JPS5899659A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS5899659A
JPS5899659A JP19931281A JP19931281A JPS5899659A JP S5899659 A JPS5899659 A JP S5899659A JP 19931281 A JP19931281 A JP 19931281A JP 19931281 A JP19931281 A JP 19931281A JP S5899659 A JPS5899659 A JP S5899659A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
refrigerant
pipe
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19931281A
Other languages
Japanese (ja)
Inventor
中「村」 隆
和男 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP19931281A priority Critical patent/JPS5899659A/en
Publication of JPS5899659A publication Critical patent/JPS5899659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヒートポンプ式冷凍装置に係わシ、1台の室外
ユニットに対し、2台もしくは、多室の室内ユニットを
接碑したマルチタイプの冷暖房機において、冷房時、暖
房時のいずれの時においても、能力アップを行なうと共
に、外気温度等に合わせて、冷暖房能力のセーブを行な
い、且、消費電力を減少させ、経済的運転を行ない得る
ヒ〜トボンプ式冷凍装置を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type refrigeration system, and is a multi-type air conditioner/heater in which two or multiple indoor units are attached to one outdoor unit. We have developed a heat pump type refrigeration system that increases capacity at any time during heating, saves heating and cooling capacity according to the outside temperature, etc., and reduces power consumption for economical operation. The purpose is to provide.

従来のマルチタイプの冷暖房機の冷凍サイクルは、第1
図に示す如く、冷房時においては通常の冷房サイクルで
運転され、暖房時のみ気液分離器ヲ用いてガスインジェ
クション回路を構成し、暖房能力のアップを行なってい
た。即ち、冷房時においては、圧縮機1−四カ棹−室外
熱交換器3−分岐点4−キャピラリチューブ6−逆止弁
6,7−液側電磁弁8,9−三方弁10.11−キャピ
ラリチューブ12.13−室内熱−交換器14.15−
三方弁16,17−逆止弁1シ、19−四方弁2−吸入
管2o−アキュームレータ21−圧縮機1のサイクルと
なり、通常運転が行なわれ、暖房時は、圧縮機1−四方
弁2−ガス側電磁弁22゜31、−1 23−三方弁16.17−室内熱交換器14.15−逆
止弁24.25−三方弁10.11−暖房専用管26,
27−逆止弁28.29−キャピラリチューブ30.3
1−暖房用電磁弁32−気液分離器33−暖房専用管3
4−逆止弁36−キヤピラリテユープ36−室外熱交換
器3−四方弁2−吸入管2o−アキュームレータ21−
圧縮機1のサイクルとなり、気液分離器33において、
液冷媒のみ室外熱交換器3側に流す一方、ガス冷媒をガ
スインジェクション管37を通してマフラー38を介し
、インジェクション管39より圧縮機1の圧縮途中のガ
ス冷媒に戻すことによって、冷媒循環量の増加を行なわ
せ、暖房能力を高めるものであった。40.41はキャ
ピラリチューブ42゜43を介してガス側電磁弁22.
23と三方弁16.17の間より引き出され、吸入管2
0に接続された冷媒回収管である。
The refrigeration cycle of conventional multi-type air conditioners is
As shown in the figure, during cooling, the system was operated in a normal cooling cycle, and only during heating, a gas injection circuit was constructed using a gas-liquid separator to increase heating capacity. That is, during cooling, the compressor 1 - four rods - outdoor heat exchanger 3 - branch point 4 - capillary tube 6 - check valve 6, 7 - liquid side solenoid valve 8, 9 - three-way valve 10.11 - Capillary tube 12.13-Indoor heat exchanger 14.15-
The cycle is three-way valves 16, 17 - check valve 1, 19 - four-way valve 2 - suction pipe 2o - accumulator 21 - compressor 1, and normal operation is performed, and during heating, compressor 1 - four-way valve 2 - Gas side solenoid valve 22゜31, -1 23-Three-way valve 16.17-Indoor heat exchanger 14.15-Check valve 24.25-Three-way valve 10.11-Heating dedicated pipe 26,
27-Check valve 28.29-Capillary tube 30.3
1 - Heating solenoid valve 32 - Gas-liquid separator 33 - Heating dedicated pipe 3
4-Check valve 36-Capillary tube 36-Outdoor heat exchanger 3-Four-way valve 2-Suction pipe 2o-Accumulator 21-
This is the cycle of the compressor 1, and in the gas-liquid separator 33,
While only the liquid refrigerant flows to the outdoor heat exchanger 3 side, the gas refrigerant is passed through the gas injection pipe 37, via the muffler 38, and returned to the gas refrigerant in the middle of compression in the compressor 1 from the injection pipe 39, thereby increasing the amount of refrigerant circulation. This was to increase heating capacity. 40.41 is connected to the gas side solenoid valve 22.41 via the capillary tube 42.43.
23 and the three-way valve 16.17, and the suction pipe 2
This is the refrigerant recovery pipe connected to 0.

このように従来はヒートポンプ式冷凍サイクルが構成さ
れ、冷房時は通常の冷凍サイクルで運転され、2台の室
内ユニットを運転した途中に、1台の室内ユニットを停
止した時でも、冷房時は、室内ユニッ、トが低圧側とな
るから冷媒の回収は行なわれる一方インジエクション用
のキャピラリチューブ44を通してインジェクションす
るのである。ところが暖房時においては、ガスインジェ
クション管37よりガス冷媒を圧縮機1に戻すことによ
り、暖房能力を高めるものではあるが、冷房時には何ん
ら能力に寄与することはなく、又暖房時において、ガス
側電磁弁22.23を通過した高圧冷媒が、僅かではあ
るが、キャピラリチューブ42.43を通して吸入管2
0に戻される為にキャピラリチューブ42.43の長さ
を長くして抵抗を大にしても戻されて、暖房能力の損失
となるなどの欠点を有していた。
Conventionally, a heat pump type refrigeration cycle was configured, and the normal refrigeration cycle was used during cooling, and even if one indoor unit was stopped while two indoor units were operating, during cooling, Since the indoor unit is on the low pressure side, the refrigerant is recovered and injected through the injection capillary tube 44. However, during heating, the heating capacity is increased by returning the gas refrigerant to the compressor 1 through the gas injection pipe 37, but it does not contribute to the capacity at all during cooling; The high-pressure refrigerant that has passed through the side solenoid valves 22 and 23 passes through the capillary tubes 42 and 43 and enters the suction pipe 2, albeit in a small amount.
Even if the length of the capillary tubes 42 and 43 is increased to increase the resistance in order to return the temperature to zero, the capillary tubes 42 and 43 will be returned to zero, resulting in a loss of heating capacity.

本発明は上記従来の欠点を解消するもので、以下にその
一実施例を第2図にもとづいて説明する。
The present invention solves the above-mentioned conventional drawbacks, and one embodiment thereof will be described below based on FIG. 2.

46はロータリ一式圧縮機、46は四方弁、47は室外
熱交換器、48は、冷房時高圧液冷媒が通過する逆止弁
、49は第1次に減圧されるキャピラリチューブである
。5oは冷房時及び、暖房時共6ページ に中間圧力として冷媒が通過し、気液を分離する為の気
液分離器、51.52は冷房時、液冷媒のみが通過する
逆止弁、53.54は第2次に低圧まで減圧されるキャ
ピラリチューブ、55,56は液側電磁弁である。67
.58は、室内ユニット59.60内に設けられた室内
熱交換器、61゜62はガス側電磁弁、63は吸入管6
4から戻る冷媒を果状し気化ガスのみ圧縮機45に戻す
為のアキュームレータである。65は吐出管66の圧力
が、所定の圧力よシ異常に高くなると、バイパス管6了
を通って、室外熱交換器47の一部に連通した熱交換部
68で冷媒を凝縮させ、吸入管64に連通ずる高圧圧力
調整弁、69は気液分離器5゜と、マフラー70に連通
する連通管′71の途中に設けられ、ガス冷媒をインジ
ェクション管72及び、連通管73につないだパワーア
ップ用電磁弁、74は連通管73の途中に設けられ、吸
入管64に連通され、連通管71の中間圧力冷媒を吸入
管64にバイパスさせ、圧縮比を減少させる為のパワー
セーブ用電磁弁、76は気液分離器5oから6ベー/ マフラー7oに連通する連通管76の途中に設けられ、
常時インジェクション管72を通して圧縮機46にイン
ジェクションする為のキャピラリチューブ、77.78
は暖房時のみ凝縮冷媒が通過する逆止弁、79.80は
暖房時主回路となり、−次のキャピラリチューブ87.
88を設は気液分離器50に連通した連通管、81は暖
房時、気液分離器5oから液冷媒のみ通過する逆止弁、
82は暖房用キャピラリチューブ、このキャピラリチュ
ーブ82で低圧まで減圧された後は、室外熱交換器47
を通過して蒸発し、四方弁46、吸入管64より圧縮機
46に戻るのである。83.84は、暖房時、室内ユニ
ット59.60の運転中、どちらかの室内ユニットが停
止した時、連通管86を通して室外熱交換器47に導く
為のキャピラリチューブである。尚、実線矢示は冷房時
の回路を示し、点線矢示は暖房時の回路を示している。
46 is a rotary compressor, 46 is a four-way valve, 47 is an outdoor heat exchanger, 48 is a check valve through which high-pressure liquid refrigerant passes during cooling, and 49 is a capillary tube through which the pressure is first reduced. 5o is a gas-liquid separator through which refrigerant passes under intermediate pressure and separates gas and liquid during both cooling and heating; 51.52 is a check valve through which only liquid refrigerant passes during cooling; 53 .54 is a capillary tube that is secondarily depressurized to a low pressure, and 55 and 56 are liquid-side solenoid valves. 67
.. 58 is an indoor heat exchanger provided in the indoor unit 59, 60, 61° 62 is a gas side solenoid valve, and 63 is a suction pipe 6.
This is an accumulator for draining the refrigerant returning from the compressor 45 and returning only the vaporized gas to the compressor 45. 65, when the pressure in the discharge pipe 66 becomes abnormally higher than a predetermined pressure, the refrigerant passes through the bypass pipe 6, condenses in a heat exchange part 68 that communicates with a part of the outdoor heat exchanger 47, and A high-pressure pressure regulating valve 64 is connected to the gas-liquid separator 5°, and a power-up valve 69 is installed in the middle of the communication pipe '71 that communicates with the gas-liquid separator 5° and the muffler 70, and connects the gas refrigerant to the injection pipe 72 and the communication pipe 73. A power saving solenoid valve 74 is provided in the middle of the communication pipe 73, communicates with the suction pipe 64, and bypasses the intermediate pressure refrigerant in the communication pipe 71 to the suction pipe 64 to reduce the compression ratio. 76 is provided in the middle of the communication pipe 76 that communicates from the gas-liquid separator 5o to the 6 bay/muffler 7o,
Capillary tube for constantly injecting into the compressor 46 through the injection pipe 72, 77.78
is a check valve through which condensed refrigerant passes only during heating, 79.80 is the main circuit during heating, and - next capillary tube 87.
88 is a communication pipe communicating with the gas-liquid separator 50; 81 is a check valve that allows only liquid refrigerant to pass from the gas-liquid separator 5o during heating;
82 is a capillary tube for heating, and after the pressure is reduced to low pressure by this capillary tube 82, it is transferred to the outdoor heat exchanger 47.
The air passes through the air, evaporates, and returns to the compressor 46 via the four-way valve 46 and suction pipe 64. Reference numerals 83 and 84 designate capillary tubes that lead to the outdoor heat exchanger 47 through the communication pipe 86 when either indoor unit is stopped during the operation of the indoor units 59 and 60 during heating. Note that the solid line arrow indicates a circuit during cooling, and the dotted line arrow indicates a circuit during heating.

上記構成において、冷房時は、圧縮機46−四方弁46
−室外熱交換器47−逆止弁48−キャピラリチューブ
49−気液分離器5oに至り、こ7ベージ とで、−担冷媒が溜り、液流出管86−逆止弁51゜6
2−キャピラリチューブ53.54−液側電磁弁55.
56−室内熱交換器67.158−ガス側電磁弁61.
62−四方弁46−吸入管64−アキュームレータ63
−圧縮機46の冷媒サイクルとなり、2台の室内ユニッ
)69.60の運転中。
In the above configuration, during cooling, the compressor 46 - the four-way valve 46
- Outdoor heat exchanger 47 - Check valve 48 - Capillary tube 49 - Gas-liquid separator 5o, where - refrigerant accumulates, liquid outflow pipe 86 - Check valve 51°6
2-Capillary tube 53.54-Liquid side solenoid valve 55.
56-Indoor heat exchanger 67.158-Gas side solenoid valve 61.
62 - Four-way valve 46 - Suction pipe 64 - Accumulator 63
- It becomes the refrigerant cycle of the compressor 46, and the two indoor units) 69.60 are in operation.

どちらか一方の室内ユニットが停止しても、各々の室内
ユニットは低圧側であるから、ガス側電磁弁61.62
の停止中の電磁弁を通して回収される。又、暖房時は、
圧縮機46−四方弁46−ガス側電磁弁61.62−室
内熱交換器57.58−逆止弁77.78一連通管ア9
,8〇−気液分離器6oで一部、冷媒が溜り、液冷媒の
み、液流出管86−逆止弁81−キャピラリチューブ8
2−室内熱交換器47−四方弁46−吸入管64−アキ
ュームレータ63−圧縮機46の冷媒サイクルとなり、
2台の室内ユニツ)59.60の運転中、どちらか一方
の室内ユニットが停止した時は、逆止弁77もしくは7
8より、キャピラリチューブ83もしくは84で減圧さ
れなから連通管85より低圧側となっている室外熱交換
器47に引かれ、冷媒の回収が行なわれるのである。一
方、冷房時のいずれにおいても、パワーアップ用電磁弁
69、及びパワーセーブ用電磁弁740両方が閉してい
る時は、ノーマル運転(標準)され、気液分離器60よ
シ連通管7ローキヤピラリチーーブ76−マフラー70
−インジェクション管72−圧縮機46に冷媒の一部が
流れてインジェクション工程となる。次に、パワーアッ
プ用電磁弁69が開、パワーセーブ用電磁弁74が閉の
時は、気液分離器6oから、ガス冷媒のみ連通管71−
マフラー7o−インジェクション管72−圧縮機45に
インジェクションされ、インジェクションの供給量分だ
け増加して、凝縮器、即ち、暖房時は室内熱交換器57
.68、冷房時は室外熱交換器47での循環流量大とな
り能力を高めパワーアップとなる。次に、パワーアップ
用電磁弁69が閉、ノζワーセープ用電磁弁74が開の
時は、圧縮機46の圧縮途中の冷媒がインジェクション
管72に出て、マフラー7oより連通管73を通り、吸
入管9ベージ 64にバイパスされて、パワーセーブ運転を行なうので
ある。
Even if either indoor unit stops, each indoor unit is on the low pressure side, so the gas side solenoid valves 61 and 62
is collected through a solenoid valve when the machine is stopped. Also, when heating,
Compressor 46 - Four-way valve 46 - Gas side solenoid valve 61.62 - Indoor heat exchanger 57.58 - Check valve 77.78 Communication pipe a9
, 80 - Some refrigerant accumulates in the gas-liquid separator 6o, only liquid refrigerant, liquid outflow pipe 86 - check valve 81 - capillary tube 8
2-indoor heat exchanger 47-four-way valve 46-suction pipe 64-accumulator 63-compressor 46 refrigerant cycle,
When one of the indoor units stops during operation of two indoor units (59.60), check valve 77 or 7
Since the refrigerant is not depressurized by the capillary tube 83 or 84, it is drawn to the outdoor heat exchanger 47 which is on the lower pressure side than the communication pipe 85, and the refrigerant is recovered. On the other hand, in any case of cooling, when both the power-up solenoid valve 69 and the power-saving solenoid valve 740 are closed, normal operation (standard) is performed, and the communication pipe 7 is connected to the gas-liquid separator 60. Capillary pipe 76-muffler 70
A part of the refrigerant flows into the injection pipe 72 and the compressor 46, resulting in an injection process. Next, when the power-up solenoid valve 69 is open and the power-saving solenoid valve 74 is closed, only the gas refrigerant is communicated from the gas-liquid separator 6o to the pipe 71-
It is injected into the muffler 7o, the injection pipe 72, and the compressor 45, and is increased by the amount of injection supplied to the condenser, that is, the indoor heat exchanger 57 during heating.
.. 68. During cooling, the circulation flow rate in the outdoor heat exchanger 47 increases, increasing the capacity and increasing the power. Next, when the power-up solenoid valve 69 is closed and the power-up solenoid valve 74 is open, the refrigerant that is being compressed by the compressor 46 comes out to the injection pipe 72 and passes through the communication pipe 73 from the muffler 7o. It is bypassed by the suction pipe 9 page 64 to perform power saving operation.

このように本発明は気液分離器を設けて、冷暖房時共に
一部、気液分離器内に冷媒を溜め、連通管−キャピラリ
チー−プを通してインジェクションする回路と、気液分
離器よりガス冷媒を連通管を通して圧縮機に戻してパワ
ーアップを計υ、一方、圧縮機よシ圧縮途中の冷媒ガス
をインジェクション管より連通管を通して吸入管にバイ
パスせしめ、パワーセーブをするようにしたものである
から、冷房時、暖房時共にパワーアップ及び、ノーマル
運転、及び、パワーセーブのそれぞれの運転制御が行な
われ、冷暖房時共に一部、所定温度に達すると、パワー
アップ用電磁弁を閉せしめパワーセーブ運転を行なうこ
とにより、能力、電気入力共に減少して、経済的運転が
行なわれる効果を発揮するものである。
In this way, the present invention includes a gas-liquid separator, and a circuit in which a part of the refrigerant is stored in the gas-liquid separator and injected through the communicating tube - capillary cheep during heating and cooling, and a circuit in which the gas refrigerant is removed from the gas-liquid separator. The refrigerant gas that is being compressed by the compressor is bypassed from the injection pipe to the suction pipe through the communication pipe to save power. During cooling and heating, power-up, normal operation, and power-save operation controls are performed, and when a certain temperature reaches a certain temperature during both cooling and heating, the power-up solenoid valve is closed and power-save operation is performed. By doing so, both capacity and electrical input are reduced, resulting in economical operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式冷凍すイクル図第2図は
本発明の一実施例のヒートポンプ式冷凍サイクル図であ
る。 45・・・・・・圧縮機、46・・・・・・四方弁、4
7・・・・・・・・室外側熱交換器、48,51.52
・・・・・・逆止弁、49.53.54・−一・・キャ
ピラリチューブ、6o@・・・・−気液分離器、69.
60・・・・・−室内熱交換器、64・・・・・・吸入
管、69・・・・・・ノ々ワーアップ用電磁弁、73・
・・・・・連通管、74・・・・・・・・パワーセーブ
用電磁弁。
FIG. 1 is a diagram of a conventional heat pump refrigeration cycle. FIG. 2 is a diagram of a heat pump refrigeration cycle according to an embodiment of the present invention. 45...Compressor, 46...Four-way valve, 4
7...Outdoor heat exchanger, 48, 51.52
・・・・・・Check valve, 49.53.54・-1・・Capillary tube, 6o@・・・・・Gas-liquid separator, 69.
60...-indoor heat exchanger, 64... suction pipe, 69... solenoid valve for power-up, 73...
...Communication pipe, 74...Solenoid valve for power saving.

Claims (1)

【特許請求の範囲】 圧縮機、四方弁、室外熱交換器、キャピラリチューブ、
室内熱交換器を順次連設し、冷房時、室外熱交換器を通
って逆止弁、キャピラリチューブを通し、暖房時、室内
熱交換器よシ逆止弁、連通管を通して冷媒が溜められる
気液分離器と、この気液分離器よシ、冷房時は液流出管
より逆止弁。 キャピラリチー−プ、液側電磁弁を通して室内熱交換器
に流れる回路と、暖房時は液流出管より逆止弁、キャピ
ラリチューブを通して室外熱交換器に流れる回路と、更
には、前記気液分離器より圧縮機側に連通した連通管の
途中にパワーアップ用電磁弁と、前記連通管の途中よシ
、吸入管に連通した連通管の途中にパワーセーブ用電磁
弁とを有するヒートポンプ式冷暖房機。
[Claims] Compressor, four-way valve, outdoor heat exchanger, capillary tube,
The indoor heat exchangers are connected in sequence, and during cooling, the refrigerant passes through the outdoor heat exchanger, through the check valve, and the capillary tube, and during heating, the refrigerant is collected through the indoor heat exchanger, through the check valve, and the communication pipe. For the liquid separator and this gas-liquid separator, there is a check valve from the liquid outflow pipe during cooling. A circuit that flows to the indoor heat exchanger through the capillary cheep and the liquid-side solenoid valve, a circuit that flows from the liquid outflow pipe to the outdoor heat exchanger through the check valve and the capillary tube during heating, and the gas-liquid separator. A heat pump type air-conditioning/heating machine having a power-up solenoid valve in the middle of a communication pipe communicating with the compressor side, and a power-saving solenoid valve in the middle of the communication pipe and in the middle of a communication pipe communicating with the suction pipe.
JP19931281A 1981-12-10 1981-12-10 Heat pump type air conditioner Pending JPS5899659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19931281A JPS5899659A (en) 1981-12-10 1981-12-10 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19931281A JPS5899659A (en) 1981-12-10 1981-12-10 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS5899659A true JPS5899659A (en) 1983-06-14

Family

ID=16405704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19931281A Pending JPS5899659A (en) 1981-12-10 1981-12-10 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS5899659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239351A (en) * 1988-03-18 1989-09-25 Matsushita Refrig Co Ltd Air conditioner of air cooled heat pump type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239351A (en) * 1988-03-18 1989-09-25 Matsushita Refrig Co Ltd Air conditioner of air cooled heat pump type

Similar Documents

Publication Publication Date Title
CN105333641B (en) Air-source air conditioning and water heating system
CN104654679A (en) Condensing system, air-cooled air conditioning system and control method
CN207936537U (en) A kind of air-conditioning
CN204460863U (en) A kind of condenser system and air-cooled type air conditioning system
JPS5899659A (en) Heat pump type air conditioner
JPH09287847A (en) Heat recovery type air conditioner
JPS5997462A (en) Defrosting circuit for heat pump
JPS6018757Y2 (en) air conditioner
CN214164683U (en) Electric motor coach and air conditioning system thereof
JPS5852460Y2 (en) Refrigeration equipment
JPH0339870A (en) Air conditioning apparatus
JPH0221731Y2 (en)
JPH0233100Y2 (en)
JPS63140258A (en) Refrigerant controller for air conditioner
JPS6117873A (en) Air-conditioning hot-water supply device
JPS58138959A (en) Heat pump type air conditioner
JPS6342188B2 (en)
JPS6317369A (en) Air conditioner
JPS62238956A (en) Air conditioner
JPH06281267A (en) Air conditioner
JPS63108174A (en) Defrostation method of heat pump type air conditioner
JPS62200148A (en) Heat pump type air conditioner
JPS5921960A (en) Air-conditioning hot-water supply heat pump refrigeration cycle
JPH0328677B2 (en)
JPS58127061A (en) Cold heat accumulation type air conditioner