JPH0233100Y2 - - Google Patents

Info

Publication number
JPH0233100Y2
JPH0233100Y2 JP6798984U JP6798984U JPH0233100Y2 JP H0233100 Y2 JPH0233100 Y2 JP H0233100Y2 JP 6798984 U JP6798984 U JP 6798984U JP 6798984 U JP6798984 U JP 6798984U JP H0233100 Y2 JPH0233100 Y2 JP H0233100Y2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid receiver
bypass pipe
pressure
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6798984U
Other languages
Japanese (ja)
Other versions
JPS60180964U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6798984U priority Critical patent/JPS60180964U/en
Publication of JPS60180964U publication Critical patent/JPS60180964U/en
Application granted granted Critical
Publication of JPH0233100Y2 publication Critical patent/JPH0233100Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、ヒートポンプ式空気調和機における
冷媒制御回路に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a refrigerant control circuit in a heat pump type air conditioner.

従来例の構成とその問題点 従来、多室分離形空気調和機は第1図に示すよ
うに構成され、冷房時は実線矢示の回路で、ま
た、暖房時は点線矢示の回路で冷媒が循環する。
そして暖房運転時においては過負荷運転に対応す
るために、吐出管1の分岐点2より分岐されたバ
イパス管3を設け、このバイパス管3に電磁弁4
を設けるとともに、バイパス管3より延長した部
分を、室外熱交換器5の下方に組み合わせて熱交
換部6を構成し、この熱交換部6より逆止弁7を
介して受液器8に接続している。
Conventional configuration and its problems Traditionally, multi-room separate air conditioners have been configured as shown in Figure 1. During cooling, the circuit indicated by the solid line arrow is used, and during heating, the refrigerant is supplied to the circuit indicated by the dotted line arrow. is circulated.
In order to cope with overload operation during heating operation, a bypass pipe 3 is provided branching from the branch point 2 of the discharge pipe 1, and a solenoid valve 4 is provided in this bypass pipe 3.
At the same time, a portion extending from the bypass pipe 3 is combined below the outdoor heat exchanger 5 to form a heat exchange section 6, and this heat exchange section 6 is connected to a liquid receiver 8 via a check valve 7. are doing.

仮に暖房時、過負荷運転となつたときに前記電
磁弁4が開となり、吐出管1の冷媒の一部がバイ
パス管3を通り、熱交換部6で凝縮され、凝縮冷
媒が逆止弁7を通つて受液器8に流れ、室内機
9,10をバイパスすることで、高圧圧力を降下
させる。そして、キヤピラリチユーブ11,12
を流れて来る冷媒と受液器8で合流し、電動膨張
弁13、室外熱交換器5と循環するのである。
If an overload operation occurs during heating, the solenoid valve 4 is opened, and a part of the refrigerant in the discharge pipe 1 passes through the bypass pipe 3 and is condensed in the heat exchange section 6, and the condensed refrigerant passes through the check valve 7. The liquid flows through the liquid receiver 8 and bypasses the indoor units 9 and 10, thereby lowering the high pressure. And capillary tubes 11 and 12
It joins the refrigerant flowing through the liquid receiver 8 and circulates through the electric expansion valve 13 and the outdoor heat exchanger 5.

こうした従来の回路において、主回路側である
キヤピラリチユーブ11,12を流れて来た冷媒
と、電磁弁4が高負荷によつて開となつたとき
に、熱交換部6を流れて来た冷媒とが、受液器8
内において合流し、冷媒流量が増大し、この合流
状態が両方とも高圧冷媒であるために、主回路側
(キヤピラリチユーブ11,12側)の冷媒が熱
交換部6より流れて来る高圧冷媒によつて阻止さ
れるようになり、電動膨張弁13および室外熱交
換器5の方向へ流れ難くなり、主回路側の冷媒流
量に支障を来し、暖房性能が十分発揮されないま
ま運転されるなどの欠点を有していた。
In such a conventional circuit, the refrigerant that has flowed through the capillary tubes 11 and 12 on the main circuit side and the refrigerant that has flowed through the heat exchange section 6 when the solenoid valve 4 is opened due to high load. The refrigerant is in the liquid receiver 8.
The flow rate of the refrigerant increases, and since both are high-pressure refrigerants, the refrigerant on the main circuit side (capillary tubes 11 and 12 side) is mixed with the high-pressure refrigerant flowing from the heat exchange section 6. As a result, the refrigerant becomes blocked and becomes difficult to flow in the direction of the electric expansion valve 13 and outdoor heat exchanger 5, which impedes the flow rate of refrigerant in the main circuit and causes operations such as operation without sufficient heating performance. It had drawbacks.

考案の目的 本考案は上記従来の欠点を解消するもので、過
負荷時(暖房)にバイパス管の電磁弁が開いて
も、主回路側はあくまでも流量を確保し、安定し
たヒートポンプサイクルにすることを目的とす
る。
Purpose of the invention This invention solves the above-mentioned drawbacks of the conventional technology. Even if the solenoid valve of the bypass pipe opens during overload (heating), the main circuit still maintains the flow rate, resulting in a stable heat pump cycle. With the goal.

考案の構成 前記目的を達成するため、本考案は吐出管より
分岐したバイパス管に、過負荷時に開となる電磁
弁を設けるとともに、このバイパス管より、室外
熱交換器の一部を通して設けられた熱交換部と、
受液器側へ通となる逆止弁と、低圧とする減圧機
構と、受液器を順次接続し、受液器に前記バイパ
ス管よりバイパスする冷媒圧力を減圧して送るよ
うにしたものである。
Structure of the invention In order to achieve the above object, the invention provides a solenoid valve that opens in the event of an overload in a bypass pipe branched from a discharge pipe, and a solenoid valve that is installed through a part of an outdoor heat exchanger from this bypass pipe. a heat exchange section;
A check valve that passes to the liquid receiver side, a pressure reducing mechanism that lowers the pressure, and the liquid receiver are connected in sequence, and the refrigerant pressure to be bypassed is reduced and sent to the liquid receiver from the bypass pipe. be.

実施例の説明 本考案による一実施例を第2図にもとづいて説
明する。図において20はロータリー形の圧縮機
であり、その吐出器51より四方弁21、室外熱
交換器22、電動膨張弁23、受液器24、主流
管30、1号室内機用のキヤピラリチユーブ2
9、1号液側電磁弁25、1号室内機26が順次
接続されている。また前記主流管30より分岐し
て2号室内機用キヤピラリチユーブ31、2号液
側電磁弁27、2号室内機28が順次接続されて
いる。前記1号室内機26および2号室内機28
はそれぞれガス側電磁弁32およびガス側電磁弁
33、四方弁21、吸入管53、アキユムレータ
34を介し圧縮機20に接続されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described based on FIG. 2. In the figure, 20 is a rotary compressor, and its discharger 51 connects a four-way valve 21, an outdoor heat exchanger 22, an electric expansion valve 23, a liquid receiver 24, a main pipe 30, and a capillary tube for the No. 1 indoor unit. 2
9, the No. 1 liquid side solenoid valve 25, and the No. 1 indoor unit 26 are connected in this order. Further, branching from the main flow pipe 30, a capillary tube 31 for a No. 2 indoor unit, a No. 2 liquid side solenoid valve 27, and a No. 2 indoor unit 28 are connected in sequence. Said No. 1 indoor unit 26 and No. 2 indoor unit 28
are connected to the compressor 20 via a gas-side solenoid valve 32, a gas-side solenoid valve 33, a four-way valve 21, a suction pipe 53, and an accumulator 34, respectively.

前記室外熱交換器22の冷房時の出口と、圧縮
機20のインジエクシヨンポート36には冷房時
のインジエクシヨン回路35が接続され、この回
路には、逆止弁37とキヤピラリチユーブ38と
を設けている。また1号室内機26と圧縮機20
のインジエクシヨンポート36には暖房時のイン
ジエクシヨン回路39が接続され、この回路に
は、逆止弁40,41およびキヤピラリチユーブ
42,43を設けている。また、1号室内機26
および2号室内機28と室外熱交換器22間には
暖房時、停止した室内機側の高圧冷媒を回収する
ための均圧管44,45を設けてあり、この回路
には、逆止弁46,47およびキヤピラリチユー
ブ48,49を設けている。
An injection exit circuit 35 for cooling is connected to the outlet of the outdoor heat exchanger 22 during cooling and an injection exit port 36 of the compressor 20, and a check valve 37 and a capillary tube 38 are connected to this circuit. It is set up. In addition, the No. 1 indoor unit 26 and the compressor 20
An injection exit circuit 39 for heating is connected to the injection exit port 36 of the heating system, and this circuit is provided with check valves 40, 41 and capillary tubes 42, 43. In addition, No. 1 indoor unit 26
Between the No. 2 indoor unit 28 and the outdoor heat exchanger 22, pressure equalizing pipes 44 and 45 are provided to recover high-pressure refrigerant from the stopped indoor unit during heating, and this circuit includes a check valve 46. , 47 and capillary tubes 48, 49.

前記圧縮機20の吐出管51からはバイパス管
54を分岐してあり、吐出圧力が過負荷運転とな
つたときに開となる電磁弁55を介し、室外熱交
換器22の下方(一部)を通され、凝縮冷媒する
ようにした熱交換部56を構成している。そして
この熱交換部56で凝縮した凝縮冷媒を通す逆止
弁57、減圧機構のキヤピラリチユーブ58を介
して、受液器24に接続され、熱交換部56で凝
縮された高圧の凝縮冷媒を減圧して、受液器24
に送るようにしている。なお、図中の50は吐出
管51の冷媒吐出圧力を検出する高圧圧力センサ
ー、52は吸入管52の冷媒吸入圧力を検出する
低圧圧力センサーである。
A bypass pipe 54 is branched from the discharge pipe 51 of the compressor 20, and is connected to a part of the outdoor heat exchanger 22 via a solenoid valve 55 that opens when the discharge pressure becomes overloaded. A heat exchange section 56 is constructed in which the refrigerant is passed through and condensed. The high-pressure condensed refrigerant condensed in the heat exchange part 56 is then connected to the receiver 24 via a check valve 57 that passes the condensed refrigerant condensed in the heat exchange part 56 and a capillary tube 58 of the pressure reduction mechanism. After reducing the pressure, the liquid receiver 24
I am trying to send it to. In addition, 50 in the figure is a high pressure sensor that detects the refrigerant discharge pressure of the discharge pipe 51, and 52 is a low pressure sensor that detects the refrigerant suction pressure of the suction pipe 52.

そして実線矢示は冷房時の冷媒回路を示し、点
線矢示は暖房時の冷媒回路を示す。
A solid line arrow indicates a refrigerant circuit during cooling, and a dotted line arrow indicates a refrigerant circuit during heating.

上記構成において、通常の運転で、冷房時は圧
縮機20、四方弁21、室外熱交換器22、電動
膨張弁23、受液器24、主流管30、キヤピラ
リチユーブ29,31、液側電磁弁25,27、
各室内機26,28、ガス側電磁弁32,33、
四方弁21、アキユウムレータ34と循環され
る。
In the above configuration, during normal operation, the compressor 20, four-way valve 21, outdoor heat exchanger 22, electric expansion valve 23, liquid receiver 24, main pipe 30, capillary tubes 29, 31, liquid side electromagnetic valves 25, 27,
Each indoor unit 26, 28, gas side solenoid valve 32, 33,
It is circulated through the four-way valve 21 and the storage unit 34.

また、通常の運転で、暖房時は圧縮機20、四
方弁21、ガス側電磁弁32,33、各室内機2
6,28、液側電磁弁25,27、キヤピラリチ
ユーブ29,31、主流管30、受液器24、電
動膨張弁23、室外熱交換器22、四方弁21、
アキユウムレーター34と循環される。
In addition, during normal operation, during heating, the compressor 20, four-way valve 21, gas side solenoid valves 32, 33, each indoor unit 2
6, 28, liquid side solenoid valves 25, 27, capillary tubes 29, 31, main flow pipe 30, liquid receiver 24, electric expansion valve 23, outdoor heat exchanger 22, four-way valve 21,
It is circulated with the storage unit 34.

こうして、前者の冷房時の場合は、外気温度が
高いから圧縮機20の巻線は高温度になるが、室
外熱交換器22での熱交換が高いから、吐出管5
1における冷媒圧力は、過負荷運転となることは
少ない。しかし、後者の暖房時の場合は、各室内
機26,28での熱交換が少なくなり、吸入管5
3の圧力が高くなり、したがつて、吐出管51の
圧力も高くなることが多い。吐出管51の圧力が
高くなり、所定圧力以上になると電磁弁55が開
となり、一部の冷媒は吐出管51よりバイパス管
54に流れ、熱交換部56で凝縮され、凝縮され
た凝縮冷媒が逆止弁57を通り、減圧機構である
キヤピラリチユーブ58を通りここで減圧され
る。減圧された冷媒は受液器24に流れる。この
受液器24において、キヤピラリチユーブ29,
31より主流管30を流れて来ている主流冷媒と
合流するが、主流管30側の冷媒は高圧冷媒であ
るから、この主流冷媒が主として電動膨張弁23
側に流れ、バイパス管54のキヤピラリチユーブ
58を流れて来る低圧冷媒によつて、主流冷媒の
流れを阻止する状態になることは少なくなるので
ある。
Thus, in the former case of cooling, the temperature of the windings of the compressor 20 is high because the outside air temperature is high, but the heat exchange in the outdoor heat exchanger 22 is high, so the discharge pipe 5
The refrigerant pressure at 1 is unlikely to result in overload operation. However, in the latter case during heating, the heat exchange in each indoor unit 26, 28 is reduced, and the suction pipe 5
3 becomes high, and therefore the pressure of the discharge pipe 51 often becomes high as well. When the pressure in the discharge pipe 51 increases and reaches a predetermined pressure or higher, the solenoid valve 55 opens, and a part of the refrigerant flows from the discharge pipe 51 to the bypass pipe 54 and is condensed in the heat exchange section 56. It passes through a check valve 57 and a capillary tube 58, which is a pressure reducing mechanism, where the pressure is reduced. The depressurized refrigerant flows to the receiver 24 . In this liquid receiver 24, the capillary tube 29,
31 and joins with the mainstream refrigerant flowing through the main flow pipe 30, but since the refrigerant on the main flow pipe 30 side is a high-pressure refrigerant, this main flow refrigerant mainly flows through the electric expansion valve 23.
Due to the low-pressure refrigerant flowing to the side and flowing through the capillary tube 58 of the bypass pipe 54, it is less likely that the flow of the mainstream refrigerant will be blocked.

したがつて、受液器24は液冷媒が所定量以上
に溜り込むことは少なく、安定したヒートポンプ
サイクルで暖房が続けられる。
Therefore, the liquid refrigerant rarely accumulates in the liquid receiver 24 in excess of a predetermined amount, and heating can be continued in a stable heat pump cycle.

なお、キヤピラリチユーブ29,31は、暖房
時の減圧量を小さくしたキヤピラリチユーブとし
ている。
The capillary tubes 29 and 31 are designed to reduce the amount of pressure reduction during heating.

考案の効果 以上の実施例の説明より明らかなように、本考
案は圧縮機の吐出管より分岐したバイパス管に、
過負荷運転時に開となる電磁弁と、室外熱交換器
の一部を通して設けられた熱交換部と、この熱交
換部と受液器との間に位置し、かつ受液器側へ通
となる逆止弁と、キヤピラリチユーブ等の減圧機
構とを設け、前記受液器に前記バイパス管よりバ
イパスする冷媒を減圧して送るようにしたから、
主流管を流れる冷媒を阻止し、流れ難くするよう
なことはなく、したがつて、受液器に所定量以上
の冷媒が溜り込むこともない。このことにより特
に暖房時に安定したヒートポンプサイクルの運転
が得られ、暖房性能が向上するなどの効果を発揮
するものである。
Effects of the invention As is clear from the above description of the embodiments, the present invention has a bypass pipe branched from the discharge pipe of the compressor.
A solenoid valve that opens during overload operation, a heat exchange section provided through a part of the outdoor heat exchanger, and a heat exchange section located between this heat exchange section and the liquid receiver and connected to the liquid receiver side. A check valve and a pressure reducing mechanism such as a capillary tube are provided, and the refrigerant to be bypassed is sent to the liquid receiver from the bypass pipe under reduced pressure.
The refrigerant flowing through the main pipe is not blocked or made difficult to flow, and therefore, the refrigerant in excess of a predetermined amount does not accumulate in the liquid receiver. This allows stable operation of the heat pump cycle, especially during heating, and provides effects such as improved heating performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の説明に付するヒートポンプ式空
気調和機の冷媒回路図、第2図は本考案による一
実施例のヒートポンプ式空気調和機の冷媒回路図
である。 20……圧縮機、21……四方弁、22……室
外熱交換器、23……電動膨張弁、24……受液
器、25,27……液側電磁弁、26,28……
室内機、29,31,42,43……キヤピラリ
チユーブ、40,41,57……逆止弁、51…
…吐出管、54……バイパス管、56……熱交換
部。
FIG. 1 is a refrigerant circuit diagram of a heat pump type air conditioner to be explained in the related art, and FIG. 2 is a refrigerant circuit diagram of a heat pump type air conditioner according to an embodiment of the present invention. 20... Compressor, 21... Four-way valve, 22... Outdoor heat exchanger, 23... Electric expansion valve, 24... Liquid receiver, 25, 27... Liquid side solenoid valve, 26, 28...
Indoor unit, 29, 31, 42, 43... Capillary tube, 40, 41, 57... Check valve, 51...
...Discharge pipe, 54...Bypass pipe, 56...Heat exchange section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機と、四方弁と、室外熱交換器と、電動膨
張弁と、受液器と、室内機対応のキヤピラリチユ
ーブ及び液側電磁弁を連設したヒートポンプ式冷
凍サイクルにおいて、前記圧縮機の吐出管より分
岐し受液器に接続されたバイパス管を設け、前記
バイパス管に、過負荷運転時に開となる電磁弁
と、バイパス管の一部が前記室外熱交換器の一部
を通して構成された熱交換部と、この熱交換部と
前記受液器との間に位置し、かつ受液器側に通と
なる逆止弁と、キヤピラリチユーブ等の減圧機構
とを設け、過負荷時に前記受液器に前記バイパス
管よりバイパスする冷媒を減圧して送るようにし
たヒートポンプ式空気調和機の冷媒制御装置。
In a heat pump refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an electric expansion valve, a liquid receiver, a capillary tube for an indoor unit, and a liquid-side solenoid valve are connected, A bypass pipe branched from the discharge pipe and connected to the liquid receiver is provided, and the bypass pipe includes a solenoid valve that opens during overload operation, and a part of the bypass pipe passes through a part of the outdoor heat exchanger. A heat exchange section, a check valve located between the heat exchange section and the liquid receiver and open to the liquid receiver side, and a pressure reducing mechanism such as a capillary tube are provided. A refrigerant control device for a heat pump type air conditioner, wherein a refrigerant to be bypassed is sent to the liquid receiver from the bypass pipe under reduced pressure.
JP6798984U 1984-05-10 1984-05-10 Refrigerant control device for heat pump air conditioners Granted JPS60180964U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6798984U JPS60180964U (en) 1984-05-10 1984-05-10 Refrigerant control device for heat pump air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6798984U JPS60180964U (en) 1984-05-10 1984-05-10 Refrigerant control device for heat pump air conditioners

Publications (2)

Publication Number Publication Date
JPS60180964U JPS60180964U (en) 1985-11-30
JPH0233100Y2 true JPH0233100Y2 (en) 1990-09-06

Family

ID=30602325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6798984U Granted JPS60180964U (en) 1984-05-10 1984-05-10 Refrigerant control device for heat pump air conditioners

Country Status (1)

Country Link
JP (1) JPS60180964U (en)

Also Published As

Publication number Publication date
JPS60180964U (en) 1985-11-30

Similar Documents

Publication Publication Date Title
US4562700A (en) Refrigeration system
JP3143142B2 (en) Refrigeration equipment
JPH0233100Y2 (en)
JP2966641B2 (en) Air conditioner
JP2877552B2 (en) Air conditioner
JP3511161B2 (en) Air conditioner
JPH03217771A (en) Air conditioner
JP3005485B2 (en) Multi air conditioner
JP2966633B2 (en) Air conditioner
JP3268967B2 (en) Air conditioner
JPH04324067A (en) Air conditioner
JP2983782B2 (en) Air conditioner
JP3195991B2 (en) Multi-room air conditioning system
JPS6028935Y2 (en) Heat pump air conditioning system
JP2966635B2 (en) Air conditioner
JPH04263742A (en) Refrigerator
JP2662126B2 (en) Air conditioner
JP3249246B2 (en) Air conditioner
JPS60235963A (en) Heat pump type air conditioner
JPH0526529A (en) Multiroom air-conditioner
JPS6152566A (en) Heat exchange system
JPH08105667A (en) Air conditioner
JPS58138959A (en) Heat pump type air conditioner
JPH03271661A (en) Multi-room air conditioner
JPS5899659A (en) Heat pump type air conditioner