JPS59210278A - Controller for refrigerant of heat pump type air conditioner - Google Patents

Controller for refrigerant of heat pump type air conditioner

Info

Publication number
JPS59210278A
JPS59210278A JP7202084A JP7202084A JPS59210278A JP S59210278 A JPS59210278 A JP S59210278A JP 7202084 A JP7202084 A JP 7202084A JP 7202084 A JP7202084 A JP 7202084A JP S59210278 A JPS59210278 A JP S59210278A
Authority
JP
Japan
Prior art keywords
refrigerant
heating
capillary tube
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7202084A
Other languages
Japanese (ja)
Other versions
JPH0132431B2 (en
Inventor
隆 中邨
一夫 赤池
康久 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP7202084A priority Critical patent/JPS59210278A/en
Publication of JPS59210278A publication Critical patent/JPS59210278A/en
Publication of JPH0132431B2 publication Critical patent/JPH0132431B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は1台の室外ユニットに対し、複数台の室内ユニ
ットを接続し、室外ユニット内に設けられた四方弁によ
って冷媒の流れを冷房時と、暖房時とに切替えて冷暖房
を行なうようにしたヒートポンプ式冷暖房機に係わり、
暖房時における暖房能力を高め、且、圧縮機の過負荷時
における過負荷を軽減することを目的とする。
[Detailed description of the invention] The present invention connects a plurality of indoor units to one outdoor unit, and switches the flow of refrigerant between cooling and heating using a four-way valve provided in the outdoor unit. Regarding the heat pump type air conditioner that performs air conditioning and heating,
The purpose is to increase heating capacity during heating and reduce overload when the compressor is overloaded.

従来のマルチタイプのヒートポンプ式冷暖房機は第1図
に示すような冷媒制御が行なわれている。
In conventional multi-type heat pump air conditioners, refrigerant control is performed as shown in FIG.

すなわち、第1図において、51は室外ユニット、62
はロータリ圧縮機、53は冷房時と暖房時、冷媒の流れ
を切替える四方弁、54は冷房時凝縮器、暖房時蒸発器
となる室外熱交換器、65a。
That is, in FIG. 1, 51 is an outdoor unit, and 62 is an outdoor unit.
53 is a rotary compressor; 53 is a four-way valve that switches the flow of refrigerant during cooling and heating; 54 is an outdoor heat exchanger that serves as a condenser during cooling and an evaporator during heating; 65a;

ssbは第1キヤピラリチユーブ、56a、56bは源
側電磁弁、57a、5了すは室内ユニット58a、68
bと接続し、且、サービスパルプを有した三方弁、59
a、59bは第2キヤピラリチユーブ、60a、60b
は冷房時蒸発器、暖房時凝縮器となる室内熱交換器、6
1a、61bは3 、・ 三方弁、62a、e2bはガス側電磁弁、63a。
ssb is the first capillary tube, 56a, 56b are source side solenoid valves, 57a, 5 are indoor units 58a, 68
a three-way valve connected to b and having a service pulp, 59
a, 59b are second capillary tubes, 60a, 60b
is an indoor heat exchanger that serves as an evaporator for cooling and a condenser for heating; 6
1a and 61b are 3, three-way valves, 62a and e2b are gas side solenoid valves, and 63a.

esbは冷房時冷媒がガス側電磁弁62a、62bをバ
イパスして通過し、暖房時は閉止する逆止弁、e4は7
#:x−ムv−タ、65a、esbは冷房時、暖房時共
にインジェクション用キャピラリチューブ66を通して
ロータリ圧縮機52に、常時少量の冷媒を送シ込む逆止
弁、67は冷房時、暖房時のいずれの時°でも異常高圧
になった時に、その高圧圧力に応じて開度が調節され、
冷媒を吸入管68側に戻して低温にし、圧縮機62の異
常高圧を抑制する為の高圧圧力調整弁、69は吐出管、
70a、70bはキャピラリチューブである。
esb is a check valve through which the refrigerant bypasses the gas-side solenoid valves 62a and 62b during cooling, and is closed during heating, and e4 is 7
#: x-motor, 65a, esb are check valves that constantly send a small amount of refrigerant to the rotary compressor 52 through the injection capillary tube 66 during both cooling and heating; 67 is a check valve during cooling and heating. When abnormally high pressure occurs at any time, the opening degree is adjusted according to the high pressure.
a high-pressure pressure regulating valve for returning the refrigerant to the suction pipe 68 side to lower the temperature and suppressing abnormally high pressure in the compressor 62; 69 is a discharge pipe;
70a and 70b are capillary tubes.

従来はこうした冷媒回路が構成され、仮に、暖房時、逆
止弁65a、etsbに少量の気液混合の冷媒が流れた
場合、(インジェクション用のキャピラリチューブ66
の抵抗によって)同インジェクション用のキャピラリチ
ューブ66より圧縮機62に戻す冷媒が、室内ユニ7)
58a、58bの室内熱交換器60a、60bで凝縮さ
れ、キャピラリチューブ69a、59bで減圧され気液
混合冷媒となって戻るが、その気液混合は主に液冷媒で
圧縮機内のシリンダー内の圧縮中のガスに噴射し、温度
上昇を緩和する為に、暖房能力が落ちる欠点と、同じく
暖房時室内及び室外の温度が上昇した時、圧縮機52は
過負荷状態となり、高圧圧力調整弁67によって吸入管
68側に冷媒を戻すようにしているが、冷媒が気液混合
である為に、十分な冷媒量が吸入管側に戻らず、過負荷
時における圧縮機の負担は太きいものになるなどの欠点
を有していた。
Conventionally, such a refrigerant circuit is configured, and if a small amount of gas-liquid mixed refrigerant flows through the check valve 65a and etsb during heating, (injection capillary tube 66
The refrigerant is returned to the compressor 62 from the injection capillary tube 66 due to the resistance of the indoor unit 7).
It is condensed in the indoor heat exchangers 60a and 60b of 58a and 58b, and the pressure is reduced in the capillary tubes 69a and 59b, and it returns as a gas-liquid mixed refrigerant.The gas-liquid mixture is mainly liquid refrigerant and is compressed in the cylinder in the compressor. In order to alleviate the temperature rise by injecting the air into the gas inside, the heating capacity is reduced. Similarly, when the indoor and outdoor temperatures rise during heating, the compressor 52 becomes overloaded, and the high-pressure pressure regulating valve 67 The refrigerant is returned to the suction pipe 68 side, but since the refrigerant is a gas-liquid mixture, a sufficient amount of refrigerant does not return to the suction pipe side, and the load on the compressor becomes heavy during overload. It had drawbacks such as.

本発明は上記従来の欠点を解消するもので、以下にその
実施例を第2図にもとづいて説明する。
The present invention solves the above-mentioned conventional drawbacks, and an embodiment thereof will be described below based on FIG. 2.

第2図において、1は室外ユニット、2はロータリ形の
圧縮機、3は冷房時と暖房時、冷媒の流れを切替える為
の四方弁、4は冷房時凝縮器として作用し、暖房時蒸発
器として作用する室外熱交換器、5は冷房用の第1キヤ
ピラリチユーブ、6a。
In Figure 2, 1 is an outdoor unit, 2 is a rotary compressor, 3 is a four-way valve for switching the flow of refrigerant during cooling and heating, and 4 is a condenser during cooling and an evaporator during heating. 5 is a first capillary tube for cooling, 6a;

6bは逆止弁、7a、7bは室内ユニットの操作により
開閉する数個電磁弁、8a、sbは室外ユニット1に設
けられた三方弁、9a、 9bは室内5+ツ ユニット10a側に設けられた二方弁、1obは他の室
内ユニットである。11a、11bはそれぞれの室内ユ
ニット10a、10b内に設けられた冷房用の第2キヤ
ピラリチユーブ、12a、12bは暖房時凝縮冷媒が室
外ユニット1側に流れ、冷房時は流れないように、第2
キャピラリチューブ11a、11bをバイパスして設け
られる逆止弁、13a、13bは暖房時凝縮器、冷房時
蒸発器として作用する室内熱交換器、14a、14bは
二方弁、16a、16bは室外ユニット1の側板に設け
られた三方弁、16a、16bは室内ユニット10a、
10bの操作により、暖房時は開、冷房時は閉となるガ
ス側電磁弁、17a、17bは冷房時ガス冷媒が流通し
、暖房時は流通せず、冷房時、電磁弁16a、16bを
バイパスする如く設けられた逆止弁、18は液冷媒を気
化させるアキュームレータ、19は高温高圧ガスが吐出
する吐出管、2oは吸入管、21は高圧圧力調整弁で、
運転時、圧縮機2からの吐出冷媒が異常に高くなった時
、配管22内の圧力が高くなり、冷媒の一部は室外熱交
換器4の一部に設けられた高圧圧力調整弁用の熱交換部
23で液化され、液化された冷媒は圧力に応じて開度が
調整される高圧圧力調整弁21を流れて吸入管20にバ
イパスされ、液冷媒の一部を戻すことによって、高圧圧
力調整弁21を通過する冷媒量を多くし、圧縮機の負担
を小さくする。24は暖房時は開、冷房時は閉となる暖
房用電磁弁、26a、 2sbは暖房時のみに冷媒が流
れる暖房配管、26a、26bは暖房時のみ冷媒が流れ
る逆止弁、27a、27bは暖房用の第1キャピラリチ
ー−プ、28は暖房時のみに、常時、中間圧(第1キヤ
ピラリチユーブ27a。
6b is a check valve, 7a and 7b are several solenoid valves that are opened and closed by the operation of the indoor unit, 8a and sb are three-way valves provided in the outdoor unit 1, and 9a and 9b are two-way valves provided on the indoor 5+ unit 10a side. Directional valve 1ob is another indoor unit. 11a and 11b are second capillary tubes for cooling provided in the respective indoor units 10a and 10b, and 12a and 12b are second capillary tubes so that the condensed refrigerant flows to the outdoor unit 1 side during heating and does not flow during cooling. 2
Check valves are provided to bypass the capillary tubes 11a and 11b, 13a and 13b are indoor heat exchangers that act as condensers during heating and evaporators during cooling, 14a and 14b are two-way valves, and 16a and 16b are outdoor units. The three-way valves 16a and 16b provided on the side plate of 1 are indoor unit 10a,
By operating 10b, the gas side solenoid valve opens during heating and closes during cooling. Gas refrigerant flows through 17a and 17b during cooling, does not flow during heating, and bypasses the solenoid valves 16a and 16b during cooling. 18 is an accumulator that vaporizes liquid refrigerant; 19 is a discharge pipe through which high-temperature and high-pressure gas is discharged; 2o is a suction pipe; 21 is a high-pressure pressure regulating valve;
During operation, when the refrigerant discharged from the compressor 2 becomes abnormally high, the pressure inside the pipe 22 becomes high, and a part of the refrigerant is used for the high-pressure pressure regulating valve provided in a part of the outdoor heat exchanger 4. The liquefied refrigerant is liquefied in the heat exchange section 23, flows through the high-pressure pressure regulating valve 21 whose opening degree is adjusted according to the pressure, is bypassed to the suction pipe 20, and by returning a part of the liquid refrigerant, the high-pressure pressure is increased. The amount of refrigerant passing through the regulating valve 21 is increased to reduce the load on the compressor. 24 is a heating electromagnetic valve that is open during heating and closed during cooling; 26a and 2sb are heating pipes through which refrigerant flows only during heating; 26a and 26b are check valves through which refrigerant flows only during heating; 27a and 27b are check valves through which refrigerant flows only during heating; The first capillary tube 28 for heating is always at intermediate pressure (first capillary tube 27a) only during heating.

27bを通過した後であるから)の気液混合冷媒が貯溜
されるセパレータ、29は暖房時セパレータ28の上方
からガス冷媒が、圧縮機2のインジェクション回路に流
れる配管、30は逆止弁、31は暖房用の第2キヤピラ
リチユーブで、この第2キヤピラリチユーブ31で中間
圧から低圧となシ室外熱交換器4で蒸発気化し、四方弁
3を経て圧縮機2に戻る。32はセパレータ28の下方
に貯溜する液冷媒が通過する暖房用のインジェクション
用キャピラリチューブ、33.34は圧縮機2のシリン
ダ内に接続したインジェクション用の配管、35は冷房
用のインジェクション用キャピラリチューブで、冷房時
室外熱交換器4で凝縮された液冷媒の一部が、圧縮機の
シリンダ内に圧縮中のガスを冷却するに足る冷媒量が流
れ得るキャピラリチューブの長さ選定を行なうものであ
る。
29 is a pipe through which gas refrigerant flows from above the separator 28 to the injection circuit of the compressor 2 during heating; 30 is a check valve; 31 is a second capillary tube for heating, and in this second capillary tube 31 the pressure is changed from intermediate pressure to low pressure, and the air is evaporated in the outdoor heat exchanger 4 and returned to the compressor 2 via the four-way valve 3. 32 is a heating injection capillary tube through which the liquid refrigerant stored below the separator 28 passes, 33 and 34 are injection piping connected to the inside of the cylinder of the compressor 2, and 35 is a cooling injection capillary tube. During cooling, the length of the capillary tube is selected so that a portion of the liquid refrigerant condensed in the outdoor heat exchanger 4 can flow into the cylinder of the compressor in an amount sufficient to cool the gas being compressed. .

36a、36bはガス側電磁弁16a、16bと、三方
弁1eia、15bの間より取出した配管37a。
36a and 36b are piping 37a taken out between the gas side solenoid valves 16a and 16b and the three-way valves 1eia and 15b.

37bに設けられた均圧用キャピラリチューブで、この
均圧用キャピラリチューブ36a、36bは吸入管2o
に接続され、室内ユニッ)10a、10bのいずれか一
方が停止にした時、停止した室内ユニットの室内熱交換
器内の凝縮冷媒を吸入管側の圧力と均一にして、高圧の
液冷媒を除々に回収する為に設けられたものである。
37b, and these pressure equalizing capillary tubes 36a and 36b are connected to the suction pipe 2o.
When either indoor unit 10a or 10b is stopped, the pressure of the condensed refrigerant in the indoor heat exchanger of the stopped indoor unit is made equal to the pressure on the suction pipe side, and the high-pressure liquid refrigerant is gradually removed. It was established for the purpose of collecting waste.

上記構成において、冷房時は通常の冷凍サイクル運転が
行なわれる。即ち、圧縮機2で圧縮されたガス冷媒は、
四方弁3.室外熱交換器4、ここで凝縮され、冷房用の
第1キヤピラリチユーブ5、(一部の液冷媒が冷房用の
インジェクションキャピラリチューブ35を通る)、逆
1ト弁ea、6b、。
In the above configuration, normal refrigeration cycle operation is performed during cooling. That is, the gas refrigerant compressed by the compressor 2 is
Four-way valve 3. An outdoor heat exchanger 4, where it is condensed, a first capillary tube 5 for cooling (a part of the liquid refrigerant passes through an injection capillary tube 35 for cooling), an inverted one-way valve ea, 6b,.

ガス側電両弁ya、7J三方弁sa、sb(この時暖房
用電磁弁24は閉であるから逆止弁26a。
Gas side electric double valve ya, 7J three-way valve sa, sb (at this time, the heating solenoid valve 24 is closed, so the check valve 26a).

26bには流れない)、室内ユニット1oa。26b), indoor unit 1oa.

10b(7)第2キヤピラリチユーブ11 a 、 1
13室内熱交換器13a、13b、三方弁15a、1 
sJ逆止弁17a、17b、四方弁3、アキュームレー
タ18、の冷媒回路となり、高圧圧力が異常に高くなる
と、高圧圧力調整弁21が開いて、熱交換部23で凝縮
しだ液冷媒を吸入管20に戻し、圧縮機の負担を軽減す
る。次に、暖房時は圧縮機2で圧縮されたガス冷媒は四
方弁3、ガス側電磁弁16a、16b、三方弁15a、
15b、室内ユニット10a、10bの室内熱交換器1
3a。
10b(7) Second capillary tube 11a, 1
13 indoor heat exchangers 13a, 13b, three-way valves 15a, 1
The refrigerant circuit includes the sJ check valves 17a and 17b, the four-way valve 3, and the accumulator 18. When the high pressure becomes abnormally high, the high pressure regulating valve 21 opens and the liquid refrigerant condensed in the heat exchange section 23 is transferred to the suction pipe. 20 to reduce the load on the compressor. Next, during heating, the gas refrigerant compressed by the compressor 2 is transferred to the four-way valve 3, the gas side solenoid valves 16a, 16b, the three-way valve 15a,
15b, indoor heat exchanger 1 of indoor units 10a, 10b
3a.

13bで凝縮され、逆止弁12a、12J三方弁sa、
ab、、逆止弁ea、sbによって止められるから、逆
止弁26a 、26bを通り、暖房用の第1キヤピラリ
チユーブ27a l 27b、、 暖房   − 用電磁弁24、セパレータ28に至る。このセパレータ
28において、主回路となるのは液冷媒が逆止弁30、
第2キヤピラリチユーブ31、室外熱交換器4、四方弁
3の暖房回路となるが、液冷媒の一部は配管34、暖房
用のインジェクション用キャピラリチューブ32を流れ
て減圧されると共に、ガス冷媒の一部が配管29を流れ
て、液冷媒と、ガス冷媒の混合された気液混合冷媒が、
配管33を流れ、圧縮機2のシリンダ内に噴射する。
13b, check valve 12a, 12J three-way valve sa,
Since it is stopped by the check valves ea and sb, it passes through the check valves 26a and 26b and reaches the first heating capillary tube 27a, 27b, the heating solenoid valve 24, and the separator 28. In this separator 28, the main circuit is that the liquid refrigerant is connected to the check valve 30,
The heating circuit includes the second capillary tube 31, the outdoor heat exchanger 4, and the four-way valve 3. A part of the liquid refrigerant flows through the piping 34 and the heating injection capillary tube 32 and is depressurized, while the gas refrigerant A part of the refrigerant flows through the pipe 29, and a gas-liquid mixed refrigerant, which is a mixture of liquid refrigerant and gas refrigerant,
It flows through the pipe 33 and is injected into the cylinder of the compressor 2.

この時の気液混合冷媒は配管29からのガス冷媒がほと
んどであって、キャピラリチューブ32からの液冷媒は
僅かである。又、室内温度、或いは室外温度が上昇して
圧縮する高温高圧冷媒が、異常に高くなり過負荷条件と
なった時、配管22の圧力も上昇し、高圧圧力調整弁2
1が開らき始め、熱交換部23で凝縮されだ液冷媒は高
圧圧力調整弁21を流れて吸入管2oに流れてアキュー
ムレータ18に戻り、圧縮機2の負担を軽減する。次に
、同じく暖房時において、室内ユニット10a。
At this time, most of the gas-liquid mixed refrigerant is gas refrigerant from the pipe 29, and only a small amount of liquid refrigerant is from the capillary tube 32. Furthermore, when the indoor temperature or outdoor temperature rises and the compressed high-temperature, high-pressure refrigerant becomes abnormally high, resulting in an overload condition, the pressure in the pipe 22 also rises, causing the high-pressure pressure regulating valve 2 to rise.
1 begins to open, the liquid refrigerant condensed in the heat exchange section 23 flows through the high-pressure pressure regulating valve 21, flows into the suction pipe 2o, and returns to the accumulator 18, reducing the load on the compressor 2. Next, also during heating, the indoor unit 10a.

10bのいずれかを停止した時、室内熱交換器1゜ 10 a 、 10 bのいずれか停止した室内熱交換
器内に液冷媒が溜り込むことのないように、ガス側電磁
弁1ea、16bの停止した方が閉となり、配管37a
 、 37b、更には、均圧用キャピラリチューブ36
a 、36bの停止した方を除々に流れて吸入管20に
流れ、停止した方の高圧回路を吸入管20側圧力に落し
ながら冷媒を回収する。
When either of the indoor heat exchangers 10a and 10b is stopped, the gas side solenoid valves 1ea and 16b are closed to prevent liquid refrigerant from accumulating in the stopped indoor heat exchanger 1. The one that stops is closed, and the pipe 37a
, 37b, and further a pressure equalizing capillary tube 36
The refrigerant gradually flows through the stopped side of a and 36b and flows into the suction pipe 20, and the refrigerant is recovered while dropping the high pressure circuit of the stopped side to the suction pipe 20 side pressure.

又、例えば、室内ユニッ) 10 aを運転中、短時間
にして、室内ユニット10bを同時運転し、又室内ユニ
ッ) 10 aを停止にして室内ユニット10bのみの
運転になった時、ガス側電磁弁16aが閉となり、この
系統の冷媒は配管37a1均圧用キヤピラリチユーブ3
6aを流れて除々に吸入管20に回収されると共に、暖
房用の第1キヤピラリチユーブ27aと、暖房用電磁弁
24及び、セパレータ28、逆止弁3oを介して第2キ
ヤピラリチユーブ31の間は中間圧になっており、その
中間圧により停止した配管中の冷媒が回収されて、運転
中の室内ユニット10bに回わるので、r四―機2の冷
媒循環量が、一時的に不足して高温11− になり、圧縮機に負担をかけると云うことはない。
Also, for example, when indoor unit (10a) is operating, indoor unit (10b) is simultaneously operated for a short time, and when indoor unit (10a) is stopped and only indoor unit (10b) is in operation, the gas side electromagnetic The valve 16a is closed, and the refrigerant in this system flows through the pipe 37a1 and the pressure equalization capillary tube 3.
6a and is gradually collected into the suction pipe 20, and the second capillary tube 31 via the first heating capillary tube 27a, the heating solenoid valve 24, the separator 28, and the check valve 3o. Since the refrigerant in the stopped pipe is recovered by the intermediate pressure and circulated to the indoor unit 10b which is in operation, the refrigerant circulation amount in the machine 2 is temporarily insufficient. There is no possibility that the temperature will rise to 11- and put a burden on the compressor.

とのように本発明は、冷房運転時は逆止弁30と、暖房
用電磁弁24を常時閉にすることにより、セパレータ2
8は冷房主回路から切離され、セパレータ18に冷媒が
溜り込むことはなく、一方暖房運転時は、配管33に戻
されるインジェクション用の冷媒が、セパレータ28の
上方から出るガス冷媒が主流を占め、配管29を流れる
ガス冷媒と、セパレータ28の下方から出る液冷媒が配
管34、暖房用のインジェクションキャピラリチューブ
32を流れる液冷媒とが合流し、主にガス冷媒の多い気
液混合冷媒となって圧縮機2のシリンダ内に噴射される
から、従来のように主に液冷媒の噴射に比較して吐出温
度を高め、暖房能力を向上することが出来る。又、過負
荷時においても従来は、主に液冷媒の気液混合の冷媒を
戻すのに比較して本発明は、熱交換部23において、は
とんど液化した液冷媒を、高圧圧力調整弁21に流通さ
せるから、冷媒体積を大として多量の冷媒流通量を得る
ことが出来、圧縮機の負担を軽減することが出来る。更
には暖房時中間圧力より、インジェクションを通して、
停止中の室内熱交換器内の液冷媒を回収する従来のもの
に比較して、本発明は、暖房時、ガス側電磁弁と、三方
弁の間である高圧側より均圧するように高低差を付ける
ことによって、早く回収出来、室内ユニットに液冷媒が
溜り込む率は少なくなるなどの効果を有するものである
According to the present invention, during cooling operation, the separator 2
8 is separated from the main cooling circuit, so that no refrigerant accumulates in the separator 18. On the other hand, during heating operation, the injection refrigerant returned to the piping 33 is mainly gas refrigerant coming out from above the separator 28. The gas refrigerant flowing through the piping 29, the liquid refrigerant coming out from below the separator 28, and the liquid refrigerant flowing through the piping 34 and the injection capillary tube 32 for heating combine to form a gas-liquid mixed refrigerant mainly containing gas refrigerant. Since the refrigerant is injected into the cylinder of the compressor 2, the discharge temperature can be increased and the heating capacity can be improved compared to the conventional injection of mainly liquid refrigerant. Furthermore, in the heat exchange section 23, the liquid refrigerant, which is mostly liquefied, is returned to the heat exchange section 23 under high pressure regulation, compared to the conventional method that mainly returns a gas-liquid mixture of liquid refrigerant even in the event of an overload. Since the refrigerant is allowed to flow through the valve 21, the refrigerant volume can be increased to obtain a large amount of refrigerant flow, and the load on the compressor can be reduced. Furthermore, through injection from intermediate pressure during heating,
Compared to the conventional method that recovers liquid refrigerant in a stopped indoor heat exchanger, the present invention improves the height difference between the gas side solenoid valve and the three-way valve so that the pressure is equalized from the high pressure side during heating. By attaching a refrigerant, the refrigerant can be recovered quickly and the rate at which liquid refrigerant accumulates in the indoor unit is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ式冷暖房機の冷媒制御回路
図、第2図は本発明の一実施例におけるヒートポンプ式
冷暖房機の冷媒制御回路図である。 2・・・・・圧縮機、3・・・・・・四方弁、4・・・
・・・室外熱交換器、7 a 、 7 b =−−−−
源側電磁弁、15a、15b・・・・・三方弁、16a
、16b・・山・ガス側電磁弁、20・・・・・・吸入
管、21・・・・・・高圧圧力調整弁、24・・・・・
暖房用電磁弁、26a、26b・・川・逆止弁、27a
 、27b・・・山暖房用の第1キヤピラリチユーブ、
28・・・・・・セパレータ、29・・・・・・配管、
32・・・・・・インジェクション用キャピラリチュー
ブ、13 ズ 7 36a 、36b・・・・・・均圧カキャビラリチュー
ブ。
FIG. 1 is a refrigerant control circuit diagram of a conventional heat pump type air conditioner/heater, and FIG. 2 is a refrigerant control circuit diagram of a heat pump type air conditioner/heater according to an embodiment of the present invention. 2...Compressor, 3...Four-way valve, 4...
...Outdoor heat exchanger, 7a, 7b =----
Source side solenoid valve, 15a, 15b... Three-way valve, 16a
, 16b...Mountain/gas side solenoid valve, 20...Suction pipe, 21...High pressure regulating valve, 24...
Heating solenoid valve, 26a, 26b... River check valve, 27a
, 27b...first capillary tube for mountain heating;
28... Separator, 29... Piping,
32... Injection capillary tube, 13 36a, 36b... Pressure equalization capillary tube.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器、キャピラリチューブ、
室内熱交換器等を備えたヒートポンプ式冷暖房機を備え
、冷暖房運転の過負荷時、圧縮機からの吐出冷媒を室外
熱交換器の一部において液化せしめ、高圧圧力調整弁を
通して吸入管側に暖房回路と、暖房時、室外ユニットの
三方弁と源側電磁弁の間より暖房時のみ流通する逆止弁
、暖房用の第1キヤピラリチユーブ、暖房時開、冷房時
閉となる暖房用電磁弁を流通してセパレータに至る回路
と、前記セパレータよシ、主にガス冷媒を圧縮機に流通
する配管ならびにセパレータより液冷媒を暖房用のイン
ジェクション用キャピラリチューブを流通して前記配管
に合流せしめる回路と、更にはガス側電磁弁と、三方弁
の間より吸入管に接続した均圧用キャピラリチューブと
を有してなるヒートポンプ式冷暖房機の冷媒制御装置。
Compressor, four-way valve, outdoor heat exchanger, capillary tube,
Equipped with a heat pump type air conditioner/heater equipped with an indoor heat exchanger, etc., when the air conditioner is overloaded, the refrigerant discharged from the compressor is liquefied in a part of the outdoor heat exchanger, and heat is supplied to the suction pipe side through a high-pressure pressure regulating valve. circuit, a check valve that flows only during heating between the three-way valve of the outdoor unit and the source-side solenoid valve, a first capillary tube for heating, and a heating solenoid valve that opens when heating and closes when cooling. a circuit through which the gas refrigerant flows through the separator to the compressor, and a circuit through which liquid refrigerant flows from the separator through a capillary tube for heating injection to join the piping. A refrigerant control device for a heat pump type air conditioner/heater, further comprising a gas side solenoid valve and a pressure equalizing capillary tube connected to a suction pipe from between the three-way valve.
JP7202084A 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner Granted JPS59210278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7202084A JPS59210278A (en) 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7202084A JPS59210278A (en) 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS59210278A true JPS59210278A (en) 1984-11-28
JPH0132431B2 JPH0132431B2 (en) 1989-06-30

Family

ID=13477307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7202084A Granted JPS59210278A (en) 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS59210278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052883A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022364U (en) * 1973-06-19 1975-03-13
JPS5415549A (en) * 1977-07-06 1979-02-05 Toshiba Corp Heat pump type air harmonizer
JPS5454438A (en) * 1977-10-08 1979-04-28 Toshiba Corp Heat pump type air conditioner
JPS5568561A (en) * 1978-11-17 1980-05-23 Tokyo Shibaura Electric Co Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022364U (en) * 1973-06-19 1975-03-13
JPS5415549A (en) * 1977-07-06 1979-02-05 Toshiba Corp Heat pump type air harmonizer
JPS5454438A (en) * 1977-10-08 1979-04-28 Toshiba Corp Heat pump type air conditioner
JPS5568561A (en) * 1978-11-17 1980-05-23 Tokyo Shibaura Electric Co Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052883A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JPH0132431B2 (en) 1989-06-30

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
CN107763774A (en) Air conditioner cooling cycle system and air conditioner
JP3575484B2 (en) Heat source unit of air conditioner and air conditioner
JPWO2004013549A1 (en) Refrigeration equipment
CN104654679B (en) A kind of condenser system, air-cooled type air conditioning system and control method
JPWO2004013550A1 (en) Refrigeration equipment
JP3791090B2 (en) Heat pump equipment
CN204460863U (en) A kind of condenser system and air-cooled type air conditioning system
JPS59210278A (en) Controller for refrigerant of heat pump type air conditioner
CN212566001U (en) Indoor unit set and multi-connected air conditioning system
CN213272814U (en) Multi-connected air conditioning system
CN112032826B (en) Air conditioning unit and control method thereof
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
JP2006177619A (en) Air conditioner, and its operation method
JPH0320574A (en) Air-conditioning apparatus
CN218915208U (en) Energy storage air conditioning system
JP3268967B2 (en) Air conditioner
JP3742852B2 (en) Air conditioner
JPH03129259A (en) Multi-room type air conditioner
JPS592832B2 (en) Heat recovery air conditioner
JP2800573B2 (en) Air conditioner
JPH0571824A (en) Multiroom type air-conditioner
JPS631154Y2 (en)
JPH0233100Y2 (en)
JPH04320764A (en) Freezer device