WO2010106817A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2010106817A1
WO2010106817A1 PCT/JP2010/001994 JP2010001994W WO2010106817A1 WO 2010106817 A1 WO2010106817 A1 WO 2010106817A1 JP 2010001994 W JP2010001994 W JP 2010001994W WO 2010106817 A1 WO2010106817 A1 WO 2010106817A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
control
degree
predetermined
Prior art date
Application number
PCT/JP2010/001994
Other languages
French (fr)
Japanese (ja)
Inventor
木下英彦
山田剛
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2010225956A priority Critical patent/AU2010225956B2/en
Priority to RU2011142186/06A priority patent/RU2482402C1/en
Priority to JP2011504761A priority patent/JP5067505B2/en
Priority to EP10753312.7A priority patent/EP2410264A4/en
Priority to US13/256,669 priority patent/US20120000228A1/en
Priority to CN201080012905.0A priority patent/CN102356285B/en
Publication of WO2010106817A1 publication Critical patent/WO2010106817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner.
  • an air conditioner that controls a refrigerant circulation amount or the like to control the degree of superheat of refrigerant sucked in a compressor is known.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-120083
  • the amount of refrigerant circulation is controlled by increasing the valve opening degree of the electric expansion valve in accordance with the compressor suction refrigerant temperature.
  • the degree of superheat of the refrigerant sucked into the compressor can be controlled.
  • the refrigerant refrigerant or the like that is in thermal contact with the refrigerant may be heated by an external heating device to indirectly warm the refrigerant drawn in the compressor.
  • an external heating device for example, if an intake refrigerant temperature sensor of the compressor is disposed between a portion to be heated by the external heating device and the suction side of the compressor, the external heating device heats up. The heat applied to the target portion is transferred to the vicinity of the attachment position of the intake refrigerant temperature sensor on the downstream side, making it difficult to accurately detect the intake refrigerant temperature.
  • the valve opening control of the electric expansion valve based on the detected value of the suction refrigerant temperature sensor of the compressor disposed between the part to be heated by the external heating device and the suction side of the compressor, the valve opening is not performed.
  • the refrigerant circulation amount increases excessively when the temperature is increased too much, and this may not only suppress the excessive increase in the degree of superheat of the refrigerant sucked by the compressor but may cause liquid compression.
  • the valve opening degree control of the electric expansion valve based on the detected value of the suction refrigerant temperature sensor arranged upstream of the part to be heated by such an external heating device the valve opening degree is lowered too much and the refrigerant circulation amount May be excessively decreased, and the degree of superheat of the refrigerant sucked by the compressor may be excessively increased.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to control the intake refrigerant in the superheat degree control of the intake refrigerant of the compression mechanism, even when the refrigerant on the intake side of the compression mechanism is heated.
  • An object of the present invention is to provide an air conditioner capable of performing control in consideration of the amount of heat applied to the air.
  • An air conditioner is an air conditioner including at least a compression mechanism, a refrigerant cooler, an expansion mechanism, and a refrigerant heater, and includes a magnetic field generation unit, a heat generation temperature detection unit, and a control unit.
  • the magnetic field generation unit induction-heats a refrigerant pipe for circulating the refrigerant through the compression mechanism, the refrigerant cooler, the expansion mechanism, and the refrigerant heater and / or a member that makes thermal contact with the refrigerant flowing in the refrigerant pipe. Therefore, a magnetic field is generated.
  • the exothermic temperature detector detects the temperature of the portion that generates heat by induction heating by the magnetic field generator.
  • the control unit detects when the temperature detected by the heat generation temperature detection unit exceeds or exceeds the predetermined heat generation temperature, or when the temperature increase rate detected by the heat generation temperature detection unit exceeds or exceeds the predetermined increase rate. If this happens, overheat protection control is performed to increase the opening of the expansion mechanism.
  • the heat generation temperature detector since the heat generation temperature detector is provided, it is possible to grasp the temperature condition of the portion that generates heat by induction heating by the magnetic field generator. Then, when the temperature detected by the heat generation temperature detection unit exceeds or exceeds the predetermined heat generation temperature by the control unit performing overheat protection control, the temperature increase rate detected by the heat generation temperature detection unit is the predetermined increase rate.
  • An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the magnetic field generator flows in the suction refrigerant pipe and / or the suction refrigerant pipe on the suction side of the compression mechanism among the refrigerant pipes.
  • a magnetic field for inductively heating the member that is in thermal contact with the refrigerant is generated.
  • the refrigerant immediately before being sucked into the compression mechanism is rapidly heated instead of the refrigerant flowing through the refrigerant pipe considerably away from the compression mechanism.
  • the refrigerant flowing on the suction side of the compression mechanism has a high degree of dryness or is in an overheated state, which is obvious when compared with the case where the refrigerant in the gas-liquid two-phase state or the like flowing more upstream changes in latent heat. Temperature is likely to rise because it is easy to change heat.
  • this air conditioner overheating occurs when the temperature detected by the heat generation temperature detection unit becomes equal to or higher than the predetermined heat generation temperature or when the temperature increase rate detected by the heat generation temperature detection unit exceeds the predetermined increase rate. Since protection control is performed, excessive induction heating of the refrigerant passing through the suction side of the compression mechanism can be prevented. Thereby, even if it is a case where the refrigerant
  • the control unit performs start-up control and post-startup control.
  • the magnetic field generating unit is supplied with a magnetic field so that the temperature of the portion that generates heat by induction heating by the magnetic field generating unit reaches a predetermined start-up target temperature while starting the driving of the compression mechanism from a state where the compression mechanism is stopped. Cause it to occur.
  • the post-startup control is performed after the start-up control is finished.
  • the expansion mechanism is opened when the temperature detected by the heat generation temperature detecting unit exceeds or exceeds the predetermined heat generation temperature after starting. Raise the degree.
  • the predetermined heat generation temperature after activation is a temperature equal to or higher than the predetermined activation target temperature.
  • the predetermined heat generation temperature after startup may be equal to the predetermined startup target temperature.
  • the opening degree of the expansion mechanism is increased, so that induction heating It becomes possible to lower the temperature of the part that generates heat. For this reason, in post-startup control, it is possible to suppress an abnormal temperature rise in a portion that generates heat by induction heating.
  • the predetermined heat generation temperature after the start is not equal to the predetermined target temperature at the start but higher than the predetermined start target temperature, the temperature of the portion that generates heat due to induction heating is excessively increased. Even when processing such as stopping or weakening the supply of the magnetic field from the magnetic field generation unit is performed, the time during which the refrigerant temperature can be maintained at a high temperature by induction heating can be extended.
  • An air conditioner is the air conditioner according to the third aspect, wherein the control unit reaches a predetermined start-time target temperature when performing the overheat protection control simultaneously with the start-time control.
  • the opening degree of the expansion mechanism is increased when the rate of temperature rise detected by the exothermic temperature detection unit at the time when the temperature rises exceeds or exceeds a predetermined rate of rise.
  • the opening degree of the expansion mechanism is raised when the temperature rise rate rises faster as the temperature rise rate exceeds or exceeds a predetermined rise rate with respect to the detected temperature of the heat generation temperature detector.
  • the opening degree of the expansion mechanism is increased when the detected temperature is equal to or higher than a predetermined exothermic temperature with respect to the detected temperature of the exothermic temperature detector. For this reason, in post-startup control, it is determined based on the detected temperature, but in start-up control, it is determined based on the temperature increase rate, so even if it is attempted to cause a rapid temperature increase during startup. Since the opening degree of the expansion mechanism is increased when it exceeds or exceeds the predetermined rising speed, if the predetermined rising speed is exceeded or exceeded before reaching the predetermined heating temperature, the predetermined heating temperature is reached. There is no need to wait for the process of increasing the opening of the expansion mechanism.
  • the control unit determines that the rotation speed of the compression mechanism is equal to or greater than the predetermined rotation speed when the control unit determines that the speed has increased or exceeded the predetermined increase speed.
  • the opening degree of the expansion mechanism is increased only when the above is exceeded or exceeded.
  • the temperature increase rate of the portion that generates heat by induction heating is equal to or higher than the predetermined increase speed. It may or may not exceed. Even in such a case, the refrigerant circulation amount can be increased more reliably by increasing the opening degree of the expansion mechanism in a state where the driving state of the compression mechanism is ensured.
  • An air conditioner according to a sixth aspect is the air conditioner according to any one of the third to fifth aspects, wherein the air conditioner is configured to grasp a state of the refrigerant passing between the refrigerant cooler and the expansion mechanism.
  • a refrigerant state grasping unit is further provided.
  • the control unit finishes the startup control the control unit expands so that the refrigerant subcooling degree grasped using the value grasped by the cooler side refrigerant state grasping part is kept constant at the predetermined target subcooling degree.
  • the supercooling degree constant control for controlling the opening degree of the mechanism is started.
  • control unit when performing the overheat protection control at the same time as performing the constant supercooling degree control, when the temperature detected by the exothermic temperature detecting unit becomes equal to or higher than the exothermic temperature during the predetermined supercooling degree constant control or When it exceeds, the opening degree of the expansion mechanism is further increased from the opening degree controlled by the constant supercooling degree control.
  • the heat generation temperature during the predetermined constant degree of subcooling control is a temperature that is equal to or higher than the predetermined start-up target temperature. In this air conditioner, even when the supercooling degree constant control is performed, it is possible to suppress an abnormal increase in the temperature of the portion that generates heat by induction heating.
  • the air conditioner according to the first aspect even when the refrigerant on the suction side of the compression mechanism is heated, the superheat degree control of the suction refrigerant of the compression mechanism is performed in consideration of the amount of heat applied to the suction refrigerant. It becomes possible to do.
  • the air conditioner according to the second aspect even when the refrigerant that passes through the suction side of the compression mechanism that is likely to increase in temperature is heated, it is possible to suppress excessive heating of the induction heating portion. it can.
  • the abnormal temperature rise of the portion that generates heat by induction heating can be suppressed in the post-startup control.
  • the refrigerant circulation rate can be increased more reliably.
  • the supercooling degree constant control even when the supercooling degree constant control is performed, it is possible to suppress an abnormal increase in the temperature of the portion that generates heat by induction heating.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit 10 of the air conditioner 1.
  • the air conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe.
  • An electromagnetic induction heating unit 6 and the like are provided.
  • the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in.
  • the indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
  • the refrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, and a hot gas bypass circuit H. Yes.
  • the indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant.
  • the indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
  • the discharge pipe A connects the compressor 21 and the four-way switching valve 22.
  • the discharge pipe A is provided with a discharge temperature sensor 29d for detecting the temperature of the refrigerant passing therethrough.
  • the current supply unit 21e supplies current to the compressor 21.
  • the power supply amount of the current supply unit 21e is detected by the compressor power detection unit 29f.
  • the rotational speed grasping unit 29r detects the rotational speed of the piston of the compressor 21.
  • the indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41.
  • a first pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided.
  • the indoor side liquid pipe C connects the indoor heat exchanger 41 and the outdoor electric expansion valve 24.
  • the outdoor liquid pipe D connects the outdoor electric expansion valve 24 and the outdoor heat exchanger 23.
  • the outdoor gas pipe E connects the outdoor heat exchanger 23 and the four-way switching valve 22.
  • a second pressure sensor 29g for detecting the pressure of the refrigerant passing therethrough is provided.
  • the accumulator pipe F connects the four-way switching valve 22 and the accumulator 25 and extends in the vertical direction when the outdoor unit 2 is installed.
  • An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F.
  • a heat generating portion whose periphery is covered by a coil 68, which will be described later, is a copper tube F1 in which a coolant is flowing inside, and a magnetic tube F2 provided so as to cover the periphery of the copper tube F1. It is constituted by.
  • the magnetic pipe F2 is configured by SUS (Stainless Used Steel: stainless steel) 430.
  • the SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance.
  • Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of a copper pipe made of the same material as the copper pipe F1.
  • the electromagnetic induction heating unit 6 quickly opens the accumulator tube F.
  • the compressor 21 can compress the rapidly heated refrigerant as a target.
  • the temperature of the hot gas discharged from the compressor 21 can be raised rapidly.
  • the time required to thaw frost by defrost operation can be shortened.
  • the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
  • the suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
  • the hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D.
  • the hot gas bypass circuit 27 is provided with a hot gas bypass valve 27 that can switch between a state that allows passage of refrigerant and a state that does not allow passage of the refrigerant.
  • a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough.
  • the capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
  • the four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle.
  • FIG. 1 the connection state when performing the heating operation is indicated by a solid line, and the connection state when performing the cooling operation is indicated by a dotted line.
  • the indoor heat exchanger 41 functions as a refrigerant cooler
  • the outdoor heat exchanger 23 functions as a refrigerant heater.
  • the outdoor heat exchanger 23 functions as a refrigerant cooler
  • the indoor heat exchanger 41 functions as a refrigerant heater.
  • the outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the air conditioner 1. Furthermore, an outdoor temperature sensor 29b that detects outdoor air temperature is provided upstream of the outdoor heat exchanger 23 in the air flow direction. In the indoor unit 4, an indoor temperature sensor 43 that detects the indoor temperature is provided.
  • the indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
  • the outdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted.
  • the control unit 11 performs various controls for the air conditioner 1.
  • FIG. 2 shows a schematic perspective view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
  • FIG. 3 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed.
  • FIG. 4 shows a schematic configuration diagram of the electromagnetic induction thermistor 14.
  • FIG. 5 shows a schematic configuration diagram of the fuse 15.
  • FIG. 6 shows a cross-sectional view of the electromagnetic induction thermistor 14 and the fuse 15 attached to the accumulator tube F.
  • FIG. 7 shows a cross-sectional view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
  • FIG. 8 is an explanatory diagram showing a state in which a magnetic field is generated by the coil 68.
  • the electromagnetic induction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating.
  • the heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
  • the electromagnetic induction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite.
  • a case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, an electromagnetic induction thermistor 14, a fuse 15 and the like are provided.
  • the first hexagon nut 61 and the second hexagon nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator pipe F using a C-shaped ring (not shown).
  • the first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively.
  • the first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing. Furthermore, the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the electromagnetic induction thermistor 14 and attaching it to the outer surface of the magnetic tube F2. The second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 and attaching it to the outer surface of the magnetic tube F2. As shown in FIG.
  • the electromagnetic induction thermistor 14 is an electromagnetic induction thermistor wiring that transmits the detection results of the electromagnetic induction thermistor detector 14a, the outer protrusion 14b, the side protrusion 14c, and the electromagnetic induction thermistor detector 14a as signals to the controller 11. 14d.
  • the electromagnetic induction thermistor detection unit 14a has a shape that follows the curved shape of the outer surface of the accumulator tube F, and has a substantial contact area.
  • the fuse 15 includes a fuse detection unit 15a, an asymmetric shape 15b, and a fuse wiring 15d that transmits a detection result of the fuse detection unit 15a to the control unit 11 as a signal.
  • the control unit 11 performs control to stop the power supply to the coil 68 to avoid thermal damage of the device.
  • the bobbin main body 65 is made of resin, and the coil 68 is wound around it.
  • the coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction.
  • the coil 68 is connected to a control printed board (not shown) and is supplied with a high-frequency current.
  • the output of the control printed circuit board is controlled by the control unit 11. As shown in FIG. 6, the electromagnetic induction thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together.
  • the plate spring 16 is pushed inward in the radial direction of the magnetic body tube F ⁇ b> 2, thereby maintaining a good pressure contact state with the outer surface of the magnetic body tube F ⁇ b> 2.
  • the attachment state of the fuse 15 is also pushed inward in the radial direction of the magnetic tube F2 by the leaf spring 17, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained.
  • the first ferrite case 71 has a first bobbin lid 63 and a second bobbin lid 64 sandwiched from the direction in which the accumulator tube F extends, and is screwed and fixed by screws 69.
  • the first ferrite case 71 to the fourth ferrite case 74 contain a first ferrite 98 and a second ferrite 99 made of ferrite, which is a material having a high magnetic permeability. As shown in the sectional view of the accumulator tube F and the electromagnetic induction heating unit 6 in FIG. 7 and the magnetic flux explanatory diagram in FIG. By forming it, the magnetic field is made difficult to leak outside.
  • the shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn by the first ferrite 98 and the second ferrite 99 alone. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
  • Electromagnetic induction heating control The electromagnetic induction heating unit 6 described above is configured so that the accumulator pipe F is activated when starting the heating operation when heating the refrigeration cycle, when assisting the heating capacity, and when performing the defrost operation. Control is performed to generate heat in the magnetic tube F2.
  • FIG. 9 shows the state transition.
  • the initial process at the time of start-up is a process performed after the heating operation is started until the pressure detected by the first pressure sensor 29a reaches the target high pressure.
  • the control unit 11 starts the heating operation.
  • the controller 11 waits for the pressure detected by the first pressure sensor 29a to rise to a predetermined target high pressure 39 kg / cm 2 after the compressor 21 is started. (Indicated by a point h in FIG. 9), the indoor fan 42 is driven. Thereby, at the stage where the refrigerant passing through the indoor heat exchanger 41 is not warmed, an unpleasant user's discomfort caused by causing an air flow in the unwarmed room is prevented.
  • the opening degree of the outdoor electric expansion valve 24 is maintained at a fixed opening degree.
  • electromagnetic induction heating using the electromagnetic induction heating unit 6 is performed.
  • the controller 11 After confirming that sufficient refrigerant flow in the accumulator tube F is ensured after the compressor 21 is started, the controller 11 starts the rapid pressure increase process. In the rapid pressure-increasing process, the control unit 11 reduces the time required for the detected temperature of the electromagnetic induction thermistor 14 to reach 80 ° C., which is the target accumulator temperature at startup, in order to shorten the coil 68 of the electromagnetic induction heating unit 6.
  • the supply of current to is assumed to be a predetermined maximum supply power (2 kW).
  • the output state at a predetermined maximum supply power by the electromagnetic induction heating unit 6 here is continued until the temperature detected by the electromagnetic induction thermistor 14 reaches 80 ° C., which is the target accumulator temperature at startup.
  • the opening degree of the outdoor electric expansion valve 24 is maintained at a fixed opening degree, or the detection temperature of the electromagnetic induction thermistor 14 is activated.
  • control is performed to set the output of the electromagnetic induction heating unit 6 to the maximum supply power.
  • the induction refrigerant is overheated by this induction heating.
  • the degree may rise abnormally.
  • the control unit 11 performs overheating protection control (described later) during startup. (About the processing after the initial stage at startup)
  • the initial and subsequent processing at the time of startup is processing at the time of startup performed after the pressure detected by the first pressure sensor 29a reaches the target high pressure.
  • the rotational speed of the compressor 21 is further increased to increase the outdoor electric
  • the amount of refrigerant circulating in the refrigeration cycle is increased, and steady output control is performed to increase the capacity.
  • the controller 11 once reaches the start target accumulator temperature of 80 ° C.
  • the control unit 11 determines the predetermined maximum supply power ( The detected temperature of the electromagnetic induction thermistor 14 is maintained at around 80 ° C., which is the same target temperature as the startup target accumulator temperature, while the output is suppressed to a steady supply power (1.4 kW) which is an output of 2 kW or less.
  • the output of the electromagnetic induction heating unit 6 is controlled.
  • the control unit 11 uses the electromagnetic induction heating unit 6 with the output of the steady supply power (1.4 kW) when the detected temperature of the electromagnetic induction thermistor 14 becomes 60 ° C. or less. Induction heating is started, and when the temperature detected by the electromagnetic induction thermistor 14 reaches 80 ° C., induction heating by the electromagnetic induction heating unit 6 is stopped.
  • This degree of supercooling is obtained by the controller 11 calculating the difference between the saturation temperature corresponding to the detected pressure of the second pressure sensor 29g and the temperature detected by the indoor heat exchanger temperature sensor 44.
  • Start-up overheat protection control In the start-up overheat protection control, in order to prevent the degree of superheat of the refrigerant sucked in the compressor 21 from abnormally increasing due to induction heating by the initial maximum supply power (2 kW) at start-up by the electromagnetic induction heating unit 6, In this control, the opening degree of the electric expansion valve 24 is increased.
  • FIG. 10 shows a flowchart of start-up overheat protection control.
  • step S11 if the control part 11 confirms that the detection temperature of the electromagnetic induction thermistor 14 will fall after starting the compressor 21, it will transfer to step S12 (it shows by the point a in FIG. 9).
  • step S12 the control unit 11 switches the output of the electromagnetic induction heating unit 6 from the zero state to the maximum supply power (2 kW) (shown as a change from the point b to the point c in FIG. 9), and at the same time, Start counting elapsed time by 95.
  • step S13 the control unit 11 determines whether or not the detected temperature of the electromagnetic induction thermistor 14 has reached 80 ° C., which is the target accumulator temperature at startup. When the target accumulator temperature at start-up reaches 80 ° C. (indicated by a point d in FIG. 9), the process proceeds to step S14.
  • step S14 the control unit 11 temporarily stops induction heating by the electromagnetic induction heating unit 6 (indicated by a point e in FIG. 9), and ends the count of the timer 95 that has started counting in step S12.
  • step S15 the control unit 11 determines whether or not the rotation number detected by the rotation number grasping unit 29r is greater than the overheat suppression estimated rotation number of 82 rps (82 rotations per second).
  • the estimated overheating suppression rotational speed is a rotational speed that is set in advance as the rotational speed at which the degree of superheating of the refrigerant sucked by the compressor 21 hardly increases abnormally based on each design condition of the refrigeration cycle.
  • the suction pressure is unlikely to be greatly reduced. Therefore, it is estimated that the degree of superheat of the refrigerant sucked in the compressor 21 is not likely to rise abnormally, and the overheating protection control at the start is finished. . When it exceeds the overheat suppression estimated rotational speed, the process proceeds to step S16.
  • step S16 the control unit 11 determines whether or not the value of the timer 95 that has finished counting in step S14 is less than 20 seconds, which is the temperature increase rate determination time.
  • This temperature increase rate determination time is a time set in advance as a time corresponding to a temperature increase rate at which the degree of superheat of the refrigerant sucked by the compressor 21 hardly increases abnormally based on each design condition of the refrigeration cycle. .
  • step S ⁇ b> 17 the control unit 11 increases the opening degree of the outdoor electric expansion valve 24 and performs a valve opening degree increasing process for increasing the flow rate of the refrigerant passing through the accumulator pipe F, whereby the induction performed by the electromagnetic induction heating unit 6.
  • the temperature rise of the accumulator tube F is prevented from becoming too fast due to heating.
  • the opening of the outdoor electric expansion valve 24 is increased by 20 pulses every 20 seconds. This process of increasing by 20 pulses every 20 seconds is repeated until the detected temperature rise rate of the electromagnetic induction thermistor 14 by induction heating becomes a predetermined rate or less.
  • the process for determining whether or not the speed of temperature rise detected by the electromagnetic induction thermistor 14 does not exceed a predetermined speed is performed at the same time.
  • the opening degree of the outdoor electric expansion valve 24 is increased, it is determined that there is no possibility that the temperature of the accumulator pipe F will rise too much, and the valve opening degree increasing process is terminated.
  • the normal overheat protection control detects that the detected temperature of the electromagnetic induction thermistor 14 is temporarily lowered when the degree of opening of the outdoor electric expansion valve 24 is increased while the constant degree of supercooling control is being performed.
  • induction heating is performed by the electromagnetic induction heating unit 6, this is control for preventing the degree of superheat from rising abnormally due to the induction heating.
  • FIG. 11 shows a flowchart of normal overheat protection control.
  • step S21 when the detected temperature of the electromagnetic induction thermistor 14 becomes 80 ° C. or lower, the control unit 11 outputs the output of the electromagnetic induction heating unit 6 from the zero state by the steady supply power (1.4 kW) (steady level). Raise to.
  • step S22 the control unit 11 determines whether or not the detected temperature of the electromagnetic induction thermistor 14 has reached 80 ° C. When the temperature reaches 80 ° C., the process proceeds to step S23. In step S23, the control unit 11 temporarily stops induction heating by the electromagnetic induction heating unit 6.
  • step S24 after stopping induction heating by the electromagnetic induction heating unit 6, the control unit 11 continues to detect how the detection temperature of the electromagnetic induction thermistor 14 rises, exceeding the abnormally elevated temperature of 110 ° C. Determine whether or not. That is, it is determined whether or not there is an overshoot in which the temperature detected by the electromagnetic induction thermistor 14 continues to rise above 80 ° C. despite the induction heating by the electromagnetic induction heating unit 6 being finished.
  • the abnormally elevated temperature of 110 ° C. is a temperature set in advance as a temperature at which an abnormal increase in the degree of superheat of the refrigerant sucked in the compressor 21 occurs when this value is exceeded based on each design condition of the refrigeration cycle.
  • step S25 When it is determined that the abnormally rising temperature is exceeded, the process proceeds to step S25.
  • the temperature does not exceed the abnormally rising temperature it is estimated that there is no possibility that the superheat degree of the refrigerant sucked in the compressor 21 will rise abnormally, and the overheating protection control at the time of start is ended.
  • step S25 the controller 11 increases the opening degree by increasing the opening degree of the outdoor electric expansion valve 24 controlled by the constant supercooling degree constant control by an additional 50 pulses (valve opening degree). Adjustment process).
  • the pulse is increased by 50 pulses as a pulse larger than 20 pulses, which is the increment of one opening of the outdoor electric expansion valve 24 in the startup overheat protection control.
  • the opening degree of the outdoor electric expansion valve 24 is increased in a situation where the temperature of the magnetic pipe F2 of the accumulator pipe F suddenly rises due to induction heating at the start.
  • this overheating protection control at the time of startup considers the drive rotation speed of the compressor 21, and normally selects an overheat suppression estimated rotation speed that is predetermined as a rotation speed at which no abnormal temperature rise occurs. Even in a situation where the driving state of the compressor 21 is ensured, the opening degree of the outdoor electric expansion valve 24 is increased only when the temperature of the magnetic pipe F2 rapidly increases. For this reason, at the time of start-up, it is possible to avoid the opening degree of the outdoor electric expansion valve 24 from being increased at a stage where the drive rotational speed of the compressor 21 has not increased so much.
  • the opening degree of the outdoor electric expansion valve 24 is increased more than necessary, thereby making it difficult for the high-low pressure difference to occur, and until the detected pressure of the first pressure sensor 29a reaches a predetermined target high-pressure pressure of 39 kg / cm 2. It is possible to prevent the time required for the operation from being prolonged and the high-temperature refrigerant from being unable to be supplied to the indoor heat exchanger 41.
  • the timing for increasing the opening degree of the outdoor electric expansion valve 24 in the start-up overheat protection control is not based on whether or not the temperature detected by the electromagnetic induction thermistor 14 exceeds a certain temperature, but the temperature increase rate is determined. The standard. For this reason, it is not necessary to make a determination as to whether or not this determination temperature has been exceeded while newly providing another determination temperature or the like that is higher than the startup target accumulator temperature.
  • the temperature of the accumulator tube F after that time is more likely to rise more quickly when it is understood that the temperature has exceeded a certain rate of temperature rise than when it is determined that the determination temperature has been exceeded.
  • the reliability of the apparatus can be improved.
  • the control to increase the opening degree of the outdoor electric expansion valve 24 when the determination temperature is exceeded considering the case where 90 ° C. is set as the temperature higher than the target accumulator temperature at startup, the detection of the electromagnetic induction thermistor 14 Even if it takes a few minutes for the temperature to exceed 90 ° C. from 89 ° C., and even if a certain amount of time passes after that, even if it is predicted that the temperature will increase only by a few degrees C., the degree of opening of the outdoor electric expansion valve 24 is It will be raised.
  • the opening degree of the outdoor electric expansion valve 24 is increased only when a temperature increase rate that exceeds 80 ° C. in 20 seconds is detected. It is possible to prevent the discharge refrigerant temperature from being lowered due to unnecessarily increasing the opening degree of the outdoor electric expansion valve 24.
  • the detection temperature of the electromagnetic induction thermistor 14 exceeds the abnormally elevated temperature 110 ° C. by performing induction heating when the supercooling degree constant control is performed, the degree of supercooling is increased. The opening degree is further increased from the opening degree of the outdoor electric expansion valve 24 controlled by the constant control.
  • the amount of refrigerant passing through the accumulator tube F can be more reliably compared to control in which the opening degree of the outdoor electric expansion valve 24 is merely adjusted to a certain degree of opening when the abnormally rising temperature exceeds 110 ° C. Since it can be increased, an abnormal increase in the degree of superheat of the refrigerant sucked by the compressor 21 can be more reliably suppressed.
  • the normal overheat protection control is performed in a state in which the refrigerant circulation amount of the refrigeration cycle is more stable than that at the time of startup, and a rapid increase in the temperature of the accumulator tube F is unlikely to occur. It is not necessary to make a determination based on the rising speed, and the reliability can be sufficiently ensured by a simple determination method of determining whether or not the abnormally rising temperature exceeds 110 ° C. This also increases the amount of refrigerant sucked in the compressor 21, so that the heat input time to the magnetic pipe F ⁇ b> 2 by induction heating of the electromagnetic induction heating unit 6 can be extended. Further, until the electromagnetic induction thermistor 14 detects an abnormally elevated temperature of 110 ° C., which is higher than 80 ° C.
  • the degree of opening of the outdoor electric expansion valve 24 is controlled at a constant degree of supercooling. Since the opening degree of the outdoor electric expansion valve 24 is not increased, the time during which the refrigerant temperature can be maintained at a high temperature by induction heating can be extended.
  • the accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing.
  • the magnetic material may constitute all of the accumulator pipe F, or may be formed only on the inner surface of the accumulator pipe F, and is contained in the material constituting the accumulator pipe F pipe. May exist.
  • (B) In the above embodiment, the case where the conditions for increasing the opening degree of the outdoor electric expansion valve 24 are different between the startup overheat protection control and the normal overheat protection control has been described as an example. However, the present invention is not limited to this. For example, the conditions for increasing the opening degree of the outdoor electric expansion valve 24 may be the same in the startup overheat protection control and the normal overheat protection control.
  • the degree of change in the refrigerant distribution state in the refrigeration cycle may be controlled to be maintained for a predetermined time in a predetermined distribution state or within a predetermined distribution range.
  • the detection of the refrigerant distribution state for example, the refrigerant distribution state is grasped by grasping the liquid level of the refrigerant by, for example, providing a sight glass in the condenser of the refrigeration cycle, and this distribution state is a predetermined distribution state or Stabilization control may be performed so as to be within a predetermined distribution range.
  • D In the above embodiment, the case where the electromagnetic induction heating unit 6 is attached to the accumulator tube F in the refrigerant circuit 10 has been described.
  • the present invention is not limited to this.
  • other refrigerant pipes other than the accumulator pipe F may be provided.
  • a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagnetic induction heating unit 6 is provided.
  • the accumulation pipe F was comprised as a double pipe
  • the present invention is not limited to this.
  • the magnetic member F2a and the two stoppers F1a and F1b may be arranged inside the accumulator pipe F or the refrigerant pipe to be heated.
  • the magnetic member F2a contains a magnetic material, and is a member that generates heat by electromagnetic induction heating in the above embodiment.
  • the stoppers F1a and F1b always allow the refrigerant to pass through at two locations inside the copper tube F1, but do not allow the magnetic member F2a to pass through. Thereby, the magnetic member F2a does not move even when the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated. Furthermore, since the magnetic member F2a that generates heat and the refrigerant are in direct contact, the heat transfer efficiency can be improved.
  • the magnetic member F2a described in the other embodiment (L) may be positioned with respect to the pipe without using the stoppers F1a and F1b.
  • the copper pipe F1 may be provided with two bent portions FW, and the magnetic member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even in this case, the movement of the magnetic member F2a can be suppressed while allowing the refrigerant to pass therethrough.
  • G In the above embodiment, the case where the coil 68 is spirally wound around the accumulator tube F has been described. However, the present invention is not limited to this.
  • the coil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F.
  • the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F.
  • the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
  • the first bobbin lid 163 and the second bobbin lid 164 penetrating the accumulator tube F may be arranged in a state of being fitted to the bobbin main body 165. Good. Further, as shown in FIG.
  • the first bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172.
  • the case where the two ferrite cases are arranged so as to sandwich the accumulator tube F is taken as an example, but may be arranged in four directions as in the above embodiment. Moreover, you may accommodate the ferrite similarly to the said embodiment.
  • whether the temperature increase rate is fast or not is determined by the time required from the start of induction heating by the electromagnetic induction heating unit 6 until the start-up target accumulator tube temperature reaches 80 ° C.
  • the case where the determination is made based on whether the time is less than (20 seconds) has been described as an example.
  • the method for grasping the temperature rise rate is not limited to such a grasping method.
  • the controller 90 instead of actually grasping the temperature rise rate, holds an information table in advance, and the control unit 11 refers to this information table so that the temperature rise rate is predicted and the outdoor expansion valve 24 is used. Control such as increasing the valve opening degree may be performed.
  • the current detection temperature of the electromagnetic induction thermistor 14 the amount of heating of the accumulator tube F by the electromagnetic induction heating unit 6, the amount of refrigerant circulating through the accumulator tube F, the refrigerant passing through the accumulator tube F
  • the data etc. which matched each condition, such as the density of this, and external temperature, and the value calculated beforehand as a temperature rise rate corresponding to the condition are mentioned.
  • the temperature increase rate is calculated in advance, the thermal conductivity of the magnetic tube F2 and the copper tube F1, the heat transfer coefficient between the magnetic tube F2 and the copper tube F1, the copper tube F1 and the refrigerant. It is desirable to calculate based on the heat transfer coefficient between
  • the amount of heating of the accumulator tube F by the electromagnetic induction heating unit 6 can be converted from the amount of power supplied from the current supply unit 21e detected by the compressor power detection unit 29f.
  • the refrigerant circulation amount passing through the accumulator pipe F and the density of the refrigerant passing through the accumulator pipe F are obtained by the driving speed of the piston of the compressor 21 known by the revolution speed grasping part 29r and the first pressure sensor 29a. It can be converted from the high pressure that is being measured, the low pressure that is being grasped by the second pressure sensor, and the like.
  • the outside air temperature can be grasped as the temperature detected by the outdoor temperature sensor 29b. In this way, when the information table is held in the controller 90 in advance, the processing load on the control unit 11 can be reduced. Note that the controller 90 holds a predetermined relational expression without causing the controller 90 to hold such an information table, and based on the values obtained from each sensor described above, the predicted temperature increase rate is The control unit 11 may calculate.
  • the amount of power supplied to the electromagnetic induction heating unit 6 by the current supply unit 21e is based on, for example, a predetermined output (for example, 2 kW) and another predetermined output (for example, 1.4 kW) based on the outside air temperature. ),
  • the information table and the calculation can be simplified. As described above, when the control unit 11 does not actually grasp the temperature rise rate but calculates it from an information table or a predetermined relational expression, the time for actually measuring the temperature rise rate is obtained. Since it becomes unnecessary, it becomes possible to perform more rapid processing.
  • the detected temperature of the electromagnetic induction thermistor 14 is maintained at around 80 ° C., which is the target accumulator temperature at startup, in the steady output control after the initial stage of startup.
  • the temperature is 60 ° C. or less
  • induction heating by the electromagnetic induction heating unit 6 is started with the output of the above-described steady supply power (1.4 kW), and when the detected temperature of the electromagnetic induction thermistor 14 reaches 80 ° C., the electromagnetic induction heating unit 6
  • the process of stopping the induction heating by the above is described as an example.
  • control for maintaining the detected temperature of the electromagnetic induction thermistor 14 at around 80 ° C. in the steady output control is not limited to such control.
  • the control unit 11 performs PI control on the current supply frequency of the electromagnetic induction heating unit 6 based on the detected temperature of the electromagnetic induction thermistor 14 so as to maintain the detected temperature of the electromagnetic induction thermistor 14 at around 80 ° C. May be.
  • the control unit 11 repeats this set with one set of supplying current to the electromagnetic induction heating unit 6 while maintaining a constant constant power supply (1.4 kW) for 30 seconds continuously.
  • the frequency may be adjusted based on the elapsed time from when the current supply to the latest electromagnetic induction heating unit 6 is completed until the temperature detected by the electromagnetic induction thermistor 14 falls to 80 ° C. again. That is, the longer the elapsed time, the higher the frequency of repeating the set may be controlled.
  • the frequency may be adjusted based on the elapsed time from when the current supply to the latest electromagnetic induction heating unit 6 is completed until the temperature detected by the electromagnetic induction thermistor 14 falls to 80 ° C. again. That is, the longer the elapsed time, the higher the frequency of repeating the set may be controlled.
  • control is performed in consideration of the amount of heat applied to the suction refrigerant in the superheat degree control of the suction refrigerant of the compression mechanism. Therefore, it is particularly useful in an air conditioner that heats a refrigerant by induction heating.
  • Air Conditioner 11 Control Unit (Cooler-side Refrigerant State Grasping Unit) 14 Electromagnetic induction thermistor (heating temperature detection) 21 Compressor (compression mechanism) 23 Outdoor heat exchanger (refrigerant heater) 24 Outdoor electric expansion valve (expansion mechanism) 29a 1st pressure sensor (cooler side refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning device which can, even in heating a refrigerant on the suction side of a compression mechanism, perform control which takes into consideration the amount of heat added to the refrigerant, which is sucked into the compression mechanism, in the control of the degree of superheating of the refrigerant. An air conditioning device (1) for performing a refrigeration cycle by including at least a compressor (21), an indoor heat exchanger (41), an indoor fan (42), an outdoor electric expansion valve (24), and an outdoor heat exchanger (23). The air conditioning device (1) is provided with a coil (68), an electromagnetic induction thermister (14), and a control unit (11). The coil (68) generates a magnetic field for heating, by induction, a magnetic material pipe (F2) in order to heat a refrigerant flowing in an accumulator pipe (F). The electromagnetic induction thermister (14) detects the temperature of the magnetic material pipe (F2) which generates heat by induction heating by the coil (68). The control unit (11) performs control for increasing the degree of opening of the electric expansion valve (24) when the rising speed of the temperature detected by the electromagnetic induction thermister (14) is high.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関する。 The present invention relates to an air conditioner.
 従来より、圧縮機の吸入冷媒の過熱度を制御するために、冷媒循環量等を制御する空気調和装置が知られている。
 例えば、特許文献1(特開平7-120083号公報)に記載の空気調和装置では、圧縮機吸入冷媒温度に応じて電動膨張弁の弁開度を上げるように制御することで、冷媒循環量を上げて、圧縮機の吸入冷媒の過熱度を制御できるようにしている。
2. Description of the Related Art Conventionally, an air conditioner that controls a refrigerant circulation amount or the like to control the degree of superheat of refrigerant sucked in a compressor is known.
For example, in the air conditioner described in Patent Document 1 (Japanese Patent Laid-Open No. 7-120083), the amount of refrigerant circulation is controlled by increasing the valve opening degree of the electric expansion valve in accordance with the compressor suction refrigerant temperature. And the degree of superheat of the refrigerant sucked into the compressor can be controlled.
 圧縮機の吸入側については、冷媒と熱的に接触している冷媒配管等を外部加熱装置によって加熱することで、間接的に圧縮機の吸入冷媒を暖める場合がある。
 このような外部加熱装置を用いる場合には、例えば、圧縮機の吸入冷媒温度センサを外部加熱装置による加熱対象部分と圧縮機の吸入側との間に配置してしまうと、外部加熱装置によって加熱対象部分に加えられた熱が下流側の吸入冷媒温度センサの取付位置近傍まで熱伝達してしまい、正確な吸入冷媒温度の検知が困難になる。そうすると、このような外部加熱装置による加熱対象部分と圧縮機の吸入側との間に配置された圧縮機の吸入冷媒温度センサの検知値に基づいた電動膨張弁の弁開度制御では、弁開度を上げ過ぎて冷媒循環量が増大し過ぎてしまい、圧縮機吸入冷媒の過熱度の上がりすぎを抑制するだけでなく、液圧縮を生じさせてしまうおそれもある。
On the suction side of the compressor, the refrigerant refrigerant or the like that is in thermal contact with the refrigerant may be heated by an external heating device to indirectly warm the refrigerant drawn in the compressor.
In the case of using such an external heating device, for example, if an intake refrigerant temperature sensor of the compressor is disposed between a portion to be heated by the external heating device and the suction side of the compressor, the external heating device heats up. The heat applied to the target portion is transferred to the vicinity of the attachment position of the intake refrigerant temperature sensor on the downstream side, making it difficult to accurately detect the intake refrigerant temperature. Then, in the valve opening control of the electric expansion valve based on the detected value of the suction refrigerant temperature sensor of the compressor disposed between the part to be heated by the external heating device and the suction side of the compressor, the valve opening is not performed. The refrigerant circulation amount increases excessively when the temperature is increased too much, and this may not only suppress the excessive increase in the degree of superheat of the refrigerant sucked by the compressor but may cause liquid compression.
 また、例えば、外部加熱装置による加熱対象部分が、圧縮機の吸入冷媒温度センサの検知位置の下流側であって、圧縮機の吸入側の上流側となるように設けられる場合には、加熱対象部分を通過することで加熱された吸入冷媒の温度を把握することができない。そうすると、このような外部加熱装置による加熱対象部分の上流側に配置されている吸入冷媒温度センサの検知値に基づいた電動膨張弁の弁開度制御では、弁開度を下げ過ぎて冷媒循環量が減少し過ぎてしまい、圧縮機吸入冷媒の過熱度が過度に上がり過ぎてしまうおそれがある。
 本発明は上述した点に鑑みてなされたものであり、本発明の課題は、圧縮機構の吸入側の冷媒を加熱する場合であっても、圧縮機構の吸入冷媒の過熱度制御において吸入冷媒に対して加えられている熱量を考慮した制御を行うことが可能な空気調和装置を提供することにある。
In addition, for example, when the part to be heated by the external heating device is provided downstream of the detection position of the suction refrigerant temperature sensor of the compressor and upstream of the suction side of the compressor, The temperature of the suction refrigerant heated by passing through the portion cannot be grasped. Then, in the valve opening degree control of the electric expansion valve based on the detected value of the suction refrigerant temperature sensor arranged upstream of the part to be heated by such an external heating device, the valve opening degree is lowered too much and the refrigerant circulation amount May be excessively decreased, and the degree of superheat of the refrigerant sucked by the compressor may be excessively increased.
The present invention has been made in view of the above-described points, and an object of the present invention is to control the intake refrigerant in the superheat degree control of the intake refrigerant of the compression mechanism, even when the refrigerant on the intake side of the compression mechanism is heated. An object of the present invention is to provide an air conditioner capable of performing control in consideration of the amount of heat applied to the air.
 第1の観点にかかる空気調和装置は、圧縮機構、冷媒冷却器、膨張機構および冷媒加熱器を少なくとも含む空気調和装置であって、磁界発生部、発熱温度検知部および制御部を備えている。磁界発生部は、圧縮機構と冷媒冷却器と膨張機構と冷媒加熱器に冷媒を循環させるための冷媒配管、および/または、冷媒配管中を流れる冷媒と熱的接触をする部材、を誘導加熱させるために磁界を生じさせる。発熱温度検知部は、磁界発生部による誘導加熱によって発熱する部分の温度を検知する。制御部は、発熱温度検知部が検知する温度が所定発熱温度以上になった場合もしくは超えた場合、または、発熱温度検知部が検知する温度の上昇速度が所定上昇速度以上になった場合もしくは超えた場合に、膨張機構の開度を上げる過熱保護制御を行う。
 この空気調和装置では、発熱温度検知部が設けられているため、磁界発生部による誘導加熱によって発熱する部分の温度状況を把握することができる。そして、制御部が過熱保護制御を行うことで、発熱温度検知部が検知する温度が所定発熱温度以上になった場合もしくは超えた場合または発熱温度検知部が検知する温度の上昇速度が所定上昇速度以上になった場合もしくは超えた場合に、膨張機構の開度が上げられ、圧縮機構の吸入側に供給される冷媒量が増大する。このため、圧縮機構の吸入冷媒の過熱度が異常上昇することを抑制させることができる。これにより、圧縮機構の吸入側の冷媒を加熱する場合であっても、吸入冷媒に対して加えられている熱量を考慮した圧縮機構の吸入冷媒の過熱度制御を行うことが可能になる。
An air conditioner according to a first aspect is an air conditioner including at least a compression mechanism, a refrigerant cooler, an expansion mechanism, and a refrigerant heater, and includes a magnetic field generation unit, a heat generation temperature detection unit, and a control unit. The magnetic field generation unit induction-heats a refrigerant pipe for circulating the refrigerant through the compression mechanism, the refrigerant cooler, the expansion mechanism, and the refrigerant heater and / or a member that makes thermal contact with the refrigerant flowing in the refrigerant pipe. Therefore, a magnetic field is generated. The exothermic temperature detector detects the temperature of the portion that generates heat by induction heating by the magnetic field generator. The control unit detects when the temperature detected by the heat generation temperature detection unit exceeds or exceeds the predetermined heat generation temperature, or when the temperature increase rate detected by the heat generation temperature detection unit exceeds or exceeds the predetermined increase rate. If this happens, overheat protection control is performed to increase the opening of the expansion mechanism.
In this air conditioner, since the heat generation temperature detector is provided, it is possible to grasp the temperature condition of the portion that generates heat by induction heating by the magnetic field generator. Then, when the temperature detected by the heat generation temperature detection unit exceeds or exceeds the predetermined heat generation temperature by the control unit performing overheat protection control, the temperature increase rate detected by the heat generation temperature detection unit is the predetermined increase rate. When the above is reached or exceeded, the opening of the expansion mechanism is increased, and the amount of refrigerant supplied to the suction side of the compression mechanism is increased. For this reason, it can suppress that the superheat degree of the suction | inhalation refrigerant | coolant of a compression mechanism raises abnormally. Thereby, even when the refrigerant on the suction side of the compression mechanism is heated, it is possible to control the superheat degree of the suction refrigerant of the compression mechanism in consideration of the amount of heat applied to the suction refrigerant.
 第2の観点にかかる空気調和装置は、第1の観点の空気調和装置において、磁界発生部は、冷媒配管のうち圧縮機構の吸入側における吸入冷媒配管、および/または、吸入冷媒配管中を流れる冷媒と熱的接触をする部材、を誘導加熱させるための磁界を生じさせる。
 この空気調和装置では、圧縮機構からかなり離れた冷媒配管を流れる冷媒ではなくて圧縮機構に吸入される直前の冷媒を迅速に加熱させている。そして、圧縮機構の吸入側を流れる冷媒は、乾き度が大きいかもしくは過熱状態となっており、より上流側を流れている気液二相状態等の冷媒が潜熱変化する場合と比べると、顕熱変化を行いやすいため、温度が上昇しやすい。
 これに対して、この空気調和装置では、発熱温度検知部が検知する温度が所定発熱温度以上になった場合もしくは発熱温度検知部が検知する温度の上昇速度が所定上昇速度を超えた場合に過熱保護制御が行われるため、圧縮機構の吸入側を通過する冷媒の過度な誘導加熱を防止することができる。これにより、温度上昇が生じやすい圧縮機構の吸入側を通過する冷媒を加熱する場合であっても、誘導加熱部分を過度に加熱してしまうことを抑制することができる。
An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the magnetic field generator flows in the suction refrigerant pipe and / or the suction refrigerant pipe on the suction side of the compression mechanism among the refrigerant pipes. A magnetic field for inductively heating the member that is in thermal contact with the refrigerant is generated.
In this air conditioner, the refrigerant immediately before being sucked into the compression mechanism is rapidly heated instead of the refrigerant flowing through the refrigerant pipe considerably away from the compression mechanism. The refrigerant flowing on the suction side of the compression mechanism has a high degree of dryness or is in an overheated state, which is obvious when compared with the case where the refrigerant in the gas-liquid two-phase state or the like flowing more upstream changes in latent heat. Temperature is likely to rise because it is easy to change heat.
On the other hand, in this air conditioner, overheating occurs when the temperature detected by the heat generation temperature detection unit becomes equal to or higher than the predetermined heat generation temperature or when the temperature increase rate detected by the heat generation temperature detection unit exceeds the predetermined increase rate. Since protection control is performed, excessive induction heating of the refrigerant passing through the suction side of the compression mechanism can be prevented. Thereby, even if it is a case where the refrigerant | coolant which passes the suction | inhalation side of the compression mechanism which a temperature rise tends to produce is heated, it can suppress that an induction heating part is heated too much.
 第3の観点にかかる空気調和装置は、第1の観点または第2の観点の空気調和装置において、制御部は、起動時制御および起動後制御を行う。起動時制御では、圧縮機構が停止している状態から圧縮機構の駆動を開始させつつ磁界発生部による誘導加熱によって発熱する部分の温度が所定起動時目標温度に達するように磁界発生部に磁界を生じさせる。起動後制御は、起動時制御を終えた後に行われる。制御部は、起動後制御を行っている時に過熱保護制御を同時に行う場合には、発熱温度検知部が検知する温度が起動後所定発熱温度以上になった場合もしくは超えた場合に膨張機構の開度を上げる。この起動後所定発熱温度は、所定起動時目標温度以上の温度である。なお、起動後所定発熱温度は、所定起動時目標温度と等しい温度であってもよい。
 この空気調和装置では、起動後制御については、誘導加熱によって発熱する部分の温度が起動後所定発熱温度以上もしくは超えるまで上昇した場合には、膨張機構の開度が上げられることにより、誘導加熱によって発熱する部分の温度を下げることが可能になる。このため、起動後制御において、誘導加熱によって発熱する部分の異常温度上昇を抑えることができる。
In the air conditioner according to the third aspect, in the air conditioner according to the first aspect or the second aspect, the control unit performs start-up control and post-startup control. In the start-up control, the magnetic field generating unit is supplied with a magnetic field so that the temperature of the portion that generates heat by induction heating by the magnetic field generating unit reaches a predetermined start-up target temperature while starting the driving of the compression mechanism from a state where the compression mechanism is stopped. Cause it to occur. The post-startup control is performed after the start-up control is finished. When the control unit performs the overheat protection control simultaneously with the control after starting, the expansion mechanism is opened when the temperature detected by the heat generation temperature detecting unit exceeds or exceeds the predetermined heat generation temperature after starting. Raise the degree. The predetermined heat generation temperature after activation is a temperature equal to or higher than the predetermined activation target temperature. The predetermined heat generation temperature after startup may be equal to the predetermined startup target temperature.
In this air conditioner, for post-startup control, when the temperature of the portion that generates heat by induction heating rises above or exceeds a predetermined exothermic temperature after startup, the opening degree of the expansion mechanism is increased, so that induction heating It becomes possible to lower the temperature of the part that generates heat. For this reason, in post-startup control, it is possible to suppress an abnormal temperature rise in a portion that generates heat by induction heating.
 なお、起動後所定発熱温度が、所定起動時目標温度と等しい温度ではなく、所定起動時目標温度よりも高い温度である場合には、誘導加熱によって発熱する部分の温度が上昇し過ぎた場合に磁界発生部からの磁界の供給を停止させたり弱めたりする等の処理を行う場合であっても、誘導加熱によって冷媒温度を高温に維持できる時間をより長くすることができるようになる。 In addition, when the predetermined heat generation temperature after the start is not equal to the predetermined target temperature at the start but higher than the predetermined start target temperature, the temperature of the portion that generates heat due to induction heating is excessively increased. Even when processing such as stopping or weakening the supply of the magnetic field from the magnetic field generation unit is performed, the time during which the refrigerant temperature can be maintained at a high temperature by induction heating can be extended.
 第4の観点にかかる空気調和装置は、第3の観点の空気調和装置において、制御部は、起動時制御を行っている時に過熱保護制御を同時に行う場合には、所定起動時目標温度に到達させる際の発熱温度検知部が検知する温度上昇の速度が所定上昇速度以上になった場合もしくは超えた場合に膨張機構の開度を上げる。
 この空気調和装置では、起動時制御については、発熱温度検知部の検知温度について、温度上昇速度が所定上昇速度以上になるもしくは超えるほど速く上昇する場合に、膨張機構の開度が上げられる。また、起動後制御については、発熱温度検知部の検知温度について、検知温度が所定発熱温度以上になった場合もしくは超えた場合に、膨張機構の開度が上げられる。このため、起動後制御においては検知温度に基づいて判断されるが、起動時制御においては温度上昇速度に基づいて判断されるため、起動時に急激な温度上昇をさせようとする場合であっても、所定上昇速度以上になった時点もしくは超えた時点で膨張機構の開度が上げられるため、所定発熱温度に達する前に所定上昇速度以上になるかもしくは超えた場合には、所定発熱温度に達するまで膨張機構の開度を上げる処理を待つ必要がなくなる。このため、誘導加熱によって発熱する部分に対してより確実に多くの冷媒を供給することが可能になる。これにより、誘導加熱によって発熱する部分の温度が勢いよく上昇する程度を抑えることが可能になる。
An air conditioner according to a fourth aspect is the air conditioner according to the third aspect, wherein the control unit reaches a predetermined start-time target temperature when performing the overheat protection control simultaneously with the start-time control. The opening degree of the expansion mechanism is increased when the rate of temperature rise detected by the exothermic temperature detection unit at the time when the temperature rises exceeds or exceeds a predetermined rate of rise.
In this air conditioner, the opening degree of the expansion mechanism is raised when the temperature rise rate rises faster as the temperature rise rate exceeds or exceeds a predetermined rise rate with respect to the detected temperature of the heat generation temperature detector. As for the control after activation, the opening degree of the expansion mechanism is increased when the detected temperature is equal to or higher than a predetermined exothermic temperature with respect to the detected temperature of the exothermic temperature detector. For this reason, in post-startup control, it is determined based on the detected temperature, but in start-up control, it is determined based on the temperature increase rate, so even if it is attempted to cause a rapid temperature increase during startup. Since the opening degree of the expansion mechanism is increased when it exceeds or exceeds the predetermined rising speed, if the predetermined rising speed is exceeded or exceeded before reaching the predetermined heating temperature, the predetermined heating temperature is reached. There is no need to wait for the process of increasing the opening of the expansion mechanism. For this reason, it becomes possible to supply more refrigerant | coolants more reliably with respect to the part which generate | occur | produces heat by induction heating. As a result, it is possible to suppress the extent to which the temperature of the portion that generates heat by induction heating rises vigorously.
 第5の観点にかかる空気調和装置は、第4の観点の空気調和装置において、制御部は、所定上昇速度以上になったもしくは超えたと判断した場合には、圧縮機構の回転数が所定回転数以上になっている場合もしくは超えている場合に限って、膨張機構の開度を上げる。
 この空気調和装置では、圧縮機構の回転数が所定回転数以上になっている状態もしくは超えている状態が確保されている場合において誘導加熱によって発熱する部分の温度上昇速度が所定上昇速度以上になる場合もしくは超える場合がある。このような場合であっても、圧縮機構の駆動状態が確保された状態において膨張機構の開度を上げることで、冷媒循環量をより確実に増大させることができる。
In the air conditioner according to the fifth aspect, in the air conditioner according to the fourth aspect, the control unit determines that the rotation speed of the compression mechanism is equal to or greater than the predetermined rotation speed when the control unit determines that the speed has increased or exceeded the predetermined increase speed. The opening degree of the expansion mechanism is increased only when the above is exceeded or exceeded.
In this air conditioner, when the rotation speed of the compression mechanism is equal to or higher than the predetermined rotation speed, the temperature increase rate of the portion that generates heat by induction heating is equal to or higher than the predetermined increase speed. It may or may not exceed. Even in such a case, the refrigerant circulation amount can be increased more reliably by increasing the opening degree of the expansion mechanism in a state where the driving state of the compression mechanism is ensured.
 第6の観点にかかる空気調和装置は、第3の観点から第5の観点のいずれかの空気調和装置において、冷媒冷却器から膨張機構までの間を通過する冷媒の状態を把握する冷却器側冷媒状態把握部をさらに備えている。制御部は、起動時制御を終えた時に、冷却器側冷媒状態把握部が把握する値を用いて把握される冷媒の過冷却度が、所定目標過冷却度で一定に保たれるように膨張機構の開度を制御する過冷却度一定制御を開始する。さらに、制御部は、過冷却度一定制御を行っている時に過熱保護制御を同時に行う場合には、発熱温度検知部が検知する温度が所定過冷却度一定制御時発熱温度以上になった場合もしくは超えた場合に膨張機構の開度を過冷却度一定制御によって制御されている開度よりもさらに上げる。ここで、所定過冷却度一定制御時発熱温度は、所定起動時目標温度以上の温度である。
 この空気調和装置では、過冷却度一定制御を行っている場合であっても、誘導加熱によって発熱する部分の温度の異常上昇を抑制させることができるようになる。
An air conditioner according to a sixth aspect is the air conditioner according to any one of the third to fifth aspects, wherein the air conditioner is configured to grasp a state of the refrigerant passing between the refrigerant cooler and the expansion mechanism. A refrigerant state grasping unit is further provided. When the control unit finishes the startup control, the control unit expands so that the refrigerant subcooling degree grasped using the value grasped by the cooler side refrigerant state grasping part is kept constant at the predetermined target subcooling degree. The supercooling degree constant control for controlling the opening degree of the mechanism is started. Furthermore, the control unit, when performing the overheat protection control at the same time as performing the constant supercooling degree control, when the temperature detected by the exothermic temperature detecting unit becomes equal to or higher than the exothermic temperature during the predetermined supercooling degree constant control or When it exceeds, the opening degree of the expansion mechanism is further increased from the opening degree controlled by the constant supercooling degree control. Here, the heat generation temperature during the predetermined constant degree of subcooling control is a temperature that is equal to or higher than the predetermined start-up target temperature.
In this air conditioner, even when the supercooling degree constant control is performed, it is possible to suppress an abnormal increase in the temperature of the portion that generates heat by induction heating.
 第1の観点にかかる空気調和装置では、圧縮機構の吸入側の冷媒を加熱する場合であっても、吸入冷媒に対して加えられている熱量を考慮した圧縮機構の吸入冷媒の過熱度制御を行うことが可能になる。
 第2の観点にかかる空気調和装置では、温度上昇が生じやすい圧縮機構の吸入側を通過する冷媒を加熱する場合であっても、誘導加熱部分を過度に加熱してしまうことを抑制することができる。
 第3の観点にかかる空気調和装置では、起動後制御において、誘導加熱によって発熱する部分の異常温度上昇を抑えることができる。
 第4の観点にかかる空気調和装置では、誘導加熱によって発熱する部分の温度が勢いよく上昇する程度を抑えることが可能になる。
In the air conditioner according to the first aspect, even when the refrigerant on the suction side of the compression mechanism is heated, the superheat degree control of the suction refrigerant of the compression mechanism is performed in consideration of the amount of heat applied to the suction refrigerant. It becomes possible to do.
In the air conditioner according to the second aspect, even when the refrigerant that passes through the suction side of the compression mechanism that is likely to increase in temperature is heated, it is possible to suppress excessive heating of the induction heating portion. it can.
In the air conditioner according to the third aspect, the abnormal temperature rise of the portion that generates heat by induction heating can be suppressed in the post-startup control.
In the air conditioner according to the fourth aspect, it is possible to suppress the extent to which the temperature of the portion that generates heat by induction heating rises rapidly.
 第5の観点にかかる空気調和装置では、冷媒循環量をより確実に増大させることができる。
 第6の観点にかかる空気調和装置では、過冷却度一定制御を行っている場合であっても、誘導加熱によって発熱する部分の温度の異常上昇を抑制させることができるようになる。
In the air conditioner according to the fifth aspect, the refrigerant circulation rate can be increased more reliably.
In the air conditioner according to the sixth aspect, even when the supercooling degree constant control is performed, it is possible to suppress an abnormal increase in the temperature of the portion that generates heat by induction heating.
本発明の一実施形態にかかる空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning one embodiment of the present invention. 電磁誘導加熱ユニットの外観斜視図である。It is an external appearance perspective view of an electromagnetic induction heating unit. 電磁誘導加熱ユニットから遮蔽カバーを取り除いた状態を示す外観斜視図である。It is an external appearance perspective view which shows the state which removed the shielding cover from the electromagnetic induction heating unit. 電磁誘導サーミスタの外観斜視図である。It is an external appearance perspective view of an electromagnetic induction thermistor. ヒューズの外観斜視図である。It is an external perspective view of a fuse. 電磁誘導サーミスタおよびヒューズの取付状態を示す概略断面図である。It is a schematic sectional drawing which shows the attachment state of an electromagnetic induction thermistor and a fuse. 電磁誘導加熱ユニットの断面構成図である。It is a section lineblock diagram of an electromagnetic induction heating unit. 磁束の様子を示す図である。It is a figure which shows the mode of magnetic flux. 過熱保護制御における各種状態遷移を示す図である。It is a figure which shows the various state transitions in overheat protection control. 起動時過熱保護制御のフローチャートを示す図である。It is a figure which shows the flowchart of overheating protection control at the time of starting. 通常時過熱保護制御のフローチャートを示す図である。It is a figure which shows the flowchart of normal time overheat protection control. 他の実施形態(E)の冷媒配管の説明図である。It is explanatory drawing of the refrigerant | coolant piping of other embodiment (E). 他の実施形態(F)の冷媒配管の説明図である。It is explanatory drawing of the refrigerant | coolant piping of other embodiment (F). 他の実施形態(G)のコイルと冷媒配管との配置例を示す図である。It is a figure which shows the example of arrangement | positioning with the coil and refrigerant | coolant piping of other embodiment (G). 他の実施形態(G)のボビン蓋の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the bobbin lid of other embodiment (G). 他の実施形態(G)のフェライトケースの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the ferrite case of other embodiment (G).
 以下、図面を参照しつつ、本発明の一実施形態における電磁誘導加熱ユニット6を備えた空気調和装置1を例に挙げて説明する。
<1-1>空気調和装置1
 図1に、空気調和装置1の冷媒回路10を示す冷媒回路図を示す。
 空気調和装置1は、熱源側装置としての室外機2と、利用側装置としての室内機4とが冷媒配管によって接続されて、利用側装置が配置された空間の空気調和を行うものであって、圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、室内熱交換器41、室内ファン42、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6等を備えている。
 圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、室外機2内に収容されている。室内熱交換器41および室内ファン42は、室内機4内に収容されている。
Hereinafter, an air conditioner 1 including an electromagnetic induction heating unit 6 according to an embodiment of the present invention will be described as an example with reference to the drawings.
<1-1> Air conditioner 1
FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit 10 of the air conditioner 1.
The air conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe. , Compressor 21, four-way switching valve 22, outdoor heat exchanger 23, outdoor electric expansion valve 24, accumulator 25, outdoor fan 26, indoor heat exchanger 41, indoor fan 42, hot gas bypass valve 27, capillary tube 28 and An electromagnetic induction heating unit 6 and the like are provided.
The compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in. The indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
 冷媒回路10は、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管F、吸入管Gおよびホットガスバイパス回路Hを有している。室内側ガス管Bおよび室外側ガス管Eは、ガス状態の冷媒が多く通過するものではあるが、通過する冷媒をガス冷媒に限定しているものではない。室内側液管Cおよび室外側液管Dは、液状態の冷媒が多く通過するものではあるが、通過する冷媒を液冷媒に限定しているものではない。
 吐出管Aは、圧縮機21と四路切換弁22とを接続している。吐出管Aには、通過する冷媒温度を検知する吐出温度センサ29dが設けられている。なお、圧縮機21には、電流供給部21eが電流の供給を行う。この電流供給部21eの供給電力量は、圧縮機電力検知部29fが検知している。なお、圧縮機21のピストンの駆動回転数は、回転数把握部29rが検知する。室内側ガス管Bは、四路切換弁22と室内熱交換器41とを接続している。この室内側ガス管Bの途中には、通過する冷媒の圧力を検知する第1圧力センサ29aが設けられている。室内側液管Cは、室内熱交換器41と室外電動膨張弁24とを接続している。室外側液管Dは、室外電動膨張弁24と室外熱交換器23とを接続している。室外側ガス管Eは、室外熱交換器23と四路切換弁22とを接続している。この室外側ガス管Eの途中には、通過する冷媒の圧力を検知する第2圧力センサ29gが設けられている。
The refrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, and a hot gas bypass circuit H. Yes. The indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant. The indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
The discharge pipe A connects the compressor 21 and the four-way switching valve 22. The discharge pipe A is provided with a discharge temperature sensor 29d for detecting the temperature of the refrigerant passing therethrough. The current supply unit 21e supplies current to the compressor 21. The power supply amount of the current supply unit 21e is detected by the compressor power detection unit 29f. The rotational speed grasping unit 29r detects the rotational speed of the piston of the compressor 21. The indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41. In the middle of the indoor side gas pipe B, a first pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided. The indoor side liquid pipe C connects the indoor heat exchanger 41 and the outdoor electric expansion valve 24. The outdoor liquid pipe D connects the outdoor electric expansion valve 24 and the outdoor heat exchanger 23. The outdoor gas pipe E connects the outdoor heat exchanger 23 and the four-way switching valve 22. In the middle of the outdoor gas pipe E, a second pressure sensor 29g for detecting the pressure of the refrigerant passing therethrough is provided.
 アキューム管Fは、四路切換弁22とアキュームレータ25とを接続しており、室外機2の設置状態で鉛直方向に伸びている。アキューム管Fの一部に対して、電磁誘導加熱ユニット6が取り付けられている。アキューム管Fのうち、少なくとも後述するコイル68によって周囲を覆われている発熱部分は、内側に冷媒を流している銅管F1と、銅管F1の周囲を覆うように設けられた磁性体管F2によって構成されている。この磁性体管F2は、SUS(Stainless Used Steel:ステンレス鋼)430によって構成されている。このSUS430は、強磁性体材料であって、磁界に置かれると渦電流を生じつつ、自己の電気抵抗によって生ずるジュール熱により発熱する。冷媒回路10を構成する配管のうち磁性体管F2以外の部分は、銅管F1と同じ素材の銅管で構成されている。このように電磁誘導加熱を行うことで、アキューム管Fを電磁誘導によって加熱させることができ、アキュームレータ25を介して圧縮機21に吸入される冷媒を暖めることができる。これにより、空気調和装置1の暖房能力を向上させることができる。また、例えば、暖房運転の起動時においては、圧縮機21が十分に暖まっていない場合であっても、電磁誘導加熱ユニット6による迅速な加熱によって起動時の能力不足を補うことができる。さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23等に付着した霜を除去するデフロスト運転を行う場合には、電磁誘導加熱ユニット6がアキューム管Fを迅速に加熱することで、圧縮機21は迅速に暖められた冷媒を対象として圧縮することができる。このため、圧縮機21から吐出するホットガスの温度を迅速に上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。 The accumulator pipe F connects the four-way switching valve 22 and the accumulator 25 and extends in the vertical direction when the outdoor unit 2 is installed. An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F. Of the accumulator tube F, at least a heat generating portion whose periphery is covered by a coil 68, which will be described later, is a copper tube F1 in which a coolant is flowing inside, and a magnetic tube F2 provided so as to cover the periphery of the copper tube F1. It is constituted by. The magnetic pipe F2 is configured by SUS (Stainless Used Steel: stainless steel) 430. The SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance. Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of a copper pipe made of the same material as the copper pipe F1. By performing electromagnetic induction heating in this manner, the accumulator tube F can be heated by electromagnetic induction, and the refrigerant sucked into the compressor 21 via the accumulator 25 can be warmed. Thereby, the heating capability of the air conditioning apparatus 1 can be improved. Further, for example, even when the compressor 21 is not sufficiently warmed at the time of starting the heating operation, the lack of capacity at the time of starting can be compensated for by the rapid heating by the electromagnetic induction heating unit 6. Further, when the four-way switching valve 22 is switched to the cooling operation state and the defrost operation is performed to remove the frost attached to the outdoor heat exchanger 23 or the like, the electromagnetic induction heating unit 6 quickly opens the accumulator tube F. By heating, the compressor 21 can compress the rapidly heated refrigerant as a target. For this reason, the temperature of the hot gas discharged from the compressor 21 can be raised rapidly. Thereby, the time required to thaw frost by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
 吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
 ホットガスバイパス回路Hは、吐出管Aの途中に設けられた分岐点A1と室外側液管Dの途中に設けられた分岐点D1とを接続している。ホットガスバイパス回路Hは、途中に冷媒の通過を許容する状態と許容しない状態とを切換可能なホットガスバイバス弁27が配置されている。なお、ホットガスバイパス回路Hは、ホットガスバイバス弁27と分岐点D1との間に、通過する冷媒圧力を下げるキャピラリーチューブ28が設けられている。このキャピラリーチューブ28は、暖房運転時の室外電動膨張弁24による冷媒圧力の低下後の圧力に近づけることができるため、ホットガスバイパス回路Hを通じた室外側液管Dへのホットガスの供給による室外側液管Dの冷媒圧力上昇を抑えることができる。
 四路切換弁22は、冷房運転サイクルと暖房運転サイクルとを切換可能である。図1では、暖房運転を行う際の接続状態を実線で示し、冷房運転を行う際の接続状態を点線で示している。暖房運転時には、室内熱交換器41が冷媒の冷却器として、室外熱交換器23が冷媒の加熱器として機能する。冷房運転時には、室外熱交換器23が冷媒の冷却器として、室内熱交換器41が冷媒の加熱器として機能する。
The suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
The hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D. The hot gas bypass circuit 27 is provided with a hot gas bypass valve 27 that can switch between a state that allows passage of refrigerant and a state that does not allow passage of the refrigerant. In the hot gas bypass circuit H, a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough. Since this capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
The four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle. In FIG. 1, the connection state when performing the heating operation is indicated by a solid line, and the connection state when performing the cooling operation is indicated by a dotted line. During the heating operation, the indoor heat exchanger 41 functions as a refrigerant cooler, and the outdoor heat exchanger 23 functions as a refrigerant heater. During the cooling operation, the outdoor heat exchanger 23 functions as a refrigerant cooler, and the indoor heat exchanger 41 functions as a refrigerant heater.
 室外熱交換器23は、一端が室外熱交換器23の室外側ガス管E側の端部と接続されており、他端が室外熱交換器23の室外側液管D側の端部と接続されている。また、室外熱交換器23には、空気調和装置1を流れる冷媒温度を検知する室外熱交温度センサ29cが設けられている。さらに、室外熱交換器23に対して、空気流れ方向上流側には、室外の気温を検知する室外温度センサ29bが設けられている。
 室内機4内には、室内温度を検知する室内温度センサ43が設けられている。また、室内熱交換器41には、室外電動膨張弁24が接続されている室内側液管C側の冷媒温度を検知する室内熱交温度センサ44が設けられている。
 室外機2内に配置される機器を制御する室外制御部12と、室内機4内に配置されている機器を制御する室内制御部13とが、通信線11aによって接続されることで、制御部11を構成している。この制御部11は、空気調和装置1を対象とした種々の制御を行う。
One end of the outdoor heat exchanger 23 is connected to the end of the outdoor heat exchanger 23 on the outdoor gas pipe E side, and the other end is connected to the end of the outdoor heat exchanger 23 on the outdoor liquid pipe D side. Has been. The outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the air conditioner 1. Furthermore, an outdoor temperature sensor 29b that detects outdoor air temperature is provided upstream of the outdoor heat exchanger 23 in the air flow direction.
In the indoor unit 4, an indoor temperature sensor 43 that detects the indoor temperature is provided. The indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
The outdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted. The control unit 11 performs various controls for the air conditioner 1.
 また、室外制御部12には、各種制御を行う際に経過時間をカウントするタイマ95が設けられている。
 なお、制御部11には、ユーザからの設定入力を受け付けるコントローラ90が接続されている。
<1-2>電磁誘導加熱ユニット6
 図2に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6概略斜視図を示す。図3に、電磁誘導加熱ユニット6から遮蔽カバー75を取り除いた状態の外観斜視図を示す。図4に、電磁誘導サーミスタ14の概略構成図を示す。図5に、ヒューズ15の概略構成図を示す。図6に、電磁誘導サーミスタ14およびヒューズ15のアキューム管Fへの取付状態についての断面図を示す。図7に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6の断面図を示す。図8に、コイル68によって磁界を生じさせた状態についての説明図を示す。
Further, the outdoor control unit 12 is provided with a timer 95 that counts elapsed time when performing various controls.
Note that a controller 90 that accepts a setting input from the user is connected to the control unit 11.
<1-2> Electromagnetic induction heating unit 6
FIG. 2 shows a schematic perspective view of the electromagnetic induction heating unit 6 attached to the accumulator tube F. FIG. 3 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed. FIG. 4 shows a schematic configuration diagram of the electromagnetic induction thermistor 14. FIG. 5 shows a schematic configuration diagram of the fuse 15. FIG. 6 shows a cross-sectional view of the electromagnetic induction thermistor 14 and the fuse 15 attached to the accumulator tube F. FIG. 7 shows a cross-sectional view of the electromagnetic induction heating unit 6 attached to the accumulator tube F. FIG. 8 is an explanatory diagram showing a state in which a magnetic field is generated by the coil 68.
 電磁誘導加熱ユニット6は、アキューム管Fのうち発熱部分である磁性体管F2を径方向外側から覆うように配置されており、電磁誘導加熱によって磁性体管F2を発熱させる。このアキューム管Fの発熱部分は、内側の銅管F1と外側の磁性体管F2とを有する二重管構造となっている。
 電磁誘導加熱ユニット6は、第1六角ナット61、第2六角ナット66、第1ボビン蓋63、第2ボビン蓋64、ボビン本体65、第1フェライトケース71、第2フェライトケース72、第3フェライトケース73、第4フェライトケース74、第1フェライト98、第2フェライト99、コイル68、遮蔽カバー75、電磁誘導サーミスタ14およびヒューズ15等を備えている。
 第1六角ナット61および第2六角ナット66は、樹脂製であって、図示しないC型リングを用いて、電磁誘導加熱ユニット6とアキューム管Fとの固定状態を安定させる。第1ボビン蓋63および第2ボビン蓋64は、樹脂製であって、アキューム管Fをそれぞれ上端位置および下端位置において径方向外側から覆っている。この第1ボビン蓋63および第2ボビン蓋64は、後述する第1~第4フェライトケース71~74をネジ69を介して螺着させるための、ネジ69用の螺着孔を4つ有している。さらに、第2ボビン蓋64は、電磁誘導サーミスタ14を差し込んで、磁性体管F2の外表面に取り付けるための電磁誘導サーミスタ差し込み開口64fを有している。また、第2ボビン蓋64は、ヒューズ15を差し込んで、磁性体管F2の外表面に取り付けるためのヒューズ差し込み開口64eを有している。電磁誘導サーミスタ14は、図4に示すように、電磁誘導サーミスタ検知部14a、外側突起14b、側面突起14cおよび電磁誘導サーミスタ検知部14aの検知結果を信号にして制御部11まで伝える電磁誘導サーミスタ配線14dを有している。電磁誘導サーミスタ検知部14aは、アキューム管Fの外表面の湾曲形状に沿うような形状を有しており、実質的な接触面積を有している。ヒューズ15は、図5に示すように、ヒューズ検知部15a、非対称形状15bおよびヒューズ検知部15aの検知結果を信号にして制御部11まで伝えるヒューズ配線15dを有している。ヒューズ15から所定制限温度を超えた温度検知の知らせを受けた制御部11は、コイル68への電力供給を停止させる制御を行って、機器の熱損傷を回避させる。ボビン本体65は、樹脂製であって、コイル68が巻き付けられる。コイル68は、ボビン本体65の外側においてアキューム管Fの延びる方向を軸方向として螺旋状に巻き付けられている。コイル68は、図示しない制御用プリント基板に接続されており、高周波電流の供給を受ける。制御用プリント基板は、制御部11によって出力制御される。図6に示すように、ボビン本体65と第2ボビン蓋64とが勘合している状態で、電磁誘導サーミスタ14およびヒューズ15が取り付けられる。ここで、電磁誘導サーミスタ14の取り付け状態では、板バネ16によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。また、ヒューズ15の取り付け状態も同様に、板バネ17によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。このように、電磁誘導サーミスタ14およびヒューズ15がアキューム管Fの外表面との密着性を良好に保たれているために、応答性を向上させ、電磁誘導加熱による急激な温度変化も迅速に検出できるようにしている。第1フェライトケース71は、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込み、ネジ69によって螺着固定されている。第1フェライトケース71~第4フェライトケース74は、透磁率の高い素材であるフェライトによって構成された第1フェライト98および第2フェライト99を収容している。第1フェライト98および第2フェライト99は、図7のアキューム管Fおよび電磁誘導加熱ユニット6の断面図および図8の磁束説明図において示すように、コイル68によって生じる磁界を取りこんで磁束の通り道を形成することで、磁界が外部に漏れ出しにくいようにしている。遮蔽カバー75は、電磁誘導加熱ユニット6の最外周部分に配置されており、第1フェライト98および第2フェライト99だけでは呼び込みきれない磁束を集める。この遮蔽カバー75の外側にはほとんど漏れ磁束が生じず、磁束の発生場所について自決することができている。
<1-3>電磁誘導加熱制御
 上述した電磁誘導加熱ユニット6は、冷凍サイクルを暖房運転させる場合に暖房運転を開始させる起動時、暖房能力補助時、および、デフロスト運転を行う時にアキューム管Fの磁性体管F2を発熱させる制御を行う。
The electromagnetic induction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating. The heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
The electromagnetic induction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite. A case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, an electromagnetic induction thermistor 14, a fuse 15 and the like are provided.
The first hexagon nut 61 and the second hexagon nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator pipe F using a C-shaped ring (not shown). The first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively. The first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing. Furthermore, the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the electromagnetic induction thermistor 14 and attaching it to the outer surface of the magnetic tube F2. The second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 and attaching it to the outer surface of the magnetic tube F2. As shown in FIG. 4, the electromagnetic induction thermistor 14 is an electromagnetic induction thermistor wiring that transmits the detection results of the electromagnetic induction thermistor detector 14a, the outer protrusion 14b, the side protrusion 14c, and the electromagnetic induction thermistor detector 14a as signals to the controller 11. 14d. The electromagnetic induction thermistor detection unit 14a has a shape that follows the curved shape of the outer surface of the accumulator tube F, and has a substantial contact area. As shown in FIG. 5, the fuse 15 includes a fuse detection unit 15a, an asymmetric shape 15b, and a fuse wiring 15d that transmits a detection result of the fuse detection unit 15a to the control unit 11 as a signal. Receiving the notification of temperature detection exceeding the predetermined limit temperature from the fuse 15, the control unit 11 performs control to stop the power supply to the coil 68 to avoid thermal damage of the device. The bobbin main body 65 is made of resin, and the coil 68 is wound around it. The coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction. The coil 68 is connected to a control printed board (not shown) and is supplied with a high-frequency current. The output of the control printed circuit board is controlled by the control unit 11. As shown in FIG. 6, the electromagnetic induction thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together. Here, in the attached state of the electromagnetic induction thermistor 14, the plate spring 16 is pushed inward in the radial direction of the magnetic body tube F <b> 2, thereby maintaining a good pressure contact state with the outer surface of the magnetic body tube F <b> 2. Similarly, the attachment state of the fuse 15 is also pushed inward in the radial direction of the magnetic tube F2 by the leaf spring 17, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained. As described above, since the electromagnetic induction thermistor 14 and the fuse 15 maintain good adhesion to the outer surface of the accumulator tube F, the responsiveness is improved and a rapid temperature change due to electromagnetic induction heating can be detected quickly. I can do it. The first ferrite case 71 has a first bobbin lid 63 and a second bobbin lid 64 sandwiched from the direction in which the accumulator tube F extends, and is screwed and fixed by screws 69. The first ferrite case 71 to the fourth ferrite case 74 contain a first ferrite 98 and a second ferrite 99 made of ferrite, which is a material having a high magnetic permeability. As shown in the sectional view of the accumulator tube F and the electromagnetic induction heating unit 6 in FIG. 7 and the magnetic flux explanatory diagram in FIG. By forming it, the magnetic field is made difficult to leak outside. The shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn by the first ferrite 98 and the second ferrite 99 alone. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
<1-3> Electromagnetic induction heating control The electromagnetic induction heating unit 6 described above is configured so that the accumulator pipe F is activated when starting the heating operation when heating the refrigeration cycle, when assisting the heating capacity, and when performing the defrost operation. Control is performed to generate heat in the magnetic tube F2.
 以下、特に、起動時に関する説明を行う。なお、図9に、各状態が遷移する様子を示す。
 (起動時の初期の処理について)
 起動時の初期の処理は、暖房運転を開始してから、第1圧力センサ29aが検知する圧力が目標高圧圧力に達するまでに行われる処理である。
 コントローラ90に対してユーザから暖房運転指示が入力された場合に、制御部11は、暖房運転を開始させる。暖房運転が開始されると、制御部11は、圧縮機21が起動した後であって第1圧力センサ29aが検知する圧力が所定の目標高圧圧力である39kg/cm2まで上昇するのを待って(図9中、点hで示す)、室内ファン42を駆動させる。これにより、室内熱交換器41を通過する冷媒が暖まっていない段階で、暖まっていない室内に空気流れを生じさせてしまうことによるユーザの不快感を防止している。
In the following, a description will be given particularly regarding startup. FIG. 9 shows the state transition.
(About initial processing at startup)
The initial process at the time of start-up is a process performed after the heating operation is started until the pressure detected by the first pressure sensor 29a reaches the target high pressure.
When the heating operation instruction is input from the user to the controller 90, the control unit 11 starts the heating operation. When the heating operation is started, the controller 11 waits for the pressure detected by the first pressure sensor 29a to rise to a predetermined target high pressure 39 kg / cm 2 after the compressor 21 is started. (Indicated by a point h in FIG. 9), the indoor fan 42 is driven. Thereby, at the stage where the refrigerant passing through the indoor heat exchanger 41 is not warmed, an unpleasant user's discomfort caused by causing an air flow in the unwarmed room is prevented.
 ここで、圧縮機21が起動して第1圧力センサ29aが検知する圧力が39kg/cm2まで上昇するまでの時間を短くするために、室外電動膨張弁24の開度を固定開度に維持しつつ、電磁誘導加熱ユニット6を用いた電磁誘導加熱を行う。制御部11は、圧縮機21起動後においてアキューム管Fにおける十分な冷媒の流動が確保されていることを確認した後、急速高圧化処理を開始する。急速高圧化処理では、制御部11は、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃に到達するまでに要する時間を短くするために、電磁誘導加熱ユニット6のコイル68に対する電流の供給を、所定の最大供給電力(2kW)とする。ここでの電磁誘導加熱ユニット6による所定の最大供給電力での出力状態は、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃に到達するまで継続される。 Here, in order to shorten the time until the pressure detected by the first pressure sensor 29a rises to 39 kg / cm 2 after the compressor 21 is started, the opening degree of the outdoor electric expansion valve 24 is maintained at a fixed opening degree. However, electromagnetic induction heating using the electromagnetic induction heating unit 6 is performed. After confirming that sufficient refrigerant flow in the accumulator tube F is ensured after the compressor 21 is started, the controller 11 starts the rapid pressure increase process. In the rapid pressure-increasing process, the control unit 11 reduces the time required for the detected temperature of the electromagnetic induction thermistor 14 to reach 80 ° C., which is the target accumulator temperature at startup, in order to shorten the coil 68 of the electromagnetic induction heating unit 6. The supply of current to is assumed to be a predetermined maximum supply power (2 kW). The output state at a predetermined maximum supply power by the electromagnetic induction heating unit 6 here is continued until the temperature detected by the electromagnetic induction thermistor 14 reaches 80 ° C., which is the target accumulator temperature at startup.
 このように、起動時の所定の目標高圧圧力に到達するまでに要する時間を短くするために室外電動膨張弁24の開度を固定開度に維持したり、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度に到達するまでに要する時間を短くするために電磁誘導加熱ユニット6の出力を最大供給電力とする制御を行うこととしているが、この誘導加熱によって圧縮機21の吸入冷媒の過熱度が異常に上昇してしまうおそれがある。このため、このような吸入冷媒の過熱度の異常上昇を防止するために、起動時には、制御部11によって起動時過熱保護制御(後述する)が行われる。
 (起動時の初期以降の処理について)
 起動時の初期以降の処理は、第1圧力センサ29aが検知する圧力が目標高圧圧力に達した後に行われる起動時の処理である。
Thus, in order to shorten the time required to reach the predetermined target high pressure at the time of activation, the opening degree of the outdoor electric expansion valve 24 is maintained at a fixed opening degree, or the detection temperature of the electromagnetic induction thermistor 14 is activated. In order to shorten the time required to reach the desired target accumulator temperature, control is performed to set the output of the electromagnetic induction heating unit 6 to the maximum supply power. However, the induction refrigerant is overheated by this induction heating. The degree may rise abnormally. For this reason, in order to prevent such an abnormal increase in the degree of superheat of the suction refrigerant, the control unit 11 performs overheating protection control (described later) during startup.
(About the processing after the initial stage at startup)
The initial and subsequent processing at the time of startup is processing at the time of startup performed after the pressure detected by the first pressure sensor 29a reaches the target high pressure.
 この起動時の初期以降の処理では、第1圧力センサ29aが検知する圧力が所定の目標高圧圧力である39kg/cm2に達した後に、圧縮機21の回転数をさらに増大させて、室外電動膨張弁24の弁開度を上げていくことで冷凍サイクルの冷媒循環量を増大させ、能力を上げる定常出力制御が行われる。
 なお、暖房運転が開始された後、一度、起動時目標アキューム管温度である80℃に到達して、起動時の初期の動作を終えた後は、制御部11は、所定の最大供給電力(2kW)以下の出力である定常供給電力(1.4kW)に出力を抑えたままで、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度と同じ目標温度である80℃付近で維持されるように、電磁誘導加熱ユニット6の出力を制御する。ここでの80℃付近に維持させる制御では、制御部11は、電磁誘導サーミスタ14の検知温度が60℃以下になった時に、上記定常供給電力(1.4kW)の出力で電磁誘導加熱ユニット6による誘導加熱を開始させ、電磁誘導サーミスタ14の検知温度が80℃に達した時に電磁誘導加熱ユニット6による誘導加熱を停止させる、という処理を行う。
In the processing after the initial stage at the time of starting, after the pressure detected by the first pressure sensor 29a reaches a predetermined target high pressure 39 kg / cm 2 , the rotational speed of the compressor 21 is further increased to increase the outdoor electric By increasing the valve opening degree of the expansion valve 24, the amount of refrigerant circulating in the refrigeration cycle is increased, and steady output control is performed to increase the capacity.
After the heating operation is started, the controller 11 once reaches the start target accumulator temperature of 80 ° C. and finishes the initial operation at the start, and then the control unit 11 determines the predetermined maximum supply power ( The detected temperature of the electromagnetic induction thermistor 14 is maintained at around 80 ° C., which is the same target temperature as the startup target accumulator temperature, while the output is suppressed to a steady supply power (1.4 kW) which is an output of 2 kW or less. Next, the output of the electromagnetic induction heating unit 6 is controlled. In the control maintained at around 80 ° C. here, the control unit 11 uses the electromagnetic induction heating unit 6 with the output of the steady supply power (1.4 kW) when the detected temperature of the electromagnetic induction thermistor 14 becomes 60 ° C. or less. Induction heating is started, and when the temperature detected by the electromagnetic induction thermistor 14 reaches 80 ° C., induction heating by the electromagnetic induction heating unit 6 is stopped.
 (起動時の処理が終了した後の通常時の処理について)
 定常出力制御が続けられ、圧縮機21の回転数が増大していき、室外電動膨張弁24の開度も上げられていき、冷凍サイクルの冷媒循環量が増大していくことで、運転状態に応じた循環量に達すると起動時の処理が終了し、その後は、通常運転が行われる。この通常運転では、暖房運転回路において室内熱交換器41の出口側を通過する冷媒の過冷却度が所定の値で一定に維持されるように、制御部11が室外電動膨張弁24の開度を制御する過冷却度一定制御が行われている。この過冷却度は、第2圧力センサ29gの検知圧力に相当する飽和温度と室内熱交温度センサ44が検知する温度との差を制御部11が算出することで得られる。
 (起動時過熱保護制御)
 起動時過熱保護制御では、電磁誘導加熱ユニット6による起動時の初期の最大供給電力(2kW)による誘導加熱によって、圧縮機21の吸入冷媒の過熱度が異常上昇することを防止するために、室外電動膨張弁24の開度を上げる制御である。
(Regarding normal processing after completion of startup processing)
Steady output control is continued, the rotational speed of the compressor 21 is increased, the opening degree of the outdoor electric expansion valve 24 is increased, and the refrigerant circulation amount of the refrigeration cycle is increased, so that the operation state is reached. When the corresponding circulation amount is reached, the start-up process is terminated, and thereafter normal operation is performed. In this normal operation, the controller 11 opens the opening degree of the outdoor electric expansion valve 24 so that the degree of supercooling of the refrigerant passing through the outlet side of the indoor heat exchanger 41 is kept constant at a predetermined value in the heating operation circuit. The supercooling degree constant control which controls is performed. This degree of supercooling is obtained by the controller 11 calculating the difference between the saturation temperature corresponding to the detected pressure of the second pressure sensor 29g and the temperature detected by the indoor heat exchanger temperature sensor 44.
(Startup overheat protection control)
In the start-up overheat protection control, in order to prevent the degree of superheat of the refrigerant sucked in the compressor 21 from abnormally increasing due to induction heating by the initial maximum supply power (2 kW) at start-up by the electromagnetic induction heating unit 6, In this control, the opening degree of the electric expansion valve 24 is increased.
 図10に、起動時過熱保護制御のフローチャートを示す。
 ステップS11では、制御部11は、圧縮機21の起動開始後において電磁誘導サーミスタ14の検知温度が低下することを確認すると(図9中、点aで示す)、ステップS12に移行する。
 ステップS12では、制御部11は、電磁誘導加熱ユニット6の出力を、0の状態から最大供給電力(2kW)に切り換える(図9中、点bから点cへの変化として示す)と同時に、タイマ95によって経過時間をカウントし始める。
 ステップS13では、制御部11は、電磁誘導サーミスタ14の検知温度が、起動時目標アキューム管温度である80℃に達したか否かを判断する。起動時目標アキューム管温度である80℃に達した場合には(図9中、点dで示す)、ステップS14に移行する。
FIG. 10 shows a flowchart of start-up overheat protection control.
In step S11, if the control part 11 confirms that the detection temperature of the electromagnetic induction thermistor 14 will fall after starting the compressor 21, it will transfer to step S12 (it shows by the point a in FIG. 9).
In step S12, the control unit 11 switches the output of the electromagnetic induction heating unit 6 from the zero state to the maximum supply power (2 kW) (shown as a change from the point b to the point c in FIG. 9), and at the same time, Start counting elapsed time by 95.
In step S13, the control unit 11 determines whether or not the detected temperature of the electromagnetic induction thermistor 14 has reached 80 ° C., which is the target accumulator temperature at startup. When the target accumulator temperature at start-up reaches 80 ° C. (indicated by a point d in FIG. 9), the process proceeds to step S14.
 ステップS14では、制御部11は、電磁誘導加熱ユニット6による誘導加熱を一旦停止し(図9中、点eで示す)、ステップS12でカウントを開始していたタイマ95のカウントを終了する。
 ステップS15では、制御部11は、回転数把握部29rが検知している回転数が、過熱抑制推定回転数である82rps(1秒間に82回転)より多い状態にあるか否かを判断する。この過熱抑制推定回転数とは、冷凍サイクルの各設計条件に基づいて、圧縮機21が吸入する冷媒の過熱度が異常上昇しにくい回転数として、予め設定されている回転数である。この過熱抑制推定回転数に満たない場合には吸入圧力が大きく低下しにくいため、圧縮機21の吸入冷媒の過熱度が異常上昇するおそれがないと推定して、起動時過熱保護制御を終了する。過熱抑制推定回転数を超えている場合には、ステップS16に移行する。
In step S14, the control unit 11 temporarily stops induction heating by the electromagnetic induction heating unit 6 (indicated by a point e in FIG. 9), and ends the count of the timer 95 that has started counting in step S12.
In step S15, the control unit 11 determines whether or not the rotation number detected by the rotation number grasping unit 29r is greater than the overheat suppression estimated rotation number of 82 rps (82 rotations per second). The estimated overheating suppression rotational speed is a rotational speed that is set in advance as the rotational speed at which the degree of superheating of the refrigerant sucked by the compressor 21 hardly increases abnormally based on each design condition of the refrigeration cycle. If the estimated rotational speed of the overheat suppression is less than the suction pressure, the suction pressure is unlikely to be greatly reduced. Therefore, it is estimated that the degree of superheat of the refrigerant sucked in the compressor 21 is not likely to rise abnormally, and the overheating protection control at the start is finished. . When it exceeds the overheat suppression estimated rotational speed, the process proceeds to step S16.
 ステップS16では、制御部11は、ステップS14でカウントを終了したタイマ95の値が、昇温速度判定時間である20秒未満であるか否かを判断する。この昇温速度判定時間は、冷凍サイクルの各設計条件に基づいて、圧縮機21が吸入する冷媒の過熱度が異常上昇しにくい昇温速度に対応する時間として、予め設定されている時間である。すなわち、電磁誘導加熱ユニット6による誘導加熱を開始してから起動時目標アキューム管温度である80℃に達するまでに要する時間が昇温速度判定時間(20秒)未満である場合には、電磁誘導サーミスタ14の検知温度の昇温速度が早過ぎることになり、圧縮機21の吸入冷媒の過熱度が異常上昇するおそれがあるとして、ステップS17に移行して保護する処置が行われる。反対に、昇温速度判定時間以上の時間を要していた場合には、圧縮機21の吸入冷媒の過熱度が異常上昇するおそれがないと推定して、起動時過熱保護制御を終了する。 In step S16, the control unit 11 determines whether or not the value of the timer 95 that has finished counting in step S14 is less than 20 seconds, which is the temperature increase rate determination time. This temperature increase rate determination time is a time set in advance as a time corresponding to a temperature increase rate at which the degree of superheat of the refrigerant sucked by the compressor 21 hardly increases abnormally based on each design condition of the refrigeration cycle. . That is, when the time required to reach 80 ° C., which is the target accumulator temperature at start-up, after starting induction heating by the electromagnetic induction heating unit 6 is less than the heating rate determination time (20 seconds), electromagnetic induction Since the rate of temperature increase of the detected temperature of the thermistor 14 is too fast, and the degree of superheat of the refrigerant sucked in the compressor 21 may be abnormally increased, the process proceeds to step S17 and protection is performed. On the other hand, if it takes a time longer than the temperature increase rate determination time, it is estimated that there is no possibility that the superheat degree of the refrigerant sucked in the compressor 21 will rise abnormally, and the startup superheat protection control is terminated.
 ステップS17では、制御部11は、室外電動膨張弁24の開度を増大させてアキューム管Fを通過する冷媒流量を増大させる弁開度増大処理を行うことで、電磁誘導加熱ユニット6が行う誘導加熱によってアキューム管Fの温度上昇が速くなりすぎることを防止するようにする。ここでの弁開度増大処理では、室外電動膨張弁24の開度が、20秒毎に20パルス分だけ増大される。この20秒毎の20パルス分だけ増大させる処理は、誘導加熱による電磁誘導サーミスタ14の検知温度上昇速度が所定速度以下になるまで繰り返される。すなわち、室外電動膨張弁24の開度を上げる動作と同時に、電磁誘導サーミスタ14が検知する温度上昇の速度が所定速度を超えなくなっているか否かの判断処理も同時に行い、この所定速度を超えなくなるほど室外電動膨張弁24の開度が上げられた場合に、アキューム管Fの温度が上昇し過ぎるおそれがなくなっていると判断して弁開度増大処理を終了する。 In step S <b> 17, the control unit 11 increases the opening degree of the outdoor electric expansion valve 24 and performs a valve opening degree increasing process for increasing the flow rate of the refrigerant passing through the accumulator pipe F, whereby the induction performed by the electromagnetic induction heating unit 6. The temperature rise of the accumulator tube F is prevented from becoming too fast due to heating. In the valve opening increase processing here, the opening of the outdoor electric expansion valve 24 is increased by 20 pulses every 20 seconds. This process of increasing by 20 pulses every 20 seconds is repeated until the detected temperature rise rate of the electromagnetic induction thermistor 14 by induction heating becomes a predetermined rate or less. That is, simultaneously with the operation of increasing the opening degree of the outdoor electric expansion valve 24, the process for determining whether or not the speed of temperature rise detected by the electromagnetic induction thermistor 14 does not exceed a predetermined speed is performed at the same time. When the opening degree of the outdoor electric expansion valve 24 is increased, it is determined that there is no possibility that the temperature of the accumulator pipe F will rise too much, and the valve opening degree increasing process is terminated.
 以上で、起動時過熱保護制御を終了する。
 なお、第1圧力センサ29aが検知する圧力が目標高圧圧力に達した後には、上述のように、定常出力制御が行われることで、圧縮機21の周波数を増大させるとともに室外電動膨張弁24の開度がさらに上げられ、冷凍サイクルを循環する冷媒量がさらに増大し、冷凍サイクルの能力を増大させていく。
 (通常時過熱保護制御)
 通常時過熱保護制御は、過冷却度一定制御が行われている際に、室外電動膨張弁24の開度が上げられて一時的に電磁誘導サーミスタ14の検知温度が低下することを検知して電磁誘導加熱ユニット6による誘導加熱を行う場合に、その誘導加熱によって過熱度が異常上昇することを防止するための制御である。
This is the end of the overheating protection control at startup.
In addition, after the pressure detected by the first pressure sensor 29a reaches the target high pressure, the steady output control is performed as described above, thereby increasing the frequency of the compressor 21 and the outdoor electric expansion valve 24. The opening degree is further increased, the amount of refrigerant circulating through the refrigeration cycle is further increased, and the capacity of the refrigeration cycle is increased.
(Normal overheat protection control)
The normal overheat protection control detects that the detected temperature of the electromagnetic induction thermistor 14 is temporarily lowered when the degree of opening of the outdoor electric expansion valve 24 is increased while the constant degree of supercooling control is being performed. When induction heating is performed by the electromagnetic induction heating unit 6, this is control for preventing the degree of superheat from rising abnormally due to the induction heating.
 図11に、通常時過熱保護制御のフローチャートを示す。
 ステップS21では、制御部11は、電磁誘導サーミスタ14の検知温度が80℃以下になると、電磁誘導加熱ユニット6の出力を、0の状態から定常供給電力(1.4kW)による出力(定常レベル)に上げる。
 ステップS22では、制御部11は、電磁誘導サーミスタ14の検知温度が、80℃に達したか否かを判断する。80℃に達した場合には、ステップS23に移行する。
 ステップS23では、制御部11は、電磁誘導加熱ユニット6による誘導加熱を一旦停止させる。
 ステップS24では、制御部11は、電磁誘導加熱ユニット6による誘導加熱を停止させた後において、電磁誘導サーミスタ14の検知温度が上昇する様子を検知し続け、異常上昇温度である110℃を超えているか否か判断する。すなわち、電磁誘導加熱ユニット6による誘導加熱を終えているにもかかわらず、電磁誘導サーミスタ14の検知温度が80℃を超えて上昇しつづけるというオーバーシュートが生じているか否かを判断する。異常上昇温度の110℃は、冷凍サイクルの各設計条件に基づいて、この値を超えると圧縮機21の吸入冷媒の過熱度の異常上昇が生じてしまう温度として、予め設定された温度である。この異常上昇温度を超えていると判断された場合には、ステップS25に移行する。異常上昇温度を超えていないと判断された場合には、圧縮機21の吸入冷媒の過熱度が異常上昇するおそれがないと推定して、起動時過熱保護制御を終了する。
FIG. 11 shows a flowchart of normal overheat protection control.
In step S21, when the detected temperature of the electromagnetic induction thermistor 14 becomes 80 ° C. or lower, the control unit 11 outputs the output of the electromagnetic induction heating unit 6 from the zero state by the steady supply power (1.4 kW) (steady level). Raise to.
In step S22, the control unit 11 determines whether or not the detected temperature of the electromagnetic induction thermistor 14 has reached 80 ° C. When the temperature reaches 80 ° C., the process proceeds to step S23.
In step S23, the control unit 11 temporarily stops induction heating by the electromagnetic induction heating unit 6.
In step S24, after stopping induction heating by the electromagnetic induction heating unit 6, the control unit 11 continues to detect how the detection temperature of the electromagnetic induction thermistor 14 rises, exceeding the abnormally elevated temperature of 110 ° C. Determine whether or not. That is, it is determined whether or not there is an overshoot in which the temperature detected by the electromagnetic induction thermistor 14 continues to rise above 80 ° C. despite the induction heating by the electromagnetic induction heating unit 6 being finished. The abnormally elevated temperature of 110 ° C. is a temperature set in advance as a temperature at which an abnormal increase in the degree of superheat of the refrigerant sucked in the compressor 21 occurs when this value is exceeded based on each design condition of the refrigeration cycle. When it is determined that the abnormally rising temperature is exceeded, the process proceeds to step S25. When it is determined that the temperature does not exceed the abnormally rising temperature, it is estimated that there is no possibility that the superheat degree of the refrigerant sucked in the compressor 21 will rise abnormally, and the overheating protection control at the time of start is ended.
 ステップS25では、制御部11は、過冷却度一定制御によって制御されている室外電動膨張弁24の開度のパルス値から、さらに50パルス分だけ増大させるという、開度を上げる調整(弁開度調整処理)を行う。ここでは、上記起動時過熱保護制御における室外電動膨張弁24の開度の一回分の上昇幅である20パルス分よりも大きなパルス分として、50パルス分だけ増大させている。これにより、通常時過熱保護制御において異常状態が生じそうになっても、アキューム管Fの異常温度上昇をより迅速に防止することができる。
 以上で、通常時過熱保護制御を終了する。
 なお、通常時過熱保護制御では、既に圧縮機21の駆動回転数が82rpsを超えているため、起動時過熱保護制御における判断は不要になっている。
In step S25, the controller 11 increases the opening degree by increasing the opening degree of the outdoor electric expansion valve 24 controlled by the constant supercooling degree constant control by an additional 50 pulses (valve opening degree). Adjustment process). Here, the pulse is increased by 50 pulses as a pulse larger than 20 pulses, which is the increment of one opening of the outdoor electric expansion valve 24 in the startup overheat protection control. Thereby, even if an abnormal state is likely to occur in the normal overheat protection control, the abnormal temperature rise of the accumulator tube F can be prevented more quickly.
The normal overheat protection control is thus completed.
Note that, in the normal-time overheat protection control, since the drive rotation speed of the compressor 21 has already exceeded 82 rps, the determination in the start-up overheat protection control is unnecessary.
 <本実施形態の空気調和装置1の特徴>
(1)
 電磁誘導加熱ユニット6による誘導加熱では、冷凍サイクルにおいて圧縮機21からかなり離れた部分を流れる冷媒ではなく、圧縮機21に吸入される直前のアキューム管Fを流れている冷媒の温度を迅速に上昇させている。そして、圧縮機21の吸入側を流れる冷媒は、乾き度が大きいかもしくは過熱状態となっており、より上流側を流れている気液二相状態等の冷媒が潜熱変化する場合と比べると、顕熱変化が生じやすく、温度が上昇しやすい。また、圧縮機21の吸入冷媒が加熱されるため、磁性体管F2で発熱した熱が熱伝導する等により影響を受けるため、実際に圧縮機21に吸入される冷媒の温度を把握することは難しい。
<Characteristics of the air conditioner 1 of the present embodiment>
(1)
In the induction heating by the electromagnetic induction heating unit 6, the temperature of the refrigerant flowing through the accumulator pipe F immediately before being sucked into the compressor 21 is rapidly increased instead of the refrigerant flowing through a portion far from the compressor 21 in the refrigeration cycle. I am letting. The refrigerant flowing on the suction side of the compressor 21 has a high degree of dryness or is in an overheated state, compared with a case where the refrigerant in a gas-liquid two-phase state or the like flowing more upstream changes the latent heat. Sensible heat changes easily and temperature rises. In addition, since the refrigerant sucked in the compressor 21 is heated, the heat generated in the magnetic pipe F2 is affected by heat conduction, etc., so it is not possible to grasp the temperature of the refrigerant actually sucked into the compressor 21. difficult.
 このような状況において、本実施形態の空気調和装置1が行う制御では、圧縮機21に実際に吸入される冷媒の温度ではなく、誘導加熱によって発熱するアキューム管Fの磁性体管F2の温度状況を電磁誘導サーミスタ14によって把握している。そして、電磁誘導サーミスタ14の検知温度に基づいて、圧縮機21の吸入冷媒の過熱度が異常上昇しないように、室外電動膨張弁24の開度が上げられ、圧縮機21の吸入側に供給される冷媒量を増大させることができている。これにより、圧縮機21の吸入側の冷媒を加熱する場合において、実際の吸入冷媒の温度を把握することが難しい場合であっても、吸入冷媒に対して加えられている熱量を電磁誘導サーミスタ14の検知温度を通じて考慮することができ、圧縮機21の吸入冷媒の過熱度の異常上昇を抑制させることができている。
(2)
 また、本実施形態の起動時過熱保護制御では、起動時の誘導加熱によってアキューム管Fの磁性体管F2の温度が急上昇してしまう状況では、室外電動膨張弁24の開度が上げられて多くの冷媒が供給されることで、圧縮機21の吸入冷媒の過熱度が異常上昇することを抑制させることができている。そして、この起動時過熱保護制御は、圧縮機21の駆動回転数を考慮して、普通は異常温度上昇が生じない回転数として予め定められる過熱抑制推定回転数を選定しておくことで、そのような圧縮機21の駆動状態が確保されている状況下においてもなお磁性体管F2の温度が急上昇してしまう場合に限定して、室外電動膨張弁24の開度を上げようにしている。このため、起動時において、未だ、圧縮機21の駆動回転数があまり上昇していない段階で、室外電動膨張弁24の開度が上げられることを避けることができる。これにより、必要以上に室外電動膨張弁24の開度が上げられることで、高低圧差が生じにくくなり、第1圧力センサ29aの検知圧力が所定の目標高圧圧力である39kg/cm2に達するまでに要する時間が長くなってしまうことや、高温の冷媒を室内熱交換器41に供給できなくなることを防止することができる。
In such a situation, in the control performed by the air conditioner 1 of the present embodiment, not the temperature of the refrigerant actually sucked into the compressor 21, but the temperature state of the magnetic body tube F2 of the accumulator tube F that generates heat by induction heating. Is grasped by the electromagnetic induction thermistor 14. Then, based on the temperature detected by the electromagnetic induction thermistor 14, the opening degree of the outdoor electric expansion valve 24 is increased and supplied to the suction side of the compressor 21 so that the degree of superheat of the suction refrigerant of the compressor 21 does not rise abnormally. The amount of refrigerant to be increased can be increased. As a result, when the refrigerant on the suction side of the compressor 21 is heated, even if it is difficult to determine the actual temperature of the suction refrigerant, the amount of heat applied to the suction refrigerant is determined by the electromagnetic induction thermistor 14. Thus, an abnormal increase in the degree of superheat of the refrigerant sucked in the compressor 21 can be suppressed.
(2)
Further, in the overheat protection control at the start of the present embodiment, the opening degree of the outdoor electric expansion valve 24 is increased in a situation where the temperature of the magnetic pipe F2 of the accumulator pipe F suddenly rises due to induction heating at the start. By supplying this refrigerant, it is possible to suppress an abnormal increase in the degree of superheat of the refrigerant sucked in the compressor 21. And this overheating protection control at the time of startup considers the drive rotation speed of the compressor 21, and normally selects an overheat suppression estimated rotation speed that is predetermined as a rotation speed at which no abnormal temperature rise occurs. Even in a situation where the driving state of the compressor 21 is ensured, the opening degree of the outdoor electric expansion valve 24 is increased only when the temperature of the magnetic pipe F2 rapidly increases. For this reason, at the time of start-up, it is possible to avoid the opening degree of the outdoor electric expansion valve 24 from being increased at a stage where the drive rotational speed of the compressor 21 has not increased so much. As a result, the opening degree of the outdoor electric expansion valve 24 is increased more than necessary, thereby making it difficult for the high-low pressure difference to occur, and until the detected pressure of the first pressure sensor 29a reaches a predetermined target high-pressure pressure of 39 kg / cm 2. It is possible to prevent the time required for the operation from being prolonged and the high-temperature refrigerant from being unable to be supplied to the indoor heat exchanger 41.
 また、起動時過熱保護制御における室外電動膨張弁24の開度を上げるタイミングは、電磁誘導サーミスタ14の検知温度がある温度を超えたか否かを判断基準とするのではなく、温度上昇速度を判断基準としている。このため、起動時目標アキューム管温度より高温である別の判定温度等を新たに設けつつ、この判定温度を超えたか否かという判断を行うような必要がない。また、このような判定温度を超えた場合を把握した時よりも、ある温度上昇速度を超えた場合を把握した時の方が、その時点以降のアキューム管Fの温度がより迅速に上昇しやすい状況であるため、このような温度の異常上昇が生じやすい場合について把握できるようにしている上記実施形態では、装置の信頼性を向上させることができている。
 例えば、判定温度を超えた場合に室外電動膨張弁24の開度を上げる制御では、起動時目標アキューム管温度よりも高い温度として、90℃を設定した場合について考えると、電磁誘導サーミスタ14の検知温度が89℃から90℃を超えるのに数分要し、その後しばらく時間が経過したとしても数℃程度しか温度上昇しないと予測される場合であっても、室外電動膨張弁24の開度が上げられてしまう。これに対して、上記実施形態の起動時過熱保護制御では、20秒間で80℃を超えてしまう程の温度上昇速度を検出した場合にのみ、室外電動膨張弁24の開度が上げられるため、不必要に室外電動膨張弁24の開度が上げられることによる吐出冷媒温度の低下を防止することができる。
(3)
 さらに、通常時過熱保護制御では、過冷却度一定制御を行っている場合に誘導加熱を行うことで電磁誘導サーミスタ14の検知温度が異常上昇温度の110℃を超えた場合には、過冷却度一定制御によって制御されている室外電動膨張弁24の開度よりもさらに開度が上げられる。このため、異常上昇温度の110℃を超えた場合に単に室外電動膨張弁24の開度をある程度の開度に調節するような制御と比べて、アキューム管Fを通過する冷媒量をより確実に増大させることができるため、圧縮機21の吸入冷媒の過熱度の異常上昇をより確実に抑制できる。
Further, the timing for increasing the opening degree of the outdoor electric expansion valve 24 in the start-up overheat protection control is not based on whether or not the temperature detected by the electromagnetic induction thermistor 14 exceeds a certain temperature, but the temperature increase rate is determined. The standard. For this reason, it is not necessary to make a determination as to whether or not this determination temperature has been exceeded while newly providing another determination temperature or the like that is higher than the startup target accumulator temperature. In addition, the temperature of the accumulator tube F after that time is more likely to rise more quickly when it is understood that the temperature has exceeded a certain rate of temperature rise than when it is determined that the determination temperature has been exceeded. Since this is a situation, in the above-described embodiment in which it is possible to grasp the case where such an abnormal temperature rise is likely to occur, the reliability of the apparatus can be improved.
For example, in the control to increase the opening degree of the outdoor electric expansion valve 24 when the determination temperature is exceeded, considering the case where 90 ° C. is set as the temperature higher than the target accumulator temperature at startup, the detection of the electromagnetic induction thermistor 14 Even if it takes a few minutes for the temperature to exceed 90 ° C. from 89 ° C., and even if a certain amount of time passes after that, even if it is predicted that the temperature will increase only by a few degrees C., the degree of opening of the outdoor electric expansion valve 24 is It will be raised. On the other hand, in the overheat protection control at the time of start-up in the above embodiment, the opening degree of the outdoor electric expansion valve 24 is increased only when a temperature increase rate that exceeds 80 ° C. in 20 seconds is detected. It is possible to prevent the discharge refrigerant temperature from being lowered due to unnecessarily increasing the opening degree of the outdoor electric expansion valve 24.
(3)
Further, in the normal overheat protection control, when the detection temperature of the electromagnetic induction thermistor 14 exceeds the abnormally elevated temperature 110 ° C. by performing induction heating when the supercooling degree constant control is performed, the degree of supercooling is increased. The opening degree is further increased from the opening degree of the outdoor electric expansion valve 24 controlled by the constant control. For this reason, the amount of refrigerant passing through the accumulator tube F can be more reliably compared to control in which the opening degree of the outdoor electric expansion valve 24 is merely adjusted to a certain degree of opening when the abnormally rising temperature exceeds 110 ° C. Since it can be increased, an abnormal increase in the degree of superheat of the refrigerant sucked by the compressor 21 can be more reliably suppressed.
 なお、この通常時過熱保護制御では、起動時と比べて冷凍サイクルの冷媒循環量が安定している状態で行われており、急激なアキューム管Fの温度上昇が生じにくい状況であるため、温度上昇速度に基づいた判断を行う必要もなく、異常上昇温度の110℃を超えたか否かで判断するという簡単な判断手法で、十分に信頼性を確保することができている。
 また、これにより、圧縮機21の吸入冷媒の量が増大するため、電磁誘導加熱ユニット6の誘導加熱による磁性体管F2への入熱時間を長くすることができるようになる。
 また、電磁誘導加熱ユニット6による誘導加熱を停止する80℃よりも高温の異常上昇温度の110℃を電磁誘導サーミスタ14が検知するまでは、室外電動膨張弁24の開度は過冷却度一定制御の開度に維持されており、室外電動膨張弁24の開度が上げられないため、誘導加熱によって冷媒温度を高温に維持できる時間をより長くすることができる。
The normal overheat protection control is performed in a state in which the refrigerant circulation amount of the refrigeration cycle is more stable than that at the time of startup, and a rapid increase in the temperature of the accumulator tube F is unlikely to occur. It is not necessary to make a determination based on the rising speed, and the reliability can be sufficiently ensured by a simple determination method of determining whether or not the abnormally rising temperature exceeds 110 ° C.
This also increases the amount of refrigerant sucked in the compressor 21, so that the heat input time to the magnetic pipe F <b> 2 by induction heating of the electromagnetic induction heating unit 6 can be extended.
Further, until the electromagnetic induction thermistor 14 detects an abnormally elevated temperature of 110 ° C., which is higher than 80 ° C. at which the induction heating by the electromagnetic induction heating unit 6 is stopped, the degree of opening of the outdoor electric expansion valve 24 is controlled at a constant degree of supercooling. Since the opening degree of the outdoor electric expansion valve 24 is not increased, the time during which the refrigerant temperature can be maintained at a high temperature by induction heating can be extended.
 <他の実施形態>
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (A)
 上記実施形態では、磁性体管F2の材質としてSUS430が用いられる場合について例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。
 また、磁性体材料としては、例えば、フェライト系、マルテンサイト系およびこれらの2種類の組み合わせを含有したものが例として挙げられるが、強磁性体であって電気抵抗が比較的高いものであり使用温度範囲よりもキュリー温度が高い材料が好ましい。
<Other embodiments>
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
(A)
In the above embodiment, the case where SUS430 is used as the material of the magnetic tube F2 has been described as an example.
However, the present invention is not limited to this. For example, a conductor such as iron, copper, aluminum, chromium, nickel, and an alloy containing at least two kinds of metals selected from these groups can be used.
Examples of magnetic materials include ferrites, martensites, and those containing a combination of these two, but they are ferromagnetic and have a relatively high electrical resistance. A material having a Curie temperature higher than the temperature range is preferred.
 なお、ここでのアキューム管Fは、より多くの電力が必要とされるが、磁性体および磁性体を含有する材料を備えていなくてもよく、誘導加熱が行われる対象となる材質を含有するものであってもよい。
 なお、磁性体材料は、例えば、アキューム管Fのすべてを構成していてもよいし、アキューム管Fの内側表面のみに形成されていてもよく、アキューム管F配管を構成する材料中に含有されることで存在していてもよい。
 (B)
 上記実施形態では、起動時過熱保護制御と通常時過熱保護制御とで、室外電動膨張弁24の開度を上げるための条件が異なる場合を例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。例えば、起動時過熱保護制御と通常時過熱保護制御とで、室外電動膨張弁24の開度を上げるための条件を同じにしてもよい。
The accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing.
For example, the magnetic material may constitute all of the accumulator pipe F, or may be formed only on the inner surface of the accumulator pipe F, and is contained in the material constituting the accumulator pipe F pipe. May exist.
(B)
In the above embodiment, the case where the conditions for increasing the opening degree of the outdoor electric expansion valve 24 are different between the startup overheat protection control and the normal overheat protection control has been described as an example.
However, the present invention is not limited to this. For example, the conditions for increasing the opening degree of the outdoor electric expansion valve 24 may be the same in the startup overheat protection control and the normal overheat protection control.
 (C)
 上記実施形態では、起動時の制御を終えた後に過冷却度を一定に保つ制御を行う場合について例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。例えば、冷凍サイクルにおける冷媒の分布状態の変化の程度を、所定分布状態で、もしくは、所定分布範囲内で所定時間の間維持させる制御を行うようにしてもよい。この冷媒分布状態の検知としては、例えば、冷凍サイクルの凝縮器にサイトグラスを設けておく等して冷媒の液面を把握することで冷媒分布状態を把握し、この分布状態が所定分布状態もしくは所定分布範囲内となるように行われる安定化の制御であってもよい。
 (D)
 上記実施形態では、冷媒回路10のうち、アキューム管Fに対して電磁誘導加熱ユニット6が取り付けられる場合について説明した。
(C)
In the above embodiment, the case where the control for keeping the degree of supercooling constant after the start-up control is finished has been described as an example.
However, the present invention is not limited to this. For example, the degree of change in the refrigerant distribution state in the refrigeration cycle may be controlled to be maintained for a predetermined time in a predetermined distribution state or within a predetermined distribution range. As the detection of the refrigerant distribution state, for example, the refrigerant distribution state is grasped by grasping the liquid level of the refrigerant by, for example, providing a sight glass in the condenser of the refrigeration cycle, and this distribution state is a predetermined distribution state or Stabilization control may be performed so as to be within a predetermined distribution range.
(D)
In the above embodiment, the case where the electromagnetic induction heating unit 6 is attached to the accumulator tube F in the refrigerant circuit 10 has been described.
 しかし、本発明はこれに限られるものではない。
 例えば、アキューム管F以外の他の冷媒配管に設けられていてもよい。この場合には、電磁誘導加熱ユニット6を設ける冷媒配管部分に磁性体管F2等の磁性体を設ける。
 (E)
 上記実施形態では、アキューム管Fは、銅管F1と磁性体管F2との二重管として構成されている場合を挙げて説明した。
 しかし、本発明はこれに限られるものではない。
 図12に示すように、例えば、磁性体部材F2aと、2つのストッパーF1a、F1bと、がアキューム管Fや加熱対象となる冷媒配管の内部に配置されていてもよい。ここで、磁性体部材F2aは、磁性体材料を含有しており、上記実施形態における電磁誘導加熱によって発熱を生じる部材である。ストッパーF1a、F1bは、銅管F1の内側二カ所において、冷媒の通過を常時許容するが、磁性体部材F2aの通過は許容しない。これにより、磁性体部材F2aは、冷媒が流れても移動しない。このため、アキューム管F等の目的の加熱位置を加熱させることができる。さらに、発熱する磁性体部材F2aと冷媒とが直接接触するため、熱伝達効率を向上させることができる。
However, the present invention is not limited to this.
For example, other refrigerant pipes other than the accumulator pipe F may be provided. In this case, a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagnetic induction heating unit 6 is provided.
(E)
In the said embodiment, the case where the accumulation pipe F was comprised as a double pipe | tube of the copper pipe F1 and the magnetic body pipe | tube F2 was mentioned and demonstrated.
However, the present invention is not limited to this.
As shown in FIG. 12, for example, the magnetic member F2a and the two stoppers F1a and F1b may be arranged inside the accumulator pipe F or the refrigerant pipe to be heated. Here, the magnetic member F2a contains a magnetic material, and is a member that generates heat by electromagnetic induction heating in the above embodiment. The stoppers F1a and F1b always allow the refrigerant to pass through at two locations inside the copper tube F1, but do not allow the magnetic member F2a to pass through. Thereby, the magnetic member F2a does not move even when the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated. Furthermore, since the magnetic member F2a that generates heat and the refrigerant are in direct contact, the heat transfer efficiency can be improved.
 (F)
 上記他の実施形態(L)で説明した磁性体部材F2aは、ストッパーF1a、F1bを用いることなく配管に対して位置が定まるようにしてもよい。
 図13に示すように、例えば、銅管F1に二カ所で曲げ部分FWを設け、当該二カ所の曲げ部分FWの間の銅管F1の内側に磁性体部材F2aを配置させてもよい。このようにしても、冷媒を通過させつつ、磁性体部材F2aの移動を抑制させることができる。
 (G)
 上記実施形態では、コイル68がアキューム管Fに対して螺旋状に巻き付けられている場合について説明した。
 しかし、本発明はこれに限られるものではない。
(F)
The magnetic member F2a described in the other embodiment (L) may be positioned with respect to the pipe without using the stoppers F1a and F1b.
As illustrated in FIG. 13, for example, the copper pipe F1 may be provided with two bent portions FW, and the magnetic member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even in this case, the movement of the magnetic member F2a can be suppressed while allowing the refrigerant to pass therethrough.
(G)
In the above embodiment, the case where the coil 68 is spirally wound around the accumulator tube F has been described.
However, the present invention is not limited to this.
 例えば、図14に示すように、ボビン本体165に巻き付けられたコイル168が、アキューム管Fに巻き付くことなく、アキューム管Fの周囲に配置されていてもよい。ここでは、ボビン本体165は、軸方向がアキューム管Fの軸方向に対して略垂直となるように配置されている。また、ボビン本体165およびコイル168は、アキューム管Fを挟むように2つに別れて配置されている。
 この場合には、例えば、図15に示すように、アキューム管Fを貫通させている第1ボビン蓋163および第2ボビン蓋164が、ボビン本体165に対して勘合した状態で配置されていてもよい。
 さらに、図16に示すように、第1ボビン蓋163および第2ボビン蓋164が、第1フェライトケース171および第2フェライトケース172によって挟み込まれて固定されていてもよい。図16では、2つのフェライトケースがアキューム管Fを挟み込むように配置されている場合を例に挙げたが、上記実施形態と同様に、4方向に配置されていてもよい。また、上記実施形態と同様に、フェライトを収容させていてもよい。
For example, as shown in FIG. 14, the coil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F. Here, the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F. Further, the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
In this case, for example, as shown in FIG. 15, the first bobbin lid 163 and the second bobbin lid 164 penetrating the accumulator tube F may be arranged in a state of being fitted to the bobbin main body 165. Good.
Further, as shown in FIG. 16, the first bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172. In FIG. 16, the case where the two ferrite cases are arranged so as to sandwich the accumulator tube F is taken as an example, but may be arranged in four directions as in the above embodiment. Moreover, you may accommodate the ferrite similarly to the said embodiment.
 (H)
 上記実施形態では、昇温速度が速いか否かについて、電磁誘導加熱ユニット6による誘導加熱を開始してから起動時目標アキューム管温度である80℃に達するまでに要する時間が昇温速度判定時間(20秒)未満であるか否かを基準に判断する場合について例に挙げて説明した。
 しかし、温度上昇速度の把握方法は、このような把握方法に限られるものではない。
 例えば、実際に温度上昇速度を把握するのではなく、コントローラ90に情報テーブルを予め保持させておき、制御部11がこの情報テーブルを参照することで、温度上昇速度を予測して室外膨張弁24の弁開度を上げる等の制御を行うようにしてもよい。
 このような情報テーブルとしては、例えば、現在の電磁誘導サーミスタ14の検知温度、電磁誘導加熱ユニット6によるアキューム管Fの加熱量、アキューム管Fを通過する冷媒循環量、アキューム管Fを通過する冷媒の密度、および、外気温度等の各条件と、その条件に対応する温度上昇速度として予め算出した値と、を対応させたデータ等が挙げられる。このようにして温度上昇速度を予め算出する場合には、磁性体管F2および銅管F1の熱伝導率と、磁性体管F2と銅管F1との間の熱伝達率、銅管F1と冷媒との間の熱伝達率等を踏まえて算出することが望ましい。
(H)
In the above-described embodiment, whether the temperature increase rate is fast or not is determined by the time required from the start of induction heating by the electromagnetic induction heating unit 6 until the start-up target accumulator tube temperature reaches 80 ° C. The case where the determination is made based on whether the time is less than (20 seconds) has been described as an example.
However, the method for grasping the temperature rise rate is not limited to such a grasping method.
For example, instead of actually grasping the temperature rise rate, the controller 90 holds an information table in advance, and the control unit 11 refers to this information table so that the temperature rise rate is predicted and the outdoor expansion valve 24 is used. Control such as increasing the valve opening degree may be performed.
As such an information table, for example, the current detection temperature of the electromagnetic induction thermistor 14, the amount of heating of the accumulator tube F by the electromagnetic induction heating unit 6, the amount of refrigerant circulating through the accumulator tube F, the refrigerant passing through the accumulator tube F The data etc. which matched each condition, such as the density of this, and external temperature, and the value calculated beforehand as a temperature rise rate corresponding to the condition are mentioned. In this way, when the temperature increase rate is calculated in advance, the thermal conductivity of the magnetic tube F2 and the copper tube F1, the heat transfer coefficient between the magnetic tube F2 and the copper tube F1, the copper tube F1 and the refrigerant. It is desirable to calculate based on the heat transfer coefficient between
 なお、ここで、電磁誘導加熱ユニット6によるアキューム管Fの加熱量は、圧縮機電力検知部29fが検知している電流供給部21eの供給電力量から換算することができる。アキューム管Fを通過する冷媒循環量やアキューム管Fを通過する冷媒の密度は、回転数把握部29rが把握している圧縮機21のピストンの駆動回転数や、第1圧力センサ29aが把握している高圧圧力、第2圧力センサが把握している低圧圧力等から換算することができる。外気温度は、室外温度センサ29bの検知温度として把握することができる。このように情報テーブルを予めコントローラ90に保持させていた場合には、制御部11の処理負荷を低減させることができる。
 なお、コントローラ90にこのような情報テーブルを保持させることなく、所定の関係式をコントローラ90に保持させておき、上述した各センサから把握される値にもとづいて、予測される温度上昇速度を、制御部11が算出するようにしてもよい。
Here, the amount of heating of the accumulator tube F by the electromagnetic induction heating unit 6 can be converted from the amount of power supplied from the current supply unit 21e detected by the compressor power detection unit 29f. The refrigerant circulation amount passing through the accumulator pipe F and the density of the refrigerant passing through the accumulator pipe F are obtained by the driving speed of the piston of the compressor 21 known by the revolution speed grasping part 29r and the first pressure sensor 29a. It can be converted from the high pressure that is being measured, the low pressure that is being grasped by the second pressure sensor, and the like. The outside air temperature can be grasped as the temperature detected by the outdoor temperature sensor 29b. In this way, when the information table is held in the controller 90 in advance, the processing load on the control unit 11 can be reduced.
Note that the controller 90 holds a predetermined relational expression without causing the controller 90 to hold such an information table, and based on the values obtained from each sensor described above, the predicted temperature increase rate is The control unit 11 may calculate.
 また、電流供給部21eによる電磁誘導加熱ユニット6への供給電力量は、例えば、外気温度に基づいて、所定の出力(例えば、2kW)の場合と、他の所定の出力(例えば、1.4kW)の場合と、の2パターンに定めておくことで、情報テーブルや算出を簡略化させることもできる。
 このように、実際に温度上昇速度を把握するのではなく、情報テーブルや所定の関係式から算出する等して制御部11が把握する場合には、実際に温度上昇速度を測るための時間が不要になるため、より迅速な処理を行うことが可能になる。
 (I)
 上記実施形態では、起動時の初期以降の定常出力制御において、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃付近で維持されるように、電磁誘導サーミスタ14の検知温度が60℃以下になった時に上記定常供給電力(1.4kW)の出力で電磁誘導加熱ユニット6による誘導加熱を開始させ、電磁誘導サーミスタ14の検知温度が80℃に達した時に電磁誘導加熱ユニット6による誘導加熱を停止させる、という処理を行う場合を例に挙げて説明した。
In addition, the amount of power supplied to the electromagnetic induction heating unit 6 by the current supply unit 21e is based on, for example, a predetermined output (for example, 2 kW) and another predetermined output (for example, 1.4 kW) based on the outside air temperature. ), The information table and the calculation can be simplified.
As described above, when the control unit 11 does not actually grasp the temperature rise rate but calculates it from an information table or a predetermined relational expression, the time for actually measuring the temperature rise rate is obtained. Since it becomes unnecessary, it becomes possible to perform more rapid processing.
(I)
In the above-described embodiment, the detected temperature of the electromagnetic induction thermistor 14 is maintained at around 80 ° C., which is the target accumulator temperature at startup, in the steady output control after the initial stage of startup. When the temperature is 60 ° C. or less, induction heating by the electromagnetic induction heating unit 6 is started with the output of the above-described steady supply power (1.4 kW), and when the detected temperature of the electromagnetic induction thermistor 14 reaches 80 ° C., the electromagnetic induction heating unit 6 The case where the process of stopping the induction heating by the above is described as an example.
 しかし、上記定常出力制御における電磁誘導サーミスタ14の検知温度を80℃付近に維持する制御は、このような制御に限られない。
 例えば、制御部11は、電磁誘導サーミスタ14の検知温度に基づいて、電磁誘導加熱ユニット6の電流供給頻度をPI制御させることで、電磁誘導サーミスタ14の検知温度を80℃付近に維持するようにしてもよい。このPI制御では、制御部11は、連続して30秒間定常供給電力(1.4kW)で一定に保ったままで電磁誘導加熱ユニット6に電流を供給することを1セットとして、このセットを繰り返す頻度を、最近の電磁誘導加熱ユニット6への電流供給を終えた時から電磁誘導サーミスタ14の検知温度が再び80℃に降りてくるまでの経過時間に基づいて頻度を調節ようにしてもよい。すなわち、この経過時間が長ければ長い程、上記セットを繰り返す頻度が上がるように制御してもよい。
<その他>
 以上、本発明の実施形態について、いくつかの例を挙げて説明したが、本発明はこれらに限られない。例えば、上記記載から当業者が実施可能な範囲で、上述の実施形態の異なる部分を適宜組み合わせて得られる組合せ実施形態も、本発明に含まれる。
However, the control for maintaining the detected temperature of the electromagnetic induction thermistor 14 at around 80 ° C. in the steady output control is not limited to such control.
For example, the control unit 11 performs PI control on the current supply frequency of the electromagnetic induction heating unit 6 based on the detected temperature of the electromagnetic induction thermistor 14 so as to maintain the detected temperature of the electromagnetic induction thermistor 14 at around 80 ° C. May be. In this PI control, the control unit 11 repeats this set with one set of supplying current to the electromagnetic induction heating unit 6 while maintaining a constant constant power supply (1.4 kW) for 30 seconds continuously. Alternatively, the frequency may be adjusted based on the elapsed time from when the current supply to the latest electromagnetic induction heating unit 6 is completed until the temperature detected by the electromagnetic induction thermistor 14 falls to 80 ° C. again. That is, the longer the elapsed time, the higher the frequency of repeating the set may be controlled.
<Others>
The embodiments of the present invention have been described above with some examples, but the present invention is not limited to these. For example, combined embodiments obtained by appropriately combining different portions of the above-described embodiments within the scope that can be implemented by those skilled in the art from the above description are also included in the present invention.
 本発明を利用すれば、圧縮機構の吸入側の冷媒を加熱する場合であっても、圧縮機構の吸入冷媒の過熱度制御において吸入冷媒に対して加えられている熱量を考慮した制御を行うことが可能なため、誘導加熱により冷媒の加熱を行う空気調和装置において特に有用である。 By utilizing the present invention, even when the refrigerant on the suction side of the compression mechanism is heated, control is performed in consideration of the amount of heat applied to the suction refrigerant in the superheat degree control of the suction refrigerant of the compression mechanism. Therefore, it is particularly useful in an air conditioner that heats a refrigerant by induction heating.
  1 空気調和装置
 11 制御部(冷却器側冷媒状態把握部)
 14 電磁誘導サーミスタ(発熱温度検知)
 21 圧縮機(圧縮機構)
 23 室外熱交換器(冷媒加熱器)
 24 室外電動膨張弁(膨張機構)
 29a 第1圧力センサ(冷却器側冷媒状態把握部)
 29g 第2圧力センサ
 41 室内熱交換器(冷媒冷却器)
 44 室内熱交温度センサ(冷却器側冷媒状態把握部)
 68 コイル(磁界発生部)
  F アキューム管(冷媒配管、吸入冷媒配管)
1 Air Conditioner 11 Control Unit (Cooler-side Refrigerant State Grasping Unit)
14 Electromagnetic induction thermistor (heating temperature detection)
21 Compressor (compression mechanism)
23 Outdoor heat exchanger (refrigerant heater)
24 Outdoor electric expansion valve (expansion mechanism)
29a 1st pressure sensor (cooler side refrigerant | coolant state grasping | ascertainment part)
29g Second pressure sensor 41 Indoor heat exchanger (refrigerant cooler)
44 Indoor heat exchange temperature sensor (cooler side refrigerant state grasping part)
68 Coil (Magnetic field generator)
F Accumulation pipe (refrigerant piping, suction refrigerant piping)
特開平7-120083号公報Japanese Patent Laid-Open No. 7-120083

Claims (6)

  1.  圧縮機構(21)、冷媒冷却器(41)、膨張機構(24)および冷媒加熱器(23)を少なくとも含む空気調和装置(1)であって、
     前記圧縮機構(21)と前記冷媒冷却器(41)と前記膨張機構(24)と前記冷媒加熱器(23)に冷媒を循環させるための冷媒配管(F)、および/または、前記冷媒配管(F)中を流れる前記冷媒と熱的接触をする部材、を誘導加熱させるために磁界を生じさせる磁界発生部(68)と、
     前記磁界発生部(68)による誘導加熱によって発熱する部分の温度を検知する発熱温度検知部(14)と、
     前記発熱温度検知部(14)が検知する温度が所定発熱温度以上になった場合もしくは超えた場合、または、前記発熱温度検知部(14)が検知する温度の上昇速度が所定上昇速度以上になった場合もしくは超えた場合に、前記膨張機構(24)の開度を上げる過熱保護制御を行う制御部(11)と、
    を備えた空気調和装置(1)。
    An air conditioner (1) including at least a compression mechanism (21), a refrigerant cooler (41), an expansion mechanism (24), and a refrigerant heater (23),
    Refrigerant piping (F) for circulating the refrigerant through the compression mechanism (21), the refrigerant cooler (41), the expansion mechanism (24), and the refrigerant heater (23), and / or the refrigerant piping ( F) a magnetic field generator (68) for generating a magnetic field for inductively heating a member that is in thermal contact with the refrigerant flowing through the medium;
    An exothermic temperature detector (14) for detecting the temperature of the portion that generates heat by induction heating by the magnetic field generator (68);
    When the temperature detected by the exothermic temperature detector (14) exceeds or exceeds a predetermined exothermic temperature, or when the temperature detected by the exothermic temperature detector (14) rises above a predetermined rate. A controller (11) that performs overheat protection control to increase the opening of the expansion mechanism (24) when
    An air conditioner (1) comprising:
  2.  前記磁界発生部(68)は、前記冷媒配管のうち前記圧縮機構(21)の吸入側における吸入冷媒配管(F)、および/または、前記吸入冷媒配管(F)中を流れる冷媒と熱的接触をする部材、を誘導加熱させるための磁界を生じさせる、
    請求項1に記載の空気調和装置(1)。
    The magnetic field generator (68) is in thermal contact with the refrigerant flowing through the suction refrigerant pipe (F) and / or the suction refrigerant pipe (F) on the suction side of the compression mechanism (21) in the refrigerant pipe. Generating a magnetic field for inductively heating the member
    The air conditioner (1) according to claim 1.
  3.  前記制御部(11)は、前記圧縮機構(21)が停止している状態から前記圧縮機構(21)の駆動を開始させつつ前記磁界発生部(68)による誘導加熱によって発熱する部分の温度が所定起動時目標温度に達するように前記磁界発生部(68)に磁界を生じさせる起動時制御と、前記起動時制御を終えた後に行う起動後制御と、を行い、
     前記制御部(11)は、前記起動後制御を行っている時に前記過熱保護制御を同時に行う場合には、前記発熱温度検知部(14)が検知する温度が前記所定起動時目標温度以上の温度である起動後所定発熱温度以上になった場合もしくは超えた場合に前記膨張機構(24)の開度を上げる、
    請求項1または2に記載の空気調和装置(1)。
    The controller (11) is configured to control a temperature of a portion that generates heat by induction heating by the magnetic field generator (68) while starting the driving of the compression mechanism (21) from a state where the compression mechanism (21) is stopped. Performing start-up control for generating a magnetic field in the magnetic field generator (68) so as to reach a predetermined start-up target temperature, and post-startup control performed after the start-up control is finished,
    When the control unit (11) performs the overheat protection control simultaneously with the post-startup control, the temperature detected by the heat generation temperature detection unit (14) is equal to or higher than the predetermined start-up target temperature. The opening of the expansion mechanism (24) is increased when the temperature exceeds or exceeds a predetermined exothermic temperature after startup,
    The air conditioner (1) according to claim 1 or 2.
  4.  前記制御部(11)は、前記起動時制御を行っている時に前記過熱保護制御を同時に行う場合には、前記所定起動時目標温度に到達させる際の前記発熱温度検知部(14)が検知する温度の上昇速度が前記所定上昇速度以上になった場合もしくは超えた場合に前記膨張機構(24)の開度を上げる、
    請求項3に記載の空気調和装置(1)。
    When the overheat protection control is performed simultaneously with the start-up control, the control unit (11) detects the exothermic temperature detection unit (14) when reaching the predetermined start-up target temperature. Increasing the opening of the expansion mechanism (24) when the temperature increase rate exceeds or exceeds the predetermined increase rate;
    The air conditioner (1) according to claim 3.
  5.  前記制御部(11)は、前記所定上昇速度以上になったもしくは超えたと判断した場合には、前記圧縮機構(21)の回転数が所定回転数以上になっている場合もしくは超えている場合に限って、前記膨張機構(24)の開度を上げる、
    請求項4に記載の空気調和装置(1)。
    When the control unit (11) determines that the speed has increased or exceeded the predetermined ascending speed, the rotation speed of the compression mechanism (21) is equal to or higher than the predetermined speed. Only, increase the opening of the expansion mechanism (24),
    The air conditioner (1) according to claim 4.
  6.  前記冷媒冷却器(41)から前記膨張機構(24)までの間を通過する冷媒の状態を把握する冷却器側冷媒状態把握部(44、29a、11)をさらに備え、
     前記制御部(11)は、前記起動時制御を終えた時に、前記冷却器側冷媒状態把握部(44、29a、11)が把握する値を用いて把握される冷媒の過冷却度が、所定目標過冷却度で一定に保たれるように前記膨張機構(24)の開度を制御する過冷却度一定制御を開始し、
     前記制御部(11)は、前記過冷却度一定制御を行っている時に前記過熱保護制御を同時に行う場合には、前記発熱温度検知部(14)が検知する温度が前記所定起動時目標温度以上の温度である所定過冷却度一定制御時発熱温度以上になった場合もしくは超えた場合に前記膨張機構(24)の開度を前記過冷却度一定制御によって制御されている開度よりもさらに上げる、
    請求項3から5のいずれか1項に記載の空気調和装置(1)。
    A cooler side refrigerant state grasping part (44, 29a, 11) for grasping the state of the refrigerant passing between the refrigerant cooler (41) and the expansion mechanism (24);
    The control unit (11) has a predetermined degree of refrigerant supercooling that is obtained by using values obtained by the cooler side refrigerant state grasping unit (44, 29a, 11) when the start-up control is completed. Starting a supercooling degree constant control for controlling the opening degree of the expansion mechanism (24) so as to be kept constant at the target supercooling degree;
    When the control unit (11) performs the overheat protection control at the same time when the supercooling degree constant control is being performed, the temperature detected by the heat generation temperature detection unit (14) is equal to or higher than the predetermined start-up target temperature. The temperature of the expansion mechanism (24) is further increased above the degree of opening controlled by the degree of supercooling degree control when the heat generation temperature exceeds or exceeds the temperature of the predetermined degree of degree of supercooling degree constant control. ,
    The air conditioner (1) according to any one of claims 3 to 5.
PCT/JP2010/001994 2009-03-19 2010-03-19 Air conditioning device WO2010106817A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2010225956A AU2010225956B2 (en) 2009-03-19 2010-03-19 Air conditioning apparatus
RU2011142186/06A RU2482402C1 (en) 2009-03-19 2010-03-19 Conditioner
JP2011504761A JP5067505B2 (en) 2009-03-19 2010-03-19 Air conditioner
EP10753312.7A EP2410264A4 (en) 2009-03-19 2010-03-19 Air conditioning device
US13/256,669 US20120000228A1 (en) 2009-03-19 2010-03-19 Air conditioning apparatus
CN201080012905.0A CN102356285B (en) 2009-03-19 2010-03-19 Air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009069119 2009-03-19
JP2009-069119 2009-03-19

Publications (1)

Publication Number Publication Date
WO2010106817A1 true WO2010106817A1 (en) 2010-09-23

Family

ID=42739484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001994 WO2010106817A1 (en) 2009-03-19 2010-03-19 Air conditioning device

Country Status (8)

Country Link
US (1) US20120000228A1 (en)
EP (1) EP2410264A4 (en)
JP (1) JP5067505B2 (en)
KR (1) KR20110139287A (en)
CN (1) CN102356285B (en)
AU (1) AU2010225956B2 (en)
RU (1) RU2482402C1 (en)
WO (1) WO2010106817A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283284B1 (en) * 2009-03-19 2013-07-11 다이킨 고교 가부시키가이샤 Air conditioner device
JP6064412B2 (en) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル Air conditioner
CN105371548B (en) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 Gas-supplying enthalpy-increasing control method, equipment and the device of double-stage compressor
CN109210656B (en) * 2018-10-18 2024-03-15 天津城建大学 Magnetic fluid air conditioning system
CN112880123B (en) * 2019-11-29 2021-12-28 青岛海尔空调电子有限公司 Compressor cooling device of air conditioner and control method thereof
CN111578442B (en) * 2020-05-12 2022-06-17 宁波奥克斯电气股份有限公司 Liquid return prevention control method and device for compressor and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120083A (en) 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd Controller for refrigerating cycle
JPH11248265A (en) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd Control method for outlet temperature of refrigerant heater
JP2000220912A (en) * 1998-11-25 2000-08-08 Daikin Ind Ltd Refrigerant heater
JP2002005537A (en) * 2000-06-22 2002-01-09 Daikin Ind Ltd Refrigerant heating apparatus and air conditioning apparatus
JP2007212035A (en) * 2006-02-08 2007-08-23 Daikin Ind Ltd Refrigerant heating device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986015A (en) * 1958-02-03 1961-05-30 John E Mitchell Company Inc Refrigeration system control
US3405535A (en) * 1966-02-10 1968-10-15 Controls Co Of America Temperature controlled flow control device and refrigeration system including such device
US3817053A (en) * 1972-11-10 1974-06-18 Controls Co Of America Refrigerating system including flow control valve
JP3040141B2 (en) * 1990-07-19 2000-05-08 松下電器産業株式会社 Air conditioner
RU2027125C1 (en) * 1992-08-27 1995-01-20 Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана Vapor-compression refrigerating plant with throttle valve regulator of cooling agent flow rate
US5715693A (en) * 1996-07-19 1998-02-10 Sunpower, Inc. Refrigeration circuit having series evaporators and modulatable compressor
US6070423A (en) * 1998-10-08 2000-06-06 Hebert; Thomas H. Building exhaust and air conditioner condenstate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
JP2001174055A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP3801006B2 (en) * 2001-06-11 2006-07-26 ダイキン工業株式会社 Refrigerant circuit
EP1369648A3 (en) * 2002-06-04 2004-02-04 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
KR100499486B1 (en) * 2002-11-23 2005-07-05 엘지전자 주식회사 accumulator of heat pump system with at least two compressors
KR100484869B1 (en) * 2003-01-13 2005-04-22 엘지전자 주식회사 Driving control method for a heat pump system
RU2241911C1 (en) * 2003-06-26 2004-12-10 Ивакин Олег Александрович Remote control method for cooling machine or air conditioner
JP3963190B2 (en) * 2005-04-07 2007-08-22 ダイキン工業株式会社 Refrigerant amount determination system for air conditioner
JP4596426B2 (en) * 2005-09-21 2010-12-08 日立アプライアンス株式会社 Heat source equipment
JP4114691B2 (en) * 2005-12-16 2008-07-09 ダイキン工業株式会社 Air conditioner
US7992395B2 (en) * 2006-01-17 2011-08-09 Hussmann Corporation Expansion valve with piezo material
CN201196507Y (en) * 2008-05-01 2009-02-18 杨迈 Heating mechanism of digital frequency conversion electromagnetic heat pump air conditioner
JP5394008B2 (en) * 2008-06-03 2014-01-22 株式会社ケーヒン Temperature detector
KR101598624B1 (en) * 2008-11-10 2016-02-29 엘지전자 주식회사 Air conditioning system
US8205465B2 (en) * 2009-06-17 2012-06-26 Emerson Electric Co. Control system for an expansion valve regulating refrigerant to an evaporator of a climate control system
US8820104B2 (en) * 2010-10-22 2014-09-02 Tai-Her Yang Temperature regulation system with active jetting type refrigerant supply and regulation
JP5464207B2 (en) * 2011-12-28 2014-04-09 ダイキン工業株式会社 Refrigeration unit outdoor unit
JP6024111B2 (en) * 2012-02-06 2016-11-09 ダイキン工業株式会社 Refrigeration unit outdoor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120083A (en) 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd Controller for refrigerating cycle
JPH11248265A (en) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd Control method for outlet temperature of refrigerant heater
JP2000220912A (en) * 1998-11-25 2000-08-08 Daikin Ind Ltd Refrigerant heater
JP2002005537A (en) * 2000-06-22 2002-01-09 Daikin Ind Ltd Refrigerant heating apparatus and air conditioning apparatus
JP2007212035A (en) * 2006-02-08 2007-08-23 Daikin Ind Ltd Refrigerant heating device

Also Published As

Publication number Publication date
EP2410264A1 (en) 2012-01-25
RU2482402C1 (en) 2013-05-20
US20120000228A1 (en) 2012-01-05
AU2010225956A1 (en) 2011-11-03
EP2410264A4 (en) 2017-05-31
JP5067505B2 (en) 2012-11-07
RU2011142186A (en) 2013-04-27
CN102356285A (en) 2012-02-15
CN102356285B (en) 2014-11-12
KR20110139287A (en) 2011-12-28
AU2010225956B2 (en) 2012-11-15
JPWO2010106817A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5067505B2 (en) Air conditioner
JP5370474B2 (en) Air conditioner
JP4826643B2 (en) Air conditioner
JP2010261698A (en) Air conditioner
JP5647396B2 (en) Air conditioner
JP2007212036A (en) Refrigerant heating device and its heating capacity control method
JP2010223457A (en) Air conditioner
JP2001091111A (en) Refrigerant heating device
WO2010146807A1 (en) Refrigeration device
JP2010243149A (en) Air conditioning device
WO2010106803A1 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012905.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504761

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13256669

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010753312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024496

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011142186

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010225956

Country of ref document: AU

Date of ref document: 20100319

Kind code of ref document: A