JPH0132431B2 - - Google Patents

Info

Publication number
JPH0132431B2
JPH0132431B2 JP59072020A JP7202084A JPH0132431B2 JP H0132431 B2 JPH0132431 B2 JP H0132431B2 JP 59072020 A JP59072020 A JP 59072020A JP 7202084 A JP7202084 A JP 7202084A JP H0132431 B2 JPH0132431 B2 JP H0132431B2
Authority
JP
Japan
Prior art keywords
refrigerant
heating
compressor
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59072020A
Other languages
Japanese (ja)
Other versions
JPS59210278A (en
Inventor
Takashi Nakamura
Kazuo Akaike
Yasuhisa Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP7202084A priority Critical patent/JPS59210278A/en
Publication of JPS59210278A publication Critical patent/JPS59210278A/en
Publication of JPH0132431B2 publication Critical patent/JPH0132431B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は1台の室外ユニツトに対し、複数台の
室内ユニツトを接続し、室外ユニツト内に設けら
れた四方弁によつて冷媒の流れを冷房時と、暖房
時とに切替えて冷暖房を行なうようにしたヒート
ポンプ式冷暖房機に係わり、暖房時における暖房
能力を高め、且、圧縮機の過負荷時における過負
荷を軽減することを目的とする。
Detailed Description of the Invention The present invention connects a plurality of indoor units to one outdoor unit, and uses a four-way valve provided in the outdoor unit to control the flow of refrigerant between cooling and heating. The present invention relates to a heat pump type air conditioner/heater that performs air conditioning and heating by switching to the air conditioner, and aims to increase heating capacity during heating and reduce overload when a compressor is overloaded.

従来のマルチタイプのヒートポンプ式冷暖房機
は第1図に示すような冷媒制御が行なわれてい
る。すなわち、第1図において、51は室外ユニ
ツト、52はロータリ圧縮機、53は冷房時と暖
房時、冷媒の流れを切替える四方弁、54は冷房
時凝縮器、暖房時蒸発器となる室外熱交換器、5
5a,55bは第1キヤピラリチユーブ、56
a,56bは液側電磁弁、57a,57bは室内
ユニツト58a,58bと接続し、且、サービス
バルブを有した三方弁、59a,59bは第2キ
ヤピラリチユーブ、60a,60bは冷房時蒸発
器、暖房時凝縮器となる室内熱交換器、61a,
61bは三方弁、62a,62bはガス側電磁
弁、63a,63bは冷房時冷媒がガス側電磁弁
62a,62bをバイパスして通過し、暖房時は
閉止する逆止弁、64はアキユームレータ、65
a,65bは冷房時、暖房時共にインジエクシヨ
ン用キヤピラリチユーブ66を通してロータリ圧
縮機52に、常時少量の冷媒を送り込む逆止弁、
67は冷房時、暖房時のいずれの時でも異常高圧
になつた時に、その高圧圧力に応じて開度が調節
され、冷媒を吸入管68側に戻して低温にし、圧
縮機52の異常高圧を抑制する為の高圧圧力調整
弁、69は吐出管、70a,70bはキヤピラリ
チユーブである。
In conventional multi-type heat pump air conditioners, refrigerant control is performed as shown in FIG. That is, in FIG. 1, 51 is an outdoor unit, 52 is a rotary compressor, 53 is a four-way valve that switches the flow of refrigerant during cooling and heating, and 54 is an outdoor heat exchanger that serves as a condenser during cooling and an evaporator during heating. vessel, 5
5a, 55b are first capillary tubes, 56
a, 56b are liquid side electromagnetic valves, 57a, 57b are three-way valves connected to indoor units 58a, 58b and have a service valve, 59a, 59b are second capillary tubes, 60a, 60b are cooling evaporators. , indoor heat exchanger that serves as a condenser during heating, 61a,
61b is a three-way valve, 62a and 62b are gas-side solenoid valves, 63a and 63b are check valves through which refrigerant bypasses gas-side solenoid valves 62a and 62b during cooling and are closed during heating, and 64 is an accumulator. , 65
a and 65b are check valves that always send a small amount of refrigerant to the rotary compressor 52 through the injection exit capillary tube 66 during both cooling and heating;
67, when an abnormally high pressure occurs during either cooling or heating, the opening degree is adjusted according to the high pressure, and the refrigerant is returned to the suction pipe 68 side to lower the temperature, thereby reducing the abnormally high pressure of the compressor 52. 69 is a discharge pipe, and 70a and 70b are capillary tubes.

従来はこうした冷媒回路が構成され、仮に、暖
房時、逆止弁65a,65bに少量の気液混合の
冷媒が流れた場合、(インジエクシヨン用のキヤ
ピラリチユーブ66の抵抗によつて)同インジエ
クシヨン用のキヤピラリチユーブ66より圧縮機
52に戻す冷媒が、室内ユニツト58a,58b
の室内熱交換器60a,60bで凝縮され、キヤ
ピラリチユーブ59a,59bで減圧され気液混
合冷媒となつて戻るが、その気液混合は主に液冷
媒で圧縮機内のシリンダー内の圧縮中のガスに噴
射し、温度上昇を緩和する為に、暖房能力が落ち
る欠点と、同じく暖房時室内及び温度が上昇した
時、圧縮機52は過負荷状態となり、高圧圧力調
整弁67によつて吸入管68側に冷媒を戻すよう
にしているが、冷媒が気液混合である為に、十分
な冷媒量が吸入管側に戻らず、過負荷時における
圧縮機の負担は大きいものになるなどの欠点を有
していた。
Conventionally, such a refrigerant circuit is configured, and if a small amount of gas-liquid mixed refrigerant flows into the check valves 65a and 65b during heating, the refrigerant for the injection exit (due to the resistance of the capillary tube 66 for the injection exit) The refrigerant is returned to the compressor 52 from the capillary tube 66 of the indoor unit 58a, 58b.
It is condensed in the indoor heat exchangers 60a and 60b, and the pressure is reduced in the capillary tubes 59a and 59b, and it returns as a gas-liquid mixed refrigerant, but the gas-liquid mixture is mainly liquid refrigerant that is compressed during compression in the cylinder in the compressor. The disadvantage is that the heating capacity decreases because the air is injected into the gas to alleviate the temperature rise. Similarly, when the indoor temperature rises during heating, the compressor 52 becomes overloaded, and the high-pressure pressure regulating valve 67 causes the suction pipe to The refrigerant is returned to the 68 side, but since the refrigerant is a gas-liquid mixture, a sufficient amount of refrigerant does not return to the suction pipe side, resulting in a large burden on the compressor during overload. It had

本発明は上記従来の欠点を解消するもので、以
下にその実施例を第2図にもとづいて説明する。
第2図において、1は室外ユニツト、2はロータ
リ形の圧縮機、3は冷房時と暖房時、冷媒の流れ
を切替える為の四方弁、4は冷房時凝縮器として
作用し、暖房時蒸発器として作用する室外熱交換
器、5は冷房用の第1キヤピラリチユーブ、6
a,6bは逆止弁、7a,7bは室内ユニツトの
操作により開閉する液側電磁弁、8a,8bは室
外ユニツト1に設けられた三方弁、9a,9bは
室内ユニツト10a側に設けられた二方弁、10
bは他の室内ユニツトである。11a,11bは
それぞれ室内ユニツト10a,10b内に設けら
れた冷房用の第2キヤピラリチユーブ、12a,
12bは暖房時凝縮冷媒が室外ユニツト1側に流
れ、冷房時は流れないように、第2キヤピラリチ
ユーブ11a,11bをバイパスして設けられる
逆止弁、13a,13bは暖房時凝縮器、冷房時
蒸発器として作用する室内熱交換器、14a,1
4bは二方弁、15a,15bは室外ユニツト1
の側板に設けられた三方弁、16a,16bは室
内ユニツト10a,10bの操作により、暖房時
は開、冷房時は閉となるガス側電磁弁、17a,
17bは冷房時ガス冷媒が流通し、暖房時は流通
せず、冷房時、ガス側電磁弁16a,16bをバ
イパスする如く設けられた逆止弁、18は液冷媒
を気化させるアキユームレータ、19は高温高圧
ガスが吐出する吐出管、20は吸入管、21は高
圧圧力調整弁で、運転時、圧縮機2からの吐出冷
媒が異常に高くなつた時、配管22内の圧力が高
くなり、冷媒の一部は室外熱交換器4の一部に設
けられた高圧圧力調整弁用の熱交換部23で液化
され、液化された冷媒は圧力に応じて開度が調整
される高圧圧力調整弁21を流れて吸入管20に
バイパスされ、液冷媒の一部を戻すことによつ
て、高圧圧力調整弁21を通過する冷媒量を多く
し、圧縮機の負担を小さくする。24は暖房時は
開、冷房時は閉となる暖房用電磁弁、25a,2
5bは暖房時のみに冷媒が流れる暖房配管、26
a,26bは暖房時のみ冷媒が流れる逆止弁、2
7a,27bは暖房用の第1キヤピラリチユー
ブ、28は暖房時のみに、常時、中間圧(第1キ
ヤピラリチユーブ27a,27bを通過した後で
あるから)の気液混合冷媒が貯溜されるセパレー
タ、29は暖房時セレータ28の上方からガス冷
媒が、圧縮機2へのインジエクシヨン回路33に
流れる配管、30は逆止弁、31は暖房用の第2
キヤピラリチユーブで、この第2キヤピラリチユ
ーブ31で中間圧から低圧となり室外熱交換器4
で蒸発気化し、四方弁3を経て圧縮機2に戻る。
32はセパレータ28の下方に貯溜する液冷媒が
通過する暖房用のインジエクシヨン用のキヤピラ
リチユーブ、33,34は圧縮機2のシリンダ内
に接続した圧縮機2へのインジエクシヨン回路で
ある。35は冷房用のインジエクシヨン用となる
冷房用キヤピラリチユーブで、冷房時室外熱交換
器4で凝縮された液冷媒の一部が、圧縮機のシリ
ンダ内に圧縮中のガスを冷却するに足る冷媒量が
流れ得るキヤピラリチユーブの長さ選定を行なう
とともに、前記圧縮機へのインジエクシヨン回路
33,34に接続されているものである。36
a,36bはガス側電磁弁16a,16bと、三
方弁15a,15bの間より取出した配管37
a,37bに設けられた均圧用キヤピラリチユー
ブで、この均圧用キヤピラリチユーブ36a,3
6bは吸入管20に接続され、室内ユニツト10
a,10bのいずれか一方が停止にした時、停止
した室内ユニツトの室内熱交換器内の凝縮冷媒を
吸入管側の圧力と均一にして、高圧の液冷媒を
除々に回収する為に設けられたものである。
The present invention solves the above-mentioned conventional drawbacks, and an embodiment thereof will be described below based on FIG. 2.
In Fig. 2, 1 is an outdoor unit, 2 is a rotary compressor, 3 is a four-way valve for switching the flow of refrigerant during cooling and heating, and 4 is a condenser during cooling and an evaporator during heating. 5 is a first capillary tube for cooling, 6 is an outdoor heat exchanger that acts as a
a and 6b are check valves, 7a and 7b are liquid-side solenoid valves that are opened and closed by operation of the indoor unit, 8a and 8b are three-way valves provided in the outdoor unit 1, and 9a and 9b are provided on the indoor unit 10a side. Two-way valve, 10
b is another indoor unit. 11a and 11b are second capillary tubes 12a and 11b for cooling provided in the indoor units 10a and 10b, respectively;
12b is a check valve provided to bypass the second capillary tubes 11a and 11b so that the condensed refrigerant flows to the outdoor unit 1 side during heating and not during cooling; 13a and 13b are condensers during heating; indoor heat exchanger acting as an evaporator, 14a,1
4b is a two-way valve, 15a and 15b are outdoor unit 1
The three-way valves 16a and 16b provided on the side plates of the gas side solenoid valves 17a and 16b are opened for heating and closed for cooling, respectively, by the operation of the indoor units 10a and 10b.
17b is a check valve provided so that gas refrigerant flows during cooling, does not flow during heating, and bypasses gas-side solenoid valves 16a and 16b during cooling; 18 is an accumulator that vaporizes liquid refrigerant; 19 20 is a suction pipe, 21 is a high-pressure pressure regulating valve, and when the refrigerant discharged from the compressor 2 becomes abnormally high during operation, the pressure in the pipe 22 increases, A part of the refrigerant is liquefied in a heat exchange part 23 for a high-pressure pressure regulating valve provided in a part of the outdoor heat exchanger 4, and the liquefied refrigerant is passed through a high-pressure pressure regulating valve whose opening degree is adjusted according to the pressure. By flowing through the refrigerant 21 and bypassing the suction pipe 20 and returning a portion of the liquid refrigerant, the amount of refrigerant passing through the high-pressure pressure regulating valve 21 is increased and the load on the compressor is reduced. 24 is a heating solenoid valve that opens during heating and closes during cooling; 25a, 2
5b is a heating pipe through which refrigerant flows only during heating; 26
a, 26b are check valves through which refrigerant flows only during heating; 2
7a and 27b are first capillary tubes for heating, and 28 is a gas-liquid mixed refrigerant always stored at an intermediate pressure (after passing through the first capillary tubes 27a and 27b) only during heating. A separator, 29 is a pipe through which gas refrigerant flows from above the sererator 28 to an injection circuit 33 to the compressor 2 during heating, 30 is a check valve, and 31 is a second pipe for heating.
In the capillary tube, the pressure changes from intermediate pressure to low pressure in this second capillary tube 31, and the outdoor heat exchanger 4
It is evaporated and vaporized, and returns to the compressor 2 via the four-way valve 3.
32 is a capillary tube for heating injection exit through which the liquid refrigerant stored below the separator 28 passes; 33 and 34 are injection exit circuits to the compressor 2 connected to the cylinder of the compressor 2. 35 is a cooling capillary tube for cooling injection; during cooling, part of the liquid refrigerant condensed in the outdoor heat exchanger 4 is transferred into the cylinder of the compressor as refrigerant enough to cool the gas being compressed. The length of the capillary tube through which the quantity can flow is determined, and the capillary tube is connected to the injection circuits 33 and 34 to the compressor. 36
a, 36b are pipes 37 taken out from between the gas side solenoid valves 16a, 16b and the three-way valves 15a, 15b.
The pressure equalizing capillary tubes 36a and 37b are provided in the pressure equalizing capillary tubes 36a and 37b.
6b is connected to the suction pipe 20 and connected to the indoor unit 10.
This is provided to equalize the pressure of the condensed refrigerant in the indoor heat exchanger of the stopped indoor unit with the pressure on the suction pipe side and gradually recover the high-pressure liquid refrigerant when either one of a and 10b is stopped. It is something that

上記構成において、冷房時は通常の冷凍サイク
ル運転が行なわれる。即ち、圧縮機2で圧縮され
たガス冷媒は、四方弁3、室外熱交換器4、ここ
で凝縮され、冷房用の第1キヤピラリチユーブ
5、(一部の液冷媒が冷媒用のインジエクシヨン
キヤピラリチユーブ35を通る)、逆止弁6a,
6b、液側電磁弁7a,7b、三方弁8a,8b
(この時暖房用電磁弁24は閉であるから逆止弁
26a,26bには流れない)、室内ユニツト1
0a,10bの第2キヤピラリチユーブ11a,
11b、室内熱交換器13a,13b、三方弁1
5a,15b、逆止弁17a,17b、四方弁
3、アキユームレータ18、の冷媒回路となり、
高圧圧力が異常に高くなると、高圧圧力調整弁2
1が開いて、熱交換部23で凝縮した液冷媒を吸
入管20に戻し、圧縮機の負担を軽減する。次
に、暖房時は圧縮機2で圧縮されたガス冷媒は四
方弁3、ガス側電磁弁16a,16b、三方弁1
5a,15b、室内ユニツト10a,10bの室
内熱交換器13a,13bで凝縮され、逆止弁1
2a,12b、三方弁8a,8b、逆止弁6a,
6bによつて止められるから、逆止弁26a,2
6bを通り、暖房用の第1キヤピラリチユーブ2
7A,27b、暖房用電磁弁24、セパレータ2
8に至る。このセパレータ28において、主回路
となるのは液冷媒が逆止弁30、暖房用の第2キ
ヤピラリチユーブ31、室外熱交換器4、四方弁
3の暖房回路となるが、液冷媒の一部は圧縮機2
へのインジエクシヨン回路34、暖房用のインジ
エクシヨン用キヤピラリチユーブ32を流れて減
圧されると共に、ガス冷媒の一部が配管29を流
れて、液冷媒と、ガス冷媒の混合された気液混合
冷媒が圧縮機2へのインジエクシヨン回路33を
流れ、圧縮機2のシリンダ内に噴射する。この時
の気液混合冷媒は配管29からのガス冷媒がほと
んどであつて、暖房用インジエクシヨンのキヤピ
ラリチユーブ32からの液冷媒は僅かである。
又、室内温度、域いは室外温度が上昇して圧縮す
る高温高圧冷媒が、異常に高くなり過負荷条件と
なつた時、配管22の圧力も上昇し、高圧圧力調
整弁21が開らき始め、熱交換部23で凝縮され
た液冷媒は高圧圧力調整弁21を流れて吸入管2
0に流れてアキユームレータ18に戻り、圧縮機
2の負担を軽減する。次に、同じく暖房時におい
て、室内ユニツト10a,10bのいずれかを停
止した時、室内熱交換器10a,10bのいずれ
か停止した室内熱交換器内に液冷媒が溜り込むこ
とのないように、ガス側電磁弁16a,16bの
停止した方が閉となり、配管37a,37b、更
には、均圧用キヤピラリチユーブ36a,36b
の停止した方を徐々に流れて吸入管20に流れ、
停止した高圧回路を吸入管20側圧力に落しなが
ら冷媒を回収する。
In the above configuration, normal refrigeration cycle operation is performed during cooling. That is, the gas refrigerant compressed by the compressor 2 is transferred to a four-way valve 3, an outdoor heat exchanger 4, where it is condensed, and a first capillary tube 5 for cooling (some liquid refrigerant is transferred to an injector for refrigerant). ), check valve 6a,
6b, liquid side solenoid valves 7a, 7b, three-way valves 8a, 8b
(At this time, since the heating solenoid valve 24 is closed, the flow does not flow to the check valves 26a and 26b.)
0a, 10b second capillary tube 11a,
11b, indoor heat exchanger 13a, 13b, three-way valve 1
5a, 15b, check valves 17a, 17b, four-way valve 3, and accumulator 18.
If the high pressure becomes abnormally high, the high pressure pressure regulating valve 2
1 opens to return the liquid refrigerant condensed in the heat exchange section 23 to the suction pipe 20, reducing the load on the compressor. Next, during heating, the gas refrigerant compressed by the compressor 2 is transferred to the four-way valve 3, the gas-side solenoid valves 16a and 16b, and the three-way valve 1.
5a, 15b, and the indoor heat exchangers 13a, 13b of the indoor units 10a, 10b.
2a, 12b, three-way valve 8a, 8b, check valve 6a,
6b, the check valves 26a, 2
6b, the first capillary tube 2 for heating
7A, 27b, heating solenoid valve 24, separator 2
It reaches 8. In this separator 28, the liquid refrigerant serves as the main circuit of the check valve 30, the second capillary tube 31 for heating, the outdoor heat exchanger 4, and the heating circuit of the four-way valve 3; is compressor 2
At the same time, a part of the gas refrigerant flows through the piping 29 and becomes a gas-liquid mixed refrigerant, which is a mixture of liquid refrigerant and gas refrigerant. It flows through the injection exit circuit 33 to the compressor 2 and is injected into the cylinder of the compressor 2. At this time, most of the gas-liquid mixed refrigerant is gas refrigerant from the pipe 29, and only a small amount of liquid refrigerant is from the capillary tube 32 of the heating injection extension.
In addition, when the indoor temperature, range, or outdoor temperature rises and the compressed high-temperature, high-pressure refrigerant becomes abnormally high, creating an overload condition, the pressure in the pipe 22 also rises, and the high-pressure pressure regulating valve 21 begins to open. The liquid refrigerant condensed in the heat exchange section 23 flows through the high-pressure pressure regulating valve 21 and enters the suction pipe 2.
0 and returns to the accumulator 18, reducing the load on the compressor 2. Next, during heating, when either of the indoor units 10a, 10b is stopped, liquid refrigerant is prevented from accumulating in the indoor heat exchanger 10a, 10b that is stopped. The side where the gas side solenoid valves 16a and 16b are stopped is closed, and the pipes 37a and 37b, as well as the pressure equalization capillary tubes 36a and 36b, are closed.
It gradually flows through the stopped side and flows into the suction pipe 20,
The refrigerant is recovered while reducing the pressure of the stopped high pressure circuit to the suction pipe 20 side.

又、例えば、室内ユニツト10aを運転中、短
時間にして、室内ユニツト10bを同時運転し、
又室内ユニツト10aを停止にして室内ユニツト
10bのみの運転になつた時、ガス側電磁弁16
aが閉となり、この系統の冷媒は配管37a、均
圧用キヤピラリチユーブ36aを流れて除々に吸
入管20に回収されると共に、暖房用の第1キヤ
ピラリチユーブ27aと、暖房用電磁弁24及
び、セパレータ28、逆止弁30を介して暖房用
の第2キヤピラリチユーブ31の間は中間圧にな
つており、その中間圧により停止した配管中の冷
媒が回収されて、運転中の室内ユニツト10bに
回わるので、圧縮機2の冷媒循環量が、一時的に
不足して高温になり、圧縮機に負担をかけると云
うことはない。
Also, for example, while the indoor unit 10a is operating, the indoor unit 10b is simultaneously operated for a short time,
Also, when the indoor unit 10a is stopped and only the indoor unit 10b is operated, the gas side solenoid valve 16
a is closed, the refrigerant in this system flows through the piping 37a and the pressure equalization capillary tube 36a, and is gradually recovered to the suction pipe 20, and also flows through the first heating capillary tube 27a, the heating solenoid valve 24, and , the separator 28, and the second capillary tube 31 for heating through the check valve 30 are at an intermediate pressure, and this intermediate pressure allows the refrigerant in the stopped pipe to be recovered and returned to the indoor unit in operation. 10b, the amount of refrigerant circulated through the compressor 2 will not temporarily become insufficient and the temperature will rise, which would place a burden on the compressor.

このように本発明は、冷房運転時は逆止弁30
と、暖房用電磁弁24を常時閉にすることによ
り、セパレータ28は冷房主回路から切離され、
セパレータ18に冷媒が溜り込むことはなく、一
方暖房運転時は、圧縮機2へのインジエクシヨン
回路33に戻されるインジエクシヨン用の冷媒
が、セパレータ28の上方から出るガス冷媒が主
流を占め、配管29を流れるガス冷媒と、セパレ
ータ28の下方から出る液冷媒が圧縮機2へのイ
ンジエクシヨン回路34、暖房用のインジエクシ
ヨン用キヤピラリチユーブ32を流れる液冷媒と
が合流し、主にガス冷媒の多い気液混合冷媒とな
つて圧縮機2のシリンダ内に噴射されるから、従
来のように主に液冷媒の噴射に比較して吐出温度
を高め、暖房能力を向上することが出来る。又、
過負荷時においても従来は、主に気液混合の冷媒
を戻すのに比較して本発明は、、熱交換部23に
おいて、ほとんど液化した液冷媒を、高圧圧力調
整弁21に流通させるから、冷媒体積を小として
多量の冷媒流通量を得ることが出来、圧縮機の負
担を軽減することが出来る。更には暖房時中間圧
力よりインジエクシヨンを通して、停止中の室内
熱交換器内の液冷媒を回収する従来のものに比較
して、本発明は、暖房時、ガス側電磁弁と、三方
弁の間である高圧側より均圧するように高低差を
付けることによつて、早く回収出来、室内ユニツ
トに液冷媒が溜り込む率は少なくなるなどの効果
を有するものである。
In this way, the present invention allows the check valve 30 to
By keeping the heating solenoid valve 24 normally closed, the separator 28 is disconnected from the main cooling circuit.
Refrigerant does not accumulate in the separator 18. On the other hand, during heating operation, the gas refrigerant coming out from above the separator 28 occupies the main stream of the injection refrigerant returned to the injection extraction circuit 33 to the compressor 2, and the gas refrigerant flows through the piping 29. The flowing gas refrigerant and the liquid refrigerant flowing from the lower part of the separator 28 to the compressor 2 through the injection exit circuit 34 and the heating injection exit capillary tube 32 are merged, resulting in a gas-liquid mixture containing mainly gas refrigerant. Since the refrigerant is injected into the cylinder of the compressor 2, the discharge temperature can be increased and the heating capacity can be improved compared to the conventional injection of mainly liquid refrigerant. or,
Compared to the conventional method, which mainly returns a gas-liquid mixture refrigerant even during overload, the present invention allows almost liquefied liquid refrigerant to flow through the high-pressure pressure regulating valve 21 in the heat exchange section 23. A large amount of refrigerant can be obtained by reducing the volume of refrigerant, and the load on the compressor can be reduced. Furthermore, compared to the conventional method in which the liquid refrigerant in the stopped indoor heat exchanger is recovered from an intermediate pressure during heating through an injection exit, the present invention enables the recovery of liquid refrigerant between the gas side solenoid valve and the three-way valve during heating. By creating a height difference so that the pressure is equalized from a certain high pressure side, it can be recovered quickly and has the effect of reducing the rate at which liquid refrigerant accumulates in the indoor unit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式冷暖房機の冷媒
制御回路図、第2図は本発明の一実施例における
ヒートポンプ式冷暖房機の冷媒制御回路図であ
る。 2……圧縮機、3……四方弁、4……室外熱交
換器、7a,7b……液側電磁弁、15a,15
b……三方弁、16a,16b……ガス側電磁
弁、20……吸入管、21……高圧圧力調整弁、
24……暖房用電磁弁、26a,26b……逆止
弁、27a,27b……暖房用の第1キヤピラリ
チユーブ、28……セパレータ、29……配管、
32……暖房用のインジエクシヨン用キヤピラリ
チユーブ、36a,36b……均圧用キヤピラリ
チユーブ。
FIG. 1 is a refrigerant control circuit diagram of a conventional heat pump type air conditioner/heater, and FIG. 2 is a refrigerant control circuit diagram of a heat pump type air conditioner/heater according to an embodiment of the present invention. 2...Compressor, 3...Four-way valve, 4...Outdoor heat exchanger, 7a, 7b...Liquid side solenoid valve, 15a, 15
b... Three-way valve, 16a, 16b... Gas side solenoid valve, 20... Suction pipe, 21... High pressure pressure regulating valve,
24... Solenoid valve for heating, 26a, 26b... Check valve, 27a, 27b... First capillary tube for heating, 28... Separator, 29... Piping,
32... Capillary tube for heating injection extension, 36a, 36b... Capillary tube for pressure equalization.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機2、四方弁3、室外熱交換器4、減圧
機構、室内熱交換器13a,13b等を備えたヒ
ートポンプ式冷暖房機において、前記圧縮機2の
吐出管19より室外熱交換器4の一部に配設した
熱交換部23を介して高圧圧力調整弁21に接続
し、この高圧圧力調整弁21より圧縮機2の吸入
管20側に接続した過負荷防止回路と、室外ユニ
ツト1の三方弁8a,8bと液側電磁弁7a,7
bの間より導出し逆止弁26a,26b、暖房用
の第1キヤピラリチユーブ27a,27b、およ
び暖房時に開、冷房時に閉となる暖房用電磁弁2
4を介してセパレーター28に至る回路と、前記
セパレーター28より暖房用のインジエクシヨン
用キヤピラリチユーブ32を通し、前記セパレー
ター28よりガス冷媒を圧縮機へもどすインジエ
クシヨン回路33に液冷媒を合流させるインジエ
クシヨン回路34と、ガス側電磁弁16a,16
bと三方弁15a,15bの間より導出し均圧用
キヤピラリチユーブ36a,36bを介して圧縮
機2の吸入管20に接続してなるヒートポンプ式
冷暖房機の冷媒制御装置。
1 In a heat pump type air conditioner equipped with a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, a pressure reduction mechanism, indoor heat exchangers 13a, 13b, etc., the outdoor heat exchanger 4 is The overload prevention circuit is connected to the high pressure regulating valve 21 through the heat exchange section 23 disposed in a part of the circuit, and is connected to the suction pipe 20 side of the compressor 2 from the high pressure regulating valve 21. Three-way valves 8a, 8b and liquid side solenoid valves 7a, 7
Check valves 26a, 26b led out from between b, first capillary tubes 27a, 27b for heating, and solenoid valve 2 for heating that opens during heating and closes during cooling.
4 to the separator 28, and an injection extraction circuit 34 in which the liquid refrigerant flows from the separator 28 through an injection extraction capillary tube 32 for heating, and joins the liquid refrigerant into an injection extraction circuit 33 which returns the gas refrigerant from the separator 28 to the compressor. and gas side solenoid valves 16a, 16
A refrigerant control device for a heat pump type air conditioner/heater, which is led out from between the three-way valves 15a and 15b and connected to the suction pipe 20 of the compressor 2 via pressure equalization capillary tubes 36a and 36b.
JP7202084A 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner Granted JPS59210278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7202084A JPS59210278A (en) 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7202084A JPS59210278A (en) 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS59210278A JPS59210278A (en) 1984-11-28
JPH0132431B2 true JPH0132431B2 (en) 1989-06-30

Family

ID=13477307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7202084A Granted JPS59210278A (en) 1984-04-11 1984-04-11 Controller for refrigerant of heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS59210278A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213817B2 (en) * 2009-09-01 2013-06-19 三菱電機株式会社 Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022364U (en) * 1973-06-19 1975-03-13
JPS5415549A (en) * 1977-07-06 1979-02-05 Toshiba Corp Heat pump type air harmonizer
JPS5454438A (en) * 1977-10-08 1979-04-28 Toshiba Corp Heat pump type air conditioner
JPS5568561A (en) * 1978-11-17 1980-05-23 Tokyo Shibaura Electric Co Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022364U (en) * 1973-06-19 1975-03-13
JPS5415549A (en) * 1977-07-06 1979-02-05 Toshiba Corp Heat pump type air harmonizer
JPS5454438A (en) * 1977-10-08 1979-04-28 Toshiba Corp Heat pump type air conditioner
JPS5568561A (en) * 1978-11-17 1980-05-23 Tokyo Shibaura Electric Co Air conditioner

Also Published As

Publication number Publication date
JPS59210278A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
CN211876449U (en) Circulating system capable of continuously heating and air conditioner
EP1788325B1 (en) Freezing apparatus
EP1686323B1 (en) Heat exchanger of air conditioner
CN107763774A (en) Air conditioner cooling cycle system and air conditioner
US11543162B2 (en) Circulation system of air conditioner, air conditioner, and air conditioner control method
CN107238226B (en) Multi-split system and control method thereof
JP4407012B2 (en) Refrigeration equipment
JPH05332630A (en) Air conditioner
JP3791090B2 (en) Heat pump equipment
JP3829340B2 (en) Air conditioner
JP2002061992A (en) Air conditioner
JP3175706B2 (en) Binary refrigeration equipment
CN213272814U (en) Multi-connected air conditioning system
JPH0132431B2 (en)
JPH10176869A (en) Refrigeration cycle device
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
KR100770594B1 (en) Air conditioner for Heating and Cooling in one
JP2765970B2 (en) Air conditioner
JPH0320574A (en) Air-conditioning apparatus
JPH05133635A (en) Cold accumulation type air conditioning apparatus
CN218915208U (en) Energy storage air conditioning system
JPS6136659A (en) Heat pump type air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH0571825A (en) Multiroom type air-conditioner
JPH0350466A (en) Air conditioner