぎる場合(開きすぎる場合)には、圧縮機の吸入口が湿り状態となり、信頼性を損ねるという問題がある。そこで本実施例においては、以下のようにこの初期開度から固定開度を補正し、補正後の開度を固定開度とするものである。   FIG. 5 is a diagram for explaining a control flowchart when the heating operation is started (or when the defrosting operation is restored) according to this embodiment. From the determination of the initial opening degree of the electric expansion valve 5 within the dotted line in FIG. 5 to the end of the start-up control shows the characteristics of this embodiment. In the present embodiment, when the heating operation is started (or when the defrosting operation is restored), first, the initial opening degree of the electric expansion valve 5 is determined, and the initial opening degree is controlled to be held as a fixed opening degree. The initial opening degree of the electric expansion valve 5 is set so that the liquid is not returned to the compressor suction side because the opening degree is too large. However, if the initial opening is always kept to be a fixed opening as described above, the heat exchange SH (evaporator superheat degree) increases when the initial opening is too small (when the throttle is too narrow), and the compressor The suction pressure decreases and the start-up performance decreases. On the other hand, when the initial opening is too large (when it is opened too much), there is a problem that the suction port of the compressor becomes wet and the reliability is impaired. Therefore, in the present embodiment, the fixed opening is corrected from the initial opening as described below, and the corrected opening is set as the fixed opening.

すなわち、コントローラ(制御装置)は、電動膨張弁5の開度を、暖房運転の起動時に設定時間、設定開度で固定するように制御するものであるが、暖房運転の起動時の外気温度検出手段(外気センサ23)により検出された温度と、圧縮機1の吸入側のガス飽和温度との温度差に応じて上記した設定開度を変化させる。なお、ガス飽和温度は、圧縮機1の吸入側の圧力検出手段(低圧圧力センサ25)の検出値を用いて算出することができる。   That is, the controller (control device) controls the opening of the electric expansion valve 5 so as to be fixed at the set time and the set opening when the heating operation is started. The set opening degree is changed according to the temperature difference between the temperature detected by the means (outside air sensor 23) and the gas saturation temperature on the suction side of the compressor 1. The gas saturation temperature can be calculated using the detected value of the pressure detection means (low pressure sensor 25) on the suction side of the compressor 1.

より具体的に説明すると、コントローラ(制御装置)は、暖房運転の起動時(あるいは除霜運転復帰時)の外気温度検出手段(外気センサ23)により検出された温度と、圧縮機1の吸入側のガス飽和温度との温度差が設定温度(目標温度)より小さい場合に前記設定開度が小さくなるように変化させる。すなわち、上記温度差が設定温度(目標温度)より小さい場合には室外熱交換器6の過熱領域を増やす必要があるため、電動膨張弁5の設定開度を小さく変更したうえで、この小さくした設定開度にて固定するように制御するものである。   More specifically, the controller (control device) determines the temperature detected by the outside air temperature detection means (outside air sensor 23) at the time of starting the heating operation (or returning from the defrosting operation) and the suction side of the compressor 1 When the temperature difference from the gas saturation temperature is smaller than the set temperature (target temperature), the set opening is changed to be small. That is, when the above temperature difference is smaller than the set temperature (target temperature), it is necessary to increase the overheating region of the outdoor heat exchanger 6, so the set opening degree of the electric expansion valve 5 is changed to a small value and then reduced. It is controlled to be fixed at the set opening.

これに対してコントローラ(制御装置)は、暖房運転の起動時(あるいは除霜運転復帰時)の外気温度検出手段(外気センサ23)により検出された温度と、圧縮機1の吸入側のガス飽和温度との温度差が設定温度(目標温度)より大きい場合に設定開度が大きくなるように変化させる。これは上記温度差が設定温度(目標温度)より大きい場合には室外熱交換器6の過熱領域を減らす必要があるため、電動膨張弁5の設定開度を大きく変更したうえで、この大きくした設定開度にて固定するように制御するものである。   On the other hand, the controller (control device) detects the temperature detected by the outside air temperature detection means (outside air sensor 23) at the start of heating operation (or at the time of defrosting operation return) and the gas saturation on the suction side of the compressor 1. When the temperature difference from the temperature is larger than the set temperature (target temperature), the set opening is changed. This is because when the temperature difference is larger than the set temperature (target temperature), it is necessary to reduce the overheating region of the outdoor heat exchanger 6, so that the set opening degree of the electric expansion valve 5 is greatly changed and increased. It is controlled to be fixed at the set opening.

以上に説明した電動膨張弁5の設定開度の補正により、熱交SH(蒸発器過熱度)を最適値とすることができるため、暖房起動時の応答性が良く、かつ、立ち上がり性能および除霜復帰性能を最大限に発揮することができる。なお、本実施例によれば、暖房低温条件において、従来の立ち上がり性能に対し、約8%改善することができる。   By correcting the set opening of the electric expansion valve 5 described above, the heat exchange SH (evaporator superheat degree) can be set to an optimum value, so that the responsiveness at the start of heating is good, and the startup performance and the removal performance are reduced. Defrosting performance can be maximized. In addition, according to a present Example, about 8% can be improved with respect to the conventional start-up performance in heating low temperature conditions.

また、上記したように一度、設定開度を変化させた後に設定時間が経過すると再度、暖房運転の起動時前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差に応じて再度、設定開度を変化させることが望ましい。このように一定時間、経過した後に再度、設定開度を変化させ、この設定開度で固定となるように制御することで膨張弁開度のハンチングを防止し急激な冷凍サイクル変動を防止することが可能となる。   In addition, as described above, once the set opening time has elapsed after changing the set opening, the temperature detected by the outside air temperature detecting means at the start of heating operation and the gas saturation temperature on the suction side of the compressor are again It is desirable to change the set opening degree again in accordance with the temperature difference between. In this way, after a certain time has elapsed, the set opening is changed again, and the hunting of the expansion valve opening is prevented by controlling so as to be fixed at the set opening, thereby preventing rapid refrigeration cycle fluctuations. Is possible.

また、室外熱交換器6に送風する室外ファン7を備え、コントローラ(制御装置)は、設定温度を変化させる前に室外ファン7を駆動させることが望ましい。外気温度検出手段(外気センサ23)が検出する外気温度は特に起動時において誤検知しやすいため、上記したように室外ファン7を駆動させてから一定時間経過した後に改めて外気温度検出手段(外気センサ23)が検出する外気温度(及び圧縮機1の吸入圧力に相当するガス飽和温度)を用いて設定温度を変更するものである。これにより、上記したように誤検出を防止しつつ、設定温度の変更が可能となる。   The outdoor heat exchanger 6 is preferably provided with an outdoor fan 7, and the controller (control device) preferably drives the outdoor fan 7 before changing the set temperature. Since the outside temperature detected by the outside temperature detecting means (outside air sensor 23) is easy to be erroneously detected especially at the time of starting, the outside temperature detecting means (outside air sensor) again after a certain time has elapsed since the outdoor fan 7 was driven as described above. The set temperature is changed using the outside air temperature (and the gas saturation temperature corresponding to the suction pressure of the compressor 1) detected by 23). This makes it possible to change the set temperature while preventing erroneous detection as described above.

なお、除霜時は冷暖切換用四方弁を切り換えて、室内熱交換器へ送っていたホットガス冷媒を室外熱交換器へ送り込んで、付着した霜を解かす運転をする。この時の冷媒の流れは、冷暖切換用四方弁を切り換えるため、冷房運転時と同じとなる。除霜復帰後再び冷暖切換用四方弁4を切り換えて暖房運転を開始するため、暖房起動時と全く同じ運転をする。よって暖房起動時と同じ様に除霜復帰性能も同様に低下するが、上記した制御を採用することでこれを解消することが可能となる。   In addition, at the time of defrosting, the cooling / heating switching four-way valve is switched, and the hot gas refrigerant sent to the indoor heat exchanger is sent to the outdoor heat exchanger, so that the attached frost is released. The refrigerant flow at this time is the same as that during the cooling operation because the cooling / heating switching four-way valve is switched. Since the heating / cooling switching four-way valve 4 is switched again after defrosting is resumed, the heating operation is started. Therefore, the defrosting return performance is similarly reduced in the same manner as when heating is started, but this can be solved by adopting the above-described control.

1a、1b 圧縮機
2a、2b 気液分離器
3a、3b 逆止弁
4a、4b 四方弁2
5a、5b 電動膨張弁1
6a、6b、12a、12b、12c 熱交換器
7a、7b、13a、13b、13c 送風機
8a、8b 過冷却器
9a、9b 電動膨張弁2
10a、10b アキュムレータ
11a、11b 室外ユニット
14a、14b、14c 電動膨張弁
15a、15b、15c 室内ユニット
16 ガス配管
17 液配管
18 ガス阻止弁
19 液阻止弁
20a、20b 室外ユニットコントローラ
21a、21b、21b 室内ユニットコントローラ
22a、22b 圧縮機用温度センサ
23a、23b 外気センサ
24a、24b 高圧圧力センサ
25a、25b 低圧圧力センサ
26a、26b 配管温度センサ
27a、27b、27c ガス温度センサ
28a、28b、28c 液温度センサ
29a、29b、29c 吸い込み温度センサ
30a、30b、30c 吹出し温度センサ
31a、31b、31c 操作リモコン
100 マルチ型空調システム
1a, 1b Compressor 2a, 2b Gas-liquid separator 3a, 3b Check valve 4a, 4b Four-way valve 2
5a, 5b Electric expansion valve 1
6a, 6b, 12a, 12b, 12c Heat exchangers 7a, 7b, 13a, 13b, 13c Blowers 8a, 8b Subcoolers 9a, 9b Electric expansion valve 2
10a, 10b Accumulator 11a, 11b Outdoor unit 14a, 14b, 14c Electric expansion valve 15a, 15b, 15c Indoor unit 16 Gas piping 17 Liquid piping 18 Gas blocking valve 19 Liquid blocking valve 20a, 20b Outdoor unit controllers 21a, 21b, 21b Indoor Unit controller 22a, 22b Compressor temperature sensor 23a, 23b Outside air sensor 24a, 24b High pressure sensor 25a, 25b Low pressure sensor 26a, 26b Pipe temperature sensor 27a, 27b, 27c Gas temperature sensor 28a, 28b, 28c Liquid temperature sensor 29a 29b, 29c Suction temperature sensors 30a, 30b, 30c Blow temperature sensors 31a, 31b, 31c Operation remote control 100 Multi-type air conditioning system

Claims (7)

冷媒を圧縮する圧縮機と、
暖房運転時に、
前記圧縮機により圧縮された冷媒が流れる室内熱交換器と、
該室内熱交換器により凝縮された冷媒が流れる電動膨張弁と、
該電動膨張弁により膨張した冷媒が流れる室外熱交換器と、
外気の温度を検出する外気温度検出手段と、
前記電動膨張弁の開度を制御する制御部と、を備えた空気調和装置において、
前記制御部は、
前記電動膨張弁の開度を、暖房運転の起動時に設定時間、設定開度で固定するように制御し、
暖房運転の起動時の前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差に応じて前記設定開度を変化させることを特徴とする空気調和装置。
A compressor for compressing the refrigerant;
During heating operation,
An indoor heat exchanger through which the refrigerant compressed by the compressor flows;
An electric expansion valve through which the refrigerant condensed by the indoor heat exchanger flows;
An outdoor heat exchanger through which the refrigerant expanded by the electric expansion valve flows;
An outside air temperature detecting means for detecting the outside air temperature;
In an air conditioner comprising a controller that controls the opening of the electric expansion valve,
The controller is
The opening degree of the electric expansion valve is controlled to be fixed at the set time and the set opening degree when starting the heating operation,
An air conditioner that changes the set opening degree according to a temperature difference between a temperature detected by the outside air temperature detecting means at the start of heating operation and a gas saturation temperature on a suction side of the compressor. .
請求項1に記載の空気調和装置において、
前記ガス飽和温度は、前記圧縮機の吸入側の圧力検出手段の検出値を用いて算出されることを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1,
The air conditioning apparatus according to claim 1, wherein the gas saturation temperature is calculated using a detection value of pressure detection means on a suction side of the compressor.
前記制御部は、
暖房運転の起動時の前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差が設定温度より小さい場合に前記設定開度が小さくなるように変化させることを特徴とする空気調和装置。
The controller is
When the temperature difference between the temperature detected by the outside air temperature detecting means at the start of the heating operation and the gas saturation temperature on the suction side of the compressor is smaller than the set temperature, the set opening is changed to be small. An air conditioner characterized by that.
請求項1〜3の何れかに記載の空気調和装置において、
前記制御部は、
暖房運転の起動時の前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差が前記設定温度より大きい場合に前記設定開度が大きくなるように変化させることを特徴とする空気調和装置。
In the air conditioning apparatus in any one of Claims 1-3,
The controller is
When the temperature difference between the temperature detected by the outside air temperature detecting means at the start of the heating operation and the gas saturation temperature on the suction side of the compressor is larger than the set temperature, the set opening is changed so as to increase. An air conditioner characterized in that
請求項4に記載の空気調和装置において、
前記制御部は、
前記設定開度を変化させた後に設定時間が経過すると、前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差に応じて再度、前記設定開度を変化させることを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 4,
The controller is
When a set time elapses after changing the set opening, the set opening again according to the temperature difference between the temperature detected by the outside air temperature detection means and the gas saturation temperature on the suction side of the compressor An air conditioner characterized by changing the temperature.
請求項1〜3の何れかに記載の空気調和装置において、
前記室外熱交換器に送風する室外ファンを備え、
前記制御部は、
前記設定温度を変化させる前に前記室外ファンを駆動させることを特徴とする空気調和装置。
In the air conditioning apparatus in any one of Claims 1-3,
An outdoor fan for blowing air to the outdoor heat exchanger;
The controller is
An air conditioner that drives the outdoor fan before changing the set temperature.
冷媒を圧縮する圧縮機と、
暖房運転時に、
前記圧縮機により圧縮された冷媒が流れる室内熱交換器と、
該室内熱交換器により凝縮された冷媒が流れる電動膨張弁と、
該電動膨張弁により膨張した冷媒が流れる室外熱交換器と、
外気の温度を検出する外気温度検出手段と、
前記電動膨張弁の開度を制御する制御部と、を備え、
暖房運転時に冷媒の循環方向を反対にすることで除霜運転を行う空気調和装置において、
前記制御部は、
前記電動膨張弁の開度を、前記除霜運転から暖房運転への復帰時に設定時間、設定開度で固定するように制御し、
前記除霜運転から暖房運転への復帰時の前記外気温度検出手段により検出された温度と、前記圧縮機の吸入側のガス飽和温度との温度差に応じて前記設定開度を変化させることを特徴とする空気調和装置。
A compressor for compressing the refrigerant;
During heating operation,
An indoor heat exchanger through which the refrigerant compressed by the compressor flows;
An electric expansion valve through which the refrigerant condensed by the indoor heat exchanger flows;
An outdoor heat exchanger through which the refrigerant expanded by the electric expansion valve flows;
An outside air temperature detecting means for detecting the outside air temperature;
A control unit for controlling the opening of the electric expansion valve,
In the air conditioner that performs the defrosting operation by reversing the refrigerant circulation direction during the heating operation,
The controller is
The opening of the electric expansion valve is controlled to be fixed at a set time and a set opening when returning from the defrosting operation to the heating operation,
Changing the set opening according to a temperature difference between the temperature detected by the outside air temperature detecting means at the time of returning from the defrosting operation to the heating operation and the gas saturation temperature on the suction side of the compressor. An air conditioner characterized.
JP2012042688A 2012-02-29 2012-02-29 Air conditioner Pending JP2013178046A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012042688A JP2013178046A (en) 2012-02-29 2012-02-29 Air conditioner
CN2013100536226A CN103292527A (en) 2012-02-29 2013-02-19 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042688A JP2013178046A (en) 2012-02-29 2012-02-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2013178046A true JP2013178046A (en) 2013-09-09

Family

ID=49093811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042688A Pending JP2013178046A (en) 2012-02-29 2012-02-29 Air conditioner

Country Status (2)

Country Link
JP (1) JP2013178046A (en)
CN (1) CN103292527A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121985A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Heat source-side unit and air conditioning device
CN105222445A (en) * 2015-10-30 2016-01-06 Tcl空调器(中山)有限公司 The control method of electric expansion valve, device and air-conditioner set and control method thereof
JP2019124452A (en) * 2018-01-11 2019-07-25 キャリア コーポレイションCarrier Corporation Method of managing compressor start operation, and transport refrigeration system
CN112097355A (en) * 2020-10-12 2020-12-18 珠海格力电器股份有限公司 Water chilling unit, control method thereof and air conditioning equipment
CN114264032A (en) * 2021-12-30 2022-04-01 广东Tcl智能暖通设备有限公司 Supercooling valve control method and device, air conditioner and computer readable storage medium
CN115900020A (en) * 2022-11-15 2023-04-04 宁波奥克斯电气股份有限公司 Anti-condensation control method and device for air conditioner and multi-connected air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408792B2 (en) * 2014-05-30 2018-10-17 シャープ株式会社 Air conditioner, air conditioner control method, and control program for air conditioner
CN106152643B (en) * 2015-04-17 2018-09-11 陈则韶 Air source hot pump water heater Defrost method
JP6808812B2 (en) * 2017-03-24 2021-01-06 東芝キヤリア株式会社 Air conditioner
JP2020183850A (en) * 2019-05-09 2020-11-12 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123562U (en) * 1984-01-31 1985-08-20 株式会社東芝 Air conditioner control circuit
JPH07158981A (en) * 1993-12-09 1995-06-20 Mitsubishi Electric Corp Air conditioning device
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
WO2010106821A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioning device
WO2011125111A1 (en) * 2010-04-05 2011-10-13 三菱電機株式会社 Air conditioning and hot-water supply composite system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123562U (en) * 1984-01-31 1985-08-20 株式会社東芝 Air conditioner control circuit
JPH07158981A (en) * 1993-12-09 1995-06-20 Mitsubishi Electric Corp Air conditioning device
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
WO2010106821A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioning device
WO2011125111A1 (en) * 2010-04-05 2011-10-13 三菱電機株式会社 Air conditioning and hot-water supply composite system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121985A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Heat source-side unit and air conditioning device
JP6091663B2 (en) * 2014-02-14 2017-03-08 三菱電機株式会社 Heat source side unit and air conditioner
CN105222445A (en) * 2015-10-30 2016-01-06 Tcl空调器(中山)有限公司 The control method of electric expansion valve, device and air-conditioner set and control method thereof
JP2019124452A (en) * 2018-01-11 2019-07-25 キャリア コーポレイションCarrier Corporation Method of managing compressor start operation, and transport refrigeration system
JP7356225B2 (en) 2018-01-11 2023-10-04 キャリア コーポレイション How to manage compressor start-up operations and transportation cooling systems
CN112097355A (en) * 2020-10-12 2020-12-18 珠海格力电器股份有限公司 Water chilling unit, control method thereof and air conditioning equipment
CN114264032A (en) * 2021-12-30 2022-04-01 广东Tcl智能暖通设备有限公司 Supercooling valve control method and device, air conditioner and computer readable storage medium
CN115900020A (en) * 2022-11-15 2023-04-04 宁波奥克斯电气股份有限公司 Anti-condensation control method and device for air conditioner and multi-connected air conditioner

Also Published As

Publication number Publication date
CN103292527A (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
JP2013178046A (en) Air conditioner
EP2719966B1 (en) Refrigeration air-conditioning device
US20150285537A1 (en) Economizer combined with a heat of compression system
KR101479458B1 (en) Refrigeration device
JP6895901B2 (en) Air conditioner
JP7186845B2 (en) air conditioner
WO2006013938A1 (en) Freezing apparatus
WO2014199788A1 (en) Air-conditioning device
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
WO2016001958A1 (en) Air-conditioning device
JP5872052B2 (en) Air conditioner
JP2014070830A (en) Freezer unit
JP5517891B2 (en) Air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP2011007482A (en) Air conditioner
JP6048549B1 (en) Refrigeration equipment
JP7241880B2 (en) air conditioner
KR102177952B1 (en) Air conditioner
JP6047381B2 (en) air conditioner
JP6704513B2 (en) Refrigeration cycle equipment
JP2014070829A (en) Refrigerator
KR20140091794A (en) Air conditioner and method for controlling the same
JP2002228284A (en) Refrigerating machine
KR20150051982A (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209