WO2010106821A1 - Air conditioning device - Google Patents
Air conditioning device Download PDFInfo
- Publication number
- WO2010106821A1 WO2010106821A1 PCT/JP2010/002005 JP2010002005W WO2010106821A1 WO 2010106821 A1 WO2010106821 A1 WO 2010106821A1 JP 2010002005 W JP2010002005 W JP 2010002005W WO 2010106821 A1 WO2010106821 A1 WO 2010106821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- refrigerant
- opening degree
- heat exchanger
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0314—Temperature sensors near the indoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/19—Refrigerant outlet condenser temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
Definitions
- the present invention relates to an air conditioner.
- Patent Document 3 Japanese Patent Laid-Open No. 11-101522
- Japanese Patent Laid-Open No. 11-101522 Japanese Patent Laid-Open No. 11-101522
- An air conditioner is an air conditioner that performs a refrigeration cycle including at least a compression mechanism, an indoor heat exchanger, an indoor fan, an expansion mechanism, and an outdoor heat exchanger, and includes a refrigerant state grasping unit and a control Department.
- the refrigerant state grasping unit grasps at least one of the degree of supercooling of the refrigerant from the indoor heat exchanger toward the expansion mechanism and the degree of superheating of the refrigerant flowing on the suction side of the compression mechanism.
- the control unit performs post-startup heating operation control that adjusts the opening degree of the expansion mechanism according to the value obtained by the refrigerant state grasping part, and activation that starts the compression mechanism while maintaining the opening degree of the expansion mechanism as a fixed opening degree.
- the fixed opening is the expansion mechanism when the post-startup heating operation control is performed under the same conditions as the operating conditions of the refrigeration cycle other than the expansion mechanism and the ambient temperature condition of the refrigeration cycle when the fixed opening control at the time of starting is executed.
- the opening is narrowed to be narrower than the opening corresponding to the refrigerant state.
- the air conditioner according to the second aspect is the air conditioner according to the first aspect, wherein the post-startup heating operation control is performed so that the refrigerant state of the refrigeration cycle is stabilized according to the value obtained by the refrigerant state grasping unit.
- This is stabilization control after startup that adjusts the opening of the expansion mechanism.
- the opening corresponding to the refrigerant state is the expansion when the post-startup stabilization control is performed under the same conditions as the operating condition of the refrigeration cycle other than the expansion mechanism and the ambient temperature condition of the refrigeration cycle when executing the fixed opening control at the time of starting The opening of the mechanism.
- the expansion mechanism is fixed during startup fixed opening control rather than the expansion mechanism opening when the opening is adjusted so that the refrigerant state of the refrigeration cycle is stabilized in the stabilization control after startup.
- the opening is further narrowed down.
- the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger during the startup fixed opening degree control can be increased more quickly.
- the air conditioner according to the third aspect is the air conditioner according to the second aspect, wherein the stabilization of the refrigerant state of the refrigeration cycle in the post-startup stabilization control is at least one of the following three examples: One.
- the first is to maintain the degree of change in the refrigerant distribution state in the refrigeration cycle for the first predetermined time within the first predetermined distribution state or the first predetermined distribution range.
- the second is to maintain the degree of supercooling of the refrigerant from the indoor heat exchanger toward the expansion mechanism within a second predetermined value or a second predetermined range for a second predetermined time.
- the degree of superheat of the refrigerant flowing on the suction side of the compression mechanism is maintained for a third predetermined time within a third predetermined value or a third predetermined range.
- the refrigeration cycle can be stabilized more reliably, and the opening for rapidly increasing the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger as the fixed opening It becomes possible to make it more certain to select.
- the air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect.
- the control unit immediately before starting the startup capacity increase control.
- the frequency of the compression mechanism is made to reach the first predetermined target frequency while maintaining the state where the opening degree of the expansion mechanism is maintained at the fixed opening degree.
- the opening degree of the expansion mechanism is set to the first opening degree that is wider than the fixed opening degree while raising the frequency of the compression mechanism to be the second predetermined target frequency that is higher than the first predetermined target frequency. Control.
- this air conditioner it is possible to increase the capacity of the refrigerant by increasing the amount of refrigerant circulation while reducing the time required to start supplying warm air to the user from the start of heating operation.
- the control unit in the air conditioner according to the fourth aspect, in the startup capacity increase control, opens the expansion mechanism while maintaining the frequency of the compression mechanism at the second predetermined target frequency. Immediately before the control for adjusting the degree according to the value grasped by the refrigerant state grasping unit, the opening degree of the expansion mechanism is once increased to the first opening degree.
- the opening degree of the expansion mechanism is opened according to the grasp value of the refrigerant state grasping unit. Adjusted in degrees. As a result, it becomes possible to increase the capacity while ensuring flexibility with respect to the load.
- the air conditioner according to the sixth aspect is the air conditioner according to the fourth aspect or the fifth aspect, and when the control unit has passed a predetermined fixed activation time from the start time of the fixed opening control at the time of activation, Start capacity increase control at startup.
- the control unit has passed a predetermined fixed activation time from the start time of the fixed opening control at the time of activation, Start capacity increase control at startup.
- the fixed opening control is started after starting the fixed opening control at startup.
- the frequency of the compression mechanism can be forcibly increased.
- the ability can be forcibly raised, and the situation where the ability cannot be raised forever can be avoided.
- the air conditioner according to a seventh aspect is the air conditioner according to the sixth aspect, wherein the control unit sets the start timing of the post-startup heating operation control to a time point after the start point of the start time capacity increase control. To do.
- heating capacity control at the start of the post-startup heating operation control is facilitated by starting the post-startup heating operation control after the capacity is increased by the startup capacity increase control.
- An air conditioner is the air conditioner according to any one of the fourth to seventh aspects, wherein the control unit sets the frequency of the compression mechanism to the second predetermined target frequency in the start-up capacity increase control.
- the startup stage capacity control is performed so that the opening degree of the expansion mechanism is set to a second opening degree that is wider than the first opening degree while the frequency is raised to a predetermined maximum frequency that is higher than the first opening degree.
- the starting stage capacity control after the starting fixed opening degree control, at least two frequency stages of the first predetermined target frequency and the second predetermined target frequency are provided before raising to the predetermined maximum frequency. It has been.
- the capacity of the compression mechanism can be increased in stages, and the opening degree of the expansion mechanism can also be expanded in stages. It can be increased. Thereby, it is possible to suppress liquid compression in the compression mechanism due to sudden increase in capacity and a sudden abnormal increase in refrigerant pressure from the compression mechanism toward the indoor heat exchanger.
- An air conditioner is the air conditioner according to any one of the first aspect to the eighth aspect, wherein the refrigerant pressure grasps the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger.
- the unit is further provided.
- the control unit determines that the pressure grasped by the refrigerant pressure grasping unit is higher than the air volume by the indoor fan until the pressure grasped by the refrigerant pressure grasping unit exceeds the predetermined high pressure threshold after the start-up fixed opening degree control is started. Start-up fan control is performed in which the airflow from the indoor fan after the threshold is exceeded is greater.
- the time required from the start of the heating operation to the start of the supply of warm air to the user is further reduced while suppressing the supply of cold air to the user immediately after the start of the heating operation. It can be made.
- An air conditioner according to a tenth aspect is the air conditioner according to the ninth aspect, wherein the control unit determines that the pressure grasped by the refrigerant pressure grasping unit exceeds a predetermined high-pressure threshold from the start of startup fixed opening degree control. Until then, the air flow from the indoor fan is set to zero.
- An air conditioner according to an eleventh aspect is the air conditioner according to any one of the first to tenth aspects, wherein the refrigerant is in thermal contact with the refrigerant pipe on the suction side of the compression mechanism or flows in the refrigerant pipe.
- a heat generating part that includes a magnetic material, and a magnetic field generating part that generates a magnetic field for induction heating of the heat generating part.
- the control unit causes the heating unit to be induction-heated in the startup fixed opening degree control.
- the heat generating portion can generate heat by electromagnetic induction heating, it is possible to shorten the time required to achieve the predetermined high pressure threshold in the startup fan control.
- the time required from the start of heating operation to the start of the supply of warm air to the user can be further shortened.
- the pressure of the refrigerant sent from the compression mechanism toward the indoor heat exchanger when performing the fixed opening degree control at start-up can be increased more quickly.
- the capability can be increased while ensuring flexibility with respect to the load.
- the capacity can be forcibly increased, and the situation where the capacity cannot be increased forever can be avoided.
- the air conditioning apparatus it is possible to further shorten the time from the start to the predetermined high pressure threshold.
- FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit 10 of the air conditioner 1.
- the air conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe.
- An electromagnetic induction heating unit 6 and the like are provided.
- the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in.
- the indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
- the refrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, a hot gas bypass circuit H, and a branch pipe K. And a merging pipe J.
- the indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant.
- the indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
- the discharge pipe A connects the compressor 21 and the four-way switching valve 22.
- the discharge pipe A is provided with a discharge temperature sensor 29d for detecting the temperature of the refrigerant passing therethrough.
- the power supply unit 21 e supplies power to the compressor 21.
- the amount of power supplied from the power supply unit 21e is detected by the compressor power detection unit 29f.
- the indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41.
- a pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided.
- the indoor side liquid pipe C connects the indoor heat exchanger 41 and the outdoor electric expansion valve 24.
- the outdoor liquid pipe D connects the outdoor electric expansion valve 24 and the outdoor heat exchanger 23.
- the outdoor gas pipe E connects the outdoor heat exchanger 23 and the four-way switching valve 22.
- the accumulator pipe F connects the four-way switching valve 22 and the accumulator 25, and extends in the vertical direction when the outdoor unit 2 is installed.
- An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F.
- the accumulator tube F At least a heat generating portion whose periphery is covered by a coil 68, which will be described later, is a copper tube F1 in which a coolant is flowing inside, and a magnetic tube provided so as to cover the periphery of the copper tube F1.
- F2 is configured (see FIG. 15).
- the magnetic tube F2 is made of SUS (Stainless Used Steel) 430.
- the SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance.
- Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of copper pipes.
- tube is not limited to SUS430,
- at least 2 or more types of metals chosen from conductors, such as iron, copper, aluminum, chromium, nickel, and these groups are used. It can be an alloy or the like.
- the magnetic material include a ferrite type, a martensite type, and a combination of these two types.
- the magnetic material is ferromagnetic and has a relatively high electric resistance, which is higher than the operating temperature range. A material having a high Curie temperature is preferred.
- the accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing.
- the magnetic material may constitute all of the accumulator tube F, or may be formed only on the inner surface of the accumulator tube F, and is contained in the material constituting the accumulator tube F. May exist.
- the electromagnetic induction heating unit 6 quickly opens the accumulator tube F.
- the compressor 21 can compress the rapidly heated refrigerant as a target.
- the temperature of the hot gas discharged from the compressor 21 can be raised rapidly.
- the time required to thaw frost by defrost operation can be shortened.
- the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
- the suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
- the hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D.
- the hot gas bypass circuit 27 is provided with a hot gas bypass valve 27 that can switch between a state that allows passage of refrigerant and a state that does not allow passage of the refrigerant.
- a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough.
- the capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
- the branch pipe K constitutes a part of the outdoor heat exchanger 23, and a refrigerant pipe extending from the gas side inlet / outlet 23e of the outdoor heat exchanger 23 will be described later in order to increase the effective surface area for heat exchange. It is a pipe branched into a plurality of lines at a branching junction 23k.
- the branch pipe K includes a first branch pipe K1, a second branch pipe K2, and a third branch pipe K3 that extend independently from the branch junction point 23k to the junction branch point 23j.
- the pipes K1, K2, and K3 merge at the merge branch point 23j. Note that, when viewed from the merging pipe J side, the branch pipe K extends at a merging branch point 23j.
- the junction pipe J constitutes a part of the outdoor heat exchanger 23 and extends from the junction branch point 23j to the liquid side inlet / outlet 23d of the outdoor heat exchanger 23.
- the junction pipe J can unify the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 23 during the cooling operation, and can defrost frosted ice near the lower end of the outdoor heat exchanger 23 during the heating operation.
- the junction pipe J has a cross-sectional area that is approximately three times the cross-sectional area of each of the branch pipes K1, K2, and K3, and the amount of refrigerant passing through is approximately three times that of each of the branch pipes K1, K2, and K3. .
- the four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle.
- the connection state when performing the heating operation is indicated by a solid line
- the connection state when performing the cooling operation is indicated by a dotted line.
- the indoor heat exchanger 41 functions as a refrigerant cooler
- the outdoor heat exchanger 23 functions as a refrigerant heater
- the indoor heat exchanger 41 functions as a refrigerant heater.
- the outdoor heat exchanger 23 includes a gas side inlet / outlet 23e, a liquid side inlet / outlet 23d, a branch junction 23k, a junction branch point 23j, a branch pipe K, a junction pipe J, and a heat exchange fin 23z.
- the gas side inlet / outlet 23 e is located at the end of the outdoor heat exchanger 23 on the outdoor gas pipe E side, and is connected to the outdoor gas pipe E.
- the liquid side inlet / outlet 23 d is located at the end of the outdoor heat exchanger 23 on the outdoor liquid pipe D side, and is connected to the outdoor liquid pipe D.
- the branch junction 23k branches a pipe extending from the gas side inlet / outlet port 23e, and can branch or join the refrigerant according to the direction of the flowing refrigerant.
- a plurality of branch pipes K extend from each branch portion at the branch junction 23k.
- the junction branch point 23j joins the branch pipe K and can join or branch the refrigerant according to the direction of the flowing refrigerant.
- the junction pipe J extends from the junction branch point 23j to the liquid side inlet / outlet 23d.
- the heat exchange fins 23z are configured by arranging a plurality of plate-like aluminum fins in the thickness direction and arranged at predetermined intervals.
- the branch pipe K and the merge pipe J both have the heat exchange fins 23z as a common penetration target.
- the branch pipe K and the junction pipe J are disposed so as to penetrate in the plate pressure direction at different portions of the common heat exchange fin 23z.
- an outdoor air temperature sensor 29b for detecting the outdoor air temperature is provided on the windward side of the outdoor fan 26 in the air flow direction.
- the outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the branch pipe air conditioner.
- an indoor temperature sensor 43 that detects the indoor temperature is provided.
- the indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
- the outdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted.
- the control unit 11 performs various controls for the air conditioner 1. Further, the outdoor control unit 12 is provided with a timer 95 that counts elapsed time when performing various controls.
- the control unit 11 has a controller 90 that accepts a setting input from the user. ⁇ 1-2> Outdoor unit 2 In FIG.
- FIG. 2 the external appearance perspective view of the front side of the outdoor unit 2 is shown.
- FIG. 3 the perspective view about the positional relationship with the outdoor heat exchanger 23 and the outdoor fan 26 is shown.
- FIG. 4 the perspective view of the back side of the outdoor heat exchanger 23 is shown.
- the outdoor unit 2 has an outer surface formed by a substantially rectangular parallelepiped outdoor unit casing configured by a top plate 2a, a bottom plate 2b, a front panel 2c, a left side panel 2d, a right side panel 2f, and a back panel 2e.
- a substantially rectangular parallelepiped outdoor unit casing configured by a top plate 2a, a bottom plate 2b, a front panel 2c, a left side panel 2d, a right side panel 2f, and a back panel 2e.
- an outdoor heat exchanger 23, an outdoor fan 26, and the like are arranged, a blower room on the left side panel 2d side, a compressor 21 and an electromagnetic induction heating unit 6 are arranged, and the right side panel 2f side.
- the machine room is separated by a partition plate 2h.
- the outdoor unit 2 is fixed by being screwed to the bottom plate 2b, and has an outdoor unit support 2g that forms the lowermost end portion of the outdoor unit 2 on the right side and the left side.
- the electromagnetic induction heating unit 6 is disposed at an upper position in the vicinity of the left side panel 2d and the top plate 2a in the machine room.
- the heat exchange fins 23z of the outdoor heat exchanger 23 described above are arranged side by side in the plate thickness direction so that the plate thickness direction is substantially horizontal.
- the joining pipe J is disposed in the lowermost portion of the heat exchange fins 23z of the outdoor heat exchanger 23 by penetrating the heat exchange fins 23z in the thickness direction.
- the hot gas bypass circuit H is arranged along the lower side of the outdoor fan 26 and the outdoor heat exchanger 23.
- the partition plate 2h of the outdoor unit 2 includes a fan room in which the outdoor heat exchanger 23 and the outdoor fan 26 are arranged, a machine room in which the electromagnetic induction heating unit 6, the compressor 21, the accumulator 25, and the like are arranged, Is partitioned from the upper end to the lower end from the front to the rear.
- the compressor 21 and the accumulator 25 are disposed in a space below the machine room of the outdoor unit 2.
- the electromagnetic induction heating unit 6, the four-way switching valve 22, and the outdoor control unit 12 are disposed in a space above the machine room of the outdoor unit 2 and above the compressor 21, the accumulator 25, and the like. .
- the tube 28 and the electromagnetic induction heating unit 6 include a discharge pipe A, an indoor side gas pipe B, an outdoor side liquid pipe D, an outdoor side gas pipe E, an accumulator so as to execute the refrigeration cycle by the refrigerant circuit 10 shown in FIG. They are connected via a tube F, a hot gas bypass circuit H, and the like.
- the hot gas bypass circuit H is configured by connecting nine parts of the first bypass part H1 to the ninth bypass part H9, and when the refrigerant flows into the hot gas bypass circuit H, , Flows in the direction from the first bypass portion H1 toward the ninth bypass portion H9 in order.
- the joining pipe J shown in FIG. 7 has an area equivalent to the sectional area of each of the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3.
- the heat exchange effective surface area can be increased in comparison with the merged pipe J in the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3.
- the joining pipe J is configured by connecting the first joining pipe part J1, the second joining pipe part J2, the third joining pipe part J3, and the fourth joining pipe part J4 to each other. Has been.
- coolant which flowed through the branch piping K among the outdoor heat exchangers 23 is merged in the merge branch point 23j, and the flow of the refrigerant
- merging piping part J1 is extended from the confluence
- the second joining pipe portion J2 extends from the end of the first joining pipe portion J1 so as to penetrate the plurality of heat exchange fins 23z.
- the 4th junction piping part J4 is extended so that the several heat exchanger fin 23z may be penetrated similarly to the 2nd junction piping part J2.
- the third joining pipe part J3 is a U-shaped pipe that connects the second joining pipe part J2 and the fourth joining pipe part J4 at the end of the outdoor heat exchanger 23.
- the refrigerant flow can be made one in the junction pipe J, so that the supercooling at the outlet of the outdoor heat exchanger 23 The degree can be adjusted.
- the hot gas bypass valve 27 is opened, and the high-temperature refrigerant discharged from the compressor 21 is placed outside the outdoor heat exchanger 23 before the outdoor part. It can be supplied to the junction pipe J provided at the lower end of the heat exchanger 23.
- Hot gas bypass circuit H In FIG. 8, the top view in the state which removed the ventilation mechanism of the outdoor unit 2 is shown.
- FIG. 9 is a plan view showing the positional relationship between the bottom plate of the outdoor unit 2 and the hot gas bypass circuit H.
- the hot gas bypass circuit H has a first bypass portion H1 to an eighth bypass portion H8 and a ninth bypass portion H9 (not shown).
- the hot gas bypass circuit H branches from the discharge pipe A at the branch point A1 and extends to the hot gas bypass valve 27, and a portion further extending from the hot gas bypass valve 27 is the first bypass portion H1.
- the second bypass portion H2 extends from the end of the first bypass portion H1 to the blower chamber side in the vicinity of the back surface side.
- the third bypass portion H3 extends from the end of the second bypass portion H2 toward the front side.
- the fourth bypass portion H4 extends from the end of the third bypass portion H3 toward the left side that is the opposite side to the machine room side.
- the fifth bypass portion H5 extends from the end of the fourth bypass portion H4 toward the back side to a portion where a space can be ensured between the back panel 2e of the outdoor unit casing.
- the sixth bypass portion H6 extends from the end of the fifth bypass portion H5 on the right side which is the machine room side and toward the back side.
- the seventh bypass portion H7 extends from the end of the sixth bypass portion H6 toward the right side, which is the machine room side, in the blower chamber.
- the eighth bypass portion H8 extends in the machine room from the end of the seventh bypass portion H7.
- the ninth bypass portion H9 extends from the end of the eighth bypass portion H8 to the capillary tube 28.
- the hot gas bypass circuit H causes the refrigerant to flow from the first bypass portion H1 to the ninth bypass portion H9 in order with the hot gas bypass valve 27 being opened. For this reason, the refrigerant branched at the branch point A1 of the discharge pipe A extending from the compressor 21 flows on the first bypass portion H1 side before the refrigerant flowing through the ninth bypass portion H9. For this reason, the refrigerant flowing through the hot gas bypass circuit H as a whole, the refrigerant after flowing through the fourth bypass portion H4 flows to the fifth to eighth bypass portions H8, and therefore the fourth bypass portion H4. Is more likely to be higher than the refrigerant temperature flowing through the fifth to eighth bypass portions H8.
- the hot gas bypass circuit H is disposed so as to pass through the vicinity of the lower part of the outdoor fan 26 and the lower part of the outdoor heat exchanger 23 in the bottom plate 2b of the outdoor unit casing. For this reason, without using a separate heat source such as a heater, the vicinity of the portion through which the hot gas bypass circuit H passes can be warmed by the high-temperature refrigerant branched and supplied from the discharge pipe A of the compressor 21. Therefore, even if the upper side of the bottom plate 2b gets wet by rain water or the drain water generated in the outdoor heat exchanger 23, ice grows below the outdoor fan 26 and below the outdoor heat exchanger 23 in the bottom plate 2b. Can be suppressed.
- Electromagnetic induction heating unit 6 shows a schematic perspective view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
- FIG. 11 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed.
- tube F is shown.
- the electromagnetic induction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating.
- the heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
- the electromagnetic induction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite.
- a case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, an electromagnetic induction thermistor 14, a fuse 15 and the like are provided.
- the first hexagon nut 61 and the second hexagon nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator pipe F using a C-shaped ring (not shown).
- the first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively.
- the first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing. Furthermore, the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the electromagnetic induction thermistor 14 shown in FIG. 12 and attaching it to the outer surface of the magnetic tube F2. The second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 shown in FIG. 13 and attaching it to the outer surface of the magnetic tube F2 (see FIG. 14). As shown in FIG.
- the electromagnetic induction thermistor 14 is an electromagnetic induction thermistor wiring that transmits the detection results of the electromagnetic induction thermistor detector 14a, the outer protrusion 14b, the side protrusion 14c, and the electromagnetic induction thermistor detector 14a as signals to the controller 11. 14d.
- the electromagnetic induction thermistor detection unit 14a has a shape that follows the curved shape of the outer surface of the accumulator tube F, and has a substantial contact area.
- the fuse 15 includes a fuse detection unit 15a, an asymmetric shape 15b, and a fuse wiring 15d that transmits a detection result of the fuse detection unit 15a to the control unit 11 as a signal.
- the control unit 11 performs control to stop the power supply to the coil 68 to avoid thermal damage of the device.
- the bobbin main body 65 is made of resin, and the coil 68 is wound around it.
- the coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction.
- the coil 68 is connected to a control printed board (not shown) and is supplied with a high-frequency current.
- the output of the control printed circuit board is controlled by the control unit 11. As shown in FIG. 14, the electromagnetic induction thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together.
- the plate spring 16 is pushed inward in the radial direction of the magnetic body tube F ⁇ b> 2, thereby maintaining a good pressure contact state with the outer surface of the magnetic body tube F ⁇ b> 2.
- the attachment state of the fuse 15 is also pushed inward in the radial direction of the magnetic tube F2 by the leaf spring 17, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained.
- the first ferrite case 71 has a first bobbin lid 63 and a second bobbin lid 64 sandwiched from the direction in which the accumulator tube F extends, and is screwed and fixed by screws 69.
- the first ferrite case 71 to the fourth ferrite case 74 contain a first ferrite 98 and a second ferrite 99 made of ferrite, which is a material having a high magnetic permeability. As shown in the sectional view of the accumulator tube F and the electromagnetic induction heating unit 6 in FIG. 15 and the magnetic flux explanatory diagram in FIG. By forming it, the magnetic field is made difficult to leak outside.
- the shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn by the first ferrite 98 and the second ferrite 99 alone. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
- Electromagnetic Induction Heating Control The electromagnetic induction heating unit 6 described above is configured so that the accumulator pipe F is activated when starting the heating operation when the refrigeration cycle is operated for heating, when assisting the heating capacity, and when performing the defrost operation. Control is performed to generate heat in the magnetic tube F2.
- the control unit 11 starts the heating operation.
- the control unit 11 causes the timer 95 to start counting the elapsed heating start time, and the pressure detected by the pressure sensor 29a increases to 39 kg / cm 2 after the compressor 21 is started.
- the indoor fan 42 is driven after waiting. Thereby, at the stage where the refrigerant passing through the indoor heat exchanger 41 is not warmed, an unpleasant user's discomfort caused by causing an air flow in the unwarmed room is prevented.
- electromagnetic induction heating using the electromagnetic induction heating unit 6 is performed.
- the control unit 11 performs control to determine whether or not the electromagnetic induction heating can be started before the electromagnetic induction heating is started. Such determination includes a flow condition determination process, a sensor detachment detection process, a rapid pressure increase process, and the like, as shown in the time chart of FIG.
- (I) Flow condition determination process
- electromagnetic induction heating is performed, in a situation where the refrigerant does not flow through the accumulator tube F, the heating load stays in a portion of the accumulator tube F where the electromagnetic induction heating unit 6 is attached. It becomes only the refrigerant that is.
- electromagnetic induction heating is performed by the electromagnetic induction heating unit 6 in a state where the refrigerant does not flow in the accumulation tube F as described above, the temperature of the accumulation tube F rises abnormally enough to deteriorate the refrigerator oil. . Further, the temperature of the electromagnetic induction heating unit 6 itself also rises, and the reliability of the device is lowered.
- the accumulator tube is in a stage before starting the electromagnetic induction heating so that the electromagnetic induction heating by the electromagnetic induction heating unit 6 is not performed in a state where the refrigerant does not flow into the accumulator tube F in this way.
- Flow condition determination processing for confirming that the refrigerant is flowing in F is performed.
- step S11 the controller 11 determines whether or not the controller 90 has received a command for heating operation instead of cooling operation from the user. Since the refrigerant heating by the electromagnetic induction heating unit 6 is necessary in an environment where the heating operation is performed, such a determination is made.
- step S12 the controller 11 starts the compressor 21 and gradually increases the frequency of the compressor 21.
- step S13 the control unit 11 determines whether or not the frequency of the compressor 21 has reached the predetermined minimum frequency Qmin. If it is determined that the frequency has reached, the process proceeds to step S14.
- step S14 the control unit 11 starts the flow condition determination process, and the detected temperature data of the electromagnetic induction thermistor 14 when the frequency of the compressor 21 reaches the predetermined minimum frequency Qmin (see point a in FIG. 17) and The temperature data detected by the outdoor heat exchange temperature sensor 29c is stored, and the timer 95 starts counting the flow detection time.
- the frequency of the compressor 21 does not reach the predetermined minimum frequency Qmin
- the refrigerant flowing through the accumulator tube F and the outdoor heat exchanger 23 is in a gas-liquid two-phase state and is maintained at a constant temperature at a saturation temperature. Therefore, the temperature detected by the electromagnetic induction thermistor 14 and the outdoor heat exchange temperature sensor 29c is constant at the saturation temperature and does not change.
- the frequency of the compressor 21 increases after a while, the refrigerant pressure in the outdoor heat exchanger 23 and the accumulator pipe F further decreases, and the saturation temperature starts to decrease, so that the electromagnetic induction thermistor 14
- the temperature detected by the outdoor heat exchanger temperature sensor 29c also starts to decrease.
- the outdoor heat exchanger 23 exists downstream of the accumulator pipe F with respect to the suction side of the compressor 21, the temperature of the refrigerant passing through the accumulator pipe F starts to decrease.
- the timing at which the temperature of the refrigerant passing through the outdoor heat exchanger 23 begins to decrease is earlier than the timing (see points b and c in FIG. 17).
- step S15 the control unit 11 determines whether or not the flow detection time of 10 seconds has elapsed from the start of the count of the timer 95. If the flow detection time has elapsed, the control unit 11 proceeds to step S16. On the other hand, if the flow detection time has not yet elapsed, step S15 is repeated.
- step S16 the control unit 11 detects the detected temperature data and the outdoor heat of the electromagnetic induction thermistor 14 in a state where the refrigerant temperature in the outdoor heat exchanger 23 and the accumulator tube F is lowered when the flow detection time has elapsed. The detected temperature data of the alternating temperature sensor 29c is acquired, and the process proceeds to step S17.
- step S17 the control unit 11 determines whether or not the detected temperature of the electromagnetic induction thermistor 14 acquired in step S16 is lower by 3 ° C. or more than the detected temperature data of the electromagnetic induction thermistor 14 stored in step S14, and It is determined whether or not the detected temperature of the outdoor heat exchanger temperature sensor 29c acquired in step S16 is lower by 3 ° C. or more than the detected temperature data of the outdoor heat exchanger temperature sensor 29c stored in step S14. That is, it is determined whether or not a decrease in the refrigerant temperature has been detected during the flow detection time.
- the detected temperature of the electromagnetic induction thermistor 14 or the detected temperature of the outdoor heat exchange temperature sensor 29c is lowered by 3 ° C.
- the refrigerant is flowing through the accumulator tube F.
- the flow condition determination process is terminated when it is determined that the flow of the gas is secured, and the process proceeds to the rapid pressure increase process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum, or the sensor disconnection detection process, etc. To do.
- step S18 the control unit 11 determines that the amount of refrigerant flowing through the accumulator tube F is insufficient for performing induction heating by the electromagnetic induction heating unit 6, and the control unit 11 displays a flow abnormality on the display screen of the controller 90. Output the display.
- Sensor detachment detection process The sensor detachment detection process is performed after the electromagnetic induction thermistor 14 is attached to the accumulator tube F and the installation of the air conditioner 1 is completed (after the installation is completed, power is supplied to the electromagnetic induction heating unit 6.
- the electromagnetic induction heating unit 6 is only activated after the carry-in.
- the sensor detachment detection process is performed at the timing described above. In the sensor detachment detection process, the following processes are performed as shown in the flowchart of FIG.
- the power supply to the coil 68 of the electromagnetic induction heating unit 6 is started while storing the detected temperature data of the electromagnetic induction thermistor 14 (see the point d in FIG. 17) at the time of
- the supply of electric power to the coil 68 of the electromagnetic induction heating unit 6 here is a sensor outage detection with a power outage detection supply power M1 (1 kW) of 50%, which is an output smaller than a predetermined maximum supply power Mmax (2 kW). It takes only 20 seconds as time.
- the electromagnetic induction thermistor 14 is The output is suppressed to 50% so that the fuse 15 is not damaged due to the inability to detect an abnormal temperature rise and the resin member of the electromagnetic induction heating unit 6 is not melted.
- the control unit 11 continues the output by the electromagnetic induction heating unit 6. The elapsed time is counted by the timer 95.
- the supply of electric power to the coil 68 of the electromagnetic induction heating unit 6 and the magnitude of the magnetic field generated around the coil 68 are values having a correlation.
- step S22 the control unit 11 determines whether the sensor detachment detection time has ended. If the sensor detachment detection time has ended, the process proceeds to step S23. On the other hand, if the sensor detachment detection time has not ended yet, step S22 is repeated.
- step S23 the control unit 11 acquires the temperature detected by the electromagnetic induction thermistor 14 at the time when the sensor detachment detection time ends (see point e in FIG. 17), and proceeds to step S24.
- step S24 the controller 11 detects that the detected temperature of the electromagnetic induction thermistor 14 at the time when the sensor disconnection detection time acquired in step S23 has ended is the electromagnetic induction thermistor at the start of the sensor disconnection detection time stored in step S21.
- the detected temperature data of 14 is higher by 10 ° C. or more. That is, it is determined whether or not the refrigerant temperature has increased by 10 ° C. or more due to induction heating by the electromagnetic induction heating unit 6 during the sensor detachment detection time.
- the detection temperature of the electromagnetic induction thermistor 14 is increased by 10 ° C. or more, the attachment state of the electromagnetic induction thermistor 14 with respect to the accumulator tube F is good, and induction heating by the electromagnetic induction heating unit 6 is performed.
- the sensor detachment detection process is terminated, and the process proceeds to a rapid pressure increase process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum.
- the process proceeds to step S25.
- step S25 the control unit 11 counts the number of sensor detachment retry processes. If the number of retries is less than 10, the process proceeds to step S26. If the number of retries exceeds 10, the process proceeds to step S27 without proceeding to step S26.
- step S ⁇ b> 26 the control unit 11 performs a sensor removal retry process.
- the detected temperature data (not shown in FIG. 17) of the electromagnetic induction thermistor 14 at the time when another 30 seconds have elapsed is stored in the coil 68 of the electromagnetic induction heating unit 6 and the electric power at the detected power supply M1 is detected. Supply is performed for 20 seconds, and the same processing as in steps S22 and S23 is performed.
- the sensor detachment detection processing is terminated and the output of the electromagnetic induction heating unit 6 is output. Shift to rapid high pressure processing at start-up for maximum use.
- the process returns to step S25.
- step S ⁇ b> 27 the control unit 11 determines that the attachment state of the electromagnetic induction thermistor 14 to the accumulator tube F is unstable or not good, and outputs a sensor detachment abnormality display on the display screen of the controller 90.
- Rapid pressure increase processing After the flow condition determination processing and the sensor detachment detection processing are completed, sufficient refrigerant flow is ensured in the accumulator tube F, and the attachment state of the electromagnetic induction thermistor 14 to the accumulator tube F is good.
- the controller 11 starts the rapid pressure increase processing.
- the induction heating by the electromagnetic induction heating unit 6 is performed at a high output, it has been confirmed that the accumulator tube F does not rise abnormally, so the reliability of the air conditioner 1 can be improved. ing.
- step S31 the control unit 11 does not set the power supply to the coil 68 of the electromagnetic induction heating unit 6 as the detachment detection supply power M1 whose output is limited to 50% as in the sensor detachment detection process described above.
- a predetermined maximum supply power Mmax (2 kW) is assumed.
- the output by the electromagnetic induction heating unit 6 here is continuously performed until the pressure sensor 29a reaches a predetermined target high pressure Ph.
- the control unit 11 forcibly stops the compressor 21 when the pressure sensor 29a detects an abnormal high pressure Pr.
- the target high pressure Ph in the rapid high pressure process is provided as a separate threshold value that is a pressure value smaller than the abnormal high pressure Pr.
- step S32 the control unit 11 determines whether or not 10 minutes of the maximum continuous output time of the electromagnetic induction heating unit 6 that has started counting in step S21 of the sensor detachment detection process has elapsed. If the maximum continuous output time has not elapsed, the process goes to step S33. On the other hand, if the maximum continuous output time has elapsed, the process goes to step S34.
- step S33 the control unit 11 determines whether or not the pressure detected by the pressure sensor 29a has reached the target high pressure Ph. If the target high pressure Ph has been reached, the process proceeds to step S34. On the other hand, if the target high pressure Ph is not reached, step S32 is repeated. In step S34, the control unit 11 starts driving the indoor fan 42, finishes the rapid pressure increase process, and shifts to the steady output process.
- step S34 when the process is changed from step S33 to step S34, the indoor fan 42 starts to operate in a state in which sufficiently warm conditioned air can be provided to the user.
- step S32 to step S34 it has not reached a state in which sufficient warm conditioned air can be provided to the user, but is in a state in which a certain amount of warm conditioned air can be provided, and the elapsed time from the start of heating operation. Provision of warm air can be started within a range that does not become too long.
- the steady supply power M2 (1.4 kW), which is an output that is greater than or equal to the detection power supply M1 (1 kW) and less than or equal to the maximum supply power Mmax (2 kW), is used as a fixed output value.
- the power supply frequency of the electromagnetic induction heating unit 6 is PI-controlled so that the detected temperature of the electromagnetic induction thermistor 14 is maintained at 80 ° C., which is the target accumulator temperature at startup.
- step S41 the control unit 11 stores the detected temperature of the electromagnetic induction thermistor 14, and proceeds to step S42.
- step S42 the control unit 11 compares the detected temperature of the electromagnetic induction thermistor 14 stored in step S41 with the activation target accumulator tube temperature of 80 ° C. so that the detected temperature of the electromagnetic induction thermistor 14 is equal to the activation target accumulator. It is determined whether or not a predetermined maintenance temperature lower than the tube temperature of 80 ° C. by a predetermined temperature is reached. If the temperature is equal to or lower than the predetermined maintenance temperature, the process proceeds to step S43.
- step S43 the control part 11 grasps
- step S44 the control unit 11 continuously supplies power to the electromagnetic induction heating unit 6 while keeping the constant supply power M2 (1.4 kW) constant for 30 seconds, and sets the frequency of this set as the set.
- the PI control is performed to increase the frequency as the elapsed time grasped in step S43 is longer.
- V Defrost process
- connection state of the four-way switching valve 22 is set in the same manner as in the cooling operation (connection state indicated by the dotted line in FIG. 1), and the high-pressure high-temperature gas refrigerant discharged from the compressor 21 is supplied to the indoor heat exchanger 41. It is provided to the outdoor heat exchanger 23 before passing, and the frost adhering to the outdoor heat exchanger 23 is melted using the heat of condensation of the refrigerant.
- step S51 the control unit 11 is capable of performing electromagnetic induction heating by the flow condition determination process that the frequency of the compressor 21 is equal to or higher than the predetermined minimum frequency Qmin and a predetermined refrigerant circulation amount is secured.
- the control unit 11 determines whether or not the temperature detected by the outdoor heat exchanger temperature sensor 29c is less than 10 ° C. If it is lower than 10 ° C., the process proceeds to step S53. If it is not less than 10 ° C., step S52 is repeated.
- Step S53 the control unit 11 stops the induction heating by the electromagnetic induction heating unit 6, and transmits a defrost signal.
- step S54 after the defrost signal is transmitted, the control unit 11 sets the connection state of the four-way switching valve 22 to the connection state of the cooling operation, and further changes the connection state of the four-way switching valve 22 to the connection state of the cooling operation. After that, the elapsed time after defrosting is counted by the timer 95.
- step S55 the control unit 11 determines whether or not 30 seconds have elapsed after the start of defrosting. If 30 seconds have elapsed, the process proceeds to step S56. If 30 seconds have not elapsed, step S55 is repeated.
- step S56 the control unit 11 sets the power supply to the coil 68 of the electromagnetic induction heating unit 6 to a predetermined maximum supply power Mmax (2 kW), and the detected temperature of the electromagnetic induction thermistor 14 is 40 ° C., which is the target defrost temperature.
- Mmax 2 kW
- PI control is performed on the frequency of induction heating by the electromagnetic induction heating unit 6 so as to be different (different from the startup target accumulator temperature during steady output processing).
- the hot gas bypass valve 27 of the hot gas bypass circuit H is further opened, and the outdoor fan 26 on the upper surface of the bottom plate 2b of the outdoor unit 2 is opened.
- the high-temperature and high-pressure gas refrigerant is supplied below the outdoor heat exchanger 23 and below the outdoor heat exchanger 23, and the ice generated on the upper surface of the bottom plate 2b is removed.
- the connection state of the four-way switching valve 22 is switched to the cooling operation state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is joined from the branch junction point 23k of the outdoor heat exchanger 23 to the junction branch point. 23j, and merge at the merge branch point 23j to be combined into one, so that the flow rate becomes three times the flow rate of the branch pipe K and flows through the merge pipe J in a concentrated manner. Since this junction pipe J is located in the vicinity of the lower end of the outdoor heat exchanger 23, a large amount of condensation heat can be concentrated in the vicinity of the lower end of the outdoor heat exchanger 23. Thereby, defrosting can be made quicker.
- step S57 the control unit 11 determines whether or not the elapsed time after the start of defrost has exceeded 10 minutes. If 10 minutes has not elapsed, the process proceeds to step S58. If 10 minutes have passed, the process proceeds to step S59. This prevents the passage of 10 minutes or more while the connection state of the four-way switching valve 22 remains in the cooling state, and makes it difficult for the user to feel uncomfortable due to a decrease in the room temperature.
- step S58 the control unit 11 determines whether or not the temperature detected by the outdoor heat exchanger temperature sensor 29c exceeds 10 ° C. If it exceeds 10 ° C., the process proceeds to step S59. If the temperature does not exceed 10 ° C., the process returns to step S56 and is repeated.
- step S59 the control unit 11 stops the compressor 21 and finishes induction heating by the electromagnetic induction heating unit 6 while equalizing high and low pressures in the refrigeration cycle.
- step S60 the control part 11 switches the connection state of the four-way switching valve 22 to the connection state of heating operation. And the control part 11 transmits the signal which finishes defrost. Further, the control unit 11 increases the frequency of the compressor 21 to a predetermined minimum frequency Qmin or more, and performs a steady output process until the defrost process is performed again. Further, the hot gas bypass valve 27 of the hot gas bypass circuit H is closed after 5 seconds after a signal to finish defrosting is transmitted.
- air-conditioning activation control for enabling rapid high-temperature blowing is performed by using such electromagnetic induction overheat control.
- this air conditioning activation control includes (vi) introduction determination control, (vii) startup capacity increase control, (viii) high temperature blowing start control, and (ix) post-startup heating operation control. I do.
- (Vi) Introduction determination control In the introduction determination control, the medium temperature blowing control is performed in a situation where the ambient temperature is weak and the user is not particularly required to supply special warm air, or the ambient temperature is Whether to perform high-temperature blowing control for supplying warmer conditioned air to the user when the temperature is low is determined based on the ambient temperature.
- step S61 when the user inputs an instruction for starting the heating operation while inputting the set temperature by using an input button (not shown) of the controller 90, the control unit 11 receives the information on the heating operation instruction, and the room temperature at the start time is received. The detection temperature of the sensor 43 and the detection temperature of the outdoor air temperature sensor 29b are acquired.
- step S62 the control part 11 judges whether it is the temperature condition which can perform heating operation based on the indoor temperature and outdoor temperature which were acquired by step S61. Specifically, when the relationship between the indoor temperature and the outdoor temperature as shown in FIG. 24 is satisfied, it is determined that the heating operation is possible, and the process proceeds to step S63.
- the range in which the heating operation can be performed is an environment in which the outdoor air temperature is cooler than the indoor air temperature, and the temperature condition range in which the refrigeration cycle of the air conditioner 1 can perform the heating operation in advance.
- the control unit 11 holds the data shown in FIG.
- step S63 the control unit 11 determines whether or not the temperature condition is such that the high-temperature blowing control can be performed based on the indoor temperature and the outdoor temperature acquired in step S61 and the relationship data between the indoor temperature and the outdoor temperature illustrated in FIG. Determine whether. Specifically, it is determined that the high temperature blowing control is performed when the temperature range of the high temperature blowing control indicated by hatching in FIG. 24 is satisfied, and the process proceeds to step S65. If it is determined that the high temperature blowing control is not performed, it is determined that the medium temperature blowing control is performed, and the process proceeds to step S64. In step S64, the control part 11 starts medium temperature blowing control.
- the indoor fan 42 is not started until the temperature detected by the indoor heat exchanger temperature sensor 44 reaches a predetermined temperature at the start after the heating operation is started, and reaches the predetermined temperature. This is the control for starting the activation of the indoor fan 42 after this.
- step S65 the control unit 11 determines whether or not the operation is started after the defrost process. Here, if it is the operation start after a defrost process, it will transfer to step S66. If the operation is not started after the defrost process, the process proceeds to step S67. In step S66, the control unit 11 starts thermo-on control described later. In step S67, the control unit 11 determines whether or not the load is larger than the thermo-on condition for starting the thermo-on control.
- the situation where the load is greater than the thermo-on condition is a condition where the set temperature ⁇ the detected temperature of the room temperature sensor 43 ⁇ 0.5 ° C. is greater than 1.
- thermo-on control is an operation resumption process in a situation where the room temperature is warmed to some extent.
- an operation start process is performed in an environment where the room temperature is low, the degree of deviation from the set temperature is large, and the user desires to supply warmer conditioned air. If it is determined that the load is greater than the thermo-on condition, the process proceeds to step S68. If it is determined that the load is not greater than the thermo-on condition, the process proceeds to step S66.
- step S68 the control part 11 starts high temperature blowing control, and complete
- the high-temperature blowout control does not start the indoor fan 42 until the detected pressure of the pressure sensor 29a reaches the target high pressure Ph at the start after the heating operation is started.
- the indoor fan 42 is started after the high pressure Ph is reached.
- Start-up capacity increase control In the rapid pressure increase process described above, the control for shortening the time required from the start of heating operation until the detected pressure of the pressure sensor 29a reaches the target high pressure Ph has been described.
- the opening degree of the outdoor electric expansion valve 24 is narrowed to be fixed at start-up. After the degree control is performed, the opening degree of the outdoor electric expansion valve 24 is gradually increased as the frequency of the compressor 21 increases.
- step S71 the control unit 11 keeps the opening degree of the outdoor electric expansion valve 24 fixed at the fixed opening degree DS (see point g in FIG. 22), and sets the frequency of the compressor 21 for a predetermined time from the start of the heating operation.
- a fixed opening degree control at start-up is performed to reach the predetermined minimum frequency Qmin within 2 minutes.
- This fixed opening DS is an opening that is throttled so that the opening of the outdoor electric expansion valve 24 becomes narrower than the opening corresponding to the refrigerant state.
- This refrigerant state-corresponding opening degree is the value of the outdoor electric expansion valve 24 that is controlled when it is assumed that after-starting heating operation control to be described later is performed under the same conditions as the conditions at the time of starting fixed opening degree control. Opening degree.
- the conditions at the time of starting fixed opening control are the operating conditions of the refrigeration cycle other than the opening of the outdoor electric expansion valve 24 (the frequency of the compressor 21, the air volume of the indoor fan 42, the air volume of the outdoor fan 26, etc. ) And ambient temperature conditions (outdoor temperature conditions, indoor temperature conditions, etc.) of the refrigeration cycle.
- the post-startup heating operation control is performed so that the refrigerant state of the refrigeration cycle is stabilized so that the degree of supercooling of the refrigerant flowing on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41 is constant at a predetermined value. This is control for adjusting the opening degree of the outdoor electric expansion valve 24.
- step S72 the control unit 11 determines whether or not two minutes of the heating start elapsed time counted by the timer 95 has elapsed since the start of the heating operation in a state where the frequency of the compressor 21 has reached the predetermined minimum frequency Qmin. Judging. When two minutes of the heating start elapsed time has elapsed since the start of the heating operation in a state where the predetermined minimum frequency Qmin has been reached, the process proceeds to step S73. If the predetermined minimum frequency Qmin has not been reached or if 2 minutes of the heating start elapsed time has not elapsed since the start of the heating operation, step S72 is repeated.
- step S73 the controller 11 starts raising the frequency of the compressor 21 to the first frequency R1 at the same time as raising the opening of the outdoor electric expansion valve 24 to the first opening D1 larger than the fixed opening DS.
- step S74 the control unit 11 controls the frequency of the compressor 21 to be the first frequency R1, and the opening degree of the outdoor electric expansion valve 24 flows on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41. Control is performed so that the degree of supercooling of the refrigerant becomes constant at a predetermined value.
- step S75 the control unit 11 determines whether or not the frequency of the compressor 21 has reached the first frequency R1. When the frequency reaches the first frequency R1, the process proceeds to step S76. If it has not reached the first frequency R1, it waits to reach the first frequency R1. In step S76, the control unit 11 starts increasing the frequency of the compressor 21 to the second frequency R2 at the same time as increasing the opening of the outdoor electric expansion valve 24 to the second opening D2 larger than the first opening D1. Hereinafter, such control is repeated until the frequency of the compressor 21 reaches the maximum frequency Rmax and the opening degree of the outdoor electric expansion valve 24 reaches the maximum opening degree Dmax (see point m in FIG. 22).
- step S77 When the frequency of the compressor 21 becomes the maximum frequency Rmax and the opening degree of the outdoor electric expansion valve 24 becomes the maximum opening degree Dmax, the process proceeds to step S77.
- step S76 When the frequency of the compressor 21 is not the maximum frequency Rmax or when the opening degree of the outdoor electric expansion valve 24 is not the maximum opening degree Dmax, step S76 is repeated.
- step S77 the control unit 11 maintains the frequency of the compressor 21 at the maximum frequency Rmax, and sets the degree of opening of the outdoor electric expansion valve 24 so that the amount of refrigerant flowing on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41 is excessive.
- the degree of cooling is controlled to be constant at a predetermined value. It should be noted that the above startup capacity increase control is performed until the temperature detected by the indoor temperature sensor 43 reaches the set temperature for the first time after the heating operation is started, and after that, the heating operation is started again while the heating operation control is performed after the startup. The start-up capacity increase control is not performed until is performed.
- the refrigeration capacity can be gradually increased by gradually increasing the refrigerant circulation amount of the refrigeration cycle.
- the drive of the indoor fan 42 is maintained in a stopped state so that a state where conditioned air having a sufficiently high temperature can be supplied as early as possible from the start of the heating operation is maintained as the temperature of the conditioned air that can be provided indoors.
- the condensation capacity in the heat exchanger 41 is kept low.
- coolant pressure which goes to the indoor heat exchanger 41 from the compressor 21 is raised rapidly, and it is made high temperature high pressure.
- the control unit 11 confirms the state in which the indoor fan 42 is stopped and maintains it in the stopped state.
- step S82 the controller 11 determines whether or not the detected pressure of the pressure sensor 29a has reached the target high pressure Ph. If the target high pressure Ph has been reached (see point f in FIG. 22), the process proceeds to step S86. If the target high pressure Ph has not been reached, the process proceeds to step S83.
- step S83 the control unit 11 determines whether or not 2 minutes 30 seconds as the predetermined fixed activation time Tx has elapsed since the start of the heating operation. If the predetermined fixed activation time has elapsed, the process proceeds to step S86 even if the pressure detected by the pressure sensor 29a has not reached the target high pressure Ph. If the predetermined fixed activation time has not elapsed, the process proceeds to step S84. Thereby, it can avoid that the state where warm air is not blown out continues even if it passes after heating operation starts. In step S84, the controller 11 determines whether or not the temperature of the refrigerant passing through the discharge pipe A detected by the discharge temperature sensor 29d has exceeded a predetermined discharge temperature Tp of 110 degrees.
- step S86 If it exceeds the predetermined discharge temperature Tp, the process proceeds to step S86 even if the detected pressure of the pressure sensor 29a does not reach the target high pressure Ph. When it does not exceed the predetermined discharge temperature Tp, the process proceeds to step S85. Thereby, the abnormal rise of a high voltage
- step S85 the control unit 11 determines whether or not the amount of power supplied by the power supply unit 21e detected by the compressor power detection unit 29f exceeds a predetermined power value Eh. If it exceeds the predetermined power value Eh, the process proceeds to step S86 even if the detected pressure of the pressure sensor 29a does not reach the target high pressure Ph. If the predetermined power value Eh is not exceeded, the process returns to step S82. Thereby, generation
- the indoor fan 42 is set to four stages of airflow in the order of “LL”, which is a weak airflow, “L”, which is a weak airflow, “M” which is a medium airflow, and “H” which is a maximum airflow.
- step S86 the control unit 11 drives the indoor fan 42 with the weak air volume “LL” and simultaneously starts counting the timer after starting the indoor fan. (See point h or l in FIG. 22). And here, the start with "LL” which is the smallest air volume is started. In this way, the indoor heat exchanger 41 is only given the weakest “LL” air volume, so the pressure detected by the pressure sensor 29a does not drop rapidly, and the supply of warm air to the room continues. be able to.
- step S87 the control unit 11 has maintained the state where the timer count after starting the indoor fan is 30 seconds or more and the predetermined high-pressure threshold Pm is exceeded for 10 seconds or more (see points n and o in FIG. 22). ) Or 10 minutes have passed since the start of heating operation. If it is determined that the timer count has exceeded 30 seconds after the indoor fan has started and the target high pressure has been maintained for 10 seconds or more, or 10 minutes have elapsed since the start of heating operation, The process proceeds to S91. If it is determined that the timer count has not elapsed for 30 seconds or more after starting the indoor fan, or the target high pressure has not been maintained for 10 seconds or more, and 10 minutes have not elapsed since the start of heating operation, The process proceeds to S88. Here, by waiting for the timer to count for 30 seconds or more after the indoor fan is activated, it is prevented that the control immediately exits the control.
- step S88 the control unit 11 determines whether the detected pressure of the pressure sensor 29a is less than the predetermined low pressure threshold Pl, which is less than 36 kg / cm 2 before 5 seconds have elapsed after the indoor fan is started, or is set in advance. It is determined whether 10 seconds have elapsed. Here, if it is less than the predetermined low pressure threshold Pl (see point i in FIG. 22) or 10 seconds have elapsed, the process proceeds to step S89. If it is not less than the predetermined low pressure threshold value Pl and 10 seconds have not elapsed, step S88 is repeated. In step S89, the control unit 11 stops the indoor fan 42, sets the air volume to “0”, and resets the timer after starting the indoor fan (see point j in FIG. 22).
- step S90 the control unit 11 determines whether the pressure detected by the pressure sensor 29a is larger than 37 kg / cm 2 which is the predetermined return high pressure threshold Pm (see point k in FIG. 22) or after the indoor fan 42 has stopped. It is determined whether or not the predetermined 10 seconds have elapsed. When it becomes larger than the predetermined return high pressure threshold Pm or when 10 seconds have passed after the indoor fan 42 has stopped, the process proceeds to step S86. If it is not greater than the predetermined return high pressure threshold Pm and 10 seconds have not elapsed after the indoor fan 42 has stopped, step S90 is repeated.
- step S91 the control part 11 complete
- the state is set (see point p in FIG. 22).
- Heating operation control after activation Heating operation control after activation is performed so that the refrigerant state of the refrigeration cycle is stabilized by constant control of the degree of supercooling of the refrigerant flowing on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41. This is control for adjusting the opening degree of the outdoor electric expansion valve 24.
- the post-startup heating operation control the following processes are performed as shown in the flowchart of FIG.
- step S92 the controller 11 determines whether or not the controller 90 has received a heating stop instruction from the user.
- the heating operation control after the start is ended.
- the process proceeds to step S93.
- step S ⁇ b> 93 the control unit 11 does not limit the air volume of the indoor fan 42 to “LL”, but performs an air volume of “L” or more as the set air volume set by the user with the controller 90.
- step S94 the control unit 11 determines whether or not the thermo-off condition is satisfied. Specifically, the thermo-off condition that the set temperature ⁇ the detected temperature of the indoor temperature sensor 43 ⁇ 0.5 ° C. becomes 1 or less (the detected temperature of the indoor temperature sensor 43 exceeds Ty at the point q in FIG. 22). Determine if it is satisfied. When the thermo-off condition is satisfied, the process proceeds to step S95. If the thermo-off condition is not satisfied, step S94 is repeated. In step S95, the control unit 11 reduces the opening degree of the outdoor electric expansion valve 24 while reducing the frequency of the compressor 21 to the minimum frequency Qmin.
- step S96 the control unit 11 determines whether or not the thermo-on condition is satisfied. Specifically, whether the thermo-on condition that the detected temperature of the set temperature ⁇ the indoor temperature sensor 43 is 2 ° C. or higher (the detected temperature of the indoor temperature sensor 43 is lower than Tz at the point s in FIG. 22) is satisfied. Judge whether or not. If the thermo-on condition is satisfied, the process proceeds to step S97. If the thermo-on condition is not satisfied, step S96 is repeated. In step S97, the control part 11 performs control which raises the opening degree of the outdoor electric expansion valve 24, raising the frequency of the compressor 21, and returns to step S92 and repeats. At this time, the operation such as the high temperature blowing start control is not performed.
- the opening time of the outdoor electric expansion valve 24 is gradually increased as the frequency of the compressor 21 is increased by performing start-up capacity increase control while reducing the time required to reach the target high pressure Ph.
- the capacity can be secured by increasing the circulation amount.
- the present invention is not limited to this.
- the supercooling degree may be controlled not to be maintained at a certain value but to be within a certain range.
- the degree of change in the refrigerant distribution state in the refrigeration cycle may be controlled to be maintained for a predetermined time in a predetermined distribution state or within a predetermined distribution range.
- the refrigerant distribution state is grasped by grasping the liquid level of the refrigerant by, for example, providing a sight glass in the condenser of the refrigeration cycle, and this distribution state is a predetermined distribution state or Stabilization control may be performed so as to be within a predetermined distribution range.
- control may be performed so that the superheat degree of the refrigerant flowing on the suction side of the compressor 21 is maintained for a predetermined time within a predetermined value or a predetermined range.
- C In the above embodiment, the case where the control unit 11 reduces the frequency of the compressor 21 to the minimum frequency Qmin when the thermo-off condition is satisfied has been described. However, the present invention is not limited to this. For example, when the thermo-off condition is satisfied, the control unit 11 may completely stop the driving of the compressor 21.
- D In the above embodiment, the case where the predetermined return high pressure threshold Pm and the target high pressure Ph are different pressure values has been described.
- the present invention is not limited to this.
- the predetermined return high pressure threshold Pm and the target high pressure Ph may be controlled as the same pressure value.
- the present invention is not limited to this.
- other refrigerant pipes other than the accumulator pipe F may be provided.
- a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagnetic induction heating unit 6 is provided.
- the accumulation pipe F was comprised as a double pipe
- the present invention is not limited to this.
- the magnetic member F2a and the two stoppers F1a and F1b may be disposed inside the accumulator pipe F or the refrigerant pipe to be heated.
- the magnetic member F2a contains a magnetic material, and is a member that generates heat by electromagnetic induction heating in the above embodiment.
- the stoppers F1a and F1b always allow the refrigerant to pass through at two locations inside the copper tube F1, but do not allow the magnetic member F2a to pass through. Thereby, the magnetic member F2a does not move even when the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated.
- the magnetic member F2a described in the other embodiment (F) may be positioned with respect to the pipe without using the stoppers F1a and F1b.
- the copper pipe F1 may be provided with two bent portions FW, and the magnetic member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even in this case, the movement of the magnetic member F2a can be suppressed while allowing the refrigerant to pass therethrough.
- the coil 68 is spirally wound around the accumulator tube F.
- the present invention is not limited to this.
- the coil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F.
- the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F. Further, the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
- the first bobbin lid 163 and the second bobbin lid 164 passing through the accumulator tube F are disposed in a state of being fitted to the bobbin main body 165.
- the first bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172.
- the case where the two ferrite cases are arranged so as to sandwich the accumulator tube F is taken as an example, but may be arranged in four directions as in the above embodiment. Moreover, you may accommodate the ferrite similarly to the said embodiment.
- the air conditioner 1 having one indoor unit 4 and one outdoor unit 2 has been described as an example.
- the present invention is not limited to this.
- an air conditioner in which a plurality of indoor units are connected in parallel or in series to one outdoor unit may be used. In this case, you may make it set the priority order regarding the order with high blowing temperature etc. for every indoor unit.
- the air conditioning apparatus with which the several outdoor unit was connected in parallel or in series with respect to one indoor unit may be sufficient. In this case, the target high pressure Ph can be reached more quickly, and the capacity can be further increased.
- an air conditioner in which a plurality of outdoor units are connected in parallel or in series to a plurality of indoor units may be used.
- the refrigerant pressure required for supplying hot air at the time of heating start-up can be ensured quickly with a simple configuration, and thus it is particularly useful in an air conditioner in which heating operation is performed.
- Electromagnetic induction heating unit 10 Refrigerant circuit 11 Control part (refrigerant state grasping part) 14 Electromagnetic induction thermistor 21 Compressor (compression mechanism) 23 outdoor heat exchanger 24 outdoor electric expansion valve (expansion mechanism) 29a Pressure sensor (refrigerant pressure grasping part) 29b Outdoor air temperature sensor 29c Outdoor heat exchange temperature sensor 41 Indoor heat exchanger 42 Indoor fan 43 Indoor temperature sensor 44 Indoor heat exchange temperature sensor (refrigerant state grasping unit) 68 Coil (Magnetic field generator) 90 Controller DS Fixed opening D1 1st opening D2 2nd opening F Accumulation pipe, refrigerant piping Mmax Maximum supply power Ph Target high pressure (predetermined high pressure threshold) R1 first frequency (first predetermined target frequency) R2 second frequency (second predetermined target frequency) Rmax Predetermined maximum frequency
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
An air conditioning device which can, with the use of a simple configuration, quickly obtain a refrigerant pressure required for supplying warm air at the time of the start of heating. An air conditioning device (1) for performing a refrigeration cycle by including at least a compressor (21), an indoor heat exchanger (41), an indoor fan (42), an outdoor electric expansion valve (24), and an outdoor heat exchanger (23). The air conditioning device (1) is equipped with an indoor heat exchanger temperature sensor (44) and a control unit (11). The control unit (11) understands the degree of supercooling of a refrigerant from the value detected by the indoor heat exchanger temperature sensor (44). The control unit (11) performs control for adjusting the degree of opening of the outdoor electric expansion valve (24) according to the degree of supercooling, and also performs control for starting the compressor (21) with the degree of opening of the outdoor electric expansion valve (24) maintained as the fixed degree (DS) of opening. The fixed degree (DS) of opening is the degree of opening which is reduced to a degree which is less than the degree of opening of the outdoor electric expansion valve (24) when supercooling degree-constant control is performed under the same condition as the operating condition of the refrigeration cycle other than the outdoor electric expansion valve (24) and as the ambient temperature condition of the refrigeration cycle.
Description
本発明は、空気調和装置に関する。
The present invention relates to an air conditioner.
暖房運転可能な空気調和装置について、暖房起動時に生じうる不具合を改善させる目的で、以下の特許文献に示されるような技術が提案されている。
例えば、特許文献1(特開2000-111126号公報)の空気調和装置では、暖房起動時に、ルーバーの角度を変更することで吹出風向を調整し、暖まっていない室内の空気によるドラフト感をユーザに与えてしまうことを防いでいる。
また、特許文献2(特開2000-105015号公報)の空気調和機では、暖房起動時に、室内機側への冷媒の供給を遮断し、圧縮機と室外熱交換器との間で冷媒を循環させることで冷媒温度を迅速に上げる運転を行っている。これにより、冷媒の温度を迅速に上げることができるため、暖房起動時から短い時間で暖かい空気をユーザに提供することができるようにしている。 With respect to an air conditioner capable of heating operation, techniques as disclosed in the following patent documents have been proposed for the purpose of improving problems that may occur when heating is started.
For example, in the air conditioner of Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-111126), when heating is started, the direction of the blowing air is adjusted by changing the angle of the louver, and the draft feeling due to unwarmed room air is given to the user It prevents it from giving.
Further, in the air conditioner disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2000-105015), when heating is started, the supply of refrigerant to the indoor unit side is shut off, and the refrigerant is circulated between the compressor and the outdoor heat exchanger. By doing so, the operation of quickly raising the refrigerant temperature is performed. Thereby, since the temperature of a refrigerant | coolant can be raised rapidly, it can be made to provide a user with warm air in a short time after the heating start time.
例えば、特許文献1(特開2000-111126号公報)の空気調和装置では、暖房起動時に、ルーバーの角度を変更することで吹出風向を調整し、暖まっていない室内の空気によるドラフト感をユーザに与えてしまうことを防いでいる。
また、特許文献2(特開2000-105015号公報)の空気調和機では、暖房起動時に、室内機側への冷媒の供給を遮断し、圧縮機と室外熱交換器との間で冷媒を循環させることで冷媒温度を迅速に上げる運転を行っている。これにより、冷媒の温度を迅速に上げることができるため、暖房起動時から短い時間で暖かい空気をユーザに提供することができるようにしている。 With respect to an air conditioner capable of heating operation, techniques as disclosed in the following patent documents have been proposed for the purpose of improving problems that may occur when heating is started.
For example, in the air conditioner of Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-111126), when heating is started, the direction of the blowing air is adjusted by changing the angle of the louver, and the draft feeling due to unwarmed room air is given to the user It prevents it from giving.
Further, in the air conditioner disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2000-105015), when heating is started, the supply of refrigerant to the indoor unit side is shut off, and the refrigerant is circulated between the compressor and the outdoor heat exchanger. By doing so, the operation of quickly raising the refrigerant temperature is performed. Thereby, since the temperature of a refrigerant | coolant can be raised rapidly, it can be made to provide a user with warm air in a short time after the heating start time.
さらに、特許文献3(特開平11-101522号公報)の空気調和機では、暖房運転が過負荷となる環境において、暖房運転開始時に冷凍サイクルの高圧側の圧力が異常上昇してしまう不具合を避けるために、室内温度が25℃以上の環境下において室内ファンの風量を増大させる制御を提案している。
Further, in the air conditioner of Patent Document 3 (Japanese Patent Laid-Open No. 11-101522), in an environment where the heating operation is overloaded, the problem that the pressure on the high-pressure side of the refrigeration cycle abnormally increases at the start of the heating operation is avoided. Therefore, control for increasing the air volume of the indoor fan in an environment where the room temperature is 25 ° C. or higher is proposed.
上述の特許文献1および3に記載の技術では、暖房起動時に、ユーザに対して迅速に暖かい空気を供給することができない。すなわち、特許文献1に記載の技術では、ルーバーによって風向が定められるため、ユーザの周囲の空間が暖まった後でなければ、ユーザ自体を暖めることができない。また、特許文献3に記載の技術では、暖房運転が過負荷の環境を前提としている。さらに、高圧側の圧力が異常上昇圧力の手前まで上昇した状態になることが前提であり、高圧側の圧力を迅速に上げること自体はなんら示されていない。
また、特許文献2に記載の技術では、圧縮機と室外熱交換器との間で冷媒を循環させることが可能な回路構成および制御が必要になってしまい、煩雑である。
本発明は上述した点に鑑みてなされたものであり、本発明の課題は、暖房起動時に温風を供給するために要する冷媒圧力の確保を簡易な構成によって迅速に行うことが可能な空気調和装置を提供することにある。 With the techniques described inPatent Documents 1 and 3 described above, warm air cannot be quickly supplied to the user when heating is started. That is, in the technique described in Patent Document 1, since the wind direction is determined by the louver, the user cannot be warmed unless the space around the user is warmed. Moreover, in the technique described in Patent Document 3, the heating operation is premised on an overloaded environment. Furthermore, it is premised on that the pressure on the high-pressure side has risen to a level just before the abnormally rising pressure, and there is no indication of increasing the pressure on the high-pressure side quickly.
In addition, the technique described inPatent Document 2 requires a circuit configuration and control capable of circulating the refrigerant between the compressor and the outdoor heat exchanger, and is complicated.
The present invention has been made in view of the above-described points, and an object of the present invention is to provide air conditioning that can quickly ensure the refrigerant pressure required for supplying hot air when heating is started with a simple configuration. To provide an apparatus.
また、特許文献2に記載の技術では、圧縮機と室外熱交換器との間で冷媒を循環させることが可能な回路構成および制御が必要になってしまい、煩雑である。
本発明は上述した点に鑑みてなされたものであり、本発明の課題は、暖房起動時に温風を供給するために要する冷媒圧力の確保を簡易な構成によって迅速に行うことが可能な空気調和装置を提供することにある。 With the techniques described in
In addition, the technique described in
The present invention has been made in view of the above-described points, and an object of the present invention is to provide air conditioning that can quickly ensure the refrigerant pressure required for supplying hot air when heating is started with a simple configuration. To provide an apparatus.
第1の観点にかかる空気調和装置は、圧縮機構、室内熱交換器、室内ファン、膨張機構および室外熱交換器を少なくとも含んで冷凍サイクルを行う空気調和装置であって、冷媒状態把握部および制御部を備えている。冷媒状態把握部は、室内熱交換器から膨張機構に向かう冷媒の過冷却度、および、圧縮機構の吸入側を流れる冷媒の過熱度の少なくともいずれか一方を把握する。制御部は、冷媒状態把握部が把握した値に応じて膨張機構の開度を調整する起動後暖房運転制御と、膨張機構の開度を固定開度として維持したままで圧縮機構を起動する起動時固定開度制御と、を行う。固定開度は、起動時固定開度制御を実行する時における膨張機構以外の冷凍サイクルの運転条件および冷凍サイクルの周囲温度条件と同じ条件下で起動後暖房運転制御が行われる場合の膨張機構の開度である冷媒状態対応開度よりも狭くなるように絞った開度である。
An air conditioner according to a first aspect is an air conditioner that performs a refrigeration cycle including at least a compression mechanism, an indoor heat exchanger, an indoor fan, an expansion mechanism, and an outdoor heat exchanger, and includes a refrigerant state grasping unit and a control Department. The refrigerant state grasping unit grasps at least one of the degree of supercooling of the refrigerant from the indoor heat exchanger toward the expansion mechanism and the degree of superheating of the refrigerant flowing on the suction side of the compression mechanism. The control unit performs post-startup heating operation control that adjusts the opening degree of the expansion mechanism according to the value obtained by the refrigerant state grasping part, and activation that starts the compression mechanism while maintaining the opening degree of the expansion mechanism as a fixed opening degree. Time fixed opening degree control. The fixed opening is the expansion mechanism when the post-startup heating operation control is performed under the same conditions as the operating conditions of the refrigeration cycle other than the expansion mechanism and the ambient temperature condition of the refrigeration cycle when the fixed opening control at the time of starting is executed. The opening is narrowed to be narrower than the opening corresponding to the refrigerant state.
この空気調和装置では、膨張機構を絞り気味にする起動時固定開度制御を行うことで、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を、起動後暖房運転制御を行う場合と比較して、より迅速に上げることができる。このような圧力の迅速な上昇は、膨張機構の開度を調整するだけで簡易に行うことができる。これにより、簡易な構成で、暖房運転開始時点からユーザへの暖かい空気の供給を始めるまでに要する時間をより短縮化させることができるようになる。
In this air conditioner, by performing a fixed opening degree control at start-up that makes the expansion mechanism feel like a throttle, the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger is controlled after the start-up heating operation. In comparison, it can be raised more quickly. Such a rapid increase in pressure can be easily achieved simply by adjusting the opening of the expansion mechanism. Thereby, it becomes possible to further shorten the time required from the start of the heating operation to the start of the supply of warm air to the user with a simple configuration.
第2の観点にかかる空気調和装置は、第1の観点の空気調和装置において、起動後暖房運転制御は、冷媒状態把握部が把握した値に応じて冷凍サイクルの冷媒状態が安定化するように膨張機構の開度を調整する起動後安定化制御である。冷媒状態対応開度は、起動時固定開度制御を実行する時における膨張機構以外の冷凍サイクルの運転条件および冷凍サイクルの周囲温度条件と同じ条件下で起動後安定化制御が行われる場合の膨張機構の開度である。
The air conditioner according to the second aspect is the air conditioner according to the first aspect, wherein the post-startup heating operation control is performed so that the refrigerant state of the refrigeration cycle is stabilized according to the value obtained by the refrigerant state grasping unit. This is stabilization control after startup that adjusts the opening of the expansion mechanism. The opening corresponding to the refrigerant state is the expansion when the post-startup stabilization control is performed under the same conditions as the operating condition of the refrigeration cycle other than the expansion mechanism and the ambient temperature condition of the refrigeration cycle when executing the fixed opening control at the time of starting The opening of the mechanism.
この空気調和装置では、起動後安定化制御において冷凍サイクルの冷媒状態が安定化するように開度調整している場合の膨張機構開度よりも、起動時固定開度制御時の膨張機構の固定開度はさらに狭く絞られている。これにより、起動時固定開度制御を行っている際の、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を、より迅速に上げることが可能になる。
In this air conditioner, the expansion mechanism is fixed during startup fixed opening control rather than the expansion mechanism opening when the opening is adjusted so that the refrigerant state of the refrigeration cycle is stabilized in the stabilization control after startup. The opening is further narrowed down. As a result, the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger during the startup fixed opening degree control can be increased more quickly.
第3の観点にかかる空気調和装置は、第2の観点の空気調和装置において、起動後安定化制御における冷凍サイクルの冷媒状態の安定化とは、次に上げる3つの例のうちの少なくともいずれか1つである。1つめは、冷凍サイクルにおける冷媒の分布状態の変化の程度を、第1所定分布状態もしくは第1所定分布範囲内で第1所定時間の間維持させることである。2つめは、室内熱交換器から膨張機構に向かう冷媒の過冷却度が第2所定値もしくは第2所定範囲内で第2所定時間の間維持させることである。3つめは、圧縮機構の吸入側を流れる冷媒の過熱度が第3所定値もしくは第3所定範囲内で第3所定時間の間維持させることである。
この空気調和装置では、冷凍サイクルの安定化をより確実に行うことが可能になり、固定開度として、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を迅速に上げるための開度を選択することをより確実にすることが可能になる。 The air conditioner according to the third aspect is the air conditioner according to the second aspect, wherein the stabilization of the refrigerant state of the refrigeration cycle in the post-startup stabilization control is at least one of the following three examples: One. The first is to maintain the degree of change in the refrigerant distribution state in the refrigeration cycle for the first predetermined time within the first predetermined distribution state or the first predetermined distribution range. The second is to maintain the degree of supercooling of the refrigerant from the indoor heat exchanger toward the expansion mechanism within a second predetermined value or a second predetermined range for a second predetermined time. Third, the degree of superheat of the refrigerant flowing on the suction side of the compression mechanism is maintained for a third predetermined time within a third predetermined value or a third predetermined range.
In this air conditioner, the refrigeration cycle can be stabilized more reliably, and the opening for rapidly increasing the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger as the fixed opening It becomes possible to make it more certain to select.
この空気調和装置では、冷凍サイクルの安定化をより確実に行うことが可能になり、固定開度として、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を迅速に上げるための開度を選択することをより確実にすることが可能になる。 The air conditioner according to the third aspect is the air conditioner according to the second aspect, wherein the stabilization of the refrigerant state of the refrigeration cycle in the post-startup stabilization control is at least one of the following three examples: One. The first is to maintain the degree of change in the refrigerant distribution state in the refrigeration cycle for the first predetermined time within the first predetermined distribution state or the first predetermined distribution range. The second is to maintain the degree of supercooling of the refrigerant from the indoor heat exchanger toward the expansion mechanism within a second predetermined value or a second predetermined range for a second predetermined time. Third, the degree of superheat of the refrigerant flowing on the suction side of the compression mechanism is maintained for a third predetermined time within a third predetermined value or a third predetermined range.
In this air conditioner, the refrigeration cycle can be stabilized more reliably, and the opening for rapidly increasing the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger as the fixed opening It becomes possible to make it more certain to select.
第4の観点にかかる空気調和装置は、第1の観点から第3の観点のいずれかの空気調和装置において、起動時固定開度制御において、制御部は、起動時能力増大制御を開始する直前までには、膨張機構の開度が固定開度で維持された状態を保ちつつ圧縮機構の周波数を第1所定目標周波数に到達させる。起動時能力増大制御は、圧縮機構の周波数を第1所定目標周波数よりも高い第2所定目標周波数となるように上げつつ膨張機構の開度を固定開度よりも広げた第1開度とする制御である。
この空気調和装置では、暖房運転開始時点からユーザへの暖かい空気の供給を始めるまでに要する時間を短縮化させつつ、冷媒循環量を増大させて能力を上げることができるようになる。 The air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect. In the fixed opening degree control at startup, the control unit immediately before starting the startup capacity increase control. By the time, the frequency of the compression mechanism is made to reach the first predetermined target frequency while maintaining the state where the opening degree of the expansion mechanism is maintained at the fixed opening degree. In the start-up capacity increase control, the opening degree of the expansion mechanism is set to the first opening degree that is wider than the fixed opening degree while raising the frequency of the compression mechanism to be the second predetermined target frequency that is higher than the first predetermined target frequency. Control.
In this air conditioner, it is possible to increase the capacity of the refrigerant by increasing the amount of refrigerant circulation while reducing the time required to start supplying warm air to the user from the start of heating operation.
この空気調和装置では、暖房運転開始時点からユーザへの暖かい空気の供給を始めるまでに要する時間を短縮化させつつ、冷媒循環量を増大させて能力を上げることができるようになる。 The air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect. In the fixed opening degree control at startup, the control unit immediately before starting the startup capacity increase control. By the time, the frequency of the compression mechanism is made to reach the first predetermined target frequency while maintaining the state where the opening degree of the expansion mechanism is maintained at the fixed opening degree. In the start-up capacity increase control, the opening degree of the expansion mechanism is set to the first opening degree that is wider than the fixed opening degree while raising the frequency of the compression mechanism to be the second predetermined target frequency that is higher than the first predetermined target frequency. Control.
In this air conditioner, it is possible to increase the capacity of the refrigerant by increasing the amount of refrigerant circulation while reducing the time required to start supplying warm air to the user from the start of heating operation.
第5の観点にかかる空気調和装置は、第4の観点の空気調和装置において、起動時能力増大制御において、制御部は、圧縮機構の周波数を第2所定目標周波数で維持しつつ膨張機構の開度を冷媒状態把握部が把握した値に応じて調整する制御を行う直前に、膨張機構の開度を、一度、第1開度まで上げる。
この空気調和装置では、冷媒循環量を上げて能力を上げていく場合に冷凍サイクルの状況が多少変化することがあっても、膨張機構の開度が冷媒状態把握部の把握値に応じた開度に調整される。これにより、負荷に対する柔軟性を確保しつつ能力を上げていくことができるようになる。 In an air conditioner according to a fifth aspect, in the air conditioner according to the fourth aspect, in the startup capacity increase control, the control unit opens the expansion mechanism while maintaining the frequency of the compression mechanism at the second predetermined target frequency. Immediately before the control for adjusting the degree according to the value grasped by the refrigerant state grasping unit, the opening degree of the expansion mechanism is once increased to the first opening degree.
In this air conditioner, when the capacity of the refrigeration cycle changes slightly when the refrigerant circulation rate is increased, the opening degree of the expansion mechanism is opened according to the grasp value of the refrigerant state grasping unit. Adjusted in degrees. As a result, it becomes possible to increase the capacity while ensuring flexibility with respect to the load.
この空気調和装置では、冷媒循環量を上げて能力を上げていく場合に冷凍サイクルの状況が多少変化することがあっても、膨張機構の開度が冷媒状態把握部の把握値に応じた開度に調整される。これにより、負荷に対する柔軟性を確保しつつ能力を上げていくことができるようになる。 In an air conditioner according to a fifth aspect, in the air conditioner according to the fourth aspect, in the startup capacity increase control, the control unit opens the expansion mechanism while maintaining the frequency of the compression mechanism at the second predetermined target frequency. Immediately before the control for adjusting the degree according to the value grasped by the refrigerant state grasping unit, the opening degree of the expansion mechanism is once increased to the first opening degree.
In this air conditioner, when the capacity of the refrigeration cycle changes slightly when the refrigerant circulation rate is increased, the opening degree of the expansion mechanism is opened according to the grasp value of the refrigerant state grasping unit. Adjusted in degrees. As a result, it becomes possible to increase the capacity while ensuring flexibility with respect to the load.
第6の観点にかかる空気調和装置は、第4の観点または第5の観点の空気調和装置において、制御部は、起動時固定開度制御の開始時点から所定固定起動時間を経過した時点で、起動時能力増大制御を開始する。
この空気調和装置では、起動時固定開度制御を開始してから所定固定起動時間を経過した時に起動時能力増大制御を開始させることで、起動時固定開度制御を開始してから所定固定起動時間を経過した時に強制的に圧縮機構の周波数を上げさせることができる。これにより、強制的に能力を上げることができ、いつまでも能力を上げることができない状態が続いてしまうことを回避できる。 In the air conditioner according to the sixth aspect, the air conditioner according to the sixth aspect is the air conditioner according to the fourth aspect or the fifth aspect, and when the control unit has passed a predetermined fixed activation time from the start time of the fixed opening control at the time of activation, Start capacity increase control at startup.
In this air conditioner, by starting the startup capacity increase control when a predetermined fixed startup time has elapsed after starting the startup fixed opening control, the fixed opening control is started after starting the fixed opening control at startup. When the time has elapsed, the frequency of the compression mechanism can be forcibly increased. As a result, the ability can be forcibly raised, and the situation where the ability cannot be raised forever can be avoided.
この空気調和装置では、起動時固定開度制御を開始してから所定固定起動時間を経過した時に起動時能力増大制御を開始させることで、起動時固定開度制御を開始してから所定固定起動時間を経過した時に強制的に圧縮機構の周波数を上げさせることができる。これにより、強制的に能力を上げることができ、いつまでも能力を上げることができない状態が続いてしまうことを回避できる。 In the air conditioner according to the sixth aspect, the air conditioner according to the sixth aspect is the air conditioner according to the fourth aspect or the fifth aspect, and when the control unit has passed a predetermined fixed activation time from the start time of the fixed opening control at the time of activation, Start capacity increase control at startup.
In this air conditioner, by starting the startup capacity increase control when a predetermined fixed startup time has elapsed after starting the startup fixed opening control, the fixed opening control is started after starting the fixed opening control at startup. When the time has elapsed, the frequency of the compression mechanism can be forcibly increased. As a result, the ability can be forcibly raised, and the situation where the ability cannot be raised forever can be avoided.
第7の観点にかかる空気調和装置は、第6の観点の空気調和装置において、制御部は、起動後暖房運転制御の開始のタイミングを、起動時能力増大制御を開始した時点より後の時点とする。
この空気調和装置では、起動時能力増大制御によって能力が上げられだした後に起動後暖房運転制御を開始することで、起動後暖房運転制御の開始時における暖房能力を確保しやすくなる。 The air conditioner according to a seventh aspect is the air conditioner according to the sixth aspect, wherein the control unit sets the start timing of the post-startup heating operation control to a time point after the start point of the start time capacity increase control. To do.
In this air conditioner, heating capacity control at the start of the post-startup heating operation control is facilitated by starting the post-startup heating operation control after the capacity is increased by the startup capacity increase control.
この空気調和装置では、起動時能力増大制御によって能力が上げられだした後に起動後暖房運転制御を開始することで、起動後暖房運転制御の開始時における暖房能力を確保しやすくなる。 The air conditioner according to a seventh aspect is the air conditioner according to the sixth aspect, wherein the control unit sets the start timing of the post-startup heating operation control to a time point after the start point of the start time capacity increase control. To do.
In this air conditioner, heating capacity control at the start of the post-startup heating operation control is facilitated by starting the post-startup heating operation control after the capacity is increased by the startup capacity increase control.
第8の観点にかかる空気調和装置は、第4の観点から第7の観点のいずれかの空気調和装置において、起動時能力増大制御において、制御部は、圧縮機構の周波数を第2所定目標周波数よりも高い周波数として予め定められた所定最大周波数に上げつつ膨張機構の開度を第1開度よりも広げた第2開度とする起動時段階能力制御を行う。
この空気調和装置では、起動時固定開度制御の後の起動時段階能力制御において、所定最大周波数に上げる前に、第1所定目標周波数および第2所定目標周波数の少なくとも2つの周波数の段階が設けられている。このため、圧縮機構の能力を最大にする前に、圧縮機構の能力を段階的に増大させることができ、膨張機構の開度についても段階的に広げていくことができ、能力を段階的に増大させていくことができる。これにより、急激に能力を上げてしまうことによる圧縮機構での液圧縮や、圧縮機構から室内熱交換器へ向かう冷媒圧力の急激な異常上昇を抑制させることができる。 An air conditioner according to an eighth aspect is the air conditioner according to any one of the fourth to seventh aspects, wherein the control unit sets the frequency of the compression mechanism to the second predetermined target frequency in the start-up capacity increase control. The startup stage capacity control is performed so that the opening degree of the expansion mechanism is set to a second opening degree that is wider than the first opening degree while the frequency is raised to a predetermined maximum frequency that is higher than the first opening degree.
In this air conditioner, in the starting stage capacity control after the starting fixed opening degree control, at least two frequency stages of the first predetermined target frequency and the second predetermined target frequency are provided before raising to the predetermined maximum frequency. It has been. For this reason, before maximizing the capacity of the compression mechanism, the capacity of the compression mechanism can be increased in stages, and the opening degree of the expansion mechanism can also be expanded in stages. It can be increased. Thereby, it is possible to suppress liquid compression in the compression mechanism due to sudden increase in capacity and a sudden abnormal increase in refrigerant pressure from the compression mechanism toward the indoor heat exchanger.
この空気調和装置では、起動時固定開度制御の後の起動時段階能力制御において、所定最大周波数に上げる前に、第1所定目標周波数および第2所定目標周波数の少なくとも2つの周波数の段階が設けられている。このため、圧縮機構の能力を最大にする前に、圧縮機構の能力を段階的に増大させることができ、膨張機構の開度についても段階的に広げていくことができ、能力を段階的に増大させていくことができる。これにより、急激に能力を上げてしまうことによる圧縮機構での液圧縮や、圧縮機構から室内熱交換器へ向かう冷媒圧力の急激な異常上昇を抑制させることができる。 An air conditioner according to an eighth aspect is the air conditioner according to any one of the fourth to seventh aspects, wherein the control unit sets the frequency of the compression mechanism to the second predetermined target frequency in the start-up capacity increase control. The startup stage capacity control is performed so that the opening degree of the expansion mechanism is set to a second opening degree that is wider than the first opening degree while the frequency is raised to a predetermined maximum frequency that is higher than the first opening degree.
In this air conditioner, in the starting stage capacity control after the starting fixed opening degree control, at least two frequency stages of the first predetermined target frequency and the second predetermined target frequency are provided before raising to the predetermined maximum frequency. It has been. For this reason, before maximizing the capacity of the compression mechanism, the capacity of the compression mechanism can be increased in stages, and the opening degree of the expansion mechanism can also be expanded in stages. It can be increased. Thereby, it is possible to suppress liquid compression in the compression mechanism due to sudden increase in capacity and a sudden abnormal increase in refrigerant pressure from the compression mechanism toward the indoor heat exchanger.
第9の観点にかかる空気調和装置は、第1の観点から第8の観点のいずれかの空気調和装置において、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を把握する冷媒圧力把握部をさらに備えている。制御部は、起動時固定開度制御を開始した時から冷媒圧力把握部の把握する圧力が所定高圧閾値を超える前までの室内ファンによる風量よりも、冷媒圧力把握部の把握する圧力が所定高圧閾値を超えた時以降の室内ファンによる風量の方が大きい起動時ファン制御を行う。
この空気調和装置では、暖房運転を開始した直後に冷たい空気をユーザに供給してしまうことを抑えつつ、暖房運転を開始した時点からユーザへの暖かい空気の供給を始めるまでに要する時間をより短縮化させることができる。 An air conditioner according to a ninth aspect is the air conditioner according to any one of the first aspect to the eighth aspect, wherein the refrigerant pressure grasps the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger. The unit is further provided. The control unit determines that the pressure grasped by the refrigerant pressure grasping unit is higher than the air volume by the indoor fan until the pressure grasped by the refrigerant pressure grasping unit exceeds the predetermined high pressure threshold after the start-up fixed opening degree control is started. Start-up fan control is performed in which the airflow from the indoor fan after the threshold is exceeded is greater.
In this air conditioner, the time required from the start of the heating operation to the start of the supply of warm air to the user is further reduced while suppressing the supply of cold air to the user immediately after the start of the heating operation. It can be made.
この空気調和装置では、暖房運転を開始した直後に冷たい空気をユーザに供給してしまうことを抑えつつ、暖房運転を開始した時点からユーザへの暖かい空気の供給を始めるまでに要する時間をより短縮化させることができる。 An air conditioner according to a ninth aspect is the air conditioner according to any one of the first aspect to the eighth aspect, wherein the refrigerant pressure grasps the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger. The unit is further provided. The control unit determines that the pressure grasped by the refrigerant pressure grasping unit is higher than the air volume by the indoor fan until the pressure grasped by the refrigerant pressure grasping unit exceeds the predetermined high pressure threshold after the start-up fixed opening degree control is started. Start-up fan control is performed in which the airflow from the indoor fan after the threshold is exceeded is greater.
In this air conditioner, the time required from the start of the heating operation to the start of the supply of warm air to the user is further reduced while suppressing the supply of cold air to the user immediately after the start of the heating operation. It can be made.
第10の観点にかかる空気調和装置は、第9の観点の空気調和装置において、制御部は、起動時固定開度制御を開始した時から冷媒圧力把握部の把握する圧力が所定高圧閾値を超える前までの間は、室内ファンによる風量を0にする。
An air conditioner according to a tenth aspect is the air conditioner according to the ninth aspect, wherein the control unit determines that the pressure grasped by the refrigerant pressure grasping unit exceeds a predetermined high-pressure threshold from the start of startup fixed opening degree control. Until then, the air flow from the indoor fan is set to zero.
この空気調和装置では、室内ファンから室内熱交換器への空気の供給が途絶えるため、室内熱交換器での凝縮能力が低下し、起動時から所定高圧閾値に達するまでの時間をより短縮化させることができる。
In this air conditioner, since the supply of air from the indoor fan to the indoor heat exchanger is interrupted, the condensing capacity in the indoor heat exchanger is reduced, and the time from startup to the predetermined high pressure threshold is further shortened. be able to.
第11の観点にかかる空気調和装置は、第1の観点から第10の観点のいずれかの空気調和装置において、圧縮機構の吸入側における冷媒配管と熱的接触をするか冷媒配管中を流れる冷媒と熱的接触をするかおよび冷媒配管を構成するかの少なくともいずれか1つであって、磁性体を含んでいる発熱部と、発熱部を誘導加熱するための磁界を生じさせる磁界発生部と、をさらに備えている。制御部は、起動時固定開度制御において、発熱部を誘導加熱させる。
この空気調和装置では、電磁誘導加熱によって発熱部を発熱させることができるため、起動時ファン制御において所定高圧閾値に達成させるために必要な時間を短縮化させることが可能になる。 An air conditioner according to an eleventh aspect is the air conditioner according to any one of the first to tenth aspects, wherein the refrigerant is in thermal contact with the refrigerant pipe on the suction side of the compression mechanism or flows in the refrigerant pipe. A heat generating part that includes a magnetic material, and a magnetic field generating part that generates a magnetic field for induction heating of the heat generating part. , Is further provided. The control unit causes the heating unit to be induction-heated in the startup fixed opening degree control.
In this air conditioner, since the heat generating portion can generate heat by electromagnetic induction heating, it is possible to shorten the time required to achieve the predetermined high pressure threshold in the startup fan control.
この空気調和装置では、電磁誘導加熱によって発熱部を発熱させることができるため、起動時ファン制御において所定高圧閾値に達成させるために必要な時間を短縮化させることが可能になる。 An air conditioner according to an eleventh aspect is the air conditioner according to any one of the first to tenth aspects, wherein the refrigerant is in thermal contact with the refrigerant pipe on the suction side of the compression mechanism or flows in the refrigerant pipe. A heat generating part that includes a magnetic material, and a magnetic field generating part that generates a magnetic field for induction heating of the heat generating part. , Is further provided. The control unit causes the heating unit to be induction-heated in the startup fixed opening degree control.
In this air conditioner, since the heat generating portion can generate heat by electromagnetic induction heating, it is possible to shorten the time required to achieve the predetermined high pressure threshold in the startup fan control.
第1の観点にかかる空気調和装置では、簡易な構成で、暖房運転開始時点からユーザへの暖かい空気の供給を始めるまでに要する時間をより短縮化させることができるようになる。
第2の観点にかかる空気調和装置では、起動時固定開度制御を行っている際の、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を、より迅速に上げることが可能になる。
第3の観点にかかる空気調和装置では、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を迅速に上げるための開度を選択することをより確実にすることが可能になる。
第4の観点にかかる空気調和装置では、暖房運転開始時点からユーザへの暖かい空気の供給を始めるまでに要する時間を短縮化させつつ、冷媒循環量を増大させて能力を上げることができるようになる。 In the air conditioner according to the first aspect, with a simple configuration, the time required from the start of heating operation to the start of the supply of warm air to the user can be further shortened.
In the air conditioner according to the second aspect, the pressure of the refrigerant sent from the compression mechanism toward the indoor heat exchanger when performing the fixed opening degree control at start-up can be increased more quickly. .
In the air conditioner according to the third aspect, it is possible to more reliably select the opening degree for quickly increasing the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger.
In the air conditioner according to the fourth aspect, it is possible to increase the capacity by increasing the refrigerant circulation amount while shortening the time required from the start of the heating operation to the start of the supply of warm air to the user. Become.
第2の観点にかかる空気調和装置では、起動時固定開度制御を行っている際の、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を、より迅速に上げることが可能になる。
第3の観点にかかる空気調和装置では、圧縮機構から室内熱交換器に向けて送られる冷媒の圧力を迅速に上げるための開度を選択することをより確実にすることが可能になる。
第4の観点にかかる空気調和装置では、暖房運転開始時点からユーザへの暖かい空気の供給を始めるまでに要する時間を短縮化させつつ、冷媒循環量を増大させて能力を上げることができるようになる。 In the air conditioner according to the first aspect, with a simple configuration, the time required from the start of heating operation to the start of the supply of warm air to the user can be further shortened.
In the air conditioner according to the second aspect, the pressure of the refrigerant sent from the compression mechanism toward the indoor heat exchanger when performing the fixed opening degree control at start-up can be increased more quickly. .
In the air conditioner according to the third aspect, it is possible to more reliably select the opening degree for quickly increasing the pressure of the refrigerant sent from the compression mechanism to the indoor heat exchanger.
In the air conditioner according to the fourth aspect, it is possible to increase the capacity by increasing the refrigerant circulation amount while shortening the time required from the start of the heating operation to the start of the supply of warm air to the user. Become.
第5の観点にかかる空気調和装置では、負荷に対する柔軟性を確保しつつ能力を上げていくことができるようになる。
第6の観点にかかる空気調和装置では、強制的に能力を上げることができ、いつまでも能力を上げることができない状態が続いてしまうことを回避できる。
第7の観点にかかる空気調和装置では、起動後暖房運転制御の開始時における暖房能力を確保しやすくなる。
第8の観点にかかる空気調和装置では、急激に能力を上げてしまうことによる圧縮機構での液圧縮や、圧縮機構から室内熱交換器へ向かう冷媒圧力の急激な異常上昇を抑制させることができる。
第9の観点にかかる空気調和装置では、暖房運転を開始した時点からユーザへの暖かい空気の供給を始めるまでに要する時間をより短縮化させることができる。 In the air conditioner according to the fifth aspect, the capability can be increased while ensuring flexibility with respect to the load.
In the air conditioner according to the sixth aspect, the capacity can be forcibly increased, and the situation where the capacity cannot be increased forever can be avoided.
In the air conditioning apparatus according to the seventh aspect, it becomes easy to ensure the heating capacity at the start of the post-startup heating operation control.
In the air conditioner according to the eighth aspect, it is possible to suppress liquid compression in the compression mechanism due to sudden increase in capacity and a sudden abnormal increase in refrigerant pressure from the compression mechanism toward the indoor heat exchanger. .
In the air conditioning apparatus according to the ninth aspect, it is possible to further shorten the time required from the time when the heating operation is started until the warm air supply to the user is started.
第6の観点にかかる空気調和装置では、強制的に能力を上げることができ、いつまでも能力を上げることができない状態が続いてしまうことを回避できる。
第7の観点にかかる空気調和装置では、起動後暖房運転制御の開始時における暖房能力を確保しやすくなる。
第8の観点にかかる空気調和装置では、急激に能力を上げてしまうことによる圧縮機構での液圧縮や、圧縮機構から室内熱交換器へ向かう冷媒圧力の急激な異常上昇を抑制させることができる。
第9の観点にかかる空気調和装置では、暖房運転を開始した時点からユーザへの暖かい空気の供給を始めるまでに要する時間をより短縮化させることができる。 In the air conditioner according to the fifth aspect, the capability can be increased while ensuring flexibility with respect to the load.
In the air conditioner according to the sixth aspect, the capacity can be forcibly increased, and the situation where the capacity cannot be increased forever can be avoided.
In the air conditioning apparatus according to the seventh aspect, it becomes easy to ensure the heating capacity at the start of the post-startup heating operation control.
In the air conditioner according to the eighth aspect, it is possible to suppress liquid compression in the compression mechanism due to sudden increase in capacity and a sudden abnormal increase in refrigerant pressure from the compression mechanism toward the indoor heat exchanger. .
In the air conditioning apparatus according to the ninth aspect, it is possible to further shorten the time required from the time when the heating operation is started until the warm air supply to the user is started.
第10の観点にかかる空気調和装置では、起動時から所定高圧閾値に達するまでの時間をより短縮化させることができる。
第11の観点にかかる空気調和装置では、起動時ファン制御において所定高圧閾値に達成させるために必要な時間を短縮化させることが可能になる。 In the air conditioning apparatus according to the tenth aspect, it is possible to further shorten the time from the start to the predetermined high pressure threshold.
In the air conditioner according to the eleventh aspect, it is possible to shorten the time required to achieve the predetermined high pressure threshold in the startup fan control.
第11の観点にかかる空気調和装置では、起動時ファン制御において所定高圧閾値に達成させるために必要な時間を短縮化させることが可能になる。 In the air conditioning apparatus according to the tenth aspect, it is possible to further shorten the time from the start to the predetermined high pressure threshold.
In the air conditioner according to the eleventh aspect, it is possible to shorten the time required to achieve the predetermined high pressure threshold in the startup fan control.
以下、図面を参照しつつ、本発明の一実施形態における電磁誘導加熱ユニット6を備えた空気調和装置1を例に挙げて説明する。
<1-1>空気調和装置1
図1に、空気調和装置1の冷媒回路10を示す冷媒回路図を示す。
空気調和装置1は、熱源側装置としての室外機2と、利用側装置としての室内機4とが冷媒配管によって接続されて、利用側装置が配置された空間の空気調和を行うものであって、圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、室内熱交換器41、室内ファン42、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6等を備えている。
圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、室外機2内に収容されている。室内熱交換器41および室内ファン42は、室内機4内に収容されている。 Hereinafter, anair conditioner 1 including an electromagnetic induction heating unit 6 according to an embodiment of the present invention will be described as an example with reference to the drawings.
<1-1>Air conditioner 1
FIG. 1 is a refrigerant circuit diagram showing arefrigerant circuit 10 of the air conditioner 1.
Theair conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe. , Compressor 21, four-way switching valve 22, outdoor heat exchanger 23, outdoor electric expansion valve 24, accumulator 25, outdoor fan 26, indoor heat exchanger 41, indoor fan 42, hot gas bypass valve 27, capillary tube 28 and An electromagnetic induction heating unit 6 and the like are provided.
Thecompressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in. The indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
<1-1>空気調和装置1
図1に、空気調和装置1の冷媒回路10を示す冷媒回路図を示す。
空気調和装置1は、熱源側装置としての室外機2と、利用側装置としての室内機4とが冷媒配管によって接続されて、利用側装置が配置された空間の空気調和を行うものであって、圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、室内熱交換器41、室内ファン42、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6等を備えている。
圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、室外機2内に収容されている。室内熱交換器41および室内ファン42は、室内機4内に収容されている。 Hereinafter, an
<1-1>
FIG. 1 is a refrigerant circuit diagram showing a
The
The
冷媒回路10は、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管F、吸入管G、ホットガスバイパス回路H、分岐配管Kおよび合流配管Jを有している。室内側ガス管Bおよび室外側ガス管Eは、ガス状態の冷媒が多く通過するものではあるが、通過する冷媒をガス冷媒に限定しているものではない。室内側液管Cおよび室外側液管Dは、液状態の冷媒が多く通過するものではあるが、通過する冷媒を液冷媒に限定しているものではない。
吐出管Aは、圧縮機21と四路切換弁22とを接続している。吐出管Aには、通過する冷媒温度を検知する吐出温度センサ29dが設けられている。なお、圧縮機21には、電力供給部21eが電力の供給を行う。この電力供給部21eの供給電力量は、圧縮機電力検知部29fが検知している。 Therefrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, a hot gas bypass circuit H, and a branch pipe K. And a merging pipe J. The indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant. The indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
The discharge pipe A connects thecompressor 21 and the four-way switching valve 22. The discharge pipe A is provided with a discharge temperature sensor 29d for detecting the temperature of the refrigerant passing therethrough. Note that the power supply unit 21 e supplies power to the compressor 21. The amount of power supplied from the power supply unit 21e is detected by the compressor power detection unit 29f.
吐出管Aは、圧縮機21と四路切換弁22とを接続している。吐出管Aには、通過する冷媒温度を検知する吐出温度センサ29dが設けられている。なお、圧縮機21には、電力供給部21eが電力の供給を行う。この電力供給部21eの供給電力量は、圧縮機電力検知部29fが検知している。 The
The discharge pipe A connects the
室内側ガス管Bは、四路切換弁22と室内熱交換器41とを接続している。この室内側ガス管Bの途中には、通過する冷媒の圧力を検知する圧力センサ29aが設けられている。
室内側液管Cは、室内熱交換器41と室外電動膨張弁24とを接続している。
室外側液管Dは、室外電動膨張弁24と室外熱交換器23とを接続している。
室外側ガス管Eは、室外熱交換器23と四路切換弁22とを接続している。
アキューム管Fは、四路切換弁22とアキュームレータ25とを接続しており、室外機2の設置状態で鉛直方向に伸びている。アキューム管Fの一部に対して、電磁誘導加熱ユニット6が取り付けられている。アキューム管Fのうち、少なくとも後述するコイル68によって周囲を覆われている発熱部分は、内側に冷媒を流している銅管F1、および、銅管F1の周囲を覆うように設けられた磁性体管F2によって構成されている(図15参照)。この磁性体管F2は、SUS(Stainless Used Steel:ステンレス鋼)430によって構成されている。このSUS430は、強磁性体材料であって、磁界に置かれると渦電流を生じつつ、自己の電気抵抗によって生ずるジュール熱により発熱する。冷媒回路10を構成する配管のうち磁性体管F2以外の部分は、銅管で構成されている。なお、上記銅管の周囲を覆う管の材質はSUS430に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、磁性体材料としては、例えば、フェライト系、マルテンサイト系およびこれらの2種類の組み合わせが例として挙げられるが、強磁性体であって電気抵抗が比較的高いものであり使用温度範囲よりもキュリー温度が高い材料が好ましい。なお、ここでのアキューム管Fは、より多くの電力が必要とされるが、磁性体および磁性体を含有する材料を備えていなくてもよく、誘導加熱が行われる対象となる材質を含有するものであってもよい。なお、磁性体材料は、例えば、アキューム管Fのすべてを構成していてもよいし、アキューム管Fの内側表面のみに形成されていてもよく、アキューム管Fを構成する材料中に含有されることで存在していてもよい。このように電磁誘導加熱を行うことで、アキューム管Fを電磁誘導によって加熱させることができ、アキュームレータ25を介して圧縮機21に吸入される冷媒を暖めることができる。これにより、空気調和装置1の暖房能力を向上させることができる。また、例えば、暖房運転の起動時においては、圧縮機21が十分に暖まっていない場合であっても、電磁誘導加熱ユニット6による迅速な加熱によって起動時の能力不足を補うことができる。さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23等に付着した霜を除去するデフロスト運転を行う場合には、電磁誘導加熱ユニット6がアキューム管Fを迅速に加熱することで、圧縮機21は迅速に暖められた冷媒を対象として圧縮することができる。このため、圧縮機21から吐出するホットガスの温度を迅速に上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。 The indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41. In the middle of the indoor side gas pipe B, a pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided.
The indoor side liquid pipe C connects theindoor heat exchanger 41 and the outdoor electric expansion valve 24.
The outdoor liquid pipe D connects the outdoorelectric expansion valve 24 and the outdoor heat exchanger 23.
The outdoor gas pipe E connects theoutdoor heat exchanger 23 and the four-way switching valve 22.
The accumulator pipe F connects the four-way switching valve 22 and the accumulator 25, and extends in the vertical direction when the outdoor unit 2 is installed. An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F. Of the accumulator tube F, at least a heat generating portion whose periphery is covered by a coil 68, which will be described later, is a copper tube F1 in which a coolant is flowing inside, and a magnetic tube provided so as to cover the periphery of the copper tube F1. F2 is configured (see FIG. 15). The magnetic tube F2 is made of SUS (Stainless Used Steel) 430. The SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance. Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of copper pipes. In addition, the material of the pipe | tube covering the circumference | surroundings of the said copper pipe | tube is not limited to SUS430, For example, at least 2 or more types of metals chosen from conductors, such as iron, copper, aluminum, chromium, nickel, and these groups are used. It can be an alloy or the like. Examples of the magnetic material include a ferrite type, a martensite type, and a combination of these two types. However, the magnetic material is ferromagnetic and has a relatively high electric resistance, which is higher than the operating temperature range. A material having a high Curie temperature is preferred. The accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing. For example, the magnetic material may constitute all of the accumulator tube F, or may be formed only on the inner surface of the accumulator tube F, and is contained in the material constituting the accumulator tube F. May exist. By performing electromagnetic induction heating in this manner, the accumulator tube F can be heated by electromagnetic induction, and the refrigerant sucked into the compressor 21 via the accumulator 25 can be warmed. Thereby, the heating capability of the air conditioning apparatus 1 can be improved. Further, for example, even when the compressor 21 is not sufficiently warmed at the time of starting the heating operation, the lack of capacity at the time of starting can be compensated for by the rapid heating by the electromagnetic induction heating unit 6. Further, when the four-way switching valve 22 is switched to the cooling operation state and the defrost operation is performed to remove the frost attached to the outdoor heat exchanger 23 or the like, the electromagnetic induction heating unit 6 quickly opens the accumulator tube F. By heating, the compressor 21 can compress the rapidly heated refrigerant as a target. For this reason, the temperature of the hot gas discharged from the compressor 21 can be raised rapidly. Thereby, the time required to thaw frost by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
室内側液管Cは、室内熱交換器41と室外電動膨張弁24とを接続している。
室外側液管Dは、室外電動膨張弁24と室外熱交換器23とを接続している。
室外側ガス管Eは、室外熱交換器23と四路切換弁22とを接続している。
アキューム管Fは、四路切換弁22とアキュームレータ25とを接続しており、室外機2の設置状態で鉛直方向に伸びている。アキューム管Fの一部に対して、電磁誘導加熱ユニット6が取り付けられている。アキューム管Fのうち、少なくとも後述するコイル68によって周囲を覆われている発熱部分は、内側に冷媒を流している銅管F1、および、銅管F1の周囲を覆うように設けられた磁性体管F2によって構成されている(図15参照)。この磁性体管F2は、SUS(Stainless Used Steel:ステンレス鋼)430によって構成されている。このSUS430は、強磁性体材料であって、磁界に置かれると渦電流を生じつつ、自己の電気抵抗によって生ずるジュール熱により発熱する。冷媒回路10を構成する配管のうち磁性体管F2以外の部分は、銅管で構成されている。なお、上記銅管の周囲を覆う管の材質はSUS430に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、磁性体材料としては、例えば、フェライト系、マルテンサイト系およびこれらの2種類の組み合わせが例として挙げられるが、強磁性体であって電気抵抗が比較的高いものであり使用温度範囲よりもキュリー温度が高い材料が好ましい。なお、ここでのアキューム管Fは、より多くの電力が必要とされるが、磁性体および磁性体を含有する材料を備えていなくてもよく、誘導加熱が行われる対象となる材質を含有するものであってもよい。なお、磁性体材料は、例えば、アキューム管Fのすべてを構成していてもよいし、アキューム管Fの内側表面のみに形成されていてもよく、アキューム管Fを構成する材料中に含有されることで存在していてもよい。このように電磁誘導加熱を行うことで、アキューム管Fを電磁誘導によって加熱させることができ、アキュームレータ25を介して圧縮機21に吸入される冷媒を暖めることができる。これにより、空気調和装置1の暖房能力を向上させることができる。また、例えば、暖房運転の起動時においては、圧縮機21が十分に暖まっていない場合であっても、電磁誘導加熱ユニット6による迅速な加熱によって起動時の能力不足を補うことができる。さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23等に付着した霜を除去するデフロスト運転を行う場合には、電磁誘導加熱ユニット6がアキューム管Fを迅速に加熱することで、圧縮機21は迅速に暖められた冷媒を対象として圧縮することができる。このため、圧縮機21から吐出するホットガスの温度を迅速に上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。 The indoor side gas pipe B connects the four-
The indoor side liquid pipe C connects the
The outdoor liquid pipe D connects the outdoor
The outdoor gas pipe E connects the
The accumulator pipe F connects the four-
吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
ホットガスバイパス回路Hは、吐出管Aの途中に設けられた分岐点A1と室外側液管Dの途中に設けられた分岐点D1とを接続している。ホットガスバイパス回路Hは、途中に冷媒の通過を許容する状態と許容しない状態とを切換可能なホットガスバイバス弁27が配置されている。なお、ホットガスバイパス回路Hは、ホットガスバイバス弁27と分岐点D1との間に、通過する冷媒圧力を下げるキャピラリーチューブ28が設けられている。このキャピラリーチューブ28は、暖房運転時の室外電動膨張弁24による冷媒圧力の低下後の圧力に近づけることができるため、ホットガスバイパス回路Hを通じた室外側液管Dへのホットガスの供給による室外側液管Dの冷媒圧力上昇を抑えることができる。
分岐配管Kは、室外熱交換器23の一部を構成しており、熱交換を行うための有効表面積を増大させるために、室外熱交換器23のガス側出入口23eから伸びる冷媒配管が後述する分岐合流点23kで複数本に分岐した配管である。この分岐配管Kは、分岐合流点23kから合流分岐点23jまでそれぞれ独立して延びている第1分岐配管K1、第2分岐配管K2および第3分岐配管K3を有しており、これらの各分岐配管K1、K2、K3は合流分岐点23jで合流している。なお、合流配管J側から見ると、合流分岐点23jで分岐して分岐配管Kが延びている。 The suction pipe G connects theaccumulator 25 and the suction side of the compressor 21.
The hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D. The hotgas bypass circuit 27 is provided with a hot gas bypass valve 27 that can switch between a state that allows passage of refrigerant and a state that does not allow passage of the refrigerant. In the hot gas bypass circuit H, a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough. Since this capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
The branch pipe K constitutes a part of theoutdoor heat exchanger 23, and a refrigerant pipe extending from the gas side inlet / outlet 23e of the outdoor heat exchanger 23 will be described later in order to increase the effective surface area for heat exchange. It is a pipe branched into a plurality of lines at a branching junction 23k. The branch pipe K includes a first branch pipe K1, a second branch pipe K2, and a third branch pipe K3 that extend independently from the branch junction point 23k to the junction branch point 23j. The pipes K1, K2, and K3 merge at the merge branch point 23j. Note that, when viewed from the merging pipe J side, the branch pipe K extends at a merging branch point 23j.
ホットガスバイパス回路Hは、吐出管Aの途中に設けられた分岐点A1と室外側液管Dの途中に設けられた分岐点D1とを接続している。ホットガスバイパス回路Hは、途中に冷媒の通過を許容する状態と許容しない状態とを切換可能なホットガスバイバス弁27が配置されている。なお、ホットガスバイパス回路Hは、ホットガスバイバス弁27と分岐点D1との間に、通過する冷媒圧力を下げるキャピラリーチューブ28が設けられている。このキャピラリーチューブ28は、暖房運転時の室外電動膨張弁24による冷媒圧力の低下後の圧力に近づけることができるため、ホットガスバイパス回路Hを通じた室外側液管Dへのホットガスの供給による室外側液管Dの冷媒圧力上昇を抑えることができる。
分岐配管Kは、室外熱交換器23の一部を構成しており、熱交換を行うための有効表面積を増大させるために、室外熱交換器23のガス側出入口23eから伸びる冷媒配管が後述する分岐合流点23kで複数本に分岐した配管である。この分岐配管Kは、分岐合流点23kから合流分岐点23jまでそれぞれ独立して延びている第1分岐配管K1、第2分岐配管K2および第3分岐配管K3を有しており、これらの各分岐配管K1、K2、K3は合流分岐点23jで合流している。なお、合流配管J側から見ると、合流分岐点23jで分岐して分岐配管Kが延びている。 The suction pipe G connects the
The hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D. The hot
The branch pipe K constitutes a part of the
合流配管Jは、室外熱交換器23の一部を構成しており、合流分岐点23jから室外熱交換器23の液側出入口23dまで伸びている配管である。合流配管Jは、冷房運転時に室外熱交換器23から流れ出る冷媒の過冷却度を統一させることができるとともに、暖房運転時に室外熱交換器23の下端近傍に着霜した氷を解凍させることができる。合流配管Jは、各分岐配管K1、K2、K3の断面積の略3倍の断面積を有しており、通過冷媒量が、各分岐配管K1、K2、K3の略3倍になっている。
四路切換弁22は、冷房運転サイクルと暖房運転サイクルとを切換可能である。図1では、暖房運転を行う際の接続状態を実線で示し、冷房運転を行う際の接続状態を点線で示している。暖房運転時には、室内熱交換器41が冷媒の冷却器として、室外熱交換器23が冷媒の加熱器として機能する。冷房運転時には、室外熱交換器23が冷媒の冷却器として、室内熱交換器41が冷媒の加熱器として機能する。 The junction pipe J constitutes a part of theoutdoor heat exchanger 23 and extends from the junction branch point 23j to the liquid side inlet / outlet 23d of the outdoor heat exchanger 23. The junction pipe J can unify the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 23 during the cooling operation, and can defrost frosted ice near the lower end of the outdoor heat exchanger 23 during the heating operation. . The junction pipe J has a cross-sectional area that is approximately three times the cross-sectional area of each of the branch pipes K1, K2, and K3, and the amount of refrigerant passing through is approximately three times that of each of the branch pipes K1, K2, and K3. .
The four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle. In FIG. 1, the connection state when performing the heating operation is indicated by a solid line, and the connection state when performing the cooling operation is indicated by a dotted line. During the heating operation, the indoor heat exchanger 41 functions as a refrigerant cooler, and the outdoor heat exchanger 23 functions as a refrigerant heater. During the cooling operation, the outdoor heat exchanger 23 functions as a refrigerant cooler, and the indoor heat exchanger 41 functions as a refrigerant heater.
四路切換弁22は、冷房運転サイクルと暖房運転サイクルとを切換可能である。図1では、暖房運転を行う際の接続状態を実線で示し、冷房運転を行う際の接続状態を点線で示している。暖房運転時には、室内熱交換器41が冷媒の冷却器として、室外熱交換器23が冷媒の加熱器として機能する。冷房運転時には、室外熱交換器23が冷媒の冷却器として、室内熱交換器41が冷媒の加熱器として機能する。 The junction pipe J constitutes a part of the
The four-
室外熱交換器23は、ガス側出入口23e、液側出入口23d、分岐合流点23k、合流分岐点23j、分岐配管K、合流配管Jおよび熱交フィン23zを有している。ガス側出入口23eは、室外熱交換器23の室外側ガス管E側の端部に位置しており、室外側ガス管Eと接続される。液側出入口23dは、室外熱交換器23の室外側液管D側の端部に位置しており、室外側液管Dと接続される。分岐合流点23kは、ガス側出入口23eから伸びる配管を分岐させており、流れる冷媒の方向に応じて冷媒を分岐もしくは合流させることができる。分岐配管Kは、分岐合流点23kにおける各分岐部分から複数本伸びている。合流分岐点23jは、分岐配管Kを合流させており、流れる冷媒の方向に応じて冷媒を合流もしくは分岐させることができる。合流配管Jは、合流分岐点23jから液側出入口23dまで伸びている。熱交フィン23zは、板状のアルミフィンが板厚方向に複数枚並んで、所定の間隔で配置されて構成されている。分岐配管Kおよび合流配管Jは、いずれも、熱交フィン23zを共通の貫通対象としている。具体的には、分岐配管Kおよび合流配管Jは、共通の熱交フィン23zの異なる部分で板圧方向に貫通して配置されている。この室外熱交換器23に対して、室外ファン26の空気流れ方向風上側には、室外の気温を検知する室外気温センサ29bが設けられている。また、室外熱交換器23には、分岐配管空気調和装置を流れる冷媒温度を検知する室外熱交温度センサ29cが設けられている。
The outdoor heat exchanger 23 includes a gas side inlet / outlet 23e, a liquid side inlet / outlet 23d, a branch junction 23k, a junction branch point 23j, a branch pipe K, a junction pipe J, and a heat exchange fin 23z. The gas side inlet / outlet 23 e is located at the end of the outdoor heat exchanger 23 on the outdoor gas pipe E side, and is connected to the outdoor gas pipe E. The liquid side inlet / outlet 23 d is located at the end of the outdoor heat exchanger 23 on the outdoor liquid pipe D side, and is connected to the outdoor liquid pipe D. The branch junction 23k branches a pipe extending from the gas side inlet / outlet port 23e, and can branch or join the refrigerant according to the direction of the flowing refrigerant. A plurality of branch pipes K extend from each branch portion at the branch junction 23k. The junction branch point 23j joins the branch pipe K and can join or branch the refrigerant according to the direction of the flowing refrigerant. The junction pipe J extends from the junction branch point 23j to the liquid side inlet / outlet 23d. The heat exchange fins 23z are configured by arranging a plurality of plate-like aluminum fins in the thickness direction and arranged at predetermined intervals. The branch pipe K and the merge pipe J both have the heat exchange fins 23z as a common penetration target. Specifically, the branch pipe K and the junction pipe J are disposed so as to penetrate in the plate pressure direction at different portions of the common heat exchange fin 23z. With respect to the outdoor heat exchanger 23, an outdoor air temperature sensor 29b for detecting the outdoor air temperature is provided on the windward side of the outdoor fan 26 in the air flow direction. The outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the branch pipe air conditioner.
室内機4内には、室内温度を検知する室内温度センサ43が設けられている。また、室内熱交換器41には、室外電動膨張弁24が接続されている室内側液管C側の冷媒温度を検知する室内熱交温度センサ44が設けられている。
室外機2内に配置される機器を制御する室外制御部12と、室内機4内に配置されている機器を制御する室内制御部13とが、通信線11aによって接続されることで、制御部11を構成している。この制御部11は、空気調和装置1を対象とした種々の制御を行う。
また、室外制御部12には、各種制御を行う際に経過時間をカウントするタイマ95が設けられている。
なお、制御部11には、ユーザからの設定入力を受け付けるコントローラ90を有している。
<1-2>室外機2
図2に、室外機2の正面側の外観斜視図を示す。図3に、室外熱交換器23および室外ファン26との位置関係についての斜視図を示す。図4に、室外熱交換器23の背面側の斜視図を示す。 In theindoor unit 4, an indoor temperature sensor 43 that detects the indoor temperature is provided. The indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
Theoutdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted. The control unit 11 performs various controls for the air conditioner 1.
Further, theoutdoor control unit 12 is provided with a timer 95 that counts elapsed time when performing various controls.
The control unit 11 has acontroller 90 that accepts a setting input from the user.
<1-2>Outdoor unit 2
In FIG. 2, the external appearance perspective view of the front side of theoutdoor unit 2 is shown. In FIG. 3, the perspective view about the positional relationship with the outdoor heat exchanger 23 and the outdoor fan 26 is shown. In FIG. 4, the perspective view of the back side of the outdoor heat exchanger 23 is shown.
室外機2内に配置される機器を制御する室外制御部12と、室内機4内に配置されている機器を制御する室内制御部13とが、通信線11aによって接続されることで、制御部11を構成している。この制御部11は、空気調和装置1を対象とした種々の制御を行う。
また、室外制御部12には、各種制御を行う際に経過時間をカウントするタイマ95が設けられている。
なお、制御部11には、ユーザからの設定入力を受け付けるコントローラ90を有している。
<1-2>室外機2
図2に、室外機2の正面側の外観斜視図を示す。図3に、室外熱交換器23および室外ファン26との位置関係についての斜視図を示す。図4に、室外熱交換器23の背面側の斜視図を示す。 In the
The
Further, the
The control unit 11 has a
<1-2>
In FIG. 2, the external appearance perspective view of the front side of the
室外機2は、天板2a、底板2b、フロントパネル2c、左側面パネル2d、右側面パネル2fおよび背面パネル2eによって構成される略直方体形状の室外機ケーシングによって外面を構成している。
室外機2は、室外熱交換器23および室外ファン26等が配置されており左側面パネル2d側である送風機室と、圧縮機21や電磁誘導加熱ユニット6が配置されており右側面パネル2f側である機械室と、に仕切り板2hを介して区切られている。また、室外機2は、底板2bに対して螺着されることで固定され、室外機2の最下端部を右側と左側において構成する室外機支持台2gを有している。なお、電磁誘導加熱ユニット6は、機械室のうちの左側面パネル2dおよび天板2aの近傍である上方の位置に配置されている。ここで、上述した室外熱交換器23の熱交フィン23zは、略水平方向に板厚方向が向くようにしつつ、板厚方向に複数並んで配置されている。合流配管Jは、室外熱交換器23の熱交フィン23zのうち最も下の部分において、熱交フィン23zを厚み方向に貫通することで配置されている。ホットガスバイパス回路Hは、室外ファン26および室外熱交換器23の下方を沿うように配置されている。
<1-3>室外機2の内部構造
図5に、室外機2の機械室の内部構造を示す全体前方斜視図を示す。図6に、室外機2の機械室の内部構造を示す斜視図を示す。図7に、室外熱交換器23と底板2bとの配置関係についての斜視図を示す。 Theoutdoor unit 2 has an outer surface formed by a substantially rectangular parallelepiped outdoor unit casing configured by a top plate 2a, a bottom plate 2b, a front panel 2c, a left side panel 2d, a right side panel 2f, and a back panel 2e.
In theoutdoor unit 2, an outdoor heat exchanger 23, an outdoor fan 26, and the like are arranged, a blower room on the left side panel 2d side, a compressor 21 and an electromagnetic induction heating unit 6 are arranged, and the right side panel 2f side. The machine room is separated by a partition plate 2h. The outdoor unit 2 is fixed by being screwed to the bottom plate 2b, and has an outdoor unit support 2g that forms the lowermost end portion of the outdoor unit 2 on the right side and the left side. The electromagnetic induction heating unit 6 is disposed at an upper position in the vicinity of the left side panel 2d and the top plate 2a in the machine room. Here, the heat exchange fins 23z of the outdoor heat exchanger 23 described above are arranged side by side in the plate thickness direction so that the plate thickness direction is substantially horizontal. The joining pipe J is disposed in the lowermost portion of the heat exchange fins 23z of the outdoor heat exchanger 23 by penetrating the heat exchange fins 23z in the thickness direction. The hot gas bypass circuit H is arranged along the lower side of the outdoor fan 26 and the outdoor heat exchanger 23.
<1-3> Internal Structure ofOutdoor Unit 2 FIG. 5 is an overall front perspective view showing the internal structure of the machine room of the outdoor unit 2. FIG. 6 is a perspective view showing the internal structure of the machine room of the outdoor unit 2. In FIG. 7, the perspective view about the arrangement | positioning relationship between the outdoor heat exchanger 23 and the baseplate 2b is shown.
室外機2は、室外熱交換器23および室外ファン26等が配置されており左側面パネル2d側である送風機室と、圧縮機21や電磁誘導加熱ユニット6が配置されており右側面パネル2f側である機械室と、に仕切り板2hを介して区切られている。また、室外機2は、底板2bに対して螺着されることで固定され、室外機2の最下端部を右側と左側において構成する室外機支持台2gを有している。なお、電磁誘導加熱ユニット6は、機械室のうちの左側面パネル2dおよび天板2aの近傍である上方の位置に配置されている。ここで、上述した室外熱交換器23の熱交フィン23zは、略水平方向に板厚方向が向くようにしつつ、板厚方向に複数並んで配置されている。合流配管Jは、室外熱交換器23の熱交フィン23zのうち最も下の部分において、熱交フィン23zを厚み方向に貫通することで配置されている。ホットガスバイパス回路Hは、室外ファン26および室外熱交換器23の下方を沿うように配置されている。
<1-3>室外機2の内部構造
図5に、室外機2の機械室の内部構造を示す全体前方斜視図を示す。図6に、室外機2の機械室の内部構造を示す斜視図を示す。図7に、室外熱交換器23と底板2bとの配置関係についての斜視図を示す。 The
In the
<1-3> Internal Structure of
室外機2の仕切り板2hは、室外熱交換器23および室外ファン26等が配置されている送風機室と、電磁誘導加熱ユニット6、圧縮機21およびアキュームレータ25等が配置されている機械室と、を区切るように前方から後方に向けて上端から下端に掛けて仕切っている。圧縮機21およびアキュームレータ25は、室外機2の機械室の下方の空間に配置されている。そして、電磁誘導加熱ユニット6、四路切換弁22および室外制御部12は、室外機2の機械室の上方の空間であって、圧縮機21やアキュームレータ25等の上の空間に配置されている。室外機2を構成する機能要素であって機械室に配置されている圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、図1において示した冷媒回路10による冷凍サイクルを実行するように、吐出管A、室内側ガス管B、室外側液管D、室外側ガス管E、アキューム管F、ホットガスバイパス回路H等を介して接続されている。ここで、ホットガスバイパス回路Hは、後述するように、第1バイパス部分H1~第9バイパス部分H9の、9つの部分が繋がって構成されており、ホットガスバイパス回路Hに冷媒が流れる際は、第1バイパス部分H1から順番に第9バイパス部分H9に向かう方向に流れる。
<1-4>合流配管Jおよび分岐配管K
図7に示す合流配管Jは、上述したように、断面積が、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の各配管の断面積相当の面積を有しているため、室外熱交換器23のうち、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分では、合流配管Jよりも熱交換有効表面積を増大させることができている。また、合流配管Jの部分には、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分と比較して、大量の冷媒がまとまって集中的に流れているため、室外熱交換器23の下方における氷の成長をより効果的に抑制させることができている。ここで、合流配管Jは、図7に示すように、第1合流配管部分J1、第2合流配管部分J2、第3合流配管部分J3および第4合流配管部分J4が互いに接続されることで構成されている。そして、室外熱交換器23のうち分岐配管Kを流れてきた冷媒は、合流分岐点23jにおいて合流され、冷媒回路10における冷媒の流れが1つにまとめられた状態で、室外熱交換器23の最下端部分を一往復するように配置されている。ここで、第1合流配管部分J1は、合流分岐点23jから室外熱交換器23の最縁部に配置された熱交フィン23zまで延びている。第2合流配管部分J2は、第1合流配管部分J1の端部から複数枚の熱交フィン23zを貫通するように延びている。また、第4合流配管部分J4は、第2合流配管部分J2と同様に、複数枚の熱交フィン23zを貫通するように延びている。第3合流配管部分J3は、第2合流配管部分J2と第4合流配管部分J4とを室外熱交換器23の端部において接続するU字管である。冷房運転時には、冷媒回路10における冷媒の流れは、分岐配管Kにおいて複数に分かれている流れを合流配管Jが1つにまとめることになるため、たとえ分岐配管Kを流れる冷媒の合流分岐点23jの直前部分における過冷却度が分岐配管Kを構成する個々の配管を流れる冷媒毎に異なっていたとしても、合流配管Jにおいて冷媒流れを1つにできることため、室外熱交換器23の出口の過冷却度を整えることができる。そして、暖房運転時おいてデフロスト運転をする場合には、ホットガスバイパス弁27を開けて、圧縮機21から吐出した温度の高い冷媒を、室外熱交換器23の他の部分より先に、室外熱交換器23の下端に設けられている合流配管Jに供給することができる。このため、室外熱交換器23の下方近傍に着霜した氷を効果的に解凍させることができる。
<1-5>ホットガスバイパス回路H
図8に、室外機2の送風機構を取り除いた状態での平面図を示す。図9に、室外機2の底板とホットガスバイパス回路Hとの配置関係について平面図で示す。 Thepartition plate 2h of the outdoor unit 2 includes a fan room in which the outdoor heat exchanger 23 and the outdoor fan 26 are arranged, a machine room in which the electromagnetic induction heating unit 6, the compressor 21, the accumulator 25, and the like are arranged, Is partitioned from the upper end to the lower end from the front to the rear. The compressor 21 and the accumulator 25 are disposed in a space below the machine room of the outdoor unit 2. The electromagnetic induction heating unit 6, the four-way switching valve 22, and the outdoor control unit 12 are disposed in a space above the machine room of the outdoor unit 2 and above the compressor 21, the accumulator 25, and the like. . A compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor electric expansion valve 24, an accumulator 25, a hot gas bypass valve 27, a capillary, which are functional elements constituting the outdoor unit 2 and are disposed in the machine room The tube 28 and the electromagnetic induction heating unit 6 include a discharge pipe A, an indoor side gas pipe B, an outdoor side liquid pipe D, an outdoor side gas pipe E, an accumulator so as to execute the refrigeration cycle by the refrigerant circuit 10 shown in FIG. They are connected via a tube F, a hot gas bypass circuit H, and the like. Here, as will be described later, the hot gas bypass circuit H is configured by connecting nine parts of the first bypass part H1 to the ninth bypass part H9, and when the refrigerant flows into the hot gas bypass circuit H, , Flows in the direction from the first bypass portion H1 toward the ninth bypass portion H9 in order.
<1-4> Junction piping J and branch piping K
As described above, the joining pipe J shown in FIG. 7 has an area equivalent to the sectional area of each of the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3. In theoutdoor heat exchanger 23, the heat exchange effective surface area can be increased in comparison with the merged pipe J in the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3. In addition, since a large amount of refrigerant flows in the merging pipe J in a concentrated manner as compared with the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3, the outdoor heat Ice growth under the exchanger 23 can be more effectively suppressed. Here, as shown in FIG. 7, the joining pipe J is configured by connecting the first joining pipe part J1, the second joining pipe part J2, the third joining pipe part J3, and the fourth joining pipe part J4 to each other. Has been. And the refrigerant | coolant which flowed through the branch piping K among the outdoor heat exchangers 23 is merged in the merge branch point 23j, and the flow of the refrigerant | coolant in the refrigerant circuit 10 is put together into one, and the outdoor heat exchanger 23's It arrange | positions so that the lowest end part may reciprocate once. Here, the 1st confluence | merging piping part J1 is extended from the confluence | merging branch point 23j to the heat exchanger fin 23z arrange | positioned in the outermost edge part of the outdoor heat exchanger 23. FIG. The second joining pipe portion J2 extends from the end of the first joining pipe portion J1 so as to penetrate the plurality of heat exchange fins 23z. Moreover, the 4th junction piping part J4 is extended so that the several heat exchanger fin 23z may be penetrated similarly to the 2nd junction piping part J2. The third joining pipe part J3 is a U-shaped pipe that connects the second joining pipe part J2 and the fourth joining pipe part J4 at the end of the outdoor heat exchanger 23. During the cooling operation, the refrigerant flow in the refrigerant circuit 10 is divided into a plurality of flows in the branch pipe K by the merge pipe J. Therefore, even if the merge branch point 23j of the refrigerant flowing through the branch pipe K is Even if the degree of supercooling in the immediately preceding portion is different for each refrigerant flowing through the individual pipes constituting the branch pipe K, the refrigerant flow can be made one in the junction pipe J, so that the supercooling at the outlet of the outdoor heat exchanger 23 The degree can be adjusted. When the defrosting operation is performed during the heating operation, the hot gas bypass valve 27 is opened, and the high-temperature refrigerant discharged from the compressor 21 is placed outside the outdoor heat exchanger 23 before the outdoor part. It can be supplied to the junction pipe J provided at the lower end of the heat exchanger 23. For this reason, ice that has formed frost in the vicinity of the lower part of the outdoor heat exchanger 23 can be effectively thawed.
<1-5> Hot gas bypass circuit H
In FIG. 8, the top view in the state which removed the ventilation mechanism of theoutdoor unit 2 is shown. FIG. 9 is a plan view showing the positional relationship between the bottom plate of the outdoor unit 2 and the hot gas bypass circuit H.
<1-4>合流配管Jおよび分岐配管K
図7に示す合流配管Jは、上述したように、断面積が、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の各配管の断面積相当の面積を有しているため、室外熱交換器23のうち、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分では、合流配管Jよりも熱交換有効表面積を増大させることができている。また、合流配管Jの部分には、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分と比較して、大量の冷媒がまとまって集中的に流れているため、室外熱交換器23の下方における氷の成長をより効果的に抑制させることができている。ここで、合流配管Jは、図7に示すように、第1合流配管部分J1、第2合流配管部分J2、第3合流配管部分J3および第4合流配管部分J4が互いに接続されることで構成されている。そして、室外熱交換器23のうち分岐配管Kを流れてきた冷媒は、合流分岐点23jにおいて合流され、冷媒回路10における冷媒の流れが1つにまとめられた状態で、室外熱交換器23の最下端部分を一往復するように配置されている。ここで、第1合流配管部分J1は、合流分岐点23jから室外熱交換器23の最縁部に配置された熱交フィン23zまで延びている。第2合流配管部分J2は、第1合流配管部分J1の端部から複数枚の熱交フィン23zを貫通するように延びている。また、第4合流配管部分J4は、第2合流配管部分J2と同様に、複数枚の熱交フィン23zを貫通するように延びている。第3合流配管部分J3は、第2合流配管部分J2と第4合流配管部分J4とを室外熱交換器23の端部において接続するU字管である。冷房運転時には、冷媒回路10における冷媒の流れは、分岐配管Kにおいて複数に分かれている流れを合流配管Jが1つにまとめることになるため、たとえ分岐配管Kを流れる冷媒の合流分岐点23jの直前部分における過冷却度が分岐配管Kを構成する個々の配管を流れる冷媒毎に異なっていたとしても、合流配管Jにおいて冷媒流れを1つにできることため、室外熱交換器23の出口の過冷却度を整えることができる。そして、暖房運転時おいてデフロスト運転をする場合には、ホットガスバイパス弁27を開けて、圧縮機21から吐出した温度の高い冷媒を、室外熱交換器23の他の部分より先に、室外熱交換器23の下端に設けられている合流配管Jに供給することができる。このため、室外熱交換器23の下方近傍に着霜した氷を効果的に解凍させることができる。
<1-5>ホットガスバイパス回路H
図8に、室外機2の送風機構を取り除いた状態での平面図を示す。図9に、室外機2の底板とホットガスバイパス回路Hとの配置関係について平面図で示す。 The
<1-4> Junction piping J and branch piping K
As described above, the joining pipe J shown in FIG. 7 has an area equivalent to the sectional area of each of the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3. In the
<1-5> Hot gas bypass circuit H
In FIG. 8, the top view in the state which removed the ventilation mechanism of the
ホットガスバイパス回路Hは、図8および図9に示すように、第1バイパス部分H1~第8バイパス部分H8および図示しない第9バイパス部分H9を有している。ここで、ホットガスバイパス回路Hは、吐出管Aから分岐点A1で分岐してホットガスバイパス弁27まで延びており、このホットガスバイパス弁27からさらに延びる部分が第1バイパス部分H1である。第2バイパス部分H2は、第1バイパス部分H1の端部から、背面側近傍において送風機室側に延びている。第3バイパス部分H3は、第2バイパス部分H2の端部から、正面側に向けて延びている。第4バイパス部分H4は、第3バイパス部分H3の端部から、機械室側とは反対側である左側に向けて延びている。第5バイパス部分H5は、第4バイパス部分H4の端部から、背面側に向けて、室外機ケーシングの背面パネル2eとの間に間隔が確保できる部分まで延びている。第6バイパス部分H6は、第5バイパス部分H5の端部から、機械室側である右側であってかつ背面側に向けて延びている。第7バイパス部分H7は、第6バイパス部分H6の端部から、機械室側である右側に向けて送風機室内を延びている。第8バイパス部分H8は、第7バイパス部分H7の端部から、機械室内を延びている。第9バイパス部分H9は、第8バイパス部分H8の端部から、キャピラリーチューブ28に至るまで延びている。このホットガスバイパス回路Hは、上述したように、ホットガスバイパス弁27が開けられた状態で、第1バイパス部分H1から順番に、第9バイパス部分H9に向けて冷媒を流していく。このため、圧縮機21から延びている吐出管Aの分岐点A1で分岐する冷媒は、第9バイパス部分H9を流れる冷媒よりも先に、第1バイパス部分H1側を流れる。このため、ホットガスバイパス回路Hを流れる冷媒は、全体として見ると、第4バイパス部分H4を流れた後の冷媒が第5~第8バイパス部分H8へと流れていくため、第4バイパス部分H4を流れる冷媒温度のほうが、第5~第8バイパス部分H8を流れる冷媒温度よりも高温となりやすくなっている。
As shown in FIGS. 8 and 9, the hot gas bypass circuit H has a first bypass portion H1 to an eighth bypass portion H8 and a ninth bypass portion H9 (not shown). Here, the hot gas bypass circuit H branches from the discharge pipe A at the branch point A1 and extends to the hot gas bypass valve 27, and a portion further extending from the hot gas bypass valve 27 is the first bypass portion H1. The second bypass portion H2 extends from the end of the first bypass portion H1 to the blower chamber side in the vicinity of the back surface side. The third bypass portion H3 extends from the end of the second bypass portion H2 toward the front side. The fourth bypass portion H4 extends from the end of the third bypass portion H3 toward the left side that is the opposite side to the machine room side. The fifth bypass portion H5 extends from the end of the fourth bypass portion H4 toward the back side to a portion where a space can be ensured between the back panel 2e of the outdoor unit casing. The sixth bypass portion H6 extends from the end of the fifth bypass portion H5 on the right side which is the machine room side and toward the back side. The seventh bypass portion H7 extends from the end of the sixth bypass portion H6 toward the right side, which is the machine room side, in the blower chamber. The eighth bypass portion H8 extends in the machine room from the end of the seventh bypass portion H7. The ninth bypass portion H9 extends from the end of the eighth bypass portion H8 to the capillary tube 28. As described above, the hot gas bypass circuit H causes the refrigerant to flow from the first bypass portion H1 to the ninth bypass portion H9 in order with the hot gas bypass valve 27 being opened. For this reason, the refrigerant branched at the branch point A1 of the discharge pipe A extending from the compressor 21 flows on the first bypass portion H1 side before the refrigerant flowing through the ninth bypass portion H9. For this reason, the refrigerant flowing through the hot gas bypass circuit H as a whole, the refrigerant after flowing through the fourth bypass portion H4 flows to the fifth to eighth bypass portions H8, and therefore the fourth bypass portion H4. Is more likely to be higher than the refrigerant temperature flowing through the fifth to eighth bypass portions H8.
このように、ホットガスバイパス回路Hは、室外機ケーシングの底板2bのうち、室外ファン26の下方および室外熱交換器23の下方の部分近傍を通過するように配置されている。このため、ヒータ等の別熱源を利用することなく、ホットガスバイパス回路Hが通過する部分近傍を、圧縮機21の吐出管Aから分岐して供給される高温冷媒によって暖めることができる。よって、底板2bの上側が雨水や室外熱交換器23において生じたドレン水によって濡れることがあっても、底板2bのうち室外ファン26の下方および室外熱交換器23の下方において氷が成長してしまうことを抑制することができる。これにより、室外ファン26の駆動が氷によって妨げられる状況や室外熱交換器23の表面が氷で覆われて熱交換効率が低減してしまう状況を回避することができている。また、ホットガスバイパス回路Hは、吐出管Aの分岐点A1で分岐した後、室外熱交換器23の下を通過する前に、室外ファン26の下を通過するように配置されている。このため、室外ファン26の下方における氷の成長をより優先的に防止することができる。
<1-6>電磁誘導加熱ユニット6
図10に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6概略斜視図を示す。図11に、電磁誘導加熱ユニット6から遮蔽カバー75を取り除いた状態の外観斜視図を示す。図12に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6の断面図を示す。 As described above, the hot gas bypass circuit H is disposed so as to pass through the vicinity of the lower part of theoutdoor fan 26 and the lower part of the outdoor heat exchanger 23 in the bottom plate 2b of the outdoor unit casing. For this reason, without using a separate heat source such as a heater, the vicinity of the portion through which the hot gas bypass circuit H passes can be warmed by the high-temperature refrigerant branched and supplied from the discharge pipe A of the compressor 21. Therefore, even if the upper side of the bottom plate 2b gets wet by rain water or the drain water generated in the outdoor heat exchanger 23, ice grows below the outdoor fan 26 and below the outdoor heat exchanger 23 in the bottom plate 2b. Can be suppressed. As a result, it is possible to avoid a situation where the driving of the outdoor fan 26 is hindered by ice or a situation where the surface of the outdoor heat exchanger 23 is covered with ice and the heat exchange efficiency is reduced. Further, the hot gas bypass circuit H is arranged to pass under the outdoor fan 26 after branching at the branch point A1 of the discharge pipe A and before passing under the outdoor heat exchanger 23. For this reason, it is possible to prevent the growth of ice below the outdoor fan 26 more preferentially.
<1-6> Electromagneticinduction heating unit 6
FIG. 10 shows a schematic perspective view of the electromagneticinduction heating unit 6 attached to the accumulator tube F. FIG. 11 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed. In FIG. 12, sectional drawing of the electromagnetic induction heating unit 6 attached to the accumulation pipe | tube F is shown.
<1-6>電磁誘導加熱ユニット6
図10に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6概略斜視図を示す。図11に、電磁誘導加熱ユニット6から遮蔽カバー75を取り除いた状態の外観斜視図を示す。図12に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6の断面図を示す。 As described above, the hot gas bypass circuit H is disposed so as to pass through the vicinity of the lower part of the
<1-6> Electromagnetic
FIG. 10 shows a schematic perspective view of the electromagnetic
電磁誘導加熱ユニット6は、アキューム管Fのうち発熱部分である磁性体管F2を径方向外側から覆うように配置されており、電磁誘導加熱によって磁性体管F2を発熱させる。このアキューム管Fの発熱部分は、内側の銅管F1と外側の磁性体管F2とを有する二重管構造となっている。
電磁誘導加熱ユニット6は、第1六角ナット61、第2六角ナット66、第1ボビン蓋63、第2ボビン蓋64、ボビン本体65、第1フェライトケース71、第2フェライトケース72、第3フェライトケース73、第4フェライトケース74、第1フェライト98、第2フェライト99、コイル68、遮蔽カバー75、電磁誘導サーミスタ14およびヒューズ15等を備えている。
第1六角ナット61および第2六角ナット66は、樹脂製であって、図示しないC型リングを用いて、電磁誘導加熱ユニット6とアキューム管Fとの固定状態を安定させる。第1ボビン蓋63および第2ボビン蓋64は、樹脂製であって、アキューム管Fをそれぞれ上端位置および下端位置において径方向外側から覆っている。この第1ボビン蓋63および第2ボビン蓋64は、後述する第1~第4フェライトケース71~74をネジ69を介して螺着させるための、ネジ69用の螺着孔を4つ有している。さらに、第2ボビン蓋64は、図12に示す電磁誘導サーミスタ14を差し込んで、磁性体管F2の外表面に取り付けるための電磁誘導サーミスタ差し込み開口64fを有している。また、第2ボビン蓋64は、図13に示すヒューズ15を差し込んで、磁性体管F2の外表面に取り付けるためのヒューズ差し込み開口64eを有している(図14参照)。電磁誘導サーミスタ14は、図12に示すように、電磁誘導サーミスタ検知部14a、外側突起14b、側面突起14cおよび電磁誘導サーミスタ検知部14aの検知結果を信号にして制御部11まで伝える電磁誘導サーミスタ配線14dを有している。電磁誘導サーミスタ検知部14aは、アキューム管Fの外表面の湾曲形状に沿うような形状を有しており、実質的な接触面積を有している。ヒューズ15は、図13に示すように、ヒューズ検知部15a、非対称形状15bおよびヒューズ検知部15aの検知結果を信号にして制御部11まで伝えるヒューズ配線15dを有している。ヒューズ15から所定制限温度を超えた温度検知の知らせを受けた制御部11は、コイル68への電力供給を停止させる制御を行って、機器の熱損傷を回避させる。ボビン本体65は、樹脂製であって、コイル68が巻き付けられる。コイル68は、ボビン本体65の外側においてアキューム管Fの延びる方向を軸方向として螺旋状に巻き付けられている。コイル68は、図示しない制御用プリント基板に接続されており、高周波電流の供給を受ける。制御用プリント基板は、制御部11によって出力制御される。図14に示すように、ボビン本体65と第2ボビン蓋64とが勘合している状態で、電磁誘導サーミスタ14およびヒューズ15が取り付けられる。ここで、電磁誘導サーミスタ14の取り付け状態では、板バネ16によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。また、ヒューズ15の取り付け状態も同様に、板バネ17によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。このように、電磁誘導サーミスタ14およびヒューズ15がアキューム管Fの外表面との密着性を良好に保たれているために、応答性を向上させ、電磁誘導加熱による急激な温度変化も迅速に検出できるようにしている。第1フェライトケース71は、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込み、ネジ69によって螺着固定されている。第1フェライトケース71~第4フェライトケース74は、透磁率の高い素材であるフェライトによって構成された第1フェライト98および第2フェライト99を収容している。第1フェライト98および第2フェライト99は、図15のアキューム管Fおよび電磁誘導加熱ユニット6の断面図および図16の磁束説明図において示すように、コイル68によって生じる磁界を取りこんで磁束の通り道を形成することで、磁界が外部に漏れ出しにくいようにしている。遮蔽カバー75は、電磁誘導加熱ユニット6の最外周部分に配置されており、第1フェライト98および第2フェライト99だけでは呼び込みきれない磁束を集める。この遮蔽カバー75の外側にはほとんど漏れ磁束が生じず、磁束の発生場所について自決することができている。
<1-7>電磁誘導加熱制御
上述した電磁誘導加熱ユニット6は、冷凍サイクルを暖房運転させる場合に暖房運転を開始させる起動時、暖房能力補助時、および、デフロスト運転を行う時にアキューム管Fの磁性体管F2を発熱させる制御を行う。ここでは、電磁誘導加熱ユニット6に着目した制御として、(i)流動条件判定処理、(ii)センサ外れ検知処理、(iii)急速高圧化処理、(iv)定常出力処理、および、(v)デフロスト処理について説明する。 The electromagneticinduction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating. The heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
The electromagneticinduction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite. A case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, an electromagnetic induction thermistor 14, a fuse 15 and the like are provided.
Thefirst hexagon nut 61 and the second hexagon nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator pipe F using a C-shaped ring (not shown). The first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively. The first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing. Furthermore, the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the electromagnetic induction thermistor 14 shown in FIG. 12 and attaching it to the outer surface of the magnetic tube F2. The second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 shown in FIG. 13 and attaching it to the outer surface of the magnetic tube F2 (see FIG. 14). As shown in FIG. 12, the electromagnetic induction thermistor 14 is an electromagnetic induction thermistor wiring that transmits the detection results of the electromagnetic induction thermistor detector 14a, the outer protrusion 14b, the side protrusion 14c, and the electromagnetic induction thermistor detector 14a as signals to the controller 11. 14d. The electromagnetic induction thermistor detection unit 14a has a shape that follows the curved shape of the outer surface of the accumulator tube F, and has a substantial contact area. As shown in FIG. 13, the fuse 15 includes a fuse detection unit 15a, an asymmetric shape 15b, and a fuse wiring 15d that transmits a detection result of the fuse detection unit 15a to the control unit 11 as a signal. Receiving the notification of temperature detection exceeding the predetermined limit temperature from the fuse 15, the control unit 11 performs control to stop the power supply to the coil 68 to avoid thermal damage of the device. The bobbin main body 65 is made of resin, and the coil 68 is wound around it. The coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction. The coil 68 is connected to a control printed board (not shown) and is supplied with a high-frequency current. The output of the control printed circuit board is controlled by the control unit 11. As shown in FIG. 14, the electromagnetic induction thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together. Here, in the attached state of the electromagnetic induction thermistor 14, the plate spring 16 is pushed inward in the radial direction of the magnetic body tube F <b> 2, thereby maintaining a good pressure contact state with the outer surface of the magnetic body tube F <b> 2. Similarly, the attachment state of the fuse 15 is also pushed inward in the radial direction of the magnetic tube F2 by the leaf spring 17, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained. As described above, since the electromagnetic induction thermistor 14 and the fuse 15 maintain good adhesion to the outer surface of the accumulator tube F, the responsiveness is improved and a rapid temperature change due to electromagnetic induction heating can be detected quickly. I can do it. The first ferrite case 71 has a first bobbin lid 63 and a second bobbin lid 64 sandwiched from the direction in which the accumulator tube F extends, and is screwed and fixed by screws 69. The first ferrite case 71 to the fourth ferrite case 74 contain a first ferrite 98 and a second ferrite 99 made of ferrite, which is a material having a high magnetic permeability. As shown in the sectional view of the accumulator tube F and the electromagnetic induction heating unit 6 in FIG. 15 and the magnetic flux explanatory diagram in FIG. By forming it, the magnetic field is made difficult to leak outside. The shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn by the first ferrite 98 and the second ferrite 99 alone. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
<1-7> Electromagnetic Induction Heating Control The electromagneticinduction heating unit 6 described above is configured so that the accumulator pipe F is activated when starting the heating operation when the refrigeration cycle is operated for heating, when assisting the heating capacity, and when performing the defrost operation. Control is performed to generate heat in the magnetic tube F2. Here, as control focusing on the electromagnetic induction heating unit 6, (i) flow condition determination processing, (ii) sensor detachment detection processing, (iii) rapid high pressure processing, (iv) steady output processing, and (v) Defrost processing will be described.
電磁誘導加熱ユニット6は、第1六角ナット61、第2六角ナット66、第1ボビン蓋63、第2ボビン蓋64、ボビン本体65、第1フェライトケース71、第2フェライトケース72、第3フェライトケース73、第4フェライトケース74、第1フェライト98、第2フェライト99、コイル68、遮蔽カバー75、電磁誘導サーミスタ14およびヒューズ15等を備えている。
第1六角ナット61および第2六角ナット66は、樹脂製であって、図示しないC型リングを用いて、電磁誘導加熱ユニット6とアキューム管Fとの固定状態を安定させる。第1ボビン蓋63および第2ボビン蓋64は、樹脂製であって、アキューム管Fをそれぞれ上端位置および下端位置において径方向外側から覆っている。この第1ボビン蓋63および第2ボビン蓋64は、後述する第1~第4フェライトケース71~74をネジ69を介して螺着させるための、ネジ69用の螺着孔を4つ有している。さらに、第2ボビン蓋64は、図12に示す電磁誘導サーミスタ14を差し込んで、磁性体管F2の外表面に取り付けるための電磁誘導サーミスタ差し込み開口64fを有している。また、第2ボビン蓋64は、図13に示すヒューズ15を差し込んで、磁性体管F2の外表面に取り付けるためのヒューズ差し込み開口64eを有している(図14参照)。電磁誘導サーミスタ14は、図12に示すように、電磁誘導サーミスタ検知部14a、外側突起14b、側面突起14cおよび電磁誘導サーミスタ検知部14aの検知結果を信号にして制御部11まで伝える電磁誘導サーミスタ配線14dを有している。電磁誘導サーミスタ検知部14aは、アキューム管Fの外表面の湾曲形状に沿うような形状を有しており、実質的な接触面積を有している。ヒューズ15は、図13に示すように、ヒューズ検知部15a、非対称形状15bおよびヒューズ検知部15aの検知結果を信号にして制御部11まで伝えるヒューズ配線15dを有している。ヒューズ15から所定制限温度を超えた温度検知の知らせを受けた制御部11は、コイル68への電力供給を停止させる制御を行って、機器の熱損傷を回避させる。ボビン本体65は、樹脂製であって、コイル68が巻き付けられる。コイル68は、ボビン本体65の外側においてアキューム管Fの延びる方向を軸方向として螺旋状に巻き付けられている。コイル68は、図示しない制御用プリント基板に接続されており、高周波電流の供給を受ける。制御用プリント基板は、制御部11によって出力制御される。図14に示すように、ボビン本体65と第2ボビン蓋64とが勘合している状態で、電磁誘導サーミスタ14およびヒューズ15が取り付けられる。ここで、電磁誘導サーミスタ14の取り付け状態では、板バネ16によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。また、ヒューズ15の取り付け状態も同様に、板バネ17によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。このように、電磁誘導サーミスタ14およびヒューズ15がアキューム管Fの外表面との密着性を良好に保たれているために、応答性を向上させ、電磁誘導加熱による急激な温度変化も迅速に検出できるようにしている。第1フェライトケース71は、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込み、ネジ69によって螺着固定されている。第1フェライトケース71~第4フェライトケース74は、透磁率の高い素材であるフェライトによって構成された第1フェライト98および第2フェライト99を収容している。第1フェライト98および第2フェライト99は、図15のアキューム管Fおよび電磁誘導加熱ユニット6の断面図および図16の磁束説明図において示すように、コイル68によって生じる磁界を取りこんで磁束の通り道を形成することで、磁界が外部に漏れ出しにくいようにしている。遮蔽カバー75は、電磁誘導加熱ユニット6の最外周部分に配置されており、第1フェライト98および第2フェライト99だけでは呼び込みきれない磁束を集める。この遮蔽カバー75の外側にはほとんど漏れ磁束が生じず、磁束の発生場所について自決することができている。
<1-7>電磁誘導加熱制御
上述した電磁誘導加熱ユニット6は、冷凍サイクルを暖房運転させる場合に暖房運転を開始させる起動時、暖房能力補助時、および、デフロスト運転を行う時にアキューム管Fの磁性体管F2を発熱させる制御を行う。ここでは、電磁誘導加熱ユニット6に着目した制御として、(i)流動条件判定処理、(ii)センサ外れ検知処理、(iii)急速高圧化処理、(iv)定常出力処理、および、(v)デフロスト処理について説明する。 The electromagnetic
The electromagnetic
The
<1-7> Electromagnetic Induction Heating Control The electromagnetic
以下、特に、起動時に関する説明を行う。
コントローラ90に対してユーザから暖房運転指示が入力された場合に、制御部11は、暖房運転を開始させる。暖房運転が開始されると、制御部11は、タイマ95に暖房開始経過時間のカウントを開始させ、圧縮機21が起動した後であって圧力センサ29aが検知する圧力が39kg/cm2まで上昇するのを待って、室内ファン42を駆動させる。これにより、室内熱交換器41を通過する冷媒が暖まっていない段階で、暖まっていない室内に空気流れを生じさせてしまうことによるユーザの不快感を防止している。ここで、圧縮機21が起動して圧力センサ29aが検知する圧力が39kg/cm2まで上昇するまでの時間を短くするために、電磁誘導加熱ユニット6を用いた電磁誘導加熱を行う。この電磁誘導加熱では、アキューム管Fの温度が急上昇するため、電磁誘導加熱を開始させる前に、電磁誘導加熱を開始してよい状況になったか否かを判定する制御を制御部11が行う。このような判定として、図17のタイムチャートに示すように、流動条件判定処理と、センサ外れ検知処理と、急速高圧化処理等がある。
(i)流動条件判定処理
電磁誘導加熱を行う際に、アキューム管Fに冷媒が流れていない状況では、加熱負荷は、アキューム管Fのうち電磁誘導加熱ユニット6が取り付けられている部分に滞留している冷媒だけになってしまう。このようにアキューム管Fに冷媒が流れていない状況で、電磁誘導加熱ユニット6による電磁誘導加熱を行ってしまうと、アキューム管Fの温度が冷凍機油を劣化させてしまうほどに異常上昇してしまう。また、電磁誘導加熱ユニット6自体も温度が上昇してしまい、機器の信頼性を低下させてしまう。このため、ここでは、このようにアキューム管Fに冷媒が流れていない状況で電磁誘導加熱ユニット6による電磁誘導加熱が行われることが無いように、電磁誘導加熱を開始する前の段階でアキューム管Fに冷媒が流れていることを確認する流動条件判定処理を行う。 In the following, a description will be given particularly regarding startup.
When the heating operation instruction is input from the user to thecontroller 90, the control unit 11 starts the heating operation. When the heating operation is started, the control unit 11 causes the timer 95 to start counting the elapsed heating start time, and the pressure detected by the pressure sensor 29a increases to 39 kg / cm 2 after the compressor 21 is started. The indoor fan 42 is driven after waiting. Thereby, at the stage where the refrigerant passing through the indoor heat exchanger 41 is not warmed, an unpleasant user's discomfort caused by causing an air flow in the unwarmed room is prevented. Here, in order to shorten the time until the pressure detected by the pressure sensor 29a rises to 39 kg / cm 2 after the compressor 21 is activated, electromagnetic induction heating using the electromagnetic induction heating unit 6 is performed. In this electromagnetic induction heating, since the temperature of the accumulator tube F rises rapidly, the control unit 11 performs control to determine whether or not the electromagnetic induction heating can be started before the electromagnetic induction heating is started. Such determination includes a flow condition determination process, a sensor detachment detection process, a rapid pressure increase process, and the like, as shown in the time chart of FIG.
(I) Flow condition determination process When electromagnetic induction heating is performed, in a situation where the refrigerant does not flow through the accumulator tube F, the heating load stays in a portion of the accumulator tube F where the electromagneticinduction heating unit 6 is attached. It becomes only the refrigerant that is. When electromagnetic induction heating is performed by the electromagnetic induction heating unit 6 in a state where the refrigerant does not flow in the accumulation tube F as described above, the temperature of the accumulation tube F rises abnormally enough to deteriorate the refrigerator oil. . Further, the temperature of the electromagnetic induction heating unit 6 itself also rises, and the reliability of the device is lowered. Therefore, here, the accumulator tube is in a stage before starting the electromagnetic induction heating so that the electromagnetic induction heating by the electromagnetic induction heating unit 6 is not performed in a state where the refrigerant does not flow into the accumulator tube F in this way. Flow condition determination processing for confirming that the refrigerant is flowing in F is performed.
コントローラ90に対してユーザから暖房運転指示が入力された場合に、制御部11は、暖房運転を開始させる。暖房運転が開始されると、制御部11は、タイマ95に暖房開始経過時間のカウントを開始させ、圧縮機21が起動した後であって圧力センサ29aが検知する圧力が39kg/cm2まで上昇するのを待って、室内ファン42を駆動させる。これにより、室内熱交換器41を通過する冷媒が暖まっていない段階で、暖まっていない室内に空気流れを生じさせてしまうことによるユーザの不快感を防止している。ここで、圧縮機21が起動して圧力センサ29aが検知する圧力が39kg/cm2まで上昇するまでの時間を短くするために、電磁誘導加熱ユニット6を用いた電磁誘導加熱を行う。この電磁誘導加熱では、アキューム管Fの温度が急上昇するため、電磁誘導加熱を開始させる前に、電磁誘導加熱を開始してよい状況になったか否かを判定する制御を制御部11が行う。このような判定として、図17のタイムチャートに示すように、流動条件判定処理と、センサ外れ検知処理と、急速高圧化処理等がある。
(i)流動条件判定処理
電磁誘導加熱を行う際に、アキューム管Fに冷媒が流れていない状況では、加熱負荷は、アキューム管Fのうち電磁誘導加熱ユニット6が取り付けられている部分に滞留している冷媒だけになってしまう。このようにアキューム管Fに冷媒が流れていない状況で、電磁誘導加熱ユニット6による電磁誘導加熱を行ってしまうと、アキューム管Fの温度が冷凍機油を劣化させてしまうほどに異常上昇してしまう。また、電磁誘導加熱ユニット6自体も温度が上昇してしまい、機器の信頼性を低下させてしまう。このため、ここでは、このようにアキューム管Fに冷媒が流れていない状況で電磁誘導加熱ユニット6による電磁誘導加熱が行われることが無いように、電磁誘導加熱を開始する前の段階でアキューム管Fに冷媒が流れていることを確認する流動条件判定処理を行う。 In the following, a description will be given particularly regarding startup.
When the heating operation instruction is input from the user to the
(I) Flow condition determination process When electromagnetic induction heating is performed, in a situation where the refrigerant does not flow through the accumulator tube F, the heating load stays in a portion of the accumulator tube F where the electromagnetic
流動条件判定処理では、図18のフローチャートに示すように、以下の各処理が行われる。
ステップS11では、制御部11は、コントローラ90が、ユーザから、冷房運転ではなく、暖房運転の指令を受け付けたか否か判断する。電磁誘導加熱ユニット6による冷媒加熱は、暖房運転が行われる環境下で必要になるため、このような判断を行う。
ステップS12では、制御部11は、圧縮機21の起動を開始させ、圧縮機21の周波数を徐々に上げていく。
ステップS13では、制御部11は、圧縮機21の周波数が所定最低周波数Qminに到達したか否かを判断し、到達していると判断した場合には、ステップS14に以降する。 In the flow condition determination process, the following processes are performed as shown in the flowchart of FIG.
In step S11, the controller 11 determines whether or not thecontroller 90 has received a command for heating operation instead of cooling operation from the user. Since the refrigerant heating by the electromagnetic induction heating unit 6 is necessary in an environment where the heating operation is performed, such a determination is made.
In step S12, the controller 11 starts thecompressor 21 and gradually increases the frequency of the compressor 21.
In step S13, the control unit 11 determines whether or not the frequency of thecompressor 21 has reached the predetermined minimum frequency Qmin. If it is determined that the frequency has reached, the process proceeds to step S14.
ステップS11では、制御部11は、コントローラ90が、ユーザから、冷房運転ではなく、暖房運転の指令を受け付けたか否か判断する。電磁誘導加熱ユニット6による冷媒加熱は、暖房運転が行われる環境下で必要になるため、このような判断を行う。
ステップS12では、制御部11は、圧縮機21の起動を開始させ、圧縮機21の周波数を徐々に上げていく。
ステップS13では、制御部11は、圧縮機21の周波数が所定最低周波数Qminに到達したか否かを判断し、到達していると判断した場合には、ステップS14に以降する。 In the flow condition determination process, the following processes are performed as shown in the flowchart of FIG.
In step S11, the controller 11 determines whether or not the
In step S12, the controller 11 starts the
In step S13, the control unit 11 determines whether or not the frequency of the
ステップS14では、制御部11は、流動条件判定処理を開始して、圧縮機21の周波数が所定最低周波数Qminに到達した時(図17の点a参照)の電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを格納し、タイマ95による流動検知時間のカウントを開始する。この圧縮機21の周波数が所定最低周波数Qminに達していない状態では、アキューム管Fおよび室外熱交換器23を流れる冷媒は、気液二相状態であって飽和温度で一定温度に保たれているため、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度は、飽和温度で一定であり、変化しない。しかし、しばらくして圧縮機21の周波数が上昇していき、室外熱交換器23内およびアキューム管F内の冷媒圧力がさらに低下していき、飽和温度が低下し始めることで、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度も低下し始める。なお、ここでは、圧縮機21の吸入側に対して、室外熱交換器23の方が、アキューム管Fよりも下流側に存在しているため、アキューム管Fを通過する冷媒の温度が下がり始めるタイミングよりも、室外熱交換器23を通過している冷媒温度が低下し始めるタイミングのほうが早い(図17の点bおよび点c参照)。
In step S14, the control unit 11 starts the flow condition determination process, and the detected temperature data of the electromagnetic induction thermistor 14 when the frequency of the compressor 21 reaches the predetermined minimum frequency Qmin (see point a in FIG. 17) and The temperature data detected by the outdoor heat exchange temperature sensor 29c is stored, and the timer 95 starts counting the flow detection time. In a state where the frequency of the compressor 21 does not reach the predetermined minimum frequency Qmin, the refrigerant flowing through the accumulator tube F and the outdoor heat exchanger 23 is in a gas-liquid two-phase state and is maintained at a constant temperature at a saturation temperature. Therefore, the temperature detected by the electromagnetic induction thermistor 14 and the outdoor heat exchange temperature sensor 29c is constant at the saturation temperature and does not change. However, the frequency of the compressor 21 increases after a while, the refrigerant pressure in the outdoor heat exchanger 23 and the accumulator pipe F further decreases, and the saturation temperature starts to decrease, so that the electromagnetic induction thermistor 14 The temperature detected by the outdoor heat exchanger temperature sensor 29c also starts to decrease. Here, since the outdoor heat exchanger 23 exists downstream of the accumulator pipe F with respect to the suction side of the compressor 21, the temperature of the refrigerant passing through the accumulator pipe F starts to decrease. The timing at which the temperature of the refrigerant passing through the outdoor heat exchanger 23 begins to decrease is earlier than the timing (see points b and c in FIG. 17).
ステップS15では、制御部11は、タイマ95のカウント開始から10秒間の流動検知時間が経過したか否かを判断し、流動検知時間が経過していた場合にはステップS16に移行する。他方、流動検知時間が未だ経過していない場合は、ステップS15を繰り返す。
ステップS16では、制御部11は、流動検知時間が経過したときの、室外熱交換器23内およびアキューム管F内の冷媒温度が低下した状態での、電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを取得し、ステップS17に移行する。
ステップS17では、制御部11は、ステップS16で取得した電磁誘導サーミスタ14の検出温度が、ステップS14で格納した電磁誘導サーミスタ14の検出温度データよりも3℃以上低下しているか否か、および、ステップS16で取得した室外熱交温度センサ29cの検知温度が、ステップS14で格納した室外熱交温度センサ29cの検知温度データよりも3℃以上低下しているか否かを判断する。すなわち、流動検知時間中に冷媒温度の低下を検出できたか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれか一方が3℃以上低下している場合には、アキューム管Fに冷媒が流れている状態であり、冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理、もしくは、センサ外れ検知処理等に移行する。 In step S15, the control unit 11 determines whether or not the flow detection time of 10 seconds has elapsed from the start of the count of thetimer 95. If the flow detection time has elapsed, the control unit 11 proceeds to step S16. On the other hand, if the flow detection time has not yet elapsed, step S15 is repeated.
In step S16, the control unit 11 detects the detected temperature data and the outdoor heat of theelectromagnetic induction thermistor 14 in a state where the refrigerant temperature in the outdoor heat exchanger 23 and the accumulator tube F is lowered when the flow detection time has elapsed. The detected temperature data of the alternating temperature sensor 29c is acquired, and the process proceeds to step S17.
In step S17, the control unit 11 determines whether or not the detected temperature of theelectromagnetic induction thermistor 14 acquired in step S16 is lower by 3 ° C. or more than the detected temperature data of the electromagnetic induction thermistor 14 stored in step S14, and It is determined whether or not the detected temperature of the outdoor heat exchanger temperature sensor 29c acquired in step S16 is lower by 3 ° C. or more than the detected temperature data of the outdoor heat exchanger temperature sensor 29c stored in step S14. That is, it is determined whether or not a decrease in the refrigerant temperature has been detected during the flow detection time. Here, when either one of the detected temperature of the electromagnetic induction thermistor 14 or the detected temperature of the outdoor heat exchange temperature sensor 29c is lowered by 3 ° C. or more, the refrigerant is flowing through the accumulator tube F. The flow condition determination process is terminated when it is determined that the flow of the gas is secured, and the process proceeds to the rapid pressure increase process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum, or the sensor disconnection detection process, etc. To do.
ステップS16では、制御部11は、流動検知時間が経過したときの、室外熱交換器23内およびアキューム管F内の冷媒温度が低下した状態での、電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを取得し、ステップS17に移行する。
ステップS17では、制御部11は、ステップS16で取得した電磁誘導サーミスタ14の検出温度が、ステップS14で格納した電磁誘導サーミスタ14の検出温度データよりも3℃以上低下しているか否か、および、ステップS16で取得した室外熱交温度センサ29cの検知温度が、ステップS14で格納した室外熱交温度センサ29cの検知温度データよりも3℃以上低下しているか否かを判断する。すなわち、流動検知時間中に冷媒温度の低下を検出できたか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれか一方が3℃以上低下している場合には、アキューム管Fに冷媒が流れている状態であり、冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理、もしくは、センサ外れ検知処理等に移行する。 In step S15, the control unit 11 determines whether or not the flow detection time of 10 seconds has elapsed from the start of the count of the
In step S16, the control unit 11 detects the detected temperature data and the outdoor heat of the
In step S17, the control unit 11 determines whether or not the detected temperature of the
他方、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれもが3℃以上低下していない場合には、ステップS18に移行する。
ステップS18では、制御部11は、アキューム管Fを流れている冷媒量が電磁誘導加熱ユニット6による誘導加熱を行うには不十分であるとして、制御部11が、コントローラ90の表示画面に流動異常表示を出力する。
(ii)センサ外れ検知処理
センサ外れ検知処理は、電磁誘導サーミスタ14がアキューム管Fに取り付けられて空気調和装置1の据え付けが終了した後(据え付けが終了した後、電磁誘導加熱ユニット6に電力を供給しているブレーカが落ちた後も含む)であって、初めて暖房運転が開始される際に行う、電磁誘導サーミスタ14の取付状態を確認するための処理である。具体的には、上述の流動条件判定処理においてアキューム管F内の冷媒の流動量が確保されていると判断された後であって、かつ、電磁誘導加熱ユニット6をの出力を最大限にして利用する起動時の急速高圧化処理を行う前に、制御部11が、センサ外れ検知処理を行う。 On the other hand, if neither the detected temperature of theelectromagnetic induction thermistor 14 nor the detected temperature of the outdoor heat exchange temperature sensor 29c has decreased by 3 ° C. or more, the process proceeds to step S18.
In step S <b> 18, the control unit 11 determines that the amount of refrigerant flowing through the accumulator tube F is insufficient for performing induction heating by the electromagneticinduction heating unit 6, and the control unit 11 displays a flow abnormality on the display screen of the controller 90. Output the display.
(Ii) Sensor detachment detection process The sensor detachment detection process is performed after theelectromagnetic induction thermistor 14 is attached to the accumulator tube F and the installation of the air conditioner 1 is completed (after the installation is completed, power is supplied to the electromagnetic induction heating unit 6. This is a process for confirming the attachment state of the electromagnetic induction thermistor 14 that is performed when the heating operation is started for the first time. Specifically, after it is determined in the above-described flow condition determination process that the amount of refrigerant flowing in the accumulator pipe F is secured, the output of the electromagnetic induction heating unit 6 is maximized. Before performing the rapid pressure increase process at the time of start-up, the control unit 11 performs a sensor detachment detection process.
ステップS18では、制御部11は、アキューム管Fを流れている冷媒量が電磁誘導加熱ユニット6による誘導加熱を行うには不十分であるとして、制御部11が、コントローラ90の表示画面に流動異常表示を出力する。
(ii)センサ外れ検知処理
センサ外れ検知処理は、電磁誘導サーミスタ14がアキューム管Fに取り付けられて空気調和装置1の据え付けが終了した後(据え付けが終了した後、電磁誘導加熱ユニット6に電力を供給しているブレーカが落ちた後も含む)であって、初めて暖房運転が開始される際に行う、電磁誘導サーミスタ14の取付状態を確認するための処理である。具体的には、上述の流動条件判定処理においてアキューム管F内の冷媒の流動量が確保されていると判断された後であって、かつ、電磁誘導加熱ユニット6をの出力を最大限にして利用する起動時の急速高圧化処理を行う前に、制御部11が、センサ外れ検知処理を行う。 On the other hand, if neither the detected temperature of the
In step S <b> 18, the control unit 11 determines that the amount of refrigerant flowing through the accumulator tube F is insufficient for performing induction heating by the electromagnetic
(Ii) Sensor detachment detection process The sensor detachment detection process is performed after the
空気調和装置1の搬入作業時には、予期しない振動等が加わることで電磁誘導サーミスタ14の取付状態が不安定になったり外れてしまったりすることがあり、搬入して初めて電磁誘導加熱ユニット6を稼働させる場合には、特に、その信頼性が求められ、搬入して初めての電磁誘導加熱ユニット6の稼働が適正に行われた場合には、その後の稼働も安定して行われることがある程度予測できる。このため、上述のタイミングでセンサ外れ検知処理が行われる。
センサ外れ検知処理では、図19のフローチャートに示すように、以下の各処理が行われる。
ステップS21では、制御部11は、流動条件判定処理によって確認されたアキューム管Fでの冷媒流動量もしくはそれ以上の冷媒流動量を確保しつつ、流動検知時間が終了した時点(=センサ外れ検知時間の開始時点)での電磁誘導サーミスタ14の検知温度データ(図17の点d参照)を格納しつつ、電磁誘導加熱ユニット6のコイル68に電力供給を開始する。ここでの電磁誘導加熱ユニット6のコイル68に対する電力の供給は、所定の最大供給電力Mmax(2kW)よりも小さな出力である50%の出力の外れ検知供給電力M1(1kW)で、センサ外れ検知時間としての20秒間だけ行われる。この段階では、未だ電磁誘導サーミスタ14の取付状態が良好であることが確認されていない段階であるため、アキューム管Fが異常な温度上昇をしているにもかかわらず、電磁誘導サーミスタ14がこの異常な温度上昇を検出できないことによってヒューズ15を損傷してしまったり、電磁誘導加熱ユニット6の樹脂製の部材を溶かしてしまったりすることが無いように、出力を50%に抑えている。また、同時に、電磁誘導加熱ユニット6による連続加熱時間が最大連続出力時間の10分を超えることが無いように予め設定しているため、制御部11は、電磁誘導加熱ユニット6による出力を継続している間の経過時間をタイマ95によってカウントし始める。なお、電磁誘導加熱ユニット6のコイル68に対する電力の供給と、コイル68が周囲に生じさせる磁界の大きさとは相関関係がある値である。 When theair conditioner 1 is carried in, unexpected vibrations or the like may be applied to the electromagnetic induction thermistor 14 in an unstable or detached state. The electromagnetic induction heating unit 6 is only activated after the carry-in. In particular, when the reliability is required and the operation of the electromagnetic induction heating unit 6 for the first time after being carried in is properly performed, it can be predicted to some extent that the subsequent operation is also performed stably. . For this reason, the sensor detachment detection process is performed at the timing described above.
In the sensor detachment detection process, the following processes are performed as shown in the flowchart of FIG.
In step S21, the control unit 11 secures the refrigerant flow amount in the accumulator pipe F confirmed by the flow condition determination process or a refrigerant flow amount higher than that, and ends the flow detection time (= sensor detachment detection time). The power supply to thecoil 68 of the electromagnetic induction heating unit 6 is started while storing the detected temperature data of the electromagnetic induction thermistor 14 (see the point d in FIG. 17) at the time of The supply of electric power to the coil 68 of the electromagnetic induction heating unit 6 here is a sensor outage detection with a power outage detection supply power M1 (1 kW) of 50%, which is an output smaller than a predetermined maximum supply power Mmax (2 kW). It takes only 20 seconds as time. At this stage, since it is not yet confirmed that the electromagnetic induction thermistor 14 is attached in a good state, the electromagnetic induction thermistor 14 is The output is suppressed to 50% so that the fuse 15 is not damaged due to the inability to detect an abnormal temperature rise and the resin member of the electromagnetic induction heating unit 6 is not melted. At the same time, since the continuous heating time by the electromagnetic induction heating unit 6 is set in advance so as not to exceed 10 minutes of the maximum continuous output time, the control unit 11 continues the output by the electromagnetic induction heating unit 6. The elapsed time is counted by the timer 95. The supply of electric power to the coil 68 of the electromagnetic induction heating unit 6 and the magnitude of the magnetic field generated around the coil 68 are values having a correlation.
センサ外れ検知処理では、図19のフローチャートに示すように、以下の各処理が行われる。
ステップS21では、制御部11は、流動条件判定処理によって確認されたアキューム管Fでの冷媒流動量もしくはそれ以上の冷媒流動量を確保しつつ、流動検知時間が終了した時点(=センサ外れ検知時間の開始時点)での電磁誘導サーミスタ14の検知温度データ(図17の点d参照)を格納しつつ、電磁誘導加熱ユニット6のコイル68に電力供給を開始する。ここでの電磁誘導加熱ユニット6のコイル68に対する電力の供給は、所定の最大供給電力Mmax(2kW)よりも小さな出力である50%の出力の外れ検知供給電力M1(1kW)で、センサ外れ検知時間としての20秒間だけ行われる。この段階では、未だ電磁誘導サーミスタ14の取付状態が良好であることが確認されていない段階であるため、アキューム管Fが異常な温度上昇をしているにもかかわらず、電磁誘導サーミスタ14がこの異常な温度上昇を検出できないことによってヒューズ15を損傷してしまったり、電磁誘導加熱ユニット6の樹脂製の部材を溶かしてしまったりすることが無いように、出力を50%に抑えている。また、同時に、電磁誘導加熱ユニット6による連続加熱時間が最大連続出力時間の10分を超えることが無いように予め設定しているため、制御部11は、電磁誘導加熱ユニット6による出力を継続している間の経過時間をタイマ95によってカウントし始める。なお、電磁誘導加熱ユニット6のコイル68に対する電力の供給と、コイル68が周囲に生じさせる磁界の大きさとは相関関係がある値である。 When the
In the sensor detachment detection process, the following processes are performed as shown in the flowchart of FIG.
In step S21, the control unit 11 secures the refrigerant flow amount in the accumulator pipe F confirmed by the flow condition determination process or a refrigerant flow amount higher than that, and ends the flow detection time (= sensor detachment detection time). The power supply to the
ステップS22では、制御部11は、センサ外れ検知時間が終了したか否か判断する。センサ外れ検知時間が終了している場合には、ステップS23に移行する。他方、センサ外れ検知時間が未だ終了していない場合には、ステップS22を繰り返す。
ステップS23では、制御部11は、センサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度を取得し(図17の点e参照)、ステップS24に移行する。
ステップS24では、制御部11は、ステップS23で取得したセンサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度が、ステップS21で格納したセンサ外れ検知時間の開始時点での電磁誘導サーミスタ14の検出温度データよりも10℃以上上昇しているか否かを判断する。すなわち、センサ外れ検知時間中に電磁誘導加熱ユニット6による誘導加熱によって冷媒温度が10℃以上上昇しているか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合には、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認できたと判断してセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に移行する。 In step S22, the control unit 11 determines whether the sensor detachment detection time has ended. If the sensor detachment detection time has ended, the process proceeds to step S23. On the other hand, if the sensor detachment detection time has not ended yet, step S22 is repeated.
In step S23, the control unit 11 acquires the temperature detected by theelectromagnetic induction thermistor 14 at the time when the sensor detachment detection time ends (see point e in FIG. 17), and proceeds to step S24.
In step S24, the controller 11 detects that the detected temperature of theelectromagnetic induction thermistor 14 at the time when the sensor disconnection detection time acquired in step S23 has ended is the electromagnetic induction thermistor at the start of the sensor disconnection detection time stored in step S21. It is determined whether or not the detected temperature data of 14 is higher by 10 ° C. or more. That is, it is determined whether or not the refrigerant temperature has increased by 10 ° C. or more due to induction heating by the electromagnetic induction heating unit 6 during the sensor detachment detection time. Here, when the detection temperature of the electromagnetic induction thermistor 14 is increased by 10 ° C. or more, the attachment state of the electromagnetic induction thermistor 14 with respect to the accumulator tube F is good, and induction heating by the electromagnetic induction heating unit 6 is performed. It is determined that it has been confirmed that the accumulator tube F has been appropriately warmed, the sensor detachment detection process is terminated, and the process proceeds to a rapid pressure increase process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum. On the other hand, if the detected temperature of the electromagnetic induction thermistor 14 has not risen by 10 ° C. or more, the process proceeds to step S25.
ステップS23では、制御部11は、センサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度を取得し(図17の点e参照)、ステップS24に移行する。
ステップS24では、制御部11は、ステップS23で取得したセンサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度が、ステップS21で格納したセンサ外れ検知時間の開始時点での電磁誘導サーミスタ14の検出温度データよりも10℃以上上昇しているか否かを判断する。すなわち、センサ外れ検知時間中に電磁誘導加熱ユニット6による誘導加熱によって冷媒温度が10℃以上上昇しているか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合には、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認できたと判断してセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に移行する。 In step S22, the control unit 11 determines whether the sensor detachment detection time has ended. If the sensor detachment detection time has ended, the process proceeds to step S23. On the other hand, if the sensor detachment detection time has not ended yet, step S22 is repeated.
In step S23, the control unit 11 acquires the temperature detected by the
In step S24, the controller 11 detects that the detected temperature of the
ステップS25では、制御部11は、センサ外れリトライ処理の回数をカウントする。リトライ回数が10回未満である場合にはステップS26に移行し、リトライ回数が10回を超えている場合にはステップS26に移行することなくステップS27に移行する。
ステップS26では、制御部11は、センサ外れリトライ処理を実行する。ここでは、さらに30秒経過した時点での電磁誘導サーミスタ14の検知温度データ(図17には示していない)を格納しつつ、電磁誘導加熱ユニット6のコイル68に外れ検知供給電力M1での電力供給を20秒間行い、ステップS22、23同様の処理を行い、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合にはセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に戻る。 In step S25, the control unit 11 counts the number of sensor detachment retry processes. If the number of retries is less than 10, the process proceeds to step S26. If the number of retries exceeds 10, the process proceeds to step S27 without proceeding to step S26.
In step S <b> 26, the control unit 11 performs a sensor removal retry process. Here, the detected temperature data (not shown in FIG. 17) of theelectromagnetic induction thermistor 14 at the time when another 30 seconds have elapsed is stored in the coil 68 of the electromagnetic induction heating unit 6 and the electric power at the detected power supply M1 is detected. Supply is performed for 20 seconds, and the same processing as in steps S22 and S23 is performed. When the detection temperature of the electromagnetic induction thermistor 14 is increased by 10 ° C. or more, the sensor detachment detection processing is terminated and the output of the electromagnetic induction heating unit 6 is output. Shift to rapid high pressure processing at start-up for maximum use. On the other hand, if the detected temperature of the electromagnetic induction thermistor 14 has not risen by 10 ° C. or more, the process returns to step S25.
ステップS26では、制御部11は、センサ外れリトライ処理を実行する。ここでは、さらに30秒経過した時点での電磁誘導サーミスタ14の検知温度データ(図17には示していない)を格納しつつ、電磁誘導加熱ユニット6のコイル68に外れ検知供給電力M1での電力供給を20秒間行い、ステップS22、23同様の処理を行い、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合にはセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に戻る。 In step S25, the control unit 11 counts the number of sensor detachment retry processes. If the number of retries is less than 10, the process proceeds to step S26. If the number of retries exceeds 10, the process proceeds to step S27 without proceeding to step S26.
In step S <b> 26, the control unit 11 performs a sensor removal retry process. Here, the detected temperature data (not shown in FIG. 17) of the
ステップS27では、制御部11は、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が不安定もしくは良好でないと判断して、コントローラ90の表示画面にセンサ外れ異常表示を出力する。
(iii)急速高圧化処理
流動条件判定処理と、センサ外れ検知処理とを終えて、アキューム管Fにおける十分な冷媒の流動が確保され、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認した状態で、制御部11は、急速高圧化処理を開始する。
ここでは、電磁誘導加熱ユニット6による誘導加熱を、高い出力で行ったとしても、アキューム管Fを異常温度上昇させることがないことが確認されているため、空気調和装置1の信頼性を向上できている。 In step S <b> 27, the control unit 11 determines that the attachment state of theelectromagnetic induction thermistor 14 to the accumulator tube F is unstable or not good, and outputs a sensor detachment abnormality display on the display screen of the controller 90.
(Iii) Rapid pressure increase processing After the flow condition determination processing and the sensor detachment detection processing are completed, sufficient refrigerant flow is ensured in the accumulator tube F, and the attachment state of theelectromagnetic induction thermistor 14 to the accumulator tube F is good. In the state where it is confirmed that the accumulator tube F is appropriately heated by induction heating by the electromagnetic induction heating unit 6, the controller 11 starts the rapid pressure increase processing.
Here, even if the induction heating by the electromagneticinduction heating unit 6 is performed at a high output, it has been confirmed that the accumulator tube F does not rise abnormally, so the reliability of the air conditioner 1 can be improved. ing.
(iii)急速高圧化処理
流動条件判定処理と、センサ外れ検知処理とを終えて、アキューム管Fにおける十分な冷媒の流動が確保され、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認した状態で、制御部11は、急速高圧化処理を開始する。
ここでは、電磁誘導加熱ユニット6による誘導加熱を、高い出力で行ったとしても、アキューム管Fを異常温度上昇させることがないことが確認されているため、空気調和装置1の信頼性を向上できている。 In step S <b> 27, the control unit 11 determines that the attachment state of the
(Iii) Rapid pressure increase processing After the flow condition determination processing and the sensor detachment detection processing are completed, sufficient refrigerant flow is ensured in the accumulator tube F, and the attachment state of the
Here, even if the induction heating by the electromagnetic
急速高圧化処理では、図20のフローチャートに示すように、以下の各処理が行われる。
ステップS31では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を、上述のセンサ外れ検知処理のときのように50%に出力制限した外れ検知供給電力M1とすることなく、所定の最大供給電力Mmax(2kW)とする。ここでの電磁誘導加熱ユニット6による出力は、圧力センサ29aが、所定の目標高圧圧力Phに達するまで継続して行う。
この空気調和装置1の冷凍サイクルにおける高圧異常上昇を防止させるために、圧力センサ29aが異常高圧圧力Prを検知した場合に、制御部11は、圧縮機21を強制的に停止する。この急速高圧処理の際の目標高圧圧力Phは、この異常高圧圧力Prよりも小さな圧力値である別個の閾値として設けられている。 In the rapid pressure increase process, the following processes are performed as shown in the flowchart of FIG.
In step S31, the control unit 11 does not set the power supply to thecoil 68 of the electromagnetic induction heating unit 6 as the detachment detection supply power M1 whose output is limited to 50% as in the sensor detachment detection process described above. A predetermined maximum supply power Mmax (2 kW) is assumed. The output by the electromagnetic induction heating unit 6 here is continuously performed until the pressure sensor 29a reaches a predetermined target high pressure Ph.
In order to prevent an abnormal increase in high pressure in the refrigeration cycle of theair conditioner 1, the control unit 11 forcibly stops the compressor 21 when the pressure sensor 29a detects an abnormal high pressure Pr. The target high pressure Ph in the rapid high pressure process is provided as a separate threshold value that is a pressure value smaller than the abnormal high pressure Pr.
ステップS31では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を、上述のセンサ外れ検知処理のときのように50%に出力制限した外れ検知供給電力M1とすることなく、所定の最大供給電力Mmax(2kW)とする。ここでの電磁誘導加熱ユニット6による出力は、圧力センサ29aが、所定の目標高圧圧力Phに達するまで継続して行う。
この空気調和装置1の冷凍サイクルにおける高圧異常上昇を防止させるために、圧力センサ29aが異常高圧圧力Prを検知した場合に、制御部11は、圧縮機21を強制的に停止する。この急速高圧処理の際の目標高圧圧力Phは、この異常高圧圧力Prよりも小さな圧力値である別個の閾値として設けられている。 In the rapid pressure increase process, the following processes are performed as shown in the flowchart of FIG.
In step S31, the control unit 11 does not set the power supply to the
In order to prevent an abnormal increase in high pressure in the refrigeration cycle of the
ステップS32では、制御部11は、センサ外れ検知処理のステップS21でカウントを開始した電磁誘導加熱ユニット6の最大連続出力時間の10分を経過しているか否かを判断する。ここで、最大連続出力時間を経過していない場合には、ステップS33に以降する。他方、最大連続出力時間を経過している場合には、ステップS34に以降する。
ステップS33では、制御部11は、圧力センサ29aの検知圧力が目標高圧圧力Phに達したか否か判断する。ここで、目標高圧圧力Phに達している場合には、ステップS34に移行する。他方、ここで、目標高圧圧力Phに達していない場合には、ステップS32を繰り返す。
ステップS34では、制御部11は、室内ファン42の駆動を開始させ、急速高圧化処理を終え、定常出力処理に移行する。 In step S32, the control unit 11 determines whether or not 10 minutes of the maximum continuous output time of the electromagneticinduction heating unit 6 that has started counting in step S21 of the sensor detachment detection process has elapsed. If the maximum continuous output time has not elapsed, the process goes to step S33. On the other hand, if the maximum continuous output time has elapsed, the process goes to step S34.
In step S33, the control unit 11 determines whether or not the pressure detected by thepressure sensor 29a has reached the target high pressure Ph. If the target high pressure Ph has been reached, the process proceeds to step S34. On the other hand, if the target high pressure Ph is not reached, step S32 is repeated.
In step S34, the control unit 11 starts driving theindoor fan 42, finishes the rapid pressure increase process, and shifts to the steady output process.
ステップS33では、制御部11は、圧力センサ29aの検知圧力が目標高圧圧力Phに達したか否か判断する。ここで、目標高圧圧力Phに達している場合には、ステップS34に移行する。他方、ここで、目標高圧圧力Phに達していない場合には、ステップS32を繰り返す。
ステップS34では、制御部11は、室内ファン42の駆動を開始させ、急速高圧化処理を終え、定常出力処理に移行する。 In step S32, the control unit 11 determines whether or not 10 minutes of the maximum continuous output time of the electromagnetic
In step S33, the control unit 11 determines whether or not the pressure detected by the
In step S34, the control unit 11 starts driving the
ここでは、ステップS33からステップS34に以降された場合には、ユーザに対して十分に暖かい調和空気を提供できる状態になった状況で室内ファン42が稼働し始める。ステップS32からステップS34に以降した場合には、ユーザに対して十分な暖かい調和空気を提供できる状態に至っていないが、ある程度の暖かい調和空気を提供できる状態であって暖房運転開始からの経過時間が長くなりすぎない範囲で温風の提供を開始させることができるようになる。
(iv)定常出力処理
定常出力処理では、外れ検知供給電力M1(1kW)以上であって最大供給電力Mmax(2kW)以下の出力である定常供給電力M2(1.4kW)を固定出力値として、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃で維持されるように、電磁誘導加熱ユニット6の電力供給頻度をPI制御する。 Here, when the process is changed from step S33 to step S34, theindoor fan 42 starts to operate in a state in which sufficiently warm conditioned air can be provided to the user. After step S32 to step S34, it has not reached a state in which sufficient warm conditioned air can be provided to the user, but is in a state in which a certain amount of warm conditioned air can be provided, and the elapsed time from the start of heating operation. Provision of warm air can be started within a range that does not become too long.
(Iv) Steady output process In the steady output process, the steady supply power M2 (1.4 kW), which is an output that is greater than or equal to the detection power supply M1 (1 kW) and less than or equal to the maximum supply power Mmax (2 kW), is used as a fixed output value. The power supply frequency of the electromagneticinduction heating unit 6 is PI-controlled so that the detected temperature of the electromagnetic induction thermistor 14 is maintained at 80 ° C., which is the target accumulator temperature at startup.
(iv)定常出力処理
定常出力処理では、外れ検知供給電力M1(1kW)以上であって最大供給電力Mmax(2kW)以下の出力である定常供給電力M2(1.4kW)を固定出力値として、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃で維持されるように、電磁誘導加熱ユニット6の電力供給頻度をPI制御する。 Here, when the process is changed from step S33 to step S34, the
(Iv) Steady output process In the steady output process, the steady supply power M2 (1.4 kW), which is an output that is greater than or equal to the detection power supply M1 (1 kW) and less than or equal to the maximum supply power Mmax (2 kW), is used as a fixed output value. The power supply frequency of the electromagnetic
定常出力処理では、図21のフローチャートに示すように、以下の各処理が行われる。
ステップS41では、制御部11は、電磁誘導サーミスタ14の検知温度を格納し、ステップS42に移行する。
ステップS42では、制御部11は、ステップS41で格納した電磁誘導サーミスタ14の検知温度を、起動時目標アキューム管温度の80℃と比較して、電磁誘導サーミスタ14の検知温度が、起動時目標アキューム管温度の80℃よりも所定温度だけ低い所定維持温度以下となったか否かを判断する。所定維持温度以下となっている場合には、ステップS43に移行する。所定維持温度以下になっていない場合には、引き続き所定維持温度以下になるまで待つ。
ステップS43では、制御部11は、最近の電磁誘導加熱ユニット6への電力供給を終えた時からの経過時間を把握する。 In the steady output process, the following processes are performed as shown in the flowchart of FIG.
In step S41, the control unit 11 stores the detected temperature of theelectromagnetic induction thermistor 14, and proceeds to step S42.
In step S42, the control unit 11 compares the detected temperature of theelectromagnetic induction thermistor 14 stored in step S41 with the activation target accumulator tube temperature of 80 ° C. so that the detected temperature of the electromagnetic induction thermistor 14 is equal to the activation target accumulator. It is determined whether or not a predetermined maintenance temperature lower than the tube temperature of 80 ° C. by a predetermined temperature is reached. If the temperature is equal to or lower than the predetermined maintenance temperature, the process proceeds to step S43. If the temperature is not lower than the predetermined maintenance temperature, the process continues to wait until the temperature is lower than the predetermined maintenance temperature.
In step S43, the control part 11 grasps | ascertains the elapsed time since the power supply to the recent electromagneticinduction heating unit 6 was finished.
ステップS41では、制御部11は、電磁誘導サーミスタ14の検知温度を格納し、ステップS42に移行する。
ステップS42では、制御部11は、ステップS41で格納した電磁誘導サーミスタ14の検知温度を、起動時目標アキューム管温度の80℃と比較して、電磁誘導サーミスタ14の検知温度が、起動時目標アキューム管温度の80℃よりも所定温度だけ低い所定維持温度以下となったか否かを判断する。所定維持温度以下となっている場合には、ステップS43に移行する。所定維持温度以下になっていない場合には、引き続き所定維持温度以下になるまで待つ。
ステップS43では、制御部11は、最近の電磁誘導加熱ユニット6への電力供給を終えた時からの経過時間を把握する。 In the steady output process, the following processes are performed as shown in the flowchart of FIG.
In step S41, the control unit 11 stores the detected temperature of the
In step S42, the control unit 11 compares the detected temperature of the
In step S43, the control part 11 grasps | ascertains the elapsed time since the power supply to the recent electromagnetic
ステップS44では、制御部11は、連続して30秒間定常供給電力M2(1.4kW)で一定に保ったままで電磁誘導加熱ユニット6に電力を供給することを1セットとして、このセットの頻度を、ステップS43で把握した経過時間が長ければ長い程頻度を上げる、PI制御を行う。
(v)デフロスト処理
上述の定常出力処理を継続している際に、室外熱交換器23の室外熱交温度センサ29cの検知温度が所定値以下になった場合に、室外熱交換器23に付着している霜を溶かす運転であるデフロスト処理を行う。具体的には、四路切換弁22の接続状態を冷房運転と同様にして(図1の点線で示す接続状態)、圧縮機21から吐出される高圧高温ガス冷媒を、室内熱交換器41を通過させる前に室外熱交換器23に提供し、冷媒の凝縮熱を利用して室外熱交換器23に付着している霜を溶かす。 In step S44, the control unit 11 continuously supplies power to the electromagneticinduction heating unit 6 while keeping the constant supply power M2 (1.4 kW) constant for 30 seconds, and sets the frequency of this set as the set. The PI control is performed to increase the frequency as the elapsed time grasped in step S43 is longer.
(V) Defrost process When the above-described steady output process is continued, if the detected temperature of the outdoor heatexchanger temperature sensor 29c of the outdoor heat exchanger 23 becomes a predetermined value or less, it adheres to the outdoor heat exchanger 23. The defrost process which is the driving | operation which melts the frost which is carrying out is performed. Specifically, the connection state of the four-way switching valve 22 is set in the same manner as in the cooling operation (connection state indicated by the dotted line in FIG. 1), and the high-pressure high-temperature gas refrigerant discharged from the compressor 21 is supplied to the indoor heat exchanger 41. It is provided to the outdoor heat exchanger 23 before passing, and the frost adhering to the outdoor heat exchanger 23 is melted using the heat of condensation of the refrigerant.
(v)デフロスト処理
上述の定常出力処理を継続している際に、室外熱交換器23の室外熱交温度センサ29cの検知温度が所定値以下になった場合に、室外熱交換器23に付着している霜を溶かす運転であるデフロスト処理を行う。具体的には、四路切換弁22の接続状態を冷房運転と同様にして(図1の点線で示す接続状態)、圧縮機21から吐出される高圧高温ガス冷媒を、室内熱交換器41を通過させる前に室外熱交換器23に提供し、冷媒の凝縮熱を利用して室外熱交換器23に付着している霜を溶かす。 In step S44, the control unit 11 continuously supplies power to the electromagnetic
(V) Defrost process When the above-described steady output process is continued, if the detected temperature of the outdoor heat
デフロスト処理では、図22のフローチャートに示すように、以下の各処理が行われる。
ステップS51では、制御部11は、圧縮機21の周波数が所定最低周波数Qmin以上であって所定の冷媒循環量が確保されていること、流動条件判定処理によって電磁誘導加熱を行うことができる程度の冷媒流動量が確保されていること、および、センサ外れ検知処理によって電磁誘導サーミスタ14の取付状態が適正であることを確認し、ステップS52に移行する。
ステップS52では、制御部11は、室外熱交温度センサ29cの検知温度が10℃未満になったか否かを判断する。10℃未満になっている場合には、ステップS53に移行する。10℃未満になっていない場合にはステップS52を繰り返す。 In the defrost process, the following processes are performed as shown in the flowchart of FIG.
In step S51, the control unit 11 is capable of performing electromagnetic induction heating by the flow condition determination process that the frequency of thecompressor 21 is equal to or higher than the predetermined minimum frequency Qmin and a predetermined refrigerant circulation amount is secured. After confirming that the refrigerant flow amount is secured and that the attachment state of the electromagnetic induction thermistor 14 is appropriate by the sensor removal detection process, the process proceeds to step S52.
In step S52, the control unit 11 determines whether or not the temperature detected by the outdoor heatexchanger temperature sensor 29c is less than 10 ° C. If it is lower than 10 ° C., the process proceeds to step S53. If it is not less than 10 ° C., step S52 is repeated.
ステップS51では、制御部11は、圧縮機21の周波数が所定最低周波数Qmin以上であって所定の冷媒循環量が確保されていること、流動条件判定処理によって電磁誘導加熱を行うことができる程度の冷媒流動量が確保されていること、および、センサ外れ検知処理によって電磁誘導サーミスタ14の取付状態が適正であることを確認し、ステップS52に移行する。
ステップS52では、制御部11は、室外熱交温度センサ29cの検知温度が10℃未満になったか否かを判断する。10℃未満になっている場合には、ステップS53に移行する。10℃未満になっていない場合にはステップS52を繰り返す。 In the defrost process, the following processes are performed as shown in the flowchart of FIG.
In step S51, the control unit 11 is capable of performing electromagnetic induction heating by the flow condition determination process that the frequency of the
In step S52, the control unit 11 determines whether or not the temperature detected by the outdoor heat
ステップS53では、制御部11は、電磁誘導加熱ユニット6による誘導加熱を停止させた状態にするとともに、デフロスト信号を送信する。
ステップS54では、制御部11は、デフロスト信号が送信された後、四路切換弁22の接続状態を冷房運転の接続状態とし、さらに、四路切換弁22の接続状態が冷房運転の接続状態になってからタイマ95によってデフロスト開始後経過時間をカウントする。
ステップS55では、制御部11は、デフロスト開始後30秒経過したか否か判断する。ここで30秒経過している場合には、ステップS56に移行する。30秒経過していない場合には、ステップS55を繰り返す。
ステップS56では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を所定の最大供給電力Mmax(2kW)としつつ、電磁誘導サーミスタ14の検出温度が目標デフロスト温度である40℃となるように(定常出力処理時の起動時目標アキューム管温度とは異なる)、電磁誘導加熱ユニット6による誘導加熱の頻度をPI制御する。なお、室外熱交温度センサ29cの検知温度が0℃を下回っている場合にはさらにホットガスバイパス回路Hのホットガスバイパス弁27が開けられ、室外機2の底板2bの上面のうち室外ファン26の下方および室外熱交換器23の下方に高温高圧ガス冷媒が供給され、底板2bの上面に生じている氷を除去する。ここで、四路切換弁22の接続状態が冷房運転の状態に切り換えられているため、圧縮機21から吐出された高温高圧ガス冷媒は、室外熱交換器23の分岐合流点23kから合流分岐点23jまで流れて、合流分岐点23jにおいて合流して1本にまとめられることで、分岐配管Kの流量の3倍の流量となって集中的に合流配管Jを流れていく。この合流配管Jは、室外熱交換器23の下端近傍に位置しているので、室外熱交換器23の下端近傍に多くの凝縮熱を集中的に供給することができる。これにより、除霜をより迅速化させることができている。 In Step S53, the control unit 11 stops the induction heating by the electromagneticinduction heating unit 6, and transmits a defrost signal.
In step S54, after the defrost signal is transmitted, the control unit 11 sets the connection state of the four-way switching valve 22 to the connection state of the cooling operation, and further changes the connection state of the four-way switching valve 22 to the connection state of the cooling operation. After that, the elapsed time after defrosting is counted by the timer 95.
In step S55, the control unit 11 determines whether or not 30 seconds have elapsed after the start of defrosting. If 30 seconds have elapsed, the process proceeds to step S56. If 30 seconds have not elapsed, step S55 is repeated.
In step S56, the control unit 11 sets the power supply to thecoil 68 of the electromagnetic induction heating unit 6 to a predetermined maximum supply power Mmax (2 kW), and the detected temperature of the electromagnetic induction thermistor 14 is 40 ° C., which is the target defrost temperature. Thus, PI control is performed on the frequency of induction heating by the electromagnetic induction heating unit 6 so as to be different (different from the startup target accumulator temperature during steady output processing). When the temperature detected by the outdoor heat exchanger temperature sensor 29c is lower than 0 ° C., the hot gas bypass valve 27 of the hot gas bypass circuit H is further opened, and the outdoor fan 26 on the upper surface of the bottom plate 2b of the outdoor unit 2 is opened. The high-temperature and high-pressure gas refrigerant is supplied below the outdoor heat exchanger 23 and below the outdoor heat exchanger 23, and the ice generated on the upper surface of the bottom plate 2b is removed. Here, since the connection state of the four-way switching valve 22 is switched to the cooling operation state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is joined from the branch junction point 23k of the outdoor heat exchanger 23 to the junction branch point. 23j, and merge at the merge branch point 23j to be combined into one, so that the flow rate becomes three times the flow rate of the branch pipe K and flows through the merge pipe J in a concentrated manner. Since this junction pipe J is located in the vicinity of the lower end of the outdoor heat exchanger 23, a large amount of condensation heat can be concentrated in the vicinity of the lower end of the outdoor heat exchanger 23. Thereby, defrosting can be made quicker.
ステップS54では、制御部11は、デフロスト信号が送信された後、四路切換弁22の接続状態を冷房運転の接続状態とし、さらに、四路切換弁22の接続状態が冷房運転の接続状態になってからタイマ95によってデフロスト開始後経過時間をカウントする。
ステップS55では、制御部11は、デフロスト開始後30秒経過したか否か判断する。ここで30秒経過している場合には、ステップS56に移行する。30秒経過していない場合には、ステップS55を繰り返す。
ステップS56では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を所定の最大供給電力Mmax(2kW)としつつ、電磁誘導サーミスタ14の検出温度が目標デフロスト温度である40℃となるように(定常出力処理時の起動時目標アキューム管温度とは異なる)、電磁誘導加熱ユニット6による誘導加熱の頻度をPI制御する。なお、室外熱交温度センサ29cの検知温度が0℃を下回っている場合にはさらにホットガスバイパス回路Hのホットガスバイパス弁27が開けられ、室外機2の底板2bの上面のうち室外ファン26の下方および室外熱交換器23の下方に高温高圧ガス冷媒が供給され、底板2bの上面に生じている氷を除去する。ここで、四路切換弁22の接続状態が冷房運転の状態に切り換えられているため、圧縮機21から吐出された高温高圧ガス冷媒は、室外熱交換器23の分岐合流点23kから合流分岐点23jまで流れて、合流分岐点23jにおいて合流して1本にまとめられることで、分岐配管Kの流量の3倍の流量となって集中的に合流配管Jを流れていく。この合流配管Jは、室外熱交換器23の下端近傍に位置しているので、室外熱交換器23の下端近傍に多くの凝縮熱を集中的に供給することができる。これにより、除霜をより迅速化させることができている。 In Step S53, the control unit 11 stops the induction heating by the electromagnetic
In step S54, after the defrost signal is transmitted, the control unit 11 sets the connection state of the four-
In step S55, the control unit 11 determines whether or not 30 seconds have elapsed after the start of defrosting. If 30 seconds have elapsed, the process proceeds to step S56. If 30 seconds have not elapsed, step S55 is repeated.
In step S56, the control unit 11 sets the power supply to the
ステップS57では、制御部11は、デフロスト開始後経過時間が10分を超えたか否か判断する。ここで10分を経過していない場合には、ステップS58に移行する。10分を経過している場合には、ステップS59に移行する。これにより、四路切換弁22の接続状態が冷房状態のままで10分以上経過してしまうことを防ぎ、室内温度の低下によるユーザが感じる不快感が生じにくいようにしている。
ステップS58では、制御部11は、室外熱交温度センサ29cの検知温度が10℃を超えているか否かを判断する。10℃を超えている場合には、ステップS59に移行する。10℃を超えていない場合にはステップS56に戻って繰り返す。
ステップS59では、制御部11は、圧縮機21を停止させて冷凍サイクル内の高低圧を均圧させつつ、電磁誘導加熱ユニット6による誘導加熱を終了する。 In step S57, the control unit 11 determines whether or not the elapsed time after the start of defrost has exceeded 10 minutes. If 10 minutes has not elapsed, the process proceeds to step S58. If 10 minutes have passed, the process proceeds to step S59. This prevents the passage of 10 minutes or more while the connection state of the four-way switching valve 22 remains in the cooling state, and makes it difficult for the user to feel uncomfortable due to a decrease in the room temperature.
In step S58, the control unit 11 determines whether or not the temperature detected by the outdoor heatexchanger temperature sensor 29c exceeds 10 ° C. If it exceeds 10 ° C., the process proceeds to step S59. If the temperature does not exceed 10 ° C., the process returns to step S56 and is repeated.
In step S59, the control unit 11 stops thecompressor 21 and finishes induction heating by the electromagnetic induction heating unit 6 while equalizing high and low pressures in the refrigeration cycle.
ステップS58では、制御部11は、室外熱交温度センサ29cの検知温度が10℃を超えているか否かを判断する。10℃を超えている場合には、ステップS59に移行する。10℃を超えていない場合にはステップS56に戻って繰り返す。
ステップS59では、制御部11は、圧縮機21を停止させて冷凍サイクル内の高低圧を均圧させつつ、電磁誘導加熱ユニット6による誘導加熱を終了する。 In step S57, the control unit 11 determines whether or not the elapsed time after the start of defrost has exceeded 10 minutes. If 10 minutes has not elapsed, the process proceeds to step S58. If 10 minutes have passed, the process proceeds to step S59. This prevents the passage of 10 minutes or more while the connection state of the four-
In step S58, the control unit 11 determines whether or not the temperature detected by the outdoor heat
In step S59, the control unit 11 stops the
ステップS60では、制御部11は、四路切換弁22の接続状態を暖房運転の接続状態に切り換える。
そして、制御部11は、デフロストを終える信号を送信する。さらに、制御部11は、圧縮機21の周波数を所定最低周波数Qmin以上に上げていき、再度デフロスト処理を行う状況になるまで定常出力処理を行う。また、ホットガスバイパス回路Hのホットガスバイパス弁27は、デフロストを終える信号が送信された後、5秒後に閉じられる。
<1-8>空調起動制御
上述の電磁誘導過熱制御では、電磁誘導加熱ユニット6に着目して、(i)流動条件判定処理、(ii)センサ外れ検知処理、(iii)急速高圧化処理、(iv)定常出力処理、および、(v)デフロスト処理について説明した。 In step S60, the control part 11 switches the connection state of the four-way switching valve 22 to the connection state of heating operation.
And the control part 11 transmits the signal which finishes defrost. Further, the control unit 11 increases the frequency of thecompressor 21 to a predetermined minimum frequency Qmin or more, and performs a steady output process until the defrost process is performed again. Further, the hot gas bypass valve 27 of the hot gas bypass circuit H is closed after 5 seconds after a signal to finish defrosting is transmitted.
<1-8> Air-conditioning activation control In the above-described electromagnetic induction overheating control, paying attention to the electromagneticinduction heating unit 6, (i) flow condition determination processing, (ii) sensor detachment detection processing, (iii) rapid pressure increase processing, (Iv) The steady output process and (v) the defrost process have been described.
そして、制御部11は、デフロストを終える信号を送信する。さらに、制御部11は、圧縮機21の周波数を所定最低周波数Qmin以上に上げていき、再度デフロスト処理を行う状況になるまで定常出力処理を行う。また、ホットガスバイパス回路Hのホットガスバイパス弁27は、デフロストを終える信号が送信された後、5秒後に閉じられる。
<1-8>空調起動制御
上述の電磁誘導過熱制御では、電磁誘導加熱ユニット6に着目して、(i)流動条件判定処理、(ii)センサ外れ検知処理、(iii)急速高圧化処理、(iv)定常出力処理、および、(v)デフロスト処理について説明した。 In step S60, the control part 11 switches the connection state of the four-
And the control part 11 transmits the signal which finishes defrost. Further, the control unit 11 increases the frequency of the
<1-8> Air-conditioning activation control In the above-described electromagnetic induction overheating control, paying attention to the electromagnetic
ここでは、このような電磁誘導過熱制御が行われることを利用して、迅速な高温吹出を可能とするための空調起動制御が行われている。
この空調起動制御は、図22のタイムチャートに示すように、(vi)導入判定制御、(vii)起動時能力増大制御、(viii)高温吹出開始制御、および、(ix)起動後暖房運転制御を行う。
(vi)導入判定制御
導入判定制御では、周囲温度の冷え込みが弱くユーザに対して特別暖かい空気を供給することが特に必要とされていない状況で行う中温吹出制御を行うか、もしくは、周囲温度が低い時にユーザに対してより暖かい調和空気を供給するための高温吹出制御を行うか、について周囲温度に基づいて判断する。 Here, air-conditioning activation control for enabling rapid high-temperature blowing is performed by using such electromagnetic induction overheat control.
As shown in the time chart of FIG. 22, this air conditioning activation control includes (vi) introduction determination control, (vii) startup capacity increase control, (viii) high temperature blowing start control, and (ix) post-startup heating operation control. I do.
(Vi) Introduction determination control In the introduction determination control, the medium temperature blowing control is performed in a situation where the ambient temperature is weak and the user is not particularly required to supply special warm air, or the ambient temperature is Whether to perform high-temperature blowing control for supplying warmer conditioned air to the user when the temperature is low is determined based on the ambient temperature.
この空調起動制御は、図22のタイムチャートに示すように、(vi)導入判定制御、(vii)起動時能力増大制御、(viii)高温吹出開始制御、および、(ix)起動後暖房運転制御を行う。
(vi)導入判定制御
導入判定制御では、周囲温度の冷え込みが弱くユーザに対して特別暖かい空気を供給することが特に必要とされていない状況で行う中温吹出制御を行うか、もしくは、周囲温度が低い時にユーザに対してより暖かい調和空気を供給するための高温吹出制御を行うか、について周囲温度に基づいて判断する。 Here, air-conditioning activation control for enabling rapid high-temperature blowing is performed by using such electromagnetic induction overheat control.
As shown in the time chart of FIG. 22, this air conditioning activation control includes (vi) introduction determination control, (vii) startup capacity increase control, (viii) high temperature blowing start control, and (ix) post-startup heating operation control. I do.
(Vi) Introduction determination control In the introduction determination control, the medium temperature blowing control is performed in a situation where the ambient temperature is weak and the user is not particularly required to supply special warm air, or the ambient temperature is Whether to perform high-temperature blowing control for supplying warmer conditioned air to the user when the temperature is low is determined based on the ambient temperature.
導入判定制御では、図23のフローチャートに示すように、以下の各処理が行われる。
ステップS61では、コントローラ90の図示しない入力ボタンによって、ユーザが設定温度を入力しつつ暖房運転開始の指示を入力すると、制御部11は、この暖房運転指示の情報を受け付けて、開始時点における室内温度センサ43の検知温度および室外気温センサ29bの検知温度を取得する。
ステップS62では、制御部11は、ステップS61で取得した室内温度および室外温度に基づいて、暖房運転を行える温度状況であるか否かを判断する。具体的には、図24に示すような室内温度と室外温度との関係を満たす場合には、暖房運転可能と判断して、ステップS63に移行する。ここで、暖房運転可能な範囲は、室外気温が、室内気温よりも冷え込んでいる環境であって、かつ、空気調和装置1の冷凍サイクルに暖房運転を実行させることが可能な温度条件範囲として予め定められており、制御部11が図24に示すデータを保持している。 In the introduction determination control, the following processes are performed as shown in the flowchart of FIG.
In step S61, when the user inputs an instruction for starting the heating operation while inputting the set temperature by using an input button (not shown) of thecontroller 90, the control unit 11 receives the information on the heating operation instruction, and the room temperature at the start time is received. The detection temperature of the sensor 43 and the detection temperature of the outdoor air temperature sensor 29b are acquired.
In step S62, the control part 11 judges whether it is the temperature condition which can perform heating operation based on the indoor temperature and outdoor temperature which were acquired by step S61. Specifically, when the relationship between the indoor temperature and the outdoor temperature as shown in FIG. 24 is satisfied, it is determined that the heating operation is possible, and the process proceeds to step S63. Here, the range in which the heating operation can be performed is an environment in which the outdoor air temperature is cooler than the indoor air temperature, and the temperature condition range in which the refrigeration cycle of theair conditioner 1 can perform the heating operation in advance. The control unit 11 holds the data shown in FIG.
ステップS61では、コントローラ90の図示しない入力ボタンによって、ユーザが設定温度を入力しつつ暖房運転開始の指示を入力すると、制御部11は、この暖房運転指示の情報を受け付けて、開始時点における室内温度センサ43の検知温度および室外気温センサ29bの検知温度を取得する。
ステップS62では、制御部11は、ステップS61で取得した室内温度および室外温度に基づいて、暖房運転を行える温度状況であるか否かを判断する。具体的には、図24に示すような室内温度と室外温度との関係を満たす場合には、暖房運転可能と判断して、ステップS63に移行する。ここで、暖房運転可能な範囲は、室外気温が、室内気温よりも冷え込んでいる環境であって、かつ、空気調和装置1の冷凍サイクルに暖房運転を実行させることが可能な温度条件範囲として予め定められており、制御部11が図24に示すデータを保持している。 In the introduction determination control, the following processes are performed as shown in the flowchart of FIG.
In step S61, when the user inputs an instruction for starting the heating operation while inputting the set temperature by using an input button (not shown) of the
In step S62, the control part 11 judges whether it is the temperature condition which can perform heating operation based on the indoor temperature and outdoor temperature which were acquired by step S61. Specifically, when the relationship between the indoor temperature and the outdoor temperature as shown in FIG. 24 is satisfied, it is determined that the heating operation is possible, and the process proceeds to step S63. Here, the range in which the heating operation can be performed is an environment in which the outdoor air temperature is cooler than the indoor air temperature, and the temperature condition range in which the refrigeration cycle of the
ステップS63では、制御部11は、ステップS61で取得した室内温度および室外温度、および、図24に示す室内温度と室外温度との関係データに基づいて、高温吹出制御を実行可能な温度状況か否かを判断する。具体的には、図24にハッチングで示す高温吹出制御の温度範囲を満たした場合に高温吹出制御を行うと判断し、ステップS65に移行する。高温吹出制御を行わないと判断した場合には、中温吹出制御を行うと判断し、ステップS64に移行する。
ステップS64では、制御部11は、中温吹出制御を開始する。この中央吹出制御では、詳述は避けるが、暖房運転開始後の起動時において、室内熱交温度センサ44の検知温度が、所定温度に達するまで室内ファン42の起動を行わず、所定温度に達した後に室内ファン42の起動を開始する制御である。 In step S63, the control unit 11 determines whether or not the temperature condition is such that the high-temperature blowing control can be performed based on the indoor temperature and the outdoor temperature acquired in step S61 and the relationship data between the indoor temperature and the outdoor temperature illustrated in FIG. Determine whether. Specifically, it is determined that the high temperature blowing control is performed when the temperature range of the high temperature blowing control indicated by hatching in FIG. 24 is satisfied, and the process proceeds to step S65. If it is determined that the high temperature blowing control is not performed, it is determined that the medium temperature blowing control is performed, and the process proceeds to step S64.
In step S64, the control part 11 starts medium temperature blowing control. Although detailed description is avoided in this central blowout control, theindoor fan 42 is not started until the temperature detected by the indoor heat exchanger temperature sensor 44 reaches a predetermined temperature at the start after the heating operation is started, and reaches the predetermined temperature. This is the control for starting the activation of the indoor fan 42 after this.
ステップS64では、制御部11は、中温吹出制御を開始する。この中央吹出制御では、詳述は避けるが、暖房運転開始後の起動時において、室内熱交温度センサ44の検知温度が、所定温度に達するまで室内ファン42の起動を行わず、所定温度に達した後に室内ファン42の起動を開始する制御である。 In step S63, the control unit 11 determines whether or not the temperature condition is such that the high-temperature blowing control can be performed based on the indoor temperature and the outdoor temperature acquired in step S61 and the relationship data between the indoor temperature and the outdoor temperature illustrated in FIG. Determine whether. Specifically, it is determined that the high temperature blowing control is performed when the temperature range of the high temperature blowing control indicated by hatching in FIG. 24 is satisfied, and the process proceeds to step S65. If it is determined that the high temperature blowing control is not performed, it is determined that the medium temperature blowing control is performed, and the process proceeds to step S64.
In step S64, the control part 11 starts medium temperature blowing control. Although detailed description is avoided in this central blowout control, the
ステップS65では、制御部11は、デフロスト処理後の運転開始であるか否かを判断する。ここで、デフロスト処理後の運転開始であれば、ステップS66に移行する。デフロスト処理後の運転開始ではなければステップS67に移行する。
ステップS66では、制御部11は、後述するサーモオン制御を開始する。
ステップS67では、制御部11は、サーモオン制御を開始するためのサーモオン条件よりも負荷が大きい状況であるか否かを判断する。ここで、サーモオン条件よりも負荷が大きい状況とは、設定温度-室内温度センサ43の検知温度-0.5℃が1より大きいという条件を満たす状況である。すなわち、サーモオン制御は、室内温度がある程度暖まっている状況での運転再開処理である。これに対して、暖房運転の起動時は、室内温度が低く、設定温度との乖離度合いが大きく、ユーザがより暖かい調和空気の供給を望む環境での運転開始処理が行われる。ここで、サーモオン条件よりも負荷が大きい状況であると判断した場合にはステップS68に移行する。サーモオン条件よりも負荷が大きい状況ではないと判断した場合には、ステップS66に移行する。 In step S65, the control unit 11 determines whether or not the operation is started after the defrost process. Here, if it is the operation start after a defrost process, it will transfer to step S66. If the operation is not started after the defrost process, the process proceeds to step S67.
In step S66, the control unit 11 starts thermo-on control described later.
In step S67, the control unit 11 determines whether or not the load is larger than the thermo-on condition for starting the thermo-on control. Here, the situation where the load is greater than the thermo-on condition is a condition where the set temperature−the detected temperature of theroom temperature sensor 43−0.5 ° C. is greater than 1. That is, the thermo-on control is an operation resumption process in a situation where the room temperature is warmed to some extent. On the other hand, when the heating operation is started, an operation start process is performed in an environment where the room temperature is low, the degree of deviation from the set temperature is large, and the user desires to supply warmer conditioned air. If it is determined that the load is greater than the thermo-on condition, the process proceeds to step S68. If it is determined that the load is not greater than the thermo-on condition, the process proceeds to step S66.
ステップS66では、制御部11は、後述するサーモオン制御を開始する。
ステップS67では、制御部11は、サーモオン制御を開始するためのサーモオン条件よりも負荷が大きい状況であるか否かを判断する。ここで、サーモオン条件よりも負荷が大きい状況とは、設定温度-室内温度センサ43の検知温度-0.5℃が1より大きいという条件を満たす状況である。すなわち、サーモオン制御は、室内温度がある程度暖まっている状況での運転再開処理である。これに対して、暖房運転の起動時は、室内温度が低く、設定温度との乖離度合いが大きく、ユーザがより暖かい調和空気の供給を望む環境での運転開始処理が行われる。ここで、サーモオン条件よりも負荷が大きい状況であると判断した場合にはステップS68に移行する。サーモオン条件よりも負荷が大きい状況ではないと判断した場合には、ステップS66に移行する。 In step S65, the control unit 11 determines whether or not the operation is started after the defrost process. Here, if it is the operation start after a defrost process, it will transfer to step S66. If the operation is not started after the defrost process, the process proceeds to step S67.
In step S66, the control unit 11 starts thermo-on control described later.
In step S67, the control unit 11 determines whether or not the load is larger than the thermo-on condition for starting the thermo-on control. Here, the situation where the load is greater than the thermo-on condition is a condition where the set temperature−the detected temperature of the
ステップS68では、制御部11は、高温吹出制御を開始し、導入判定処理を終了する。この高温吹出制御は、電磁誘導過熱制御においても述べたように、暖房運転開始後の起動時において、圧力センサ29aの検知圧力が目標高圧圧力Phに達するまで室内ファン42の起動を行わず、目標高圧圧力Phに達した後に室内ファン42の起動を開始する制御である。
(vii)起動時能力増大制御
上述した急速高圧化処理では、暖房運転開始から圧力センサ29aの検知圧力が目標高圧圧力Phに達するまでに要する時間を短縮化させるための制御を説明したが、この起動時能力増大制御では、上述の高温吹出制御が開始された場合に、目標高圧圧力Phに達する時間を短縮化させるために、室外電動膨張弁24の開度を絞り気味にする起動時固定開度制御を行った後、徐々に室外電動膨張弁24の開度を圧縮機21の周波数の上昇とともに上げていく制御である。 In step S68, the control part 11 starts high temperature blowing control, and complete | finishes an introduction determination process. As described in the electromagnetic induction overheat control, the high-temperature blowout control does not start theindoor fan 42 until the detected pressure of the pressure sensor 29a reaches the target high pressure Ph at the start after the heating operation is started. In this control, the indoor fan 42 is started after the high pressure Ph is reached.
(Vii) Start-up capacity increase control In the rapid pressure increase process described above, the control for shortening the time required from the start of heating operation until the detected pressure of thepressure sensor 29a reaches the target high pressure Ph has been described. In the start-up capacity increase control, when the above-described high-temperature blowing control is started, in order to shorten the time to reach the target high-pressure pressure Ph, the opening degree of the outdoor electric expansion valve 24 is narrowed to be fixed at start-up. After the degree control is performed, the opening degree of the outdoor electric expansion valve 24 is gradually increased as the frequency of the compressor 21 increases.
(vii)起動時能力増大制御
上述した急速高圧化処理では、暖房運転開始から圧力センサ29aの検知圧力が目標高圧圧力Phに達するまでに要する時間を短縮化させるための制御を説明したが、この起動時能力増大制御では、上述の高温吹出制御が開始された場合に、目標高圧圧力Phに達する時間を短縮化させるために、室外電動膨張弁24の開度を絞り気味にする起動時固定開度制御を行った後、徐々に室外電動膨張弁24の開度を圧縮機21の周波数の上昇とともに上げていく制御である。 In step S68, the control part 11 starts high temperature blowing control, and complete | finishes an introduction determination process. As described in the electromagnetic induction overheat control, the high-temperature blowout control does not start the
(Vii) Start-up capacity increase control In the rapid pressure increase process described above, the control for shortening the time required from the start of heating operation until the detected pressure of the
起動時能力増大制御では、図25のフローチャートに示すように、以下の各処理が行われる。
ステップS71では、制御部11は、室外電動膨張弁24の開度を固定開度DSに固定したままで(図22の点g参照)圧縮機21の周波数を、暖房運転開始時から所定時間の2分以内に所定最低周波数Qminに到達させる起動時固定開度制御を行う。
この固定開度DSは、室外電動膨張弁24の開度は、冷媒状態対応開度よりも狭くなるように絞った開度である。この冷媒状態対応開度とは、起動時固定開度制御を行う際の各条件と同一条件下で、後述する起動後暖房運転制御を行ったと仮定した場合に制御される室外電動膨張弁24の開度である。この起動時固定開度制御を行う際の各条件とは、室外電動膨張弁24の開度以外の冷凍サイクルの運転条件(圧縮機21の周波数、室内ファン42の風量、室外ファン26の風量等)および冷凍サイクルの周囲温度条件(室外温度条件、室内温度条件等)である。なお、起動後暖房運転制御は、室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度が所定値で一定となるように、冷凍サイクルの冷媒状態が安定化するように、室外電動膨張弁24の開度を調整する制御である。 In the startup capacity increase control, as shown in the flowchart of FIG. 25, the following processes are performed.
In step S71, the control unit 11 keeps the opening degree of the outdoorelectric expansion valve 24 fixed at the fixed opening degree DS (see point g in FIG. 22), and sets the frequency of the compressor 21 for a predetermined time from the start of the heating operation. A fixed opening degree control at start-up is performed to reach the predetermined minimum frequency Qmin within 2 minutes.
This fixed opening DS is an opening that is throttled so that the opening of the outdoorelectric expansion valve 24 becomes narrower than the opening corresponding to the refrigerant state. This refrigerant state-corresponding opening degree is the value of the outdoor electric expansion valve 24 that is controlled when it is assumed that after-starting heating operation control to be described later is performed under the same conditions as the conditions at the time of starting fixed opening degree control. Opening degree. The conditions at the time of starting fixed opening control are the operating conditions of the refrigeration cycle other than the opening of the outdoor electric expansion valve 24 (the frequency of the compressor 21, the air volume of the indoor fan 42, the air volume of the outdoor fan 26, etc. ) And ambient temperature conditions (outdoor temperature conditions, indoor temperature conditions, etc.) of the refrigeration cycle. The post-startup heating operation control is performed so that the refrigerant state of the refrigeration cycle is stabilized so that the degree of supercooling of the refrigerant flowing on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41 is constant at a predetermined value. This is control for adjusting the opening degree of the outdoor electric expansion valve 24.
ステップS71では、制御部11は、室外電動膨張弁24の開度を固定開度DSに固定したままで(図22の点g参照)圧縮機21の周波数を、暖房運転開始時から所定時間の2分以内に所定最低周波数Qminに到達させる起動時固定開度制御を行う。
この固定開度DSは、室外電動膨張弁24の開度は、冷媒状態対応開度よりも狭くなるように絞った開度である。この冷媒状態対応開度とは、起動時固定開度制御を行う際の各条件と同一条件下で、後述する起動後暖房運転制御を行ったと仮定した場合に制御される室外電動膨張弁24の開度である。この起動時固定開度制御を行う際の各条件とは、室外電動膨張弁24の開度以外の冷凍サイクルの運転条件(圧縮機21の周波数、室内ファン42の風量、室外ファン26の風量等)および冷凍サイクルの周囲温度条件(室外温度条件、室内温度条件等)である。なお、起動後暖房運転制御は、室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度が所定値で一定となるように、冷凍サイクルの冷媒状態が安定化するように、室外電動膨張弁24の開度を調整する制御である。 In the startup capacity increase control, as shown in the flowchart of FIG. 25, the following processes are performed.
In step S71, the control unit 11 keeps the opening degree of the outdoor
This fixed opening DS is an opening that is throttled so that the opening of the outdoor
ステップS72では、制御部11は、圧縮機21の周波数が所定最低周波数Qminに達した状態で、暖房運転の開始からタイマ95によってカウントされている暖房開始経過時間の2分が経過したか否かを判断する。所定最低周波数Qminに達した状態で、暖房運転開始時から暖房開始経過時間の2分が経過している場合には、ステップS73に移行する。所定最低周波数Qminに達していないもしくは暖房運転開始時から暖房開始経過時間の2分が経過していない場合には、ステップS72を繰り返す。
ステップS73では、制御部11は、室外電動膨張弁24の開度を固定開度DSより大きな第1開度D1に上げると同時に、圧縮機21の周波数を第1周波数R1に上げ始める。
ステップS74では、制御部11は、圧縮機21の周波数が第1周波数R1となるように制御しつつ、室外電動膨張弁24の開度を室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度が所定値で一定となるように制御する。 In step S72, the control unit 11 determines whether or not two minutes of the heating start elapsed time counted by thetimer 95 has elapsed since the start of the heating operation in a state where the frequency of the compressor 21 has reached the predetermined minimum frequency Qmin. Judging. When two minutes of the heating start elapsed time has elapsed since the start of the heating operation in a state where the predetermined minimum frequency Qmin has been reached, the process proceeds to step S73. If the predetermined minimum frequency Qmin has not been reached or if 2 minutes of the heating start elapsed time has not elapsed since the start of the heating operation, step S72 is repeated.
In step S73, the controller 11 starts raising the frequency of thecompressor 21 to the first frequency R1 at the same time as raising the opening of the outdoor electric expansion valve 24 to the first opening D1 larger than the fixed opening DS.
In step S74, the control unit 11 controls the frequency of thecompressor 21 to be the first frequency R1, and the opening degree of the outdoor electric expansion valve 24 flows on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41. Control is performed so that the degree of supercooling of the refrigerant becomes constant at a predetermined value.
ステップS73では、制御部11は、室外電動膨張弁24の開度を固定開度DSより大きな第1開度D1に上げると同時に、圧縮機21の周波数を第1周波数R1に上げ始める。
ステップS74では、制御部11は、圧縮機21の周波数が第1周波数R1となるように制御しつつ、室外電動膨張弁24の開度を室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度が所定値で一定となるように制御する。 In step S72, the control unit 11 determines whether or not two minutes of the heating start elapsed time counted by the
In step S73, the controller 11 starts raising the frequency of the
In step S74, the control unit 11 controls the frequency of the
ステップS75では、制御部11は、圧縮機21の周波数が、第1周波数R1に達したか否か判断する。第1周波数R1に達している場合には、ステップS76に移行する。第1周波数R1に達していない場合には、第1周波数R1に達するのを待つ。
ステップS76では、制御部11は、室外電動膨張弁24の開度を第1開度D1より大きな第2開度D2に上げると同時に、圧縮機21の周波数を第2周波数R2に上げ始める。以下、このような制御を、圧縮機21の周波数が最大周波数Rmaxとなり、かつ、室外電動膨張弁24の開度が最大開度Dmaxとなるまで繰り返す(図22の点m参照)。圧縮機21の周波数が最大周波数Rmaxとなり、かつ、室外電動膨張弁24の開度が最大開度Dmaxとなった場合には、ステップS77に移行する。圧縮機21の周波数が最大周波数Rmaxとなっていないか、もしくは、室外電動膨張弁24の開度が最大開度Dmaxとなっていない場合には、ステップS76を繰り返す。 In step S75, the control unit 11 determines whether or not the frequency of thecompressor 21 has reached the first frequency R1. When the frequency reaches the first frequency R1, the process proceeds to step S76. If it has not reached the first frequency R1, it waits to reach the first frequency R1.
In step S76, the control unit 11 starts increasing the frequency of thecompressor 21 to the second frequency R2 at the same time as increasing the opening of the outdoor electric expansion valve 24 to the second opening D2 larger than the first opening D1. Hereinafter, such control is repeated until the frequency of the compressor 21 reaches the maximum frequency Rmax and the opening degree of the outdoor electric expansion valve 24 reaches the maximum opening degree Dmax (see point m in FIG. 22). When the frequency of the compressor 21 becomes the maximum frequency Rmax and the opening degree of the outdoor electric expansion valve 24 becomes the maximum opening degree Dmax, the process proceeds to step S77. When the frequency of the compressor 21 is not the maximum frequency Rmax or when the opening degree of the outdoor electric expansion valve 24 is not the maximum opening degree Dmax, step S76 is repeated.
ステップS76では、制御部11は、室外電動膨張弁24の開度を第1開度D1より大きな第2開度D2に上げると同時に、圧縮機21の周波数を第2周波数R2に上げ始める。以下、このような制御を、圧縮機21の周波数が最大周波数Rmaxとなり、かつ、室外電動膨張弁24の開度が最大開度Dmaxとなるまで繰り返す(図22の点m参照)。圧縮機21の周波数が最大周波数Rmaxとなり、かつ、室外電動膨張弁24の開度が最大開度Dmaxとなった場合には、ステップS77に移行する。圧縮機21の周波数が最大周波数Rmaxとなっていないか、もしくは、室外電動膨張弁24の開度が最大開度Dmaxとなっていない場合には、ステップS76を繰り返す。 In step S75, the control unit 11 determines whether or not the frequency of the
In step S76, the control unit 11 starts increasing the frequency of the
ステップS77では、制御部11は、圧縮機21の周波数を最大周波数Rmaxで維持しつつ、室外電動膨張弁24の開度を、室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度が所定値で一定となるように制御する。
なお、以上の起動時能力増大制御は、暖房運転開始後に始めて室内温度センサ43の検知温度が設定温度に到達するまで行われ、到達後は起動後暖房運転制御が行われつつ、再度暖房運転起動が行われるまでは起動時能力増大制御は行われない。
これにより、徐々に冷凍サイクルの冷媒循環量を上昇させていくことで、冷凍能力を徐々に上げていくことができる。そして、冷凍能力を一度で最大まで上げてしまうのではなく、段階的に上げていくことで、圧縮機21が液状態の冷媒を吸入してしまったり、圧力センサ29aの検知圧力が異常上昇してしまう状態を回避することができる。
(viii)高温吹出開始制御
暖房運転開始時の室内温度は一般に低いため、室内ファン42を起動時の最初から駆動させると、室内に冷たい空気による空気流れが形成されてしまうことが多い。このため、高温吹出開始制御を行うことで、暖房運転開始後、始めに室内機4から室内に供給される調和空気の温度をある程度高い温度として、ユーザへ与える不快感を低減させる。 In step S77, the control unit 11 maintains the frequency of thecompressor 21 at the maximum frequency Rmax, and sets the degree of opening of the outdoor electric expansion valve 24 so that the amount of refrigerant flowing on the outdoor electric expansion valve 24 side of the indoor heat exchanger 41 is excessive. The degree of cooling is controlled to be constant at a predetermined value.
It should be noted that the above startup capacity increase control is performed until the temperature detected by theindoor temperature sensor 43 reaches the set temperature for the first time after the heating operation is started, and after that, the heating operation is started again while the heating operation control is performed after the startup. The start-up capacity increase control is not performed until is performed.
Thus, the refrigeration capacity can be gradually increased by gradually increasing the refrigerant circulation amount of the refrigeration cycle. Then, the refrigeration capacity is not increased to the maximum at a time, but is gradually increased, so that thecompressor 21 sucks the refrigerant in the liquid state, or the detected pressure of the pressure sensor 29a increases abnormally. Can be avoided.
(Viii) High-temperature blowing start control Since the indoor temperature at the start of heating operation is generally low, when theindoor fan 42 is driven from the beginning at the time of activation, an air flow due to cold air is often formed in the room. For this reason, by performing the high temperature blowing start control, after starting the heating operation, the temperature of the conditioned air supplied from the indoor unit 4 to the room is first increased to a certain level to reduce discomfort to the user.
なお、以上の起動時能力増大制御は、暖房運転開始後に始めて室内温度センサ43の検知温度が設定温度に到達するまで行われ、到達後は起動後暖房運転制御が行われつつ、再度暖房運転起動が行われるまでは起動時能力増大制御は行われない。
これにより、徐々に冷凍サイクルの冷媒循環量を上昇させていくことで、冷凍能力を徐々に上げていくことができる。そして、冷凍能力を一度で最大まで上げてしまうのではなく、段階的に上げていくことで、圧縮機21が液状態の冷媒を吸入してしまったり、圧力センサ29aの検知圧力が異常上昇してしまう状態を回避することができる。
(viii)高温吹出開始制御
暖房運転開始時の室内温度は一般に低いため、室内ファン42を起動時の最初から駆動させると、室内に冷たい空気による空気流れが形成されてしまうことが多い。このため、高温吹出開始制御を行うことで、暖房運転開始後、始めに室内機4から室内に供給される調和空気の温度をある程度高い温度として、ユーザへ与える不快感を低減させる。 In step S77, the control unit 11 maintains the frequency of the
It should be noted that the above startup capacity increase control is performed until the temperature detected by the
Thus, the refrigeration capacity can be gradually increased by gradually increasing the refrigerant circulation amount of the refrigeration cycle. Then, the refrigeration capacity is not increased to the maximum at a time, but is gradually increased, so that the
(Viii) High-temperature blowing start control Since the indoor temperature at the start of heating operation is generally low, when the
さらに、室内に提供できる調和空気の温度として、十分高い温度の調和空気を供給できる状態を、暖房運転開始からできるだけ早い段階で実現できるように、室内ファン42の駆動を停止状態として維持し、室内熱交換器41における凝縮能力を低く抑える。これにより、圧縮機21から室内熱交換器41に向かう冷媒圧力を迅速に高め、高温高圧化させる。
高温吹出開始制御では、図26、27のフローチャートに示すように、以下の各処理が行われる。
ステップS81では、制御部11は、室内ファン42が停止されている状態を確認し、停止状態で維持する。
ステップS82では、制御部11は、圧力センサ29aの検知圧力が、目標高圧圧力Phに達したか否かを判断する。目標高圧圧力Phに達している場合には(図22の点f参照)、ステップS86に移行する。目標高圧圧力Phに達していない場合には、ステップS83に移行する。 Furthermore, the drive of theindoor fan 42 is maintained in a stopped state so that a state where conditioned air having a sufficiently high temperature can be supplied as early as possible from the start of the heating operation is maintained as the temperature of the conditioned air that can be provided indoors. The condensation capacity in the heat exchanger 41 is kept low. Thereby, the refrigerant | coolant pressure which goes to the indoor heat exchanger 41 from the compressor 21 is raised rapidly, and it is made high temperature high pressure.
In the high temperature blowing start control, as shown in the flowcharts of FIGS. 26 and 27, the following processes are performed.
In step S81, the control unit 11 confirms the state in which theindoor fan 42 is stopped and maintains it in the stopped state.
In step S82, the controller 11 determines whether or not the detected pressure of thepressure sensor 29a has reached the target high pressure Ph. If the target high pressure Ph has been reached (see point f in FIG. 22), the process proceeds to step S86. If the target high pressure Ph has not been reached, the process proceeds to step S83.
高温吹出開始制御では、図26、27のフローチャートに示すように、以下の各処理が行われる。
ステップS81では、制御部11は、室内ファン42が停止されている状態を確認し、停止状態で維持する。
ステップS82では、制御部11は、圧力センサ29aの検知圧力が、目標高圧圧力Phに達したか否かを判断する。目標高圧圧力Phに達している場合には(図22の点f参照)、ステップS86に移行する。目標高圧圧力Phに達していない場合には、ステップS83に移行する。 Furthermore, the drive of the
In the high temperature blowing start control, as shown in the flowcharts of FIGS. 26 and 27, the following processes are performed.
In step S81, the control unit 11 confirms the state in which the
In step S82, the controller 11 determines whether or not the detected pressure of the
ステップS83では、制御部11は、暖房運転開始時から所定固定起動時間Txとしての2分30秒が経過したか否かを判断する。所定固定起動時間が経過している場合には、圧力センサ29aの検知圧力が目標高圧圧力Phに至っていなくても、ステップS86に移行する。所定固定起動時間が経過していない場合には、ステップS84に移行する。これにより、暖房運転が開始した後、いつまで経っても温風が吹き出されない状態が続くことを回避することができる。
ステップS84では、制御部11は、吐出温度センサ29dが検知する吐出管Aを通過する冷媒温度が所定吐出温度Tpである110度を超えたか否かを判断する。所定吐出温度Tpを超えている場合には、圧力センサ29aの検知圧力が目標高圧圧力Phに至っていなくても、ステップS86に移行する。所定吐出温度Tpを超えていない場合には、ステップS85に移行する。これにより、高圧の異常上昇を防止でき、機器への負担を防止しつつ、冷凍機油の劣化を回避することができる。 In step S83, the control unit 11 determines whether or not 2 minutes 30 seconds as the predetermined fixed activation time Tx has elapsed since the start of the heating operation. If the predetermined fixed activation time has elapsed, the process proceeds to step S86 even if the pressure detected by thepressure sensor 29a has not reached the target high pressure Ph. If the predetermined fixed activation time has not elapsed, the process proceeds to step S84. Thereby, it can avoid that the state where warm air is not blown out continues even if it passes after heating operation starts.
In step S84, the controller 11 determines whether or not the temperature of the refrigerant passing through the discharge pipe A detected by thedischarge temperature sensor 29d has exceeded a predetermined discharge temperature Tp of 110 degrees. If it exceeds the predetermined discharge temperature Tp, the process proceeds to step S86 even if the detected pressure of the pressure sensor 29a does not reach the target high pressure Ph. When it does not exceed the predetermined discharge temperature Tp, the process proceeds to step S85. Thereby, the abnormal rise of a high voltage | pressure can be prevented and deterioration of refrigerating machine oil can be avoided, preventing the burden to an apparatus.
ステップS84では、制御部11は、吐出温度センサ29dが検知する吐出管Aを通過する冷媒温度が所定吐出温度Tpである110度を超えたか否かを判断する。所定吐出温度Tpを超えている場合には、圧力センサ29aの検知圧力が目標高圧圧力Phに至っていなくても、ステップS86に移行する。所定吐出温度Tpを超えていない場合には、ステップS85に移行する。これにより、高圧の異常上昇を防止でき、機器への負担を防止しつつ、冷凍機油の劣化を回避することができる。 In step S83, the control unit 11 determines whether or not 2 minutes 30 seconds as the predetermined fixed activation time Tx has elapsed since the start of the heating operation. If the predetermined fixed activation time has elapsed, the process proceeds to step S86 even if the pressure detected by the
In step S84, the controller 11 determines whether or not the temperature of the refrigerant passing through the discharge pipe A detected by the
ステップS85では、制御部11は、圧縮機電力検知部29fが検知する電力供給部21eによる供給電力量が所定電力値Ehを超えているか否かを判断する。所定電力値Ehを超えている場合には、圧力センサ29aの検知圧力が目標高圧圧力Phに至っていなくても、ステップS86に移行する。所定電力値Ehを超えていない場合には、ステップS82に戻る。これにより、電装品の損傷の発生を回避することができる。
なお、室内ファン42は、微弱な風量である「LL」、弱い風量である「L」、中程度の風量である「M」および最大風量である「H」の順に4段階の風量に設定することができる
ステップS86では、制御部11は、室内ファン42を、微弱な風量「LL」で駆動させると同時に、室内ファン起動後タイマをカウントし始める。(図22の点hもしくはl参照)。そして、ここでは、最も小さな風量である「LL」での起動を開始させる。このように、室内熱交換器41には、最も微弱な「LL」程度の風量しか与えられないため、圧力センサ29aが検知する圧力が急激に下がることがなく、室内に暖かい空気の供給を続けることができる。 In step S85, the control unit 11 determines whether or not the amount of power supplied by thepower supply unit 21e detected by the compressor power detection unit 29f exceeds a predetermined power value Eh. If it exceeds the predetermined power value Eh, the process proceeds to step S86 even if the detected pressure of the pressure sensor 29a does not reach the target high pressure Ph. If the predetermined power value Eh is not exceeded, the process returns to step S82. Thereby, generation | occurrence | production of the damage of an electrical component can be avoided.
Theindoor fan 42 is set to four stages of airflow in the order of “LL”, which is a weak airflow, “L”, which is a weak airflow, “M” which is a medium airflow, and “H” which is a maximum airflow. In step S86, the control unit 11 drives the indoor fan 42 with the weak air volume “LL” and simultaneously starts counting the timer after starting the indoor fan. (See point h or l in FIG. 22). And here, the start with "LL" which is the smallest air volume is started. In this way, the indoor heat exchanger 41 is only given the weakest “LL” air volume, so the pressure detected by the pressure sensor 29a does not drop rapidly, and the supply of warm air to the room continues. be able to.
なお、室内ファン42は、微弱な風量である「LL」、弱い風量である「L」、中程度の風量である「M」および最大風量である「H」の順に4段階の風量に設定することができる
ステップS86では、制御部11は、室内ファン42を、微弱な風量「LL」で駆動させると同時に、室内ファン起動後タイマをカウントし始める。(図22の点hもしくはl参照)。そして、ここでは、最も小さな風量である「LL」での起動を開始させる。このように、室内熱交換器41には、最も微弱な「LL」程度の風量しか与えられないため、圧力センサ29aが検知する圧力が急激に下がることがなく、室内に暖かい空気の供給を続けることができる。 In step S85, the control unit 11 determines whether or not the amount of power supplied by the
The
ステップS87では、制御部11は、室内ファン起動後タイマのカウントが30秒以上経過しており所定復帰高圧閾値Pmを超えた状態が10秒以上維持された状態(図22の点n、o参照)になるか、もしくは、暖房運転開始時から10分経過したか否かを判断する。室内ファン起動後タイマのカウントが30秒以上経過しており目標高圧が10秒以上維持された状態になるか、もしくは、暖房運転開始時から10分経過していると判断した場合には、ステップS91に移行する。室内ファン起動後タイマのカウントが30秒以上経過していないかもしくは目標高圧が10秒以上維持されておらず、かつ、暖房運転開始時から10分経過していないと判断した場合には、ステップS88に移行する。ここで、室内ファン起動後タイマのカウントが30秒以上経過するのを待つことで、すぐに制御から抜け出してしまうことがないようにしている。
In step S87, the control unit 11 has maintained the state where the timer count after starting the indoor fan is 30 seconds or more and the predetermined high-pressure threshold Pm is exceeded for 10 seconds or more (see points n and o in FIG. 22). ) Or 10 minutes have passed since the start of heating operation. If it is determined that the timer count has exceeded 30 seconds after the indoor fan has started and the target high pressure has been maintained for 10 seconds or more, or 10 minutes have elapsed since the start of heating operation, The process proceeds to S91. If it is determined that the timer count has not elapsed for 30 seconds or more after starting the indoor fan, or the target high pressure has not been maintained for 10 seconds or more, and 10 minutes have not elapsed since the start of heating operation, The process proceeds to S88. Here, by waiting for the timer to count for 30 seconds or more after the indoor fan is activated, it is prevented that the control immediately exits the control.
ステップS88では、制御部11は、室内ファン起動後タイマのカウントで5秒経過する前に圧力センサ29aの検知圧力が所定低圧閾値Plである36kg/cm2未満になるか、もしくは、予め定めた10秒間が経過したか、を判断する。ここで、所定低圧閾値Pl未満になる(図22の点i参照)かもしくは10秒間が経過した場合には、ステップS89に移行する。所定低圧閾値Pl未満にならず10秒間も経過していない場合には、ステップS88を繰り返す。
ステップS89では、制御部11は、室内ファン42を停止させて、風量を「0」にし、室内ファン起動後タイマをリセットする(図22の点j参照)。
ステップS90では、制御部11は、圧力センサ29aの検知圧力が所定復帰高圧閾値Pmである37kg/cm2より大きくなるか(図22の点k参照)、もしくは、室内ファン42が停止した後予め定めた10秒間が経過したか否かを判断する。所定復帰高圧閾値Pmより大きくなるかもしくは室内ファン42が停止した後10秒間が経過した場合には、ステップS86に移行する。所定復帰高圧閾値Pmより大きくなく室内ファン42が停止した後10秒間が経過していない場合には、ステップS90を繰り返す。 In step S88, the control unit 11 determines whether the detected pressure of thepressure sensor 29a is less than the predetermined low pressure threshold Pl, which is less than 36 kg / cm 2 before 5 seconds have elapsed after the indoor fan is started, or is set in advance. It is determined whether 10 seconds have elapsed. Here, if it is less than the predetermined low pressure threshold Pl (see point i in FIG. 22) or 10 seconds have elapsed, the process proceeds to step S89. If it is not less than the predetermined low pressure threshold value Pl and 10 seconds have not elapsed, step S88 is repeated.
In step S89, the control unit 11 stops theindoor fan 42, sets the air volume to “0”, and resets the timer after starting the indoor fan (see point j in FIG. 22).
In step S90, the control unit 11 determines whether the pressure detected by thepressure sensor 29a is larger than 37 kg / cm 2 which is the predetermined return high pressure threshold Pm (see point k in FIG. 22) or after the indoor fan 42 has stopped. It is determined whether or not the predetermined 10 seconds have elapsed. When it becomes larger than the predetermined return high pressure threshold Pm or when 10 seconds have passed after the indoor fan 42 has stopped, the process proceeds to step S86. If it is not greater than the predetermined return high pressure threshold Pm and 10 seconds have not elapsed after the indoor fan 42 has stopped, step S90 is repeated.
ステップS89では、制御部11は、室内ファン42を停止させて、風量を「0」にし、室内ファン起動後タイマをリセットする(図22の点j参照)。
ステップS90では、制御部11は、圧力センサ29aの検知圧力が所定復帰高圧閾値Pmである37kg/cm2より大きくなるか(図22の点k参照)、もしくは、室内ファン42が停止した後予め定めた10秒間が経過したか否かを判断する。所定復帰高圧閾値Pmより大きくなるかもしくは室内ファン42が停止した後10秒間が経過した場合には、ステップS86に移行する。所定復帰高圧閾値Pmより大きくなく室内ファン42が停止した後10秒間が経過していない場合には、ステップS90を繰り返す。 In step S88, the control unit 11 determines whether the detected pressure of the
In step S89, the control unit 11 stops the
In step S90, the control unit 11 determines whether the pressure detected by the
ステップS91では、制御部11は、高温吹出開始制御を終了し起動後暖房運転制御を開始するとともに、室内ファン42の風量を「LL」に制限することなく、「L」以上の風量を実現できる状態にする(図22の点p参照)。
(ix)起動後暖房運転制御
起動後暖房運転制御は、室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度一定制御により、冷凍サイクルの冷媒状態が安定化するように、室外電動膨張弁24の開度を調整する制御である。
起動後暖房運転制御では、図28のフローチャートに示すように、以下の各処理が行われる。
ステップS92では、制御部11は、コントローラ90が、ユーザからの暖房停止指示を受け付けたか否かを判断する。ここで、暖房停止指示を受け付けていたと判断した場合には、起動後暖房運転制御を終了する。暖房停止指示を受け付けていない場合にはステップS93に移行する。 In step S91, the control part 11 complete | finishes high temperature blowing start control, starts heating operation control after starting, and can implement | achieve the air volume more than "L", without restrict | limiting the air volume of theindoor fan 42 to "LL". The state is set (see point p in FIG. 22).
(Ix) Heating operation control after activation Heating operation control after activation is performed so that the refrigerant state of the refrigeration cycle is stabilized by constant control of the degree of supercooling of the refrigerant flowing on the outdoorelectric expansion valve 24 side of the indoor heat exchanger 41. This is control for adjusting the opening degree of the outdoor electric expansion valve 24.
In the post-startup heating operation control, the following processes are performed as shown in the flowchart of FIG.
In step S92, the controller 11 determines whether or not thecontroller 90 has received a heating stop instruction from the user. Here, when it is determined that the heating stop instruction has been received, the heating operation control after the start is ended. When the heating stop instruction has not been received, the process proceeds to step S93.
(ix)起動後暖房運転制御
起動後暖房運転制御は、室内熱交換器41の室外電動膨張弁24側を流れる冷媒の過冷却度一定制御により、冷凍サイクルの冷媒状態が安定化するように、室外電動膨張弁24の開度を調整する制御である。
起動後暖房運転制御では、図28のフローチャートに示すように、以下の各処理が行われる。
ステップS92では、制御部11は、コントローラ90が、ユーザからの暖房停止指示を受け付けたか否かを判断する。ここで、暖房停止指示を受け付けていたと判断した場合には、起動後暖房運転制御を終了する。暖房停止指示を受け付けていない場合にはステップS93に移行する。 In step S91, the control part 11 complete | finishes high temperature blowing start control, starts heating operation control after starting, and can implement | achieve the air volume more than "L", without restrict | limiting the air volume of the
(Ix) Heating operation control after activation Heating operation control after activation is performed so that the refrigerant state of the refrigeration cycle is stabilized by constant control of the degree of supercooling of the refrigerant flowing on the outdoor
In the post-startup heating operation control, the following processes are performed as shown in the flowchart of FIG.
In step S92, the controller 11 determines whether or not the
ステップS93では、制御部11は、室内ファン42の風量を「LL」に制限することなく、コントローラ90でユーザから設定された設定風量として、「L」以上の風量を行う。
ステップS94では、制御部11は、サーモオフ条件が満たされているか否か判断する。具体的には、設定温度-室内温度センサ43の検知温度-0.5℃が1以下になる(図22の点qで室内温度センサ43の検知温度がTyを超えた状態)というサーモオフ条件を満たされているか否か判断する。サーモオフ条件が満たされている場合には、ステップS95に移行する。サーモオフ条件が満たされていない場合には、ステップS94を繰り返す。
ステップS95では、制御部11は、圧縮機21の周波数を最低周波数Qminに落としつつ、室外電動膨張弁24の開度も落とす。 In step S <b> 93, the control unit 11 does not limit the air volume of theindoor fan 42 to “LL”, but performs an air volume of “L” or more as the set air volume set by the user with the controller 90.
In step S94, the control unit 11 determines whether or not the thermo-off condition is satisfied. Specifically, the thermo-off condition that the set temperature−the detected temperature of theindoor temperature sensor 43−0.5 ° C. becomes 1 or less (the detected temperature of the indoor temperature sensor 43 exceeds Ty at the point q in FIG. 22). Determine if it is satisfied. When the thermo-off condition is satisfied, the process proceeds to step S95. If the thermo-off condition is not satisfied, step S94 is repeated.
In step S95, the control unit 11 reduces the opening degree of the outdoorelectric expansion valve 24 while reducing the frequency of the compressor 21 to the minimum frequency Qmin.
ステップS94では、制御部11は、サーモオフ条件が満たされているか否か判断する。具体的には、設定温度-室内温度センサ43の検知温度-0.5℃が1以下になる(図22の点qで室内温度センサ43の検知温度がTyを超えた状態)というサーモオフ条件を満たされているか否か判断する。サーモオフ条件が満たされている場合には、ステップS95に移行する。サーモオフ条件が満たされていない場合には、ステップS94を繰り返す。
ステップS95では、制御部11は、圧縮機21の周波数を最低周波数Qminに落としつつ、室外電動膨張弁24の開度も落とす。 In step S <b> 93, the control unit 11 does not limit the air volume of the
In step S94, the control unit 11 determines whether or not the thermo-off condition is satisfied. Specifically, the thermo-off condition that the set temperature−the detected temperature of the
In step S95, the control unit 11 reduces the opening degree of the outdoor
ステップS96では、制御部11は、サーモオン条件が満たされているか否か判断する。具体的には、設定温度-室内温度センサ43の検知温度が2℃以上になる(図22の点sで室内温度センサ43の検知温度がTzを下回った状態)というサーモオン条件を満たされているか否か判断する。サーモオン条件が満たされている場合には、ステップS97に移行する。サーモオン条件が満たされていない場合には、ステップS96を繰り返す。
ステップS97では、制御部11は、圧縮機21の周波数を上げていきつつ、室外電動膨張弁24の開度を上げていく制御を行い、ステップS92に戻って繰り返す。なお、この時は、高温吹出開始制御のような運転は行わない。既に室内が設定温度近くになっており、十分に暖まっているからである。
<本実施形態の空気調和装置1の特徴>
空気調和装置1では、室外電動膨張弁24の開度を絞り気味にする起動時固定開度制御を行うことで、暖房運転開始から圧力センサ29aの検知圧力が目標高圧圧力Phに達するまでに要する時間を短縮化させることができている。 In step S96, the control unit 11 determines whether or not the thermo-on condition is satisfied. Specifically, whether the thermo-on condition that the detected temperature of the set temperature−theindoor temperature sensor 43 is 2 ° C. or higher (the detected temperature of the indoor temperature sensor 43 is lower than Tz at the point s in FIG. 22) is satisfied. Judge whether or not. If the thermo-on condition is satisfied, the process proceeds to step S97. If the thermo-on condition is not satisfied, step S96 is repeated.
In step S97, the control part 11 performs control which raises the opening degree of the outdoorelectric expansion valve 24, raising the frequency of the compressor 21, and returns to step S92 and repeats. At this time, the operation such as the high temperature blowing start control is not performed. This is because the room is already close to the set temperature and is sufficiently warm.
<Characteristics of theair conditioner 1 of the present embodiment>
In theair conditioner 1, it is necessary for the detected pressure of the pressure sensor 29 a to reach the target high pressure Ph from the start of the heating operation by performing a fixed opening degree control at start-up that makes the opening degree of the outdoor electric expansion valve 24 narrow. The time can be shortened.
ステップS97では、制御部11は、圧縮機21の周波数を上げていきつつ、室外電動膨張弁24の開度を上げていく制御を行い、ステップS92に戻って繰り返す。なお、この時は、高温吹出開始制御のような運転は行わない。既に室内が設定温度近くになっており、十分に暖まっているからである。
<本実施形態の空気調和装置1の特徴>
空気調和装置1では、室外電動膨張弁24の開度を絞り気味にする起動時固定開度制御を行うことで、暖房運転開始から圧力センサ29aの検知圧力が目標高圧圧力Phに達するまでに要する時間を短縮化させることができている。 In step S96, the control unit 11 determines whether or not the thermo-on condition is satisfied. Specifically, whether the thermo-on condition that the detected temperature of the set temperature−the
In step S97, the control part 11 performs control which raises the opening degree of the outdoor
<Characteristics of the
In the
このように、目標高圧圧力Phに達するまでに要する時間を短縮化させつつも、起動時能力増大制御を行うことで、徐々に室外電動膨張弁24の開度を圧縮機21の周波数の上昇とともに上げていき、循環量を増大させることで能力を確保していくことができている。このように急激に能力を上げるのではなく、段階的に上げることで、圧縮機21が液冷媒を吸入してしまったり高圧側圧力が異常上昇してしまうことを回避することができている。
<他の実施形態>
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(A)
上記実施形態では、冷凍サイクルの冷媒状態の安定化を過冷却度一定制御により行う場合について例に挙げて説明した。 As described above, the opening time of the outdoorelectric expansion valve 24 is gradually increased as the frequency of the compressor 21 is increased by performing start-up capacity increase control while reducing the time required to reach the target high pressure Ph. The capacity can be secured by increasing the circulation amount. Thus, it is possible to prevent the compressor 21 from sucking the liquid refrigerant or abnormally increasing the high-pressure side pressure by increasing the performance stepwise rather than abruptly.
<Other embodiments>
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
(A)
In the said embodiment, the case where stabilization of the refrigerant | coolant state of a refrigerating cycle was performed by supercooling degree constant control was mentioned as an example, and was demonstrated.
<他の実施形態>
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(A)
上記実施形態では、冷凍サイクルの冷媒状態の安定化を過冷却度一定制御により行う場合について例に挙げて説明した。 As described above, the opening time of the outdoor
<Other embodiments>
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
(A)
In the said embodiment, the case where stabilization of the refrigerant | coolant state of a refrigerating cycle was performed by supercooling degree constant control was mentioned as an example, and was demonstrated.
しかし、本発明はこれに限られるものではない。
例えば、過冷却度をある一定値に保つのではなく、ある範囲内に維持する制御を行うようにしてもよい。
(B)
上記実施形態では、冷凍サイクルの冷媒状態の安定化を過冷却度一定制御により行う場合について例に挙げて説明した。
しかし、本発明はこれに限られるものではない。
例えば、冷凍サイクルにおける冷媒の分布状態の変化の程度を、所定分布状態で、もしくは、所定分布範囲内で所定時間の間維持させる制御を行うようにしてもよい。この冷媒分布状態の検知としては、例えば、冷凍サイクルの凝縮器にサイトグラスを設けておく等して冷媒の液面を把握することで冷媒分布状態を把握し、この分布状態が所定分布状態もしくは所定分布範囲内となるように行われる安定化の制御であってもよい。 However, the present invention is not limited to this.
For example, the supercooling degree may be controlled not to be maintained at a certain value but to be within a certain range.
(B)
In the said embodiment, the case where stabilization of the refrigerant | coolant state of a refrigerating cycle was performed by supercooling degree constant control was mentioned as an example, and was demonstrated.
However, the present invention is not limited to this.
For example, the degree of change in the refrigerant distribution state in the refrigeration cycle may be controlled to be maintained for a predetermined time in a predetermined distribution state or within a predetermined distribution range. As the detection of the refrigerant distribution state, for example, the refrigerant distribution state is grasped by grasping the liquid level of the refrigerant by, for example, providing a sight glass in the condenser of the refrigeration cycle, and this distribution state is a predetermined distribution state or Stabilization control may be performed so as to be within a predetermined distribution range.
例えば、過冷却度をある一定値に保つのではなく、ある範囲内に維持する制御を行うようにしてもよい。
(B)
上記実施形態では、冷凍サイクルの冷媒状態の安定化を過冷却度一定制御により行う場合について例に挙げて説明した。
しかし、本発明はこれに限られるものではない。
例えば、冷凍サイクルにおける冷媒の分布状態の変化の程度を、所定分布状態で、もしくは、所定分布範囲内で所定時間の間維持させる制御を行うようにしてもよい。この冷媒分布状態の検知としては、例えば、冷凍サイクルの凝縮器にサイトグラスを設けておく等して冷媒の液面を把握することで冷媒分布状態を把握し、この分布状態が所定分布状態もしくは所定分布範囲内となるように行われる安定化の制御であってもよい。 However, the present invention is not limited to this.
For example, the supercooling degree may be controlled not to be maintained at a certain value but to be within a certain range.
(B)
In the said embodiment, the case where stabilization of the refrigerant | coolant state of a refrigerating cycle was performed by supercooling degree constant control was mentioned as an example, and was demonstrated.
However, the present invention is not limited to this.
For example, the degree of change in the refrigerant distribution state in the refrigeration cycle may be controlled to be maintained for a predetermined time in a predetermined distribution state or within a predetermined distribution range. As the detection of the refrigerant distribution state, for example, the refrigerant distribution state is grasped by grasping the liquid level of the refrigerant by, for example, providing a sight glass in the condenser of the refrigeration cycle, and this distribution state is a predetermined distribution state or Stabilization control may be performed so as to be within a predetermined distribution range.
さらに、圧縮機21の吸入側を流れる冷媒の過熱度が所定値もしくは所定範囲内で所定時間の間維持されるように制御する場合であってもよい。
(C)
上記実施形態では、サーモオフ条件を満たした場合に、制御部11が圧縮機21の周波数を最低周波数Qminに落とす場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、サーモオフ条件を満たした場合には、制御部11は、圧縮機21の駆動を完全に停止させるようにしてもよい。
(D)
上記実施形態では、所定復帰高圧閾値Pmと、目標高圧圧力Phとが異なる圧力値である場合について説明した。 Furthermore, the control may be performed so that the superheat degree of the refrigerant flowing on the suction side of thecompressor 21 is maintained for a predetermined time within a predetermined value or a predetermined range.
(C)
In the above embodiment, the case where the control unit 11 reduces the frequency of thecompressor 21 to the minimum frequency Qmin when the thermo-off condition is satisfied has been described.
However, the present invention is not limited to this.
For example, when the thermo-off condition is satisfied, the control unit 11 may completely stop the driving of thecompressor 21.
(D)
In the above embodiment, the case where the predetermined return high pressure threshold Pm and the target high pressure Ph are different pressure values has been described.
(C)
上記実施形態では、サーモオフ条件を満たした場合に、制御部11が圧縮機21の周波数を最低周波数Qminに落とす場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、サーモオフ条件を満たした場合には、制御部11は、圧縮機21の駆動を完全に停止させるようにしてもよい。
(D)
上記実施形態では、所定復帰高圧閾値Pmと、目標高圧圧力Phとが異なる圧力値である場合について説明した。 Furthermore, the control may be performed so that the superheat degree of the refrigerant flowing on the suction side of the
(C)
In the above embodiment, the case where the control unit 11 reduces the frequency of the
However, the present invention is not limited to this.
For example, when the thermo-off condition is satisfied, the control unit 11 may completely stop the driving of the
(D)
In the above embodiment, the case where the predetermined return high pressure threshold Pm and the target high pressure Ph are different pressure values has been described.
しかし、本発明はこれに限られるものではない。
例えば、所定復帰高圧閾値Pmと、目標高圧圧力Phとを同一の圧力値として制御してもよい。
(E)
上記実施形態では、冷媒回路10のうち、アキューム管Fに対して電磁誘導加熱ユニット6が取り付けられる場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、アキューム管F以外の他の冷媒配管に設けられていてもよい。この場合には、電磁誘導加熱ユニット6を設ける冷媒配管部分に磁性体管F2等の磁性体を設ける。
(F)
上記実施形態では、アキューム管Fは、銅管F1と磁性体管F2との二重管として構成されている場合を挙げて説明した。 However, the present invention is not limited to this.
For example, the predetermined return high pressure threshold Pm and the target high pressure Ph may be controlled as the same pressure value.
(E)
In the above embodiment, the case where the electromagneticinduction heating unit 6 is attached to the accumulator tube F in the refrigerant circuit 10 has been described.
However, the present invention is not limited to this.
For example, other refrigerant pipes other than the accumulator pipe F may be provided. In this case, a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagneticinduction heating unit 6 is provided.
(F)
In the said embodiment, the case where the accumulation pipe F was comprised as a double pipe | tube of the copper pipe F1 and the magnetic body pipe | tube F2 was mentioned and demonstrated.
例えば、所定復帰高圧閾値Pmと、目標高圧圧力Phとを同一の圧力値として制御してもよい。
(E)
上記実施形態では、冷媒回路10のうち、アキューム管Fに対して電磁誘導加熱ユニット6が取り付けられる場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、アキューム管F以外の他の冷媒配管に設けられていてもよい。この場合には、電磁誘導加熱ユニット6を設ける冷媒配管部分に磁性体管F2等の磁性体を設ける。
(F)
上記実施形態では、アキューム管Fは、銅管F1と磁性体管F2との二重管として構成されている場合を挙げて説明した。 However, the present invention is not limited to this.
For example, the predetermined return high pressure threshold Pm and the target high pressure Ph may be controlled as the same pressure value.
(E)
In the above embodiment, the case where the electromagnetic
However, the present invention is not limited to this.
For example, other refrigerant pipes other than the accumulator pipe F may be provided. In this case, a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagnetic
(F)
In the said embodiment, the case where the accumulation pipe F was comprised as a double pipe | tube of the copper pipe F1 and the magnetic body pipe | tube F2 was mentioned and demonstrated.
しかし、本発明はこれに限られるものではない。
図29に示すように、例えば、磁性体部材F2aと、2つのストッパーF1a、F1bと、がアキューム管Fや加熱対象となる冷媒配管の内部に配置されていてもよい。ここで、磁性体部材F2aは、磁性体材料を含有しており、上記実施形態における電磁誘導加熱によって発熱を生じる部材である。ストッパーF1a、F1bは、銅管F1の内側二カ所において、冷媒の通過を常時許容するが、磁性体部材F2aの通過は許容しない。これにより、磁性体部材F2aは、冷媒が流れても移動しない。このため、アキューム管F等の目的の加熱位置を加熱させることができる。さらに、発熱する磁性体部材F2aと冷媒とが直接接触するため、熱伝達効率を向上させることができる。
(G)
上記他の実施形態(F)で説明した磁性体部材F2aは、ストッパーF1a、F1bを用いることなく配管に対して位置が定まるようにしてもよい。 However, the present invention is not limited to this.
As shown in FIG. 29, for example, the magnetic member F2a and the two stoppers F1a and F1b may be disposed inside the accumulator pipe F or the refrigerant pipe to be heated. Here, the magnetic member F2a contains a magnetic material, and is a member that generates heat by electromagnetic induction heating in the above embodiment. The stoppers F1a and F1b always allow the refrigerant to pass through at two locations inside the copper tube F1, but do not allow the magnetic member F2a to pass through. Thereby, the magnetic member F2a does not move even when the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated. Furthermore, since the magnetic member F2a that generates heat and the refrigerant are in direct contact, the heat transfer efficiency can be improved.
(G)
The magnetic member F2a described in the other embodiment (F) may be positioned with respect to the pipe without using the stoppers F1a and F1b.
図29に示すように、例えば、磁性体部材F2aと、2つのストッパーF1a、F1bと、がアキューム管Fや加熱対象となる冷媒配管の内部に配置されていてもよい。ここで、磁性体部材F2aは、磁性体材料を含有しており、上記実施形態における電磁誘導加熱によって発熱を生じる部材である。ストッパーF1a、F1bは、銅管F1の内側二カ所において、冷媒の通過を常時許容するが、磁性体部材F2aの通過は許容しない。これにより、磁性体部材F2aは、冷媒が流れても移動しない。このため、アキューム管F等の目的の加熱位置を加熱させることができる。さらに、発熱する磁性体部材F2aと冷媒とが直接接触するため、熱伝達効率を向上させることができる。
(G)
上記他の実施形態(F)で説明した磁性体部材F2aは、ストッパーF1a、F1bを用いることなく配管に対して位置が定まるようにしてもよい。 However, the present invention is not limited to this.
As shown in FIG. 29, for example, the magnetic member F2a and the two stoppers F1a and F1b may be disposed inside the accumulator pipe F or the refrigerant pipe to be heated. Here, the magnetic member F2a contains a magnetic material, and is a member that generates heat by electromagnetic induction heating in the above embodiment. The stoppers F1a and F1b always allow the refrigerant to pass through at two locations inside the copper tube F1, but do not allow the magnetic member F2a to pass through. Thereby, the magnetic member F2a does not move even when the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated. Furthermore, since the magnetic member F2a that generates heat and the refrigerant are in direct contact, the heat transfer efficiency can be improved.
(G)
The magnetic member F2a described in the other embodiment (F) may be positioned with respect to the pipe without using the stoppers F1a and F1b.
図30に示すように、例えば、銅管F1に二カ所で曲げ部分FWを設け、当該二カ所の曲げ部分FWの間の銅管F1の内側に磁性体部材F2aを配置させてもよい。このようにしても、冷媒を通過させつつ、磁性体部材F2aの移動を抑制させることができる。
(H)
上記実施形態では、コイル68がアキューム管Fに対して螺旋状に巻き付けられている場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、図31に示すように、ボビン本体165に巻き付けられたコイル168が、アキューム管Fに巻き付くことなく、アキューム管Fの周囲に配置されていてもよい。ここでは、ボビン本体165は、軸方向がアキューム管Fの軸方向に対して略垂直となるように配置されている。また、ボビン本体165およびコイル168は、アキューム管Fを挟むように2つに別れて配置されている。 As illustrated in FIG. 30, for example, the copper pipe F1 may be provided with two bent portions FW, and the magnetic member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even in this case, the movement of the magnetic member F2a can be suppressed while allowing the refrigerant to pass therethrough.
(H)
In the above embodiment, the case where thecoil 68 is spirally wound around the accumulator tube F has been described.
However, the present invention is not limited to this.
For example, as shown in FIG. 31, thecoil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F. Here, the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F. Further, the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
(H)
上記実施形態では、コイル68がアキューム管Fに対して螺旋状に巻き付けられている場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、図31に示すように、ボビン本体165に巻き付けられたコイル168が、アキューム管Fに巻き付くことなく、アキューム管Fの周囲に配置されていてもよい。ここでは、ボビン本体165は、軸方向がアキューム管Fの軸方向に対して略垂直となるように配置されている。また、ボビン本体165およびコイル168は、アキューム管Fを挟むように2つに別れて配置されている。 As illustrated in FIG. 30, for example, the copper pipe F1 may be provided with two bent portions FW, and the magnetic member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even in this case, the movement of the magnetic member F2a can be suppressed while allowing the refrigerant to pass therethrough.
(H)
In the above embodiment, the case where the
However, the present invention is not limited to this.
For example, as shown in FIG. 31, the
この場合には、例えば、図32に示すように、アキューム管Fを貫通させている第1ボビン蓋163および第2ボビン蓋164が、ボビン本体165に対して勘合した状態で配置されていてもよい。
さらに、図33に示すように、第1ボビン蓋163および第2ボビン蓋164が、第1フェライトケース171および第2フェライトケース172によって挟み込まれて固定されていてもよい。図33では、2つのフェライトケースがアキューム管Fを挟み込むように配置されている場合を例に挙げたが、上記実施形態と同様に、4方向に配置されていてもよい。また、上記実施形態と同様に、フェライトを収容させていてもよい。
(I)
上記実施形態では、室内機4と室外機2とを一台ずつ有している空気調和装置1を例に挙げて説明した。 In this case, for example, as shown in FIG. 32, even if thefirst bobbin lid 163 and the second bobbin lid 164 passing through the accumulator tube F are disposed in a state of being fitted to the bobbin main body 165. Good.
Furthermore, as shown in FIG. 33, thefirst bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172. In FIG. 33, the case where the two ferrite cases are arranged so as to sandwich the accumulator tube F is taken as an example, but may be arranged in four directions as in the above embodiment. Moreover, you may accommodate the ferrite similarly to the said embodiment.
(I)
In the above embodiment, theair conditioner 1 having one indoor unit 4 and one outdoor unit 2 has been described as an example.
さらに、図33に示すように、第1ボビン蓋163および第2ボビン蓋164が、第1フェライトケース171および第2フェライトケース172によって挟み込まれて固定されていてもよい。図33では、2つのフェライトケースがアキューム管Fを挟み込むように配置されている場合を例に挙げたが、上記実施形態と同様に、4方向に配置されていてもよい。また、上記実施形態と同様に、フェライトを収容させていてもよい。
(I)
上記実施形態では、室内機4と室外機2とを一台ずつ有している空気調和装置1を例に挙げて説明した。 In this case, for example, as shown in FIG. 32, even if the
Furthermore, as shown in FIG. 33, the
(I)
In the above embodiment, the
しかし、本発明はこれに限られるものではない。
例えば、1つの室外機に対して複数の室内機が並列もしくは直列に接続されている空気調和装置であってもよい。この場合には、室内機毎に吹き出し温度の高い順番に関する優先順位等を設定するようにしてもよい。
また、1つの室内機に対して複数の室外機が並列もしくは直列に接続されている空気調和装置であってもよい。この場合には、より迅速に目標高圧圧力Phに達することができるとともに、能力をより増大させることができるようになる。
さらに、複数の室内機に対して複数の室外機が並列もしくは直列に接続されている空気調和装置であってもよい。
<その他>
以上、本発明の実施形態について、いくつかの例を挙げて説明したが、本発明はこれらに限られない。例えば、上記記載から当業者が実施可能な範囲で、上述の実施形態の異なる部分を適宜組み合わせて得られる組合せ実施形態も、本発明に含まれる。 However, the present invention is not limited to this.
For example, an air conditioner in which a plurality of indoor units are connected in parallel or in series to one outdoor unit may be used. In this case, you may make it set the priority order regarding the order with high blowing temperature etc. for every indoor unit.
Moreover, the air conditioning apparatus with which the several outdoor unit was connected in parallel or in series with respect to one indoor unit may be sufficient. In this case, the target high pressure Ph can be reached more quickly, and the capacity can be further increased.
Furthermore, an air conditioner in which a plurality of outdoor units are connected in parallel or in series to a plurality of indoor units may be used.
<Others>
The embodiments of the present invention have been described above with some examples, but the present invention is not limited to these. For example, combined embodiments obtained by appropriately combining different portions of the above-described embodiments within the scope that can be implemented by those skilled in the art from the above description are also included in the present invention.
例えば、1つの室外機に対して複数の室内機が並列もしくは直列に接続されている空気調和装置であってもよい。この場合には、室内機毎に吹き出し温度の高い順番に関する優先順位等を設定するようにしてもよい。
また、1つの室内機に対して複数の室外機が並列もしくは直列に接続されている空気調和装置であってもよい。この場合には、より迅速に目標高圧圧力Phに達することができるとともに、能力をより増大させることができるようになる。
さらに、複数の室内機に対して複数の室外機が並列もしくは直列に接続されている空気調和装置であってもよい。
<その他>
以上、本発明の実施形態について、いくつかの例を挙げて説明したが、本発明はこれらに限られない。例えば、上記記載から当業者が実施可能な範囲で、上述の実施形態の異なる部分を適宜組み合わせて得られる組合せ実施形態も、本発明に含まれる。 However, the present invention is not limited to this.
For example, an air conditioner in which a plurality of indoor units are connected in parallel or in series to one outdoor unit may be used. In this case, you may make it set the priority order regarding the order with high blowing temperature etc. for every indoor unit.
Moreover, the air conditioning apparatus with which the several outdoor unit was connected in parallel or in series with respect to one indoor unit may be sufficient. In this case, the target high pressure Ph can be reached more quickly, and the capacity can be further increased.
Furthermore, an air conditioner in which a plurality of outdoor units are connected in parallel or in series to a plurality of indoor units may be used.
<Others>
The embodiments of the present invention have been described above with some examples, but the present invention is not limited to these. For example, combined embodiments obtained by appropriately combining different portions of the above-described embodiments within the scope that can be implemented by those skilled in the art from the above description are also included in the present invention.
本発明を利用すれば、暖房起動時に温風を供給するために要する冷媒圧力の確保を簡易な構成によって迅速に行うことが可能なため、暖房運転が行われる空気調和装置において特に有用である。
If the present invention is used, the refrigerant pressure required for supplying hot air at the time of heating start-up can be ensured quickly with a simple configuration, and thus it is particularly useful in an air conditioner in which heating operation is performed.
1 空気調和装置
6 電磁誘導加熱ユニット
10 冷媒回路
11 制御部(冷媒状態把握部)
14 電磁誘導サーミスタ
21 圧縮機(圧縮機構)
23 室外熱交換器
24 室外電動膨張弁(膨張機構)
29a 圧力センサ(冷媒圧力把握部)
29b 室外気温センサ
29c 室外熱交温度センサ
41 室内熱交換器
42 室内ファン
43 室内温度センサ
44 室内熱交温度センサ(冷媒状態把握部)
68 コイル(磁界発生部)
90 コントローラ
DS 固定開度
D1 第1開度
D2 第2開度
F アキューム管、冷媒配管
Mmax 最大供給電力
Ph 目標高圧圧力(所定高圧閾値)
R1 第1周波数(第1所定目標周波数)
R2 第2周波数(第2所定目標周波数)
Rmax 所定最大周波数 DESCRIPTION OFSYMBOLS 1 Air conditioning apparatus 6 Electromagnetic induction heating unit 10 Refrigerant circuit 11 Control part (refrigerant state grasping part)
14Electromagnetic induction thermistor 21 Compressor (compression mechanism)
23outdoor heat exchanger 24 outdoor electric expansion valve (expansion mechanism)
29a Pressure sensor (refrigerant pressure grasping part)
29b Outdoorair temperature sensor 29c Outdoor heat exchange temperature sensor 41 Indoor heat exchanger 42 Indoor fan 43 Indoor temperature sensor 44 Indoor heat exchange temperature sensor (refrigerant state grasping unit)
68 Coil (Magnetic field generator)
90 Controller DS Fixed opening D1 1st opening D2 2nd opening F Accumulation pipe, refrigerant piping Mmax Maximum supply power Ph Target high pressure (predetermined high pressure threshold)
R1 first frequency (first predetermined target frequency)
R2 second frequency (second predetermined target frequency)
Rmax Predetermined maximum frequency
6 電磁誘導加熱ユニット
10 冷媒回路
11 制御部(冷媒状態把握部)
14 電磁誘導サーミスタ
21 圧縮機(圧縮機構)
23 室外熱交換器
24 室外電動膨張弁(膨張機構)
29a 圧力センサ(冷媒圧力把握部)
29b 室外気温センサ
29c 室外熱交温度センサ
41 室内熱交換器
42 室内ファン
43 室内温度センサ
44 室内熱交温度センサ(冷媒状態把握部)
68 コイル(磁界発生部)
90 コントローラ
DS 固定開度
D1 第1開度
D2 第2開度
F アキューム管、冷媒配管
Mmax 最大供給電力
Ph 目標高圧圧力(所定高圧閾値)
R1 第1周波数(第1所定目標周波数)
R2 第2周波数(第2所定目標周波数)
Rmax 所定最大周波数 DESCRIPTION OF
14
23
29a Pressure sensor (refrigerant pressure grasping part)
29b Outdoor
68 Coil (Magnetic field generator)
90 Controller DS Fixed opening D1 1st opening D2 2nd opening F Accumulation pipe, refrigerant piping Mmax Maximum supply power Ph Target high pressure (predetermined high pressure threshold)
R1 first frequency (first predetermined target frequency)
R2 second frequency (second predetermined target frequency)
Rmax Predetermined maximum frequency
Claims (11)
- 圧縮機構(21)、室内熱交換器(41)、室内ファン(42)、膨張機構(24)および室外熱交換器(23)を少なくとも含んで冷凍サイクルを行う空気調和装置(1)であって、
前記室内熱交換器から前記膨張機構に向かう冷媒の過冷却度、および、前記圧縮機構(21)の吸入側を流れる冷媒の過熱度の少なくともいずれか一方を把握する冷媒状態把握部(44、11)と、
前記冷媒状態把握部(44、11)が把握した値に応じて前記膨張機構(24)の開度を調整する起動後暖房運転制御と、前記膨張機構(24)の開度を固定開度(DS)として維持したままで前記圧縮機構(21)を起動する起動時固定開度制御と、を行う制御部(11)と、
を備え、
前記固定開度(DS)は、冷媒状態対応開度よりも狭くなるように絞った開度であり、
前記冷媒状態対応開度は、前記起動時固定開度制御を実行する時における前記膨張機構(24)を除く前記冷凍サイクルの運転条件、および、前記起動時固定開度制御を実行する時における前記冷凍サイクルの周囲温度条件、と同じ条件下で、前記起動後暖房運転制御が行われる場合の前記膨張機構(24)の開度である、
空気調和装置(1)。 An air conditioner (1) that performs a refrigeration cycle including at least a compression mechanism (21), an indoor heat exchanger (41), an indoor fan (42), an expansion mechanism (24), and an outdoor heat exchanger (23). ,
Refrigerant state grasping unit (44, 11) that grasps at least one of the degree of supercooling of the refrigerant from the indoor heat exchanger toward the expansion mechanism and the degree of superheating of the refrigerant flowing on the suction side of the compression mechanism (21). )When,
A post-startup heating operation control that adjusts the opening degree of the expansion mechanism (24) according to the value grasped by the refrigerant state grasping part (44, 11), and the opening degree of the expansion mechanism (24) is a fixed opening degree ( A control unit (11) for performing a fixed opening degree control at the time of starting the compression mechanism (21) while being maintained as DS),
With
The fixed opening (DS) is an opening narrowed to be narrower than the refrigerant state corresponding opening,
The refrigerant state-corresponding opening includes the operating condition of the refrigeration cycle excluding the expansion mechanism (24) when the startup fixed opening control is executed, and the startup time when the starting fixed opening control is executed. The opening degree of the expansion mechanism (24) when the post-startup heating operation control is performed under the same conditions as the ambient temperature condition of the refrigeration cycle,
Air conditioner (1). - 前記起動後暖房運転制御は、前記冷媒状態把握部(44、11)が把握した値に応じて前記冷凍サイクルの冷媒状態が安定化するように前記膨張機構(24)の開度を調整する起動後安定化制御である、
請求項1に記載の空気調和装置(1)。 In the post-startup heating operation control, the opening of the expansion mechanism (24) is adjusted so that the refrigerant state of the refrigeration cycle is stabilized according to the value obtained by the refrigerant state grasping unit (44, 11). Post-stabilization control,
The air conditioner (1) according to claim 1. - 前記起動後安定化制御における前記冷凍サイクルの冷媒状態の安定化とは、
前記室内熱交換器(41)から前記膨張機構(24)に向かう冷媒の過冷却度が第2所定値もしくは第2所定範囲内で第2所定時間の間維持させること、および、
前記圧縮機構(21)の吸入側を流れる冷媒の過熱度が第3所定値もしくは第3所定範囲内で第3所定時間の間維持させること、
の少なくともいずれか1つである、
請求項2に記載の空気調和装置(1)。 Stabilization of the refrigerant state of the refrigeration cycle in the post-startup stabilization control is
Maintaining the degree of supercooling of the refrigerant from the indoor heat exchanger (41) toward the expansion mechanism (24) within a second predetermined value or a second predetermined range for a second predetermined time; and
Maintaining the degree of superheat of the refrigerant flowing on the suction side of the compression mechanism (21) for a third predetermined time within a third predetermined value or a third predetermined range;
At least one of
The air conditioner (1) according to claim 2. - 前記起動時固定開度制御において、前記制御部(11)は、
前記圧縮機構(21)の周波数を第1所定目標周波数(R1)よりも高い第2所定目標周波数(R2)となるように上げつつ前記膨張機構(24)の開度を前記固定開度(DS)よりも広げた第1開度(D1)とする起動時能力増大制御を開始する直前までには、
前記膨張機構(24)の開度が前記固定開度(DS)で維持された状態を保ちつつ前記圧縮機構(21)の周波数を前記第1所定目標周波数(R1)に到達させる、
請求項1から3のいずれか1項に記載の空気調和装置(1)。 In the startup fixed opening degree control, the control unit (11)
While increasing the frequency of the compression mechanism (21) to be a second predetermined target frequency (R2) higher than the first predetermined target frequency (R1), the opening of the expansion mechanism (24) is increased to the fixed opening (DS ) Until the first opening degree (D1) that is wider than just before starting the start-up capability increase control,
Causing the frequency of the compression mechanism (21) to reach the first predetermined target frequency (R1) while maintaining a state in which the opening degree of the expansion mechanism (24) is maintained at the fixed opening degree (DS).
The air conditioner (1) according to any one of claims 1 to 3. - 前記起動時能力増大制御において、前記制御部(11)は、
前記圧縮機構(21)の周波数を前記第2所定目標周波数(R2)で維持しつつ前記膨張機構(24)の開度を前記冷媒状態把握部(44、11)が把握した値に応じて調整する制御を行う直前に、
前記膨張機構(24)の開度を、一度、前記第1開度(D1)まで上げる、
請求項4に記載の空気調和装置(1)。 In the startup capacity increase control, the control unit (11)
While maintaining the frequency of the compression mechanism (21) at the second predetermined target frequency (R2), the opening degree of the expansion mechanism (24) is adjusted according to the value grasped by the refrigerant state grasping part (44, 11). Immediately before performing control
The opening degree of the expansion mechanism (24) is once increased to the first opening degree (D1).
The air conditioner (1) according to claim 4. - 前記制御部(11)は、前記起動時固定開度制御の開始時点から所定固定起動時間(Tx)を経過した時点で、前記起動時能力増大制御を開始する、
請求項4または5に記載の空気調和装置(1)。 The control unit (11) starts the startup capacity increase control when a predetermined fixed startup time (Tx) has elapsed from the start of the startup fixed opening degree control.
The air conditioner (1) according to claim 4 or 5. - 前記制御部(11)は、前記起動後暖房運転制御の開始のタイミングを、前記起動時能力増大制御を開始した時点より後の時点とする、
請求項6に記載の空気調和装置(1)。 The control unit (11) sets the start timing of the post-startup heating operation control to a time point after the start point of the start time capacity increase control.
The air conditioner (1) according to claim 6. - 前記起動時能力増大制御において、前記制御部(11)は、前記圧縮機構(21)の周波数を前記第2所定目標周波数(R2)よりも高い周波数として予め定められた所定最大周波数(Rmax)に上げつつ前記膨張機構(24)の開度を前記第1開度(D1)よりも広げた第2開度(D2)とする起動時段階能力制御を行う、
請求項4から7のいずれか1項に記載の空気調和装置(1)。 In the startup capacity increase control, the control unit (11) sets the frequency of the compression mechanism (21) to a predetermined maximum frequency (Rmax) that is predetermined as a frequency higher than the second predetermined target frequency (R2). Performing start-up stage capability control to increase the opening degree of the expansion mechanism (24) while increasing the second opening degree (D2) wider than the first opening degree (D1).
The air conditioner (1) according to any one of claims 4 to 7. - 前記圧縮機構(21)から前記室内熱交換器(41)に向けて送られる冷媒の圧力を把握する冷媒圧力把握部(29a)をさらに備え、
前記制御部(11)は、前記起動時固定開度制御を開始した時から前記冷媒圧力把握部(29a)の把握する圧力が所定高圧閾値(Ph)を超える前までの前記室内ファン(42)による風量よりも、前記冷媒圧力把握部(29a)の把握する圧力が前記所定高圧閾値(Ph)を超えた時以降の前記室内ファン(42)による風量の方が大きい起動時ファン制御を行う、
請求項1から8のいずれか1項に記載の空気調和装置(1)。 A refrigerant pressure grasping part (29a) for grasping the pressure of the refrigerant sent from the compression mechanism (21) toward the indoor heat exchanger (41);
The control unit (11) includes the indoor fan (42) from the start of the startup fixed opening degree control until the pressure grasped by the refrigerant pressure grasping unit (29a) exceeds a predetermined high pressure threshold (Ph). The fan control at the time of starting is performed in which the air volume by the indoor fan (42) after the pressure grasped by the refrigerant pressure grasping part (29a) exceeds the predetermined high pressure threshold (Ph) is larger than the air volume by
The air conditioner (1) according to any one of claims 1 to 8. - 前記制御部(11)は、前記起動時固定開度制御を開始した時から前記冷媒圧力把握部(29a)の把握する圧力が前記所定高圧閾値(Ph)を超える前までの間は、前記室内ファン(42)による風量を0にする、
請求項9に記載の空気調和装置(1)。 The control unit (11) is configured to start the fixed opening degree control at the time of starting and before the pressure grasped by the refrigerant pressure grasping unit (29a) exceeds the predetermined high pressure threshold (Ph). Set the air volume by the fan (42) to 0,
The air conditioner (1) according to claim 9. - 前記圧縮機構の吸入側における冷媒配管(F)、および/または、前記冷媒配管(F)中を流れる冷媒と熱的接触をする部材、を誘導加熱させるために磁界を生じさせる磁界発生部(68)をさらに備え、
前記制御部(11)は、少なくとも前記起動時固定開度制御の実行時に前記誘導加熱を行う、
請求項1から10のいずれか1項に記載の空気調和装置(1)。 A magnetic field generator (68) that generates a magnetic field for induction heating the refrigerant pipe (F) on the suction side of the compression mechanism and / or the member that is in thermal contact with the refrigerant flowing in the refrigerant pipe (F). )
The control unit (11) performs the induction heating at least during execution of the startup fixed opening degree control.
The air conditioner (1) according to any one of claims 1 to 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009069130A JP2010223457A (en) | 2009-03-19 | 2009-03-19 | Air conditioner |
JP2009-069130 | 2009-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010106821A1 true WO2010106821A1 (en) | 2010-09-23 |
Family
ID=42739488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002005 WO2010106821A1 (en) | 2009-03-19 | 2010-03-19 | Air conditioning device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010223457A (en) |
WO (1) | WO2010106821A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102032648A (en) * | 2010-12-07 | 2011-04-27 | 海信(山东)空调有限公司 | Refrigerant flow control method for multi-connected air-conditioning system during heating |
JP2013178046A (en) * | 2012-02-29 | 2013-09-09 | Hitachi Appliances Inc | Air conditioner |
US9261300B2 (en) | 2012-11-12 | 2016-02-16 | Trane International Inc. | Expansion valve control system and method for air conditioning apparatus |
WO2019171588A1 (en) * | 2018-03-09 | 2019-09-12 | 三菱電機株式会社 | Refrigeration cycle apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6148001B2 (en) * | 2012-12-14 | 2017-06-14 | シャープ株式会社 | Air conditioner |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002106980A (en) * | 2000-09-29 | 2002-04-10 | Daikin Ind Ltd | Refrigerating device |
JP2002195669A (en) * | 2000-11-10 | 2002-07-10 | Lg Electronics Inc | Control method for electronic expansion valve of air conditioner provided with two compressors |
JP2003042574A (en) * | 2001-08-01 | 2003-02-13 | Denso Corp | Vapor compression refrigerator |
WO2007119414A1 (en) * | 2006-03-20 | 2007-10-25 | Daikin Industries, Ltd. | Cooling medium heating apparatus and heating control method |
JP2008002790A (en) * | 2006-06-26 | 2008-01-10 | Toshiba Kyaria Kk | Air conditioner |
JP2008164226A (en) * | 2006-12-28 | 2008-07-17 | Daikin Ind Ltd | Refrigerating device |
-
2009
- 2009-03-19 JP JP2009069130A patent/JP2010223457A/en active Pending
-
2010
- 2010-03-19 WO PCT/JP2010/002005 patent/WO2010106821A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002106980A (en) * | 2000-09-29 | 2002-04-10 | Daikin Ind Ltd | Refrigerating device |
JP2002195669A (en) * | 2000-11-10 | 2002-07-10 | Lg Electronics Inc | Control method for electronic expansion valve of air conditioner provided with two compressors |
JP2003042574A (en) * | 2001-08-01 | 2003-02-13 | Denso Corp | Vapor compression refrigerator |
WO2007119414A1 (en) * | 2006-03-20 | 2007-10-25 | Daikin Industries, Ltd. | Cooling medium heating apparatus and heating control method |
JP2008002790A (en) * | 2006-06-26 | 2008-01-10 | Toshiba Kyaria Kk | Air conditioner |
JP2008164226A (en) * | 2006-12-28 | 2008-07-17 | Daikin Ind Ltd | Refrigerating device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102032648A (en) * | 2010-12-07 | 2011-04-27 | 海信(山东)空调有限公司 | Refrigerant flow control method for multi-connected air-conditioning system during heating |
CN102032648B (en) * | 2010-12-07 | 2012-12-05 | 海信(山东)空调有限公司 | Refrigerant flow control method for multi-connected air-conditioning system during heating |
JP2013178046A (en) * | 2012-02-29 | 2013-09-09 | Hitachi Appliances Inc | Air conditioner |
CN103292527A (en) * | 2012-02-29 | 2013-09-11 | 日立空调·家用电器株式会社 | Air conditioning device |
US9261300B2 (en) | 2012-11-12 | 2016-02-16 | Trane International Inc. | Expansion valve control system and method for air conditioning apparatus |
US9863681B2 (en) | 2012-11-12 | 2018-01-09 | Trane International Inc. | Expansion valve control system and method for air conditioning apparatus |
WO2019171588A1 (en) * | 2018-03-09 | 2019-09-12 | 三菱電機株式会社 | Refrigeration cycle apparatus |
JPWO2019171588A1 (en) * | 2018-03-09 | 2020-10-01 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN111801535A (en) * | 2018-03-09 | 2020-10-20 | 三菱电机株式会社 | Refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JP2010223457A (en) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4605306B2 (en) | Air conditioner | |
JP4826643B2 (en) | Air conditioner | |
JP5370474B2 (en) | Air conditioner | |
WO2010106821A1 (en) | Air conditioning device | |
WO2010106817A1 (en) | Air conditioning device | |
WO2010106803A1 (en) | Air conditioner | |
WO2010146807A1 (en) | Refrigeration device | |
JP2012167823A (en) | Refrigerator | |
WO2010146803A1 (en) | Refrigeration device | |
WO2016147291A1 (en) | Refrigeration device | |
JP2004205081A (en) | Air-conditioner | |
JP2010243149A (en) | Air conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10753316 Country of ref document: EP Kind code of ref document: A1 |