JP2002106917A - Regenerative heat pump air conditioner for cold region - Google Patents

Regenerative heat pump air conditioner for cold region

Info

Publication number
JP2002106917A
JP2002106917A JP2000300555A JP2000300555A JP2002106917A JP 2002106917 A JP2002106917 A JP 2002106917A JP 2000300555 A JP2000300555 A JP 2000300555A JP 2000300555 A JP2000300555 A JP 2000300555A JP 2002106917 A JP2002106917 A JP 2002106917A
Authority
JP
Japan
Prior art keywords
heat storage
heat
heating
heating operation
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000300555A
Other languages
Japanese (ja)
Other versions
JP3567168B2 (en
Inventor
Takeshi Endo
剛 遠藤
Toshiyuki Hojo
俊幸 北條
Kazuhiro Dobashi
一浩 土橋
Kuniyoshi Yamada
訓良 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000300555A priority Critical patent/JP3567168B2/en
Publication of JP2002106917A publication Critical patent/JP2002106917A/en
Application granted granted Critical
Publication of JP3567168B2 publication Critical patent/JP3567168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Abstract

PROBLEM TO BE SOLVED: To display a sufficient space heating capacity even in a cold region where the lowest outside temperature in winter reaches -10 to -15 deg.C or lower, and miniaturize a thermal storage tank. SOLUTION: In a regenerative heat pimp air conditioner provided with a compressor 1, and outdoor unit 100 having an outdoor heat exchanger 6, a storage-type heat exchanger 61 and an indoor unit 200 having an indoor heat exchanger 50 to switch to a heating thermal storage operation, stored heat- utilizing heating operation and stored heat not-utilizing heating operation, operation is started with the stored heat-utilizing heating operation. When it is determined that the air conditioning load is relatively low, a changeover is made to the stored heat not-utilizing heating operation. When it is determined that he stored heat-utilizing heating operation should be performed after that, the stored heat-utilizing heating operation is performed again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気圧縮冷凍サイ
クルを利用した蓄熱利用空調運転を行なう蓄熱式ヒート
ポンプ空気調和機に係わり、特に、特に冬期に室外空気
温度が例えば−15℃以下に低下するような寒冷地で利
用する蓄熱式ヒートポンプ式空気調和機に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative heat pump air conditioner for performing air-conditioning operation utilizing heat storage utilizing a vapor compression refrigeration cycle, and in particular, in the winter season, the outdoor air temperature drops to, for example, -15.degree. It is suitable for a regenerative heat pump type air conditioner used in such a cold region.

【0002】[0002]

【従来の技術】蓄冷運転と冷房運転、蓄熱運転と暖房運
転を交互又は同時に運転する制御によって、能力を安定
にすることが知られ、例えば特開平9−138025号
公報に記載されている。
2. Description of the Related Art It has been known to stabilize performance by controlling alternately or simultaneously operation of a cold storage operation and a cooling operation, and a heat storage operation and a heating operation, which is described in, for example, Japanese Patent Application Laid-Open No. 9-138025.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
は、冬季の最低外気温度が−10℃〜−15℃以下に達
するような寒冷地域に関しては特に考慮されておらず、
寒冷地域においては蓄熱を使用しない空気熱源式ヒート
ポンプは、十分な熱源が得られないため能力の低下が大
きくなる。これに対して、蓄熱を熱源として利用した場
合、外気温度によらず熱源が確保されるため、寒冷地域
においても外気低温時の暖房能力の維持や消費電力低減
に対して非常に効果が大きい。
In the above prior art, no special consideration is given to a cold region where the minimum outside air temperature in winter reaches -10.degree. C. to -15.degree. C. or less.
In a cold region, an air heat source type heat pump that does not use heat storage has a large decrease in capacity because a sufficient heat source cannot be obtained. On the other hand, when the heat storage is used as the heat source, the heat source is secured regardless of the outside air temperature, so that it is very effective in maintaining the heating capacity at the low outside air temperature and reducing the power consumption even in a cold region.

【0004】しかし、水を蓄熱媒体として用いる氷蓄熱
式エアコンでは、暖房運転においては一般に顕熱を熱源
として利用しているため、潜熱を利用する冷房運転に比
較して蓄熱量は小さくなる。暖房運転においても潜熱ま
で利用することは可能であるが、伝熱管表面に氷が生成
することによる伝熱性能の低下により、性能の低下が著
しいため有効な方法ではない。したがって、寒冷地域に
おいても十分な性能を長時間得るためには、蓄熱量を大
きくする必要があり、蓄熱槽を大型化して蓄熱媒体量を
増やすか、利用温度を拡大するため蓄熱終了水温を高く
する必要がある。 蓄熱終了水温については、ヒートポ
ンプ冷凍サイクルでは吐出圧力の限界もあり、45〜5
0℃以上に上げることは困難である。一方蓄熱槽の大型
化はすなわち機器の設置面積や製品運転質量の増大を意
味するため、設置場所の面積や強度確保の観点から施工
性に対しては大きなデメリットとなる恐れがあった。
However, in an ice regenerative air conditioner using water as a heat storage medium, the amount of heat storage is smaller than that of a cooling operation using latent heat because heating operation generally uses sensible heat as a heat source. Although it is possible to use latent heat even in the heating operation, it is not an effective method because the performance is remarkably reduced due to a decrease in heat transfer performance due to formation of ice on the heat transfer tube surface. Therefore, in order to obtain sufficient performance for a long time even in cold regions, it is necessary to increase the amount of heat storage, and to increase the amount of heat storage medium by increasing the size of the heat storage tank, or to raise the temperature of the heat storage end water to increase the use temperature. There is a need to. Regarding the water temperature at the end of heat storage, there is a limit of the discharge pressure in the heat pump refrigeration cycle.
It is difficult to raise the temperature to 0 ° C. or higher. On the other hand, an increase in the size of the heat storage tank means an increase in the installation area of the equipment and an increase in the operating mass of the product.

【0005】また、寒冷地区、特に北海道地区において
は冬季の電力ピークが夕方16時から18時の間に発生
するため、電力平準化の観点から夕方に蓄熱利用運転を
行ない消費電力を低減することが必要である。しかし、
暖房時は早朝の空調負荷が大きい時間帯より蓄熱利用を
開始する必要があり、空調運転開始時から蓄熱を使いき
るまで継続して蓄熱利用運転をしていた。このため夕方
に蓄熱利用による運転消費電力のピークカットを実現す
るためには、蓄熱量そのものを増やさなければならな
い。
[0005] Further, in a cold district, particularly in a Hokkaido district, since a power peak in winter occurs between 16:00 and 18:00 in the evening, it is necessary to reduce the power consumption by performing the heat storage operation in the evening from the viewpoint of power leveling. It is. But,
At the time of heating, it is necessary to start using the heat storage from the time period when the air conditioning load is large in the early morning, and the operation using the heat storage has been continuously performed from the start of the air conditioning operation until the heat storage is used up. Therefore, in order to achieve a peak cut in operating power consumption by utilizing heat storage in the evening, the amount of heat storage must be increased.

【0006】さらに、寒冷地区においては暖房期間が非
常に長く、機器容量を選定する極寒時のピーク負荷と、
中間期の部分負荷の差が大きくなる。このため、ピーク
負荷時に蓄熱利用法を適合させると、中間期には蓄熱を
使いきれず、そのまま放熱ロスになっていた。
Furthermore, in a cold district, the heating period is very long, and the peak load at the time of extreme cold for selecting the equipment capacity,
The difference between partial loads in the interim period increases. For this reason, if the heat storage utilization method was adapted at the peak load, the heat storage could not be used up in the interim period, resulting in a radiation loss as it was.

【0007】本発明の目的は、冬季の最低外気温度が−
10℃〜−15℃以下に達するような寒冷地域において
も、十分な暖房能力を発揮するとともに、蓄熱槽を小型
化することにある。また、本発明の目的は、限られた蓄
熱容量を有効に使い、夕方においても蓄熱利用によるピ
ークカット運転を実現することにある。さらに、本発明
の目的は、部分負荷時においても蓄熱を有効に利用する
ことにある。なお、本発明は、上記課題、目的の少なく
ともひとつを解決することにある。
[0007] The object of the present invention is to reduce the minimum outside air temperature in winter.
In a cold region where the temperature reaches 10 ° C. to −15 ° C. or less, a sufficient heating capacity is exhibited, and the heat storage tank is downsized. It is another object of the present invention to effectively use a limited heat storage capacity and realize a peak cut operation using heat storage even in the evening. Further, an object of the present invention is to effectively utilize heat storage even at a partial load. The present invention is to solve at least one of the above problems and objects.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明は、圧縮機、室外熱交換器を有した室外機と、蓄
熱熱交換器と、室内熱交換器を有した室内機と、を備
え、暖房蓄熱運転、蓄熱利用暖房運転、蓄熱非利用暖房
運転を切換える蓄熱式ヒートポンプ空気調和機におい
て、前記蓄熱利用暖房運転で運転を開始し、空調負荷が
比較的小さいと判定されたときは前記蓄熱非利用暖房運
転に切換え、その後蓄熱利用暖房運転を行なうべきだと
判定されたときは再び前記蓄熱利用暖房運転を行うもの
である。
SUMMARY OF THE INVENTION To solve the above problems, the present invention provides an outdoor unit having a compressor and an outdoor heat exchanger, a heat storage heat exchanger, and an indoor unit having an indoor heat exchanger. In the regenerative heat pump air conditioner that switches between the heating heat storage operation, the heat storage use heating operation, and the heat storage non-use heating operation, the operation is started in the heat storage use heating operation, and when it is determined that the air conditioning load is relatively small. The operation is switched to the heat storage non-use heating operation, and thereafter, when it is determined that the heat storage use heating operation should be performed, the heat storage use heating operation is performed again.

【0009】これにより、例えば、暖房時最大負荷が発
生する早朝始動時に蓄熱を熱源とした空調を行なうとと
もに、空調負荷の比較的小さい昼間は、一旦蓄熱非利用
運転を行ない、夕方の空調負荷増大時まで蓄熱を利用し
ないで済むため、必要とされる暖房能力を確保したうえ
で、蓄熱量を低減することが可能となる。よって、限ら
れた蓄熱容量を有効に使うことができるので、蓄熱槽を
小型化したり、夕方においても蓄熱利用によるピークカ
ット運転を実現したり、することができる。
Thus, for example, air conditioning using heat storage as a heat source is performed at the time of starting in the early morning when a maximum load during heating occurs, and during the daytime when the air conditioning load is relatively small, the heat storage non-use operation is performed once to increase the air conditioning load in the evening. Since it is not necessary to use heat storage until time, it is possible to reduce the amount of heat storage while securing the required heating capacity. Therefore, since the limited heat storage capacity can be used effectively, the heat storage tank can be reduced in size, and a peak cut operation using heat storage can be realized even in the evening.

【0010】蓄熱利用暖房運転と蓄熱非利用暖房運転の
切換え判定は、具体的には、蓄熱媒体の温度により蓄熱
量を検出することにより行うことが良い。蓄熱媒体が水
やその混合物の場合、暖房時は顕熱を利用して蓄熱を行
なうので、蓄熱量は温度に比例する。したがって、一旦
蓄熱利用運転を終了する条件を、予め再び蓄熱利用運転
を始めてから後の運転に必要な蓄熱量となる蓄熱量に相
当する蓄熱媒体の温度に達した時と決めておくことで、
蓄熱利用運転の再開後も必要な蓄熱量が確保することが
できる。
[0010] The determination of switching between the heating operation using heat storage and the heating operation not using heat storage is preferably made by detecting the amount of heat storage based on the temperature of the heat storage medium. When the heat storage medium is water or a mixture thereof, heat is stored using sensible heat during heating, so the amount of heat storage is proportional to the temperature. Therefore, by deciding the condition for once terminating the heat storage utilizing operation, when the temperature of the heat storage medium corresponding to the heat storage amount corresponding to the heat storage amount required for the subsequent operation has been started again after starting the heat storage utilizing operation again,
The required heat storage amount can be secured even after the restart of the heat storage operation.

【0011】また、空調能力または空調負荷が所定の値
以下になったとき、蓄熱非利用運転に移行させることも
良く、具体的な方法としては、室内機の吸込温度または
吸込温度と設定温度の差により空調能力または空調負荷
を演算することが望ましい。これは、直接的かつ確実な
判定方法であり、これら値は絶対値のみならず、室内機
が運転しているときや設定温度に達していわゆるサーモ
オフしたときの変化率からも、空調負荷を推定すること
が可能であり、判定の確度を上げることができる。
When the air-conditioning capacity or the air-conditioning load becomes equal to or less than a predetermined value, the operation may be shifted to a non-heat storage operation. As a specific method, the suction temperature of the indoor unit or the difference between the suction temperature and the set temperature is set. It is desirable to calculate the air conditioning capacity or the air conditioning load from the difference. This is a direct and reliable determination method, and the air conditioning load is estimated not only from the absolute value but also from the rate of change when the indoor unit is operating or when the temperature reaches the set temperature and the so-called thermo-off is performed. And the accuracy of the determination can be increased.

【0012】さらに、空調能力または空調負荷を認識す
るのに、圧縮機の運転周波数または運転台数によること
も低価格にするうえでは良い。つまり、圧縮機の運転周
波数は運転空調能力に相関しているので、これが一定値
以下に達した時に蓄熱非利用運転へ移行するよう判定す
ることが可能である。
Further, in order to recognize the air-conditioning capacity or air-conditioning load, the operation frequency or the number of operating compressors may be used to reduce the cost. That is, since the operating frequency of the compressor is correlated with the operating air conditioning capacity, it is possible to determine to shift to the heat storage non-use operation when the operating frequency reaches a certain value or less.

【0013】さらに上記のものにおいて、時刻計時装置
を備え、所定の時刻になったときに前記蓄熱非利用暖房
運転から前記蓄熱利用暖房運転に移行させることが望ま
しい。具体的には、時刻に対する外気温度の変化は統計
的な相関の情報が得られているので、負荷の増大する時
刻に蓄熱利用運転を再開するよう予め決めれば、負荷の
増大に対応して暖房能力や省電力効果を維持した運転を
行なうことができる。
Further, in the above, it is preferable that a time counting device is provided, and when a predetermined time comes, the heating operation not using the heat storage is shifted to the heating operation using the heat storage. Specifically, since a change in the outside air temperature with respect to the time has obtained statistical correlation information, if it is determined in advance that the heat storage utilization operation should be restarted at the time when the load increases, heating corresponding to the increase in the load can be performed. It is possible to perform the operation while maintaining the performance and the power saving effect.

【0014】さらに上記のものにおいて、蓄熱熱交換器
を主として蒸発器として用いる運転を行う時間帯は16
時〜18時を含むことが望ましい。
Further, in the above, the operation time period in which the heat storage heat exchanger is mainly used as an evaporator is 16 hours.
It is desirable to include hours-18:00.

【0015】さらに上記のものにおいて、空調負荷が比
較的小さいと判定された前記蓄熱非利用暖房運転は、前
記室外熱交換器と前記蓄熱熱交換器の熱源を併用して運
転されることが望ましい。
Further, in the above, it is desirable that the heat storage non-use heating operation determined to have a relatively small air conditioning load is operated using both the outdoor heat exchanger and the heat source of the heat storage heat exchanger. .

【0016】さらに上記のものにおいて、蓄熱非利用暖
房運転における暖房能力は、前記蓄熱利用暖房運転にお
ける暖房能力の85%以上100%未満の比率であるこ
とが望ましい。
Further, in the above, it is desirable that the heating capacity in the heat storage non-use heating operation is 85% or more and less than 100% of the heating capacity in the heat storage use heating operation.

【0017】さらに上記のものにおいて、所定の時刻に
おいて蓄熱量が所定量以上残存している場合、空調負荷
が比較的小さいと判定されたときは前記蓄熱利用暖房運
転を継続することが望ましい。
Further, in the above, it is preferable that, when the heat storage amount remains at a predetermined time or more at a predetermined time, if the air conditioning load is determined to be relatively small, the heat storage utilizing heating operation is continued.

【0018】さらに上記のものにおいて、空調負荷は前
記室内機の吸込温度または吸込温度と設定温度の差によ
り演算することが望ましい。
Further, in the above, it is desirable that the air conditioning load is calculated based on a suction temperature of the indoor unit or a difference between the suction temperature and a set temperature.

【0019】さらに本発明は、液インジェクションされ
るようにされた圧縮機、室外熱交換器を有した室外機
と、蓄熱熱交換器と、室内熱交換器を有した室内機と、
を備え、暖房蓄熱運転、蓄熱利用暖房運転、蓄熱非利用
暖房運転を切換える蓄熱式ヒートポンプ空気調和機にお
いて、前記液インジェクション量を制御する液インジェ
クション流量制御装置を備え、前記蓄熱利用暖房運転で
運転を開始し、前記液インジェクション量を制御された
前記蓄熱非利用暖房運転に切換えられるものである。
Further, the present invention provides an outdoor unit having a compressor and an outdoor heat exchanger adapted to be injected with a liquid, a heat storage heat exchanger, and an indoor unit having an indoor heat exchanger.
In a regenerative heat pump air conditioner that switches between a heating heat storage operation, a heat storage utilizing heating operation, and a heat storage non-use heating operation, a liquid injection flow rate control device that controls the liquid injection amount is provided, and the operation is performed in the heat storage utilizing heating operation. Starting, the operation is switched to the heat storage non-use heating operation in which the liquid injection amount is controlled.

【0020】これにより、能力が低下する蓄熱非利用運
転において、外気が低温であっても高い暖房能力が発揮
される液インジェクション圧縮機を採用することで暖房
能力の低下を小さくできるため、蓄熱利用運転をする時
間を短縮して一層蓄熱槽を小型化できるうえ、蓄熱非利
用運転時の能力を確保するため室外熱交換器や圧縮機の
容量を大きくする必要がなく、室外機も小型化すること
ができる。また、暖房能力の高い液インジェクションを
夜間の蓄熱運転にも利用することが望ましく、外気温度
が低い場合でも確実に蓄熱量を確保することができる。
さらに蓄熱利用運転時にも液インジェクションを利用す
ることで、蓄熱利用運転の開始当初水温が高く圧縮機吸
入側の過熱度が大きくなることから吐出温度が高くなる
ことに対しても吐出温度を低減できるので、高温部の熱
損失を低減して運転効率を向上するとともに、圧縮機電
動機の絶縁被覆や冷凍機油など有機材料の劣化を低減す
ることができ、機器の信頼性を向上できる。
Thus, in the heat storage non-use operation in which the capacity is reduced, a decrease in the heating capacity can be reduced by adopting the liquid injection compressor which exhibits a high heating capacity even when the outside air is at a low temperature. In addition to shortening the operation time, the heat storage tank can be made even smaller, and the capacity of the outdoor heat exchanger and compressor does not need to be increased in order to secure the capacity during operation without heat storage, and the outdoor unit is also downsized. be able to. Further, it is desirable to use the liquid injection having a high heating capacity also in the nighttime heat storage operation, and it is possible to reliably secure the heat storage amount even when the outside air temperature is low.
Further, by using the liquid injection during the heat storage operation, the discharge temperature can be reduced even when the discharge temperature becomes high because the water temperature is high at the beginning of the heat storage operation and the degree of superheat on the compressor suction side increases. Therefore, the operating efficiency can be improved by reducing the heat loss in the high temperature portion, and the deterioration of the organic material such as the insulating coating of the compressor motor and the refrigerating machine oil can be reduced, and the reliability of the device can be improved.

【0021】[0021]

【発明の実施の形態】本発明による第1の実施の形態に
ついて、説明する。図1は本発明による第1の実施の形
態における冷凍サイクル構成を示すブロック図を示す。
容量制御圧縮機1、一定速圧縮機2a、2b、アキュム
レータ3、オイルセパレータ4、四方弁5、室外熱交換
器6a、6b、室外膨張弁7a、7b、過冷却器8a、
8b、室外送風機9a、9b、レシーバ10、ガス液熱
交換器11、ガス阻止弁12、液阻止弁13、蓄熱ガス
阻止弁14、ガスバイパス15、蓄熱回路用電磁弁16
a、16b、容量制御圧縮機用液インジェクション膨張
弁20、一定速圧縮機用液インジェクション膨張弁21
a、21b、容量制御圧縮機用液インジェクション電磁
弁22、一定速圧縮機用液インジェクション電磁弁23
a、23b、容量制御圧縮機用液インジェクションキャ
ピラリーチューブ24、一定速圧縮機用液インジェクシ
ョンキャピラリーチューブ25a、25b、室外制御装
置30、室外温度センサー31、容量制御圧縮機用吐出
温度センサー32、一定速圧縮機用吐出温度センサー3
3a、33b、吸入温度センサー34、高圧圧力センサ
ー36、低圧圧力センサー37からなる室外機100
と、室内熱交換器50a、50b、50c、室内膨張弁
51a、51b、51c、室内送風機52a、52b、
52c、室内制御装置53a、53b、53c、室内吸
込温度センサー54a、54b、54c、リモートコン
トローラー55a、55b、55cからなる室内機20
0a、200b、200cと、蓄熱槽60、蓄熱熱交換
器61、蓄熱回路用膨張弁62、蓄熱回路用電磁弁63
a、63b、63c、蓄熱制御装置65、蓄熱媒体温度
センサー66、蓄熱コントローラー67からなる蓄熱機
300とが、ガス接続配管40、液接続配管41、蓄熱
ガス接続配管42、伝送線45によって連結されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment according to the present invention will be described. FIG. 1 is a block diagram showing a configuration of a refrigeration cycle according to a first embodiment of the present invention.
Capacity control compressor 1, constant speed compressors 2a, 2b, accumulator 3, oil separator 4, four-way valve 5, outdoor heat exchangers 6a, 6b, outdoor expansion valves 7a, 7b, supercooler 8a,
8b, outdoor blowers 9a, 9b, receiver 10, gas liquid heat exchanger 11, gas check valve 12, liquid check valve 13, heat storage gas check valve 14, gas bypass 15, solenoid valve 16 for heat storage circuit
a, 16b, liquid injection expansion valve 20 for displacement control compressor, liquid injection expansion valve 21 for constant speed compressor
a, 21b, liquid injection solenoid valve 22 for displacement control compressor, liquid injection solenoid valve 23 for constant speed compressor
a, 23b, liquid injection capillary tube 24 for capacity control compressor, liquid injection capillary tubes 25a, 25b for constant speed compressor, outdoor control device 30, outdoor temperature sensor 31, discharge temperature sensor 32 for capacity control compressor, constant speed Discharge temperature sensor 3 for compressor
An outdoor unit 100 including 3a, 33b, a suction temperature sensor 34, a high pressure sensor 36, and a low pressure sensor 37
And indoor heat exchangers 50a, 50b, 50c, indoor expansion valves 51a, 51b, 51c, indoor blowers 52a, 52b,
52c, an indoor control device 53a, 53b, 53c, an indoor suction temperature sensor 54a, 54b, 54c, and an indoor unit 20 including remote controllers 55a, 55b, 55c.
0a, 200b, 200c, a heat storage tank 60, a heat storage heat exchanger 61, a heat storage circuit expansion valve 62, and a heat storage circuit solenoid valve 63
a, 63b, 63c, a heat storage control device 65, a heat storage medium temperature sensor 66, and a heat storage device 300 including a heat storage controller 67 are connected by a gas connection pipe 40, a liquid connection pipe 41, a heat storage gas connection pipe 42, and a transmission line 45. ing.

【0022】なお第1の実施の形態では、容量制御圧縮
機1、一定速圧縮機2a、2bには、冷媒吸入部から冷
媒吐出部の圧縮過程にある中間圧部に液冷媒をインジェ
クションするポートを設けた、液インジェクションスク
ロール型圧縮機を採用する。これにより、圧縮機の吸入
圧力が低下して吸入冷媒密度が低下しても、途中で液冷
媒が加わるので吐出側の冷媒流量が確保される。
In the first embodiment, the displacement control compressor 1, the constant speed compressors 2a and 2b each have a port for injecting the liquid refrigerant from the refrigerant suction section to the intermediate pressure section in the process of compressing the refrigerant discharge section. , A liquid injection scroll compressor is adopted. Thus, even if the suction pressure of the compressor decreases and the suction refrigerant density decreases, the liquid refrigerant is added on the way, so that the flow rate of the refrigerant on the discharge side is ensured.

【0023】本実施の形態は、R22、R407C、R
407E、R410A、R32などの冷媒を作動流体に
用いた蒸気圧縮冷凍サイクルを利用しており、夜間に蓄
熱熱交換器61内の蓄熱媒体に蓄熱運転を行ない、昼間
の空調運転時にこの蓄熱を利用する運転を行なう。蓄熱
コントローラー67は予め夜間の蓄熱運転の時間帯がセ
ットされ、この時間帯に蓄熱運転を指令し、またそれ以
外に空調運転可能であることを指令する。空調運転可能
なとき、室内機200a、200b、200cのリモー
トコントローラー55a、55b、55cいずれかがオ
ンされて、空調運転を開始する。リモートコントローラ
ー55a、55b、55cは冷房、暖房の切換えや風量
などを設定する。これらの司令によって、室外制御装置
30、室内制御装置53a、53b、53c、蓄熱制御
装置65らは、四方弁5、蓄熱回路用電磁弁16a、1
6b、蓄熱回路用電磁弁63a、63b、63cを切り
換え、冷房蓄熱運転、冷房蓄熱利用ピークシフト運転、
冷房蓄熱利用ピークカット運転、冷房蓄熱非利用運転、
暖房蓄熱運転、暖房蓄熱利用運転、暖房蓄熱非利用運
転、蓄熱利用除霜運転、蓄熱非利用除霜運転の各運転モ
ードの切り換えを行なう。また、容量制御圧縮機1、一
定速圧縮機2a、2b、室外送風機9a、9b、室内送
風機52a、52b、52cを動作させ、運転を行な
う。
In this embodiment, R22, R407C, R
A vapor compression refrigeration cycle using a refrigerant such as 407E, R410A, or R32 as a working fluid is used. The heat storage operation is performed in the heat storage medium in the heat storage heat exchanger 61 at night, and the heat storage is used during the air-conditioning operation in daytime. Operation. The heat storage controller 67 presets a time zone of the nighttime heat storage operation, and instructs the heat storage operation in this time zone, and also instructs that the air conditioning operation is possible. When the air conditioning operation is possible, one of the remote controllers 55a, 55b, 55c of the indoor units 200a, 200b, 200c is turned on, and the air conditioning operation is started. The remote controllers 55a, 55b, and 55c set switching between cooling and heating, and set the air volume and the like. According to these commands, the outdoor control device 30, the indoor control devices 53a, 53b, 53c, and the heat storage control device 65, etc., control the four-way valve 5, the heat storage circuit solenoid valves 16a,
6b, switching the heat storage circuit solenoid valves 63a, 63b, 63c to perform cooling heat storage operation, cooling heat storage utilization peak shift operation,
Cooling heat storage peak cut operation, cooling heat storage non-use operation,
The operation mode is switched between a heating heat storage operation, a heating heat storage utilization operation, a heating heat storage non-use operation, a heat storage utilization defrosting operation, and a heat storage non-use defrost operation. Further, the capacity control compressor 1, the constant speed compressors 2a and 2b, the outdoor blowers 9a and 9b, and the indoor blowers 52a, 52b and 52c are operated and operated.

【0024】さらに運転中は室外膨張弁7a、7b、容
量制御圧縮機用液インジェクション膨張弁20、一定速
圧縮機用液インジェクション膨張弁21a、21b、室
内膨張弁51a、51b、51c、蓄熱回路用膨張弁6
2の開度、容量制御圧縮機1の運転容量、一定速圧縮機
2a、2bの運転台数などを適当な運転となるよう制御
を行なう。
During operation, the outdoor expansion valves 7a and 7b, the liquid injection expansion valve 20 for the displacement control compressor, the liquid injection expansion valves 21a and 21b for the constant speed compressor, the indoor expansion valves 51a, 51b and 51c, and the heat storage circuit Expansion valve 6
2, the operation capacity of the displacement control compressor 1, the number of constant speed compressors 2 a and 2 b, and the like are controlled so as to be appropriate operations.

【0025】次に、冷房蓄熱運転時の冷媒の流れを示
す。容量制御圧縮機1、一定速圧縮機2a、2bを吐出
した高圧高温のガス冷媒は四方弁5を経由し室外熱交換
器6a、6bにて凝縮し、過冷却器8a、8bで過冷却
液となりレシーバ10、ガス液熱交換器11、液阻止弁
13、液接続配管41を経由して、蓄熱機300に達す
る。ここで蓄熱回路用電磁弁63a、63cは開弁して
おり、蓄熱回路用膨張弁62にて絞られた液冷媒が蓄熱
熱交換器61にて蒸発し、水温を低下させ0℃以下にし
て製氷することで潜熱として蓄熱を行なう。蒸発後のガ
ス冷媒は蓄熱回路用電磁弁63a、蓄熱ガス接続配管4
2、蓄熱回路用電磁弁16b、ガス液熱交換器11、ア
キュムレータ3を介して圧縮機低圧側へ戻る。
Next, the flow of the refrigerant during the cooling heat storage operation will be described. The high-pressure and high-temperature gas refrigerant discharged from the displacement control compressor 1 and the constant speed compressors 2a and 2b passes through the four-way valve 5 and condenses in the outdoor heat exchangers 6a and 6b. And reaches the regenerator 300 via the receiver 10, the gas-liquid heat exchanger 11, the liquid blocking valve 13, and the liquid connection pipe 41. Here, the heat storage circuit solenoid valves 63a and 63c are open, and the liquid refrigerant squeezed by the heat storage circuit expansion valve 62 evaporates in the heat storage heat exchanger 61 to lower the water temperature to 0 ° C. or less. Heat is stored as latent heat by making ice. The gas refrigerant after evaporation is stored in the heat storage circuit solenoid valve 63a, the heat storage gas connection pipe 4
2. Return to the compressor low pressure side via the heat storage circuit solenoid valve 16b, the gas-liquid heat exchanger 11, and the accumulator 3.

【0026】次に、冷房蓄熱利用ピークシフト運転時の
冷媒の流れを示す。容量制御圧縮機1、一定速圧縮機2
a、2bを吐出した高圧高温のガス冷媒は四方弁5を経
由し室外熱交換器6a、6bにて凝縮し、過冷却器8
a、8b、レシーバ10、ガス液熱交換器11、液阻止
弁13、液接続配管41を経由して、蓄熱機300に達
する。ここで蓄熱回路用電磁弁63bの開弁により、液
冷媒は蓄熱熱交換器61に導かれ、氷と熱交換を行な
う。こうして過冷却され比エンタルピの低くなった液冷
媒が室内機200a、200b、200cに搬送され、
室内膨張弁51a、51b、51cで絞られて室内熱交
換器50a、50b、50cにて蒸発し空気と熱交換す
ることで、冷房を行なう。蒸発したガス冷媒はガス接続
配管40より室外機100へ戻され、四方弁5、ガス液
熱交換器11、アキュムレータ3を介して圧縮機低圧側
へ戻る。
Next, the flow of the refrigerant at the time of the peak shift operation utilizing the cooling heat storage will be described. Capacity control compressor 1, constant speed compressor 2
The high-pressure and high-temperature gas refrigerant discharged from a and b is condensed in the outdoor heat exchangers 6a and 6b through the four-way valve 5, and
a, 8b, the receiver 10, the gas-liquid heat exchanger 11, the liquid-blocking valve 13, and the liquid connection pipe 41 to reach the regenerator 300. Here, by opening the heat storage circuit solenoid valve 63b, the liquid refrigerant is guided to the heat storage heat exchanger 61 and exchanges heat with ice. The liquid refrigerant that has been supercooled and has a low specific enthalpy is conveyed to the indoor units 200a, 200b, 200c,
Cooling is performed by being throttled by the indoor expansion valves 51a, 51b, and 51c and evaporating in the indoor heat exchangers 50a, 50b, and 50c to exchange heat with air. The evaporated gas refrigerant is returned from the gas connection pipe 40 to the outdoor unit 100, and returns to the compressor low-pressure side via the four-way valve 5, the gas-liquid heat exchanger 11, and the accumulator 3.

【0027】なお、氷と熱交換することで蓄熱熱交換器
61にて大きく比エンタルピを低下させるので、室内熱
交換器50a、50b、50c入口と出口の比エンタル
ピ差が大きいため冷媒循環量を少なくすることができる
ので、圧縮機運転容量を低減して消費電力を小さくする
ことができる。
Since the specific enthalpy of the indoor heat exchangers 50a, 50b, and 50c is greatly reduced by exchanging heat with ice in the heat storage heat exchanger 61, the refrigerant circulating amount is reduced. Since it can be reduced, the compressor operating capacity can be reduced and power consumption can be reduced.

【0028】次に、冷房蓄熱利用ピークカット運転時の
冷媒の流れを示す。容量制御圧縮機1、一定速圧縮機2
a、2bを吐出した高圧高温のガス冷媒は、蓄熱回路用
電磁弁16bより蓄熱ガス接続配管42を経由して、蓄
熱機300に達する。ここで蓄熱回路用電磁弁63aの
開弁により、高圧高温ガス冷媒は蓄熱熱交換器61に導
かれて氷と熱交換を行なう。こうして凝縮、過冷却さ
れ、比エンタルピの低くなった液冷媒が室内機200
a、200b、200cに搬送され、室内膨張弁51
a、51b、51cで絞られて室内熱交換器50a、5
0b、50cにて蒸発し空気と熱交換することで、冷房
を行なう。蒸発したガス冷媒は、冷房蓄熱利用ピークシ
フト運転同様、圧縮機低圧側へ戻る。
Next, the flow of the refrigerant during the peak cut operation using the cooling heat storage will be described. Capacity control compressor 1, constant speed compressor 2
The high-pressure and high-temperature gas refrigerant discharged from a and 2b reaches the heat storage device 300 via the heat storage circuit connection pipe 42 from the heat storage circuit solenoid valve 16b. Here, when the heat storage circuit solenoid valve 63a is opened, the high-pressure high-temperature gas refrigerant is guided to the heat storage heat exchanger 61 to exchange heat with ice. The liquid refrigerant thus condensed and supercooled and having a low specific enthalpy is supplied to the indoor unit 200.
a, 200b, 200c, and the indoor expansion valve 51
a, 51b, and 51c, the indoor heat exchangers 50a,
Cooling is performed by evaporating at 0b and 50c and exchanging heat with air. The vaporized gas refrigerant returns to the compressor low-pressure side similarly to the cooling heat storage peak shift operation.

【0029】高圧高温のガス冷媒が氷と熱交換すること
で凝縮圧力を著しく低下させることができるため、過冷
却による比エンタルピの低下とあいまって、圧縮機運転
消費電力が大きく削減される。省電力効果の大きい冷房
蓄熱利用ピークカット運転を冷房時の電力ピークが出現
する13時〜16時に行なうことにより、電力の平準化
に貢献するとともに、契約電力も小さくすることが可能
となる。
Since the condensing pressure can be remarkably reduced by the heat exchange of the high-pressure and high-temperature gas refrigerant with ice, the power consumption of the compressor operation is greatly reduced in combination with the reduction of the specific enthalpy due to the supercooling. By performing the cooling heat storage peak-cut operation with a large power saving effect at 13:00 to 16:00 when the power peak during cooling appears, it is possible to contribute to power leveling and reduce the contracted power.

【0030】次に蓄熱を使い切った後の、冷房蓄熱非利
用運転時の冷媒の流れを示す。容量制御圧縮機1、一定
速圧縮機2a、2bを吐出した高圧高温のガス冷媒は四
方弁5を経由し室外熱交換器6a、6bにて凝縮し、過
冷却器8a、8bで過冷却液となりレシーバ10、ガス
液熱交換器11、液阻止弁13、液接続配管41を経由
して、室内機200a、200b、200cに搬送され
る。このとき蓄熱回路用電磁弁63cが開弁状態にあ
る。室内膨張弁51a、51b、51cで絞られて室内
熱交換器50a、50b、50cにて蒸発し空気と熱交
換することで冷房を行ない、蒸発したガス冷媒は他の冷
房運転同様、圧縮機低圧側へ戻る。
Next, the flow of the refrigerant during the cooling heat storage non-use operation after the exhaustion of the heat storage will be described. The high-pressure and high-temperature gas refrigerant discharged from the displacement control compressor 1 and the constant speed compressors 2a and 2b passes through the four-way valve 5 and condenses in the outdoor heat exchangers 6a and 6b. It is conveyed to the indoor units 200a, 200b, 200c via the receiver 10, the gas-liquid heat exchanger 11, the liquid blocking valve 13, and the liquid connection pipe 41. At this time, the heat storage circuit solenoid valve 63c is in the open state. Cooling is performed by being throttled by the indoor expansion valves 51a, 51b, and 51c and evaporating in the indoor heat exchangers 50a, 50b, and 50c to exchange heat with air. Return to the side.

【0031】次に、暖房蓄熱運転時の冷媒の流れを示
す。容量制御圧縮機1、一定速圧縮機2a、2bを吐出
した高圧高温のガス冷媒は、蓄熱回路用電磁弁16bよ
り蓄熱ガス接続配管42を経由して、蓄熱機300に達
する。ここで蓄熱回路用電磁弁63aの開弁により、高
圧高温ガス冷媒は蓄熱熱交換器61に導かれて水と熱交
換を行ない、水温を上昇させる。凝縮した液冷媒は蓄熱
回路用膨張弁62、開弁状態の蓄熱回路用電磁弁63
c、液接続配管41を経由して室外機100に戻り、ガ
ス液熱交換器11、レシーバ10、過冷却器8a、8b
の後、室外膨張弁7a、7bで膨張して室外熱交換器6
a、6bで蒸発する。蒸発したガス冷媒は、四方弁5、
ガス液熱交換器11、アキュムレータ3を介して圧縮機
低圧側へ戻る。
Next, the flow of the refrigerant during the heating and heat storage operation will be described. The high-pressure and high-temperature gas refrigerant discharged from the displacement control compressor 1 and the constant speed compressors 2a and 2b reaches the heat storage device 300 via the heat storage circuit connection valve 42 from the heat storage circuit solenoid valve 16b. Here, by opening the heat storage circuit electromagnetic valve 63a, the high-pressure high-temperature gas refrigerant is guided to the heat storage heat exchanger 61 to exchange heat with water, and raise the water temperature. The condensed liquid refrigerant is supplied to the heat storage circuit expansion valve 62 and the heat storage circuit solenoid valve 63 in the open state.
c, returning to the outdoor unit 100 via the liquid connection pipe 41, the gas-liquid heat exchanger 11, the receiver 10, the supercoolers 8a, 8b
After that, the outdoor heat exchanger 6 is expanded by the outdoor expansion valves 7a and 7b.
Evaporate at a, 6b. The vaporized gas refrigerant is supplied to the four-way valve 5,
It returns to the compressor low pressure side via the gas-liquid heat exchanger 11 and the accumulator 3.

【0032】外気温度が低く蒸発圧力が低下する条件で
は、室外膨張弁7b前の過冷却液冷媒を分岐して、容量
制御圧縮機1、一定速圧縮機2a、2b各々に対して、
容量制御圧縮機用液インジェクション膨張弁20、一定
速圧縮機用液インジェクション膨張弁21a、21b、
容量制御圧縮機用液インジェクション電磁弁22、一定
速圧縮機用液インジェクション電磁弁23a、23b、
容量制御圧縮機用液インジェクションキャピラリーチュ
ーブ24、一定速圧縮機用液インジェクションキャピラ
リーチューブ25a、25bを介して接続し、液インジ
ェクションを行なう。このとき、室外膨張弁7a、7b
は、吸入温度センサー34、低圧圧力センサー37より
演算される過熱度が目標値となるように制御される。ま
た、一定速圧縮機用液インジェクション電磁弁23a、
23bは運転している圧縮機のみ開弁するとともに、容
量制御圧縮機用液インジェクション膨張弁20、一定速
圧縮機用液インジェクション膨張弁21a、21bの開
度を制御して、圧縮機の吐出温度が適正になるように液
インジェクション量をコントロールする。
Under conditions where the outside air temperature is low and the evaporating pressure is low, the supercooled liquid refrigerant in front of the outdoor expansion valve 7b is branched and supplied to the capacity control compressor 1 and the constant speed compressors 2a and 2b.
The liquid injection expansion valve 20 for the displacement control compressor, the liquid injection expansion valves 21a and 21b for the constant speed compressor,
The liquid injection solenoid valve 22 for the displacement control compressor, the liquid injection solenoid valves 23a and 23b for the constant speed compressor,
The liquid injection capillary tube 24 for the capacity control compressor and the liquid injection capillary tubes 25a and 25b for the constant speed compressor are connected to perform liquid injection. At this time, the outdoor expansion valves 7a, 7b
Is controlled so that the degree of superheat calculated by the suction temperature sensor 34 and the low pressure sensor 37 becomes a target value. Also, the liquid injection solenoid valve 23a for the constant speed compressor,
23b opens only the operating compressor and controls the opening degree of the liquid injection expansion valve 20 for the capacity control compressor and the liquid injection expansion valves 21a and 21b for the constant speed compressor, so that the discharge temperature of the compressor is controlled. Control the liquid injection volume so that is appropriate.

【0033】以上のように液インジェクション圧縮機を
採用したので、外気温度が低く圧縮機の吸入冷媒密度が
低下して冷媒循環量が減少するような条件でも吐出側の
冷媒流量が確保されるので、高い暖房能力を維持するこ
とができ、水温を上昇させて蓄熱量を確保することがで
きる。
Since the liquid injection compressor is employed as described above, the flow rate of the refrigerant on the discharge side can be ensured even under conditions where the outside air temperature is low, the density of the refrigerant sucked into the compressor is reduced, and the refrigerant circulation amount is reduced. Thus, a high heating capacity can be maintained, and the temperature of the water can be raised to secure the heat storage amount.

【0034】次に、暖房蓄熱利用運転時の冷媒の流れを
示す。容量制御圧縮機1、一定速圧縮機2a、2bを吐
出した高圧高温のガス冷媒は四方弁5を経由し、ガス接
続配管40より室内機200a、200b、200cに
搬送され、室内熱交換器50a、50b、50cにて凝
縮放熱して暖房を行なう。凝縮液冷媒はこの後蓄熱機3
00にて蓄熱回路用膨張弁62により絞られて、蓄熱熱
交換器61にてお湯と熱交換して蒸発する。このとき蓄
熱回路用電磁弁63aが開弁されており、ガス冷媒は蓄
熱ガス接続配管42より室外機100へ戻り、蓄熱回路
用電磁弁16b、ガス液熱交換器11、アキュムレータ
3を介して圧縮機低圧側へ戻る。この時、室外膨張弁7
a、7bは全閉として全く室外熱交換器6a、6bを使
用せず、室外送風機9a、9bも停止する。
Next, the flow of the refrigerant during the heating / heat storage operation will be described. The high-pressure and high-temperature gas refrigerant discharged from the displacement control compressor 1 and the constant speed compressors 2a and 2b passes through the four-way valve 5 and is conveyed from the gas connection pipe 40 to the indoor units 200a, 200b and 200c, and the indoor heat exchanger 50a , 50b and 50c to condense and radiate heat for heating. The condensed liquid refrigerant is then stored in the regenerator 3
At 00, it is throttled by the heat storage circuit expansion valve 62 and exchanges heat with hot water in the heat storage heat exchanger 61 to evaporate. At this time, the heat storage circuit solenoid valve 63a is open, the gas refrigerant returns to the outdoor unit 100 from the heat storage gas connection pipe 42, and is compressed through the heat storage circuit solenoid valve 16b, the gas-liquid heat exchanger 11, and the accumulator 3. Return to machine low pressure side. At this time, the outdoor expansion valve 7
Since a and 7b are fully closed, the outdoor heat exchangers 6a and 6b are not used at all, and the outdoor blowers 9a and 9b are also stopped.

【0035】本運転では、蓄熱熱交換器61よりお湯を
熱源として利用するので、外気温度が低くても冷媒の蒸
発のために大きな熱量が得られるので、蒸発圧力が高く
なり圧縮機吸入ガス冷媒の密度が高くなるので、冷媒循
環量が増大して非常に高い能力が得られるとともに、温
風の立上りも早い。また、室外熱交換器6a、6bを使
用しないので、着霜することが無く除霜運転を行なう必
要が無い。さらに室外送風機9a、9bも停止するの
で、消費電力が低減される。ここで、暖房能力を抑えて
容量制御圧縮機1の運転容量、一定速圧縮機2a、2b
の運転台数を調整して暖房非利用運転時よりも少ない圧
縮機運転容量で運転することで、暖房能力増大分を運転
消費電力の低減に当てることができ、高い暖房能力を発
揮しながら省電力効果をも得ることができる。
In this operation, hot water is used as a heat source by the heat storage heat exchanger 61. Therefore, even if the outside air temperature is low, a large amount of heat is obtained for evaporation of the refrigerant. As the density of the air becomes high, the amount of circulating refrigerant increases, so that a very high capacity can be obtained, and the rise of warm air is quick. Also, since the outdoor heat exchangers 6a and 6b are not used, there is no need to perform a defrosting operation without frost formation. Furthermore, since the outdoor blowers 9a and 9b are also stopped, power consumption is reduced. Here, the heating capacity is suppressed, and the operating capacity of the capacity control compressor 1, the constant speed compressors 2a, 2b
By adjusting the number of operating units and operating with a smaller compressor operating capacity than during non-heating operation, the increased heating capacity can be used to reduce operating power consumption, and power can be saved while exhibiting high heating capacity. An effect can also be obtained.

【0036】暖房蓄熱利用運転においても、運転を開始
してしばらくの間水温が高い時は、蒸発ガス冷媒が過熱
されるため圧縮機吸入部の過熱度も大きくなり、吐出温
度が上昇してしまう。そこで、ここでも暖房蓄熱運転同
様液インジェクションを使用して、各圧縮機の吐出温度
が適正となるように液インジェクション量を制御するこ
とで、高温部の熱損失を低減して運転効率を向上すると
ともに、圧縮機電動機の絶縁被覆や冷凍機油など有機材
料の劣化を低減することができ、機器の信頼性を向上で
きる。
Also in the heating and heat storage operation, when the water temperature is high for a while after the operation is started, the evaporative gas refrigerant is overheated, so that the degree of superheat of the compressor suction section is increased and the discharge temperature rises. . In this case, too, the liquid injection is used in the same manner as in the heating and heat storage operation, and the amount of liquid injection is controlled so that the discharge temperature of each compressor becomes appropriate, thereby reducing the heat loss in the high-temperature portion and improving the operation efficiency. At the same time, it is possible to reduce the deterioration of the organic material such as the insulating coating of the compressor motor and the refrigerating machine oil, thereby improving the reliability of the device.

【0037】次に、暖房蓄熱非利用運転時の冷媒の流れ
を示す。室内熱交換器50a、50b、50cにて凝縮
放熱して暖房を行なうまでは、暖房蓄熱利用運転と同じ
であるが、本運転時は蓄熱回路用電磁弁63c開弁によ
り液冷媒を室外機100に戻し、あとは暖房蓄熱運転時
と同様に室外熱交換器6a、6bにて蒸発させ圧縮機低
圧側へ戻す。
Next, the flow of the refrigerant during the heating / heat storage non-use operation will be described. The operation is the same as the operation using the heat storage and storage operation until heating is performed by condensing and radiating heat in the indoor heat exchangers 50a, 50b and 50c. However, in this operation, the liquid refrigerant is discharged by the outdoor unit 100 by opening the solenoid valve 63c for the heat storage circuit. Then, as in the case of the heating and heat storage operation, the refrigerant is evaporated in the outdoor heat exchangers 6a and 6b and returned to the compressor low pressure side.

【0038】暖房蓄熱運転時と同様に外気温度が低く蒸
発圧力が低下する条件では、容量制御圧縮機用液インジ
ェクション膨張弁20、一定速圧縮機用液インジェクシ
ョン膨張弁21a、21bにより液インジェクションを
行ない、圧縮機の吐出温度が適正になるように液インジ
ェクション量をコントロールする。これにより、暖房蓄
熱運転と同様、外気温度が低く圧縮機の吸入冷媒密度が
低下して冷媒循環量が減少するような条件でも、高い暖
房能力を維持することができる。蓄熱利用除霜運転時の
冷媒の流れは冷房蓄熱運転と同じであり、蓄熱非利用除
霜運転時の冷媒の流れは冷房非利用運転時と同じにな
る。
Under conditions where the outside air temperature is low and the evaporating pressure is low, as in the heating and heat storage operation, the liquid injection is performed by the liquid injection expansion valve 20 for the displacement control compressor and the liquid injection expansion valves 21a and 21b for the constant speed compressor. The amount of liquid injection is controlled so that the discharge temperature of the compressor becomes appropriate. As a result, similarly to the heating and heat storage operation, high heating capacity can be maintained even under conditions where the outside air temperature is low, the density of refrigerant sucked into the compressor is reduced, and the amount of circulating refrigerant is reduced. The flow of the refrigerant during the heat storage utilizing defrosting operation is the same as in the cooling heat storage operation, and the flow of the refrigerant during the heat storage non-using defrosting operation is the same as during the cooling non-using operation.

【0039】次に、本実施の形態の暖房運転時の運転モ
ードの切り換え方法を、図2にしたがって説明する。図
2は、本発明の第1の実施の形態における暖房運転の状
態を示しており、一日の運転における暖房能力と消費電
力と蓄熱量を代表して示す水温の変化、および運転モー
ドの切り変わりの様子を示している。夜間の蓄熱運転に
ついて説明する。タイマーより予め設定された時刻(本
例では22時)になると、暖房蓄熱運転を開始する。こ
れにより徐々に蓄熱槽内の水温が上昇していき、これが
所定の値に達した時に暖房蓄熱運転を終了する。
Next, a method of switching the operation mode during the heating operation according to the present embodiment will be described with reference to FIG. FIG. 2 shows a state of the heating operation in the first embodiment of the present invention, in which a change in water temperature representing heating capacity, power consumption, and heat storage amount in one-day operation, and switching of the operation mode. This shows a change. The nighttime heat storage operation will be described. At a preset time (22:00 in this example) from the timer, the heating / heat storage operation is started. As a result, the water temperature in the heat storage tank gradually increases, and when the water temperature reaches a predetermined value, the heating heat storage operation ends.

【0040】次に昼間の空調運転について説明する。早
朝の運転開始時は外気温度も低く空調負荷が大きいの
で、図中の能力を示すグラフのように大きな能力が必要
である。本実施の形態ではまず暖房蓄熱利用運転モード
にて運転を開始する。これにより、前述のとおり、高い
暖房能力を発揮しながら省電力効果を得ることができ、
点線が示す蓄熱非利用の場合の消費電力よりも低い消費
電力で運転することができる。暖房蓄熱利用運転を継続
していくと、蓄熱を熱源として利用した結果水温が低下
していく。これが所定の温度(図中の蓄熱利用運転一旦
非利用移行温度)に達したとき、一旦運転モードを暖房
蓄熱非利用運転に移行する。早朝のピーク負荷に比べ日
中は気温も上昇して空調負荷が減るので、空調能力が低
い暖房蓄熱非利用運転になっても空調能力を適合範囲と
することができる。
Next, the air conditioning operation in the daytime will be described. When the operation is started in the early morning, the outside air temperature is low and the air conditioning load is large, so a large capacity is required as shown in the graph showing the capacity in the figure. In the present embodiment, the operation is first started in the heating / heat storage operation mode. Thereby, as described above, it is possible to obtain a power saving effect while exhibiting a high heating capacity,
The operation can be performed with lower power consumption than the power consumption when the heat storage is not used as indicated by the dotted line. When the heating / heat storage operation is continued, the water temperature decreases as a result of using the heat storage as a heat source. When this reaches a predetermined temperature (heat storage use operation once non-use transition temperature in the figure), the operation mode is temporarily shifted to the heating heat storage non-use operation. Since the temperature rises during the day and the air-conditioning load decreases compared to the peak load in the early morning, the air-conditioning capacity can be set in the adaptable range even when the heating / heat storage non-use operation has a low air-conditioning capacity.

【0041】なお本実施の形態においては、暖房蓄熱非
利用運転であっても、液インジェクション利用の効果に
より、低外気温時の暖房能力は高い。この暖房蓄熱非利
用運転時の暖房能力は、暖房蓄熱利用運転時の概ね85
%以上とすることで、移行時の暖房能力較差を発生させ
ることが無く、快適性を維持した運転をすることができ
る。本比率に蓄熱利用運転時と蓄熱非利用運転時の能力
の比率を設定することで、ピーク負荷時の空調時間帯の
蓄熱利用運転時間を空調時間の約50%程度とすること
ができ、蓄熱槽の小型化と快適性の観点から適切な比率
とすることができる。
In this embodiment, even in the non-use operation of heating and heat storage, the heating capacity at a low outside air temperature is high due to the effect of using the liquid injection. The heating capacity at the time of the operation not using the heat storage is approximately 85 in the operation using the heat storage.
% Or more, the operation can be performed while maintaining comfort without generating a heating capacity difference at the time of transition. By setting this ratio to the ratio of the capacity between the operation using heat storage and the operation not using heat storage, the heat storage use operation time in the air conditioning time zone during peak load can be about 50% of the air conditioning time. An appropriate ratio can be set from the viewpoint of miniaturization and comfort of the tank.

【0042】暖房非利用運転を継続して、夕方徐々に外
気温度が低下して暖房負荷が増大してきたとき、本実施
の形態では再び暖房蓄熱利用運転モードへ移行して、暖
房能力の高い運転を行なう。このタイミングについて
は、本実施の形態では予め設定されている時刻になった
ときに運転モードの切り換えを行なう。
When the heating non-use operation is continued and the outside air temperature gradually decreases in the evening and the heating load increases, in the present embodiment, the operation mode is shifted again to the heating and heat storage operation mode, and the operation with a high heating capacity is performed. Perform Regarding this timing, in the present embodiment, the operation mode is switched when a preset time comes.

【0043】北海道地方では冬季の電力ピークが夕方の
16時から18時の間に発生しており、本実施の形態で
はこの時間帯を含むように、暖房蓄熱利用運転を16時
より開始するので、電力ピーク発生時間帯に消費電力の
低い運転を行なうため、ピーク消費電力の低減に貢献す
る。暖房利用運転に再移行後は、蓄熱利用温度の下限で
ある蓄熱利用運転終了温度に達した時点で、再度蓄熱非
利用運転に切り変わる。 以上のように、外気温度が低
くても、暖房空調負荷が比較的小さくなる日中に暖房能
力が負荷の低下に見合う程度に能力が維持可能な、液イ
ンジェクション圧縮機を適用した蓄熱を利用しない運転
を行なうことで、蓄熱を利用する運転を朝夕に分割する
ことができるため、空調全時間に暖房蓄熱利用運転を行
なう場合よりも蓄熱容量が少なくて済み、機器の設置面
積の小型化、運転質量の軽量化を図ることができる。ま
た、16時〜18時の電力ピーク発生時間帯に消費電力
の低い運転を行なうため、ピーク消費電力の低減に効果
的であり、電力平準化を促進するのに有効である。
In the Hokkaido region, the power peak in winter occurs between 16:00 and 18:00 in the evening. In the present embodiment, the heating / heat storage operation is started from 16:00 to include this time zone. Since the operation with low power consumption is performed during the peak generation time, it contributes to the reduction of the peak power consumption. After returning to the heating use operation, when the heat storage use operation end temperature, which is the lower limit of the heat storage use temperature, is reached, the operation switches to the heat storage non-use operation again. As described above, even when the outside air temperature is low, the heat storage using the liquid injection compressor, which can maintain the heating capacity during the day when the heating / air-conditioning load is relatively small can be maintained to the extent that the load decreases, is not used. Since the operation using heat storage can be divided into morning and evening by performing the operation, the heat storage capacity can be reduced as compared with the case where the operation using the heat storage is used for the entire air conditioning, and the installation area of the equipment can be reduced and the operation can be reduced. The weight can be reduced. Further, since the operation with low power consumption is performed during the power peak generation time period from 16:00 to 18:00, it is effective in reducing the peak power consumption and effective in promoting the power leveling.

【0044】次に、本発明の第2の実施の形態について
説明する。図3は本発明による第2の実施の形態におけ
る冷凍サイクル構成を示すブロック図を示している。符
号については、前記本発明の第1の実施の形態と同様で
ある。ただし容量制御圧縮機1、一定速圧縮機2a、2
bは、液インジェクションタイプでない、通常のスクロ
ール型圧縮機を採用する。そのため液インジェクション
に関する冷媒回路を有していないのが、第1の実施の形
態と異なる。。
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram showing a refrigeration cycle configuration according to the second embodiment of the present invention. The reference numerals are the same as those in the first embodiment of the present invention. However, the capacity control compressor 1, the constant speed compressors 2a, 2
b employs a normal scroll compressor which is not a liquid injection type. Therefore, it is different from the first embodiment in that it does not have a refrigerant circuit for liquid injection. .

【0045】次に、本発明の第2の実施の形態の動作を
説明する。本実施の形態は基本的には本発明の第1の実
施の形態において、液インジェクションのみ無くした場
合と同じであるので、それらと異なる運転モードとなる
暖房蓄熱併用運転についてのみ説明する。
Next, the operation of the second embodiment of the present invention will be described. This embodiment is basically the same as the first embodiment of the present invention in the case where only liquid injection is eliminated, and therefore only the combined heating and storage operation, which is an operation mode different from those, will be described.

【0046】以下に暖房蓄熱併用運転の冷媒の流れを示
す。容量制御圧縮機1、一定速圧縮機2a、2bを吐出
した高圧高温のガス冷媒は四方弁5を経由し、ガス接続
配管40より室内機200a、200b、200cに搬
送され、室内熱交換器50a、50b、50cにて凝縮
放熱して暖房を行なう。凝縮液冷媒はこの後、以下の2
つに別れて流れる。
The flow of the refrigerant in the combined heating and storage operation will be described below. The high-pressure and high-temperature gas refrigerant discharged from the displacement control compressor 1 and the constant speed compressors 2a and 2b passes through the four-way valve 5 and is conveyed from the gas connection pipe 40 to the indoor units 200a, 200b and 200c, and the indoor heat exchanger 50a , 50b and 50c to condense and radiate heat for heating. The condensed liquid refrigerant is then
It flows into two parts.

【0047】一方は、蓄熱機300にて蓄熱回路用膨張
弁62により絞られて、蓄熱熱交換器61にてお湯と熱
交換して蒸発し、蓄熱回路用電磁弁63aから蓄熱ガス
接続配管42より室外機100へ戻り、蓄熱回路用電磁
弁16b、ガス液熱交換器11、アキュムレータ3を介
して圧縮機低圧側へ戻るものである。
One of them is throttled by the heat storage circuit expansion valve 62 in the heat storage device 300, exchanges heat with hot water in the heat storage heat exchanger 61, evaporates, and is connected to the heat storage gas connection pipe 42 from the heat storage circuit electromagnetic valve 63a. It returns to the outdoor unit 100 and returns to the compressor low pressure side via the heat storage circuit solenoid valve 16b, the gas-liquid heat exchanger 11, and the accumulator 3.

【0048】他方は、蓄熱回路用電磁弁63cを経由し
て室外機100に戻り、ガス液熱交換器11、レシーバ
10、過冷却器8a、8bの後、室外膨張弁7a、7b
で膨張して室外熱交換器6a、6bで蒸発する。蒸発し
たガス冷媒は、四方弁5、ガス液熱交換器11、アキュ
ムレータ3を介して圧縮機低圧側へ戻る。
The other returns to the outdoor unit 100 via the heat storage circuit solenoid valve 63c, and after the gas-liquid heat exchanger 11, the receiver 10, and the supercoolers 8a and 8b, the outdoor expansion valves 7a and 7b
And evaporates in the outdoor heat exchangers 6a and 6b. The evaporated gas refrigerant returns to the compressor low-pressure side via the four-way valve 5, the gas-liquid heat exchanger 11, and the accumulator 3.

【0049】以上のように冷媒が流れるので、液冷媒の
蒸発熱源としては蓄熱および空気の双方から吸熱してい
ることになる。これにより、全く蓄熱を熱源として利用
しなかった場合、すなわち第1の実施の形態における暖
房蓄熱非利用運転の場合と比較して、外気の影響を受け
にくくなり比較的高い暖房能力を得ることができる。
Since the refrigerant flows as described above, the liquid refrigerant absorbs heat from both heat storage and air as a heat source for evaporation. As a result, compared to the case where no heat storage is used as a heat source, that is, compared to the case of the heating heat storage non-use operation in the first embodiment, it is less likely to be affected by outside air, and a relatively high heating capacity can be obtained. it can.

【0050】次に、本実施の形態の暖房運転時の運転モ
ードの切り換え方法を、図4にしたがって説明する。図
4は、第2の実施の形態における暖房運転の状態を示し
ており、第1の実施の形態の運転状態を示す図2との差
異は、一旦暖房蓄熱利用運転を昼間に移行するときに、
暖房蓄熱併用運転を行なっている点である。暖房蓄熱併
用運転は、熱源として蓄熱と空気熱交の両方を使用する
ため、低外気温時でも比較的暖房能力は高い。これによ
り、第1の実施の形態同様、外気温度が低くても、暖房
空調負荷が比較的小さくなる日中に暖房能力が負荷の低
下に見合う程度に能力が維持可能な、蓄熱熱源を空気熱
源と併用利用する運転を行なうことで、蓄熱を専用に利
用する運転を朝夕に分割することができるため、空調全
時間に暖房蓄熱利用運転を行なう場合よりも蓄熱容量が
少なくて済み、機器の設置面積の小型化、運転質量の軽
量化を図ることができる。但し蓄熱容量については蓄熱
併用運転があるため、第1の実施の形態よりは多少大き
くすることが良い。一方、液インジェクション圧縮機や
液インジェクション冷媒回路は不要となり、部品点数を
少なくできる。
Next, a method of switching the operation mode during the heating operation according to the present embodiment will be described with reference to FIG. FIG. 4 shows the state of the heating operation in the second embodiment. The difference from FIG. 2 showing the operation state of the first embodiment is that when the operation is temporarily shifted from the heating and heat storage operation to daytime. ,
The point is that the operation combined with heating and heat storage is performed. The heating / storage combined operation uses both heat storage and air heat exchange as a heat source, and therefore has a relatively high heating capacity even at a low outside air temperature. As a result, as in the first embodiment, even when the outside air temperature is low, the heat storage heat source can be maintained at a sufficient level during the day when the heating / air-conditioning load is relatively small, so that the heat storage heat source can keep up with the decrease in the load. Since the operation that uses heat storage exclusively can be divided into morning and evening, the heat storage capacity can be reduced compared to the case where the heating and heat storage operation is performed during the entire air-conditioning period. The area can be reduced and the operating mass can be reduced. However, the heat storage capacity may be slightly larger than that of the first embodiment because the heat storage combined operation is performed. On the other hand, the liquid injection compressor and the liquid injection refrigerant circuit become unnecessary, and the number of parts can be reduced.

【0051】次に、本発明の第3の実施の形態を示す。
図5は、第3の実施の形態における暖房運転の状態を示
しており、第1の実施の形態および第2の実施の形態の
ように、暖房蓄熱利用運転から一旦暖房蓄熱非利用運転
あるいは暖房蓄熱併用運転に切り換わるものにおいて、
図中能力が高負荷時(細線)に対し低負荷時に対応なっ
た場合の動作を示している。
Next, a third embodiment of the present invention will be described.
FIG. 5 shows a state of the heating operation in the third embodiment. As in the first embodiment and the second embodiment, the heating and heat storage non-use operation or the heating and heat storage non-use operation or the heating operation is temporarily performed. In the case of switching to combined heat storage operation,
The figure shows an operation in the case where the capacity corresponds to a high load (thin line) at a low load.

【0052】負荷が小さく暖房能力に余裕がある場合、
蓄熱利用量が減ってしまうため、空調運転終了時点で蓄
熱を使い切らずに余ってしまう可能性がる。本実施の形
態では、図5に示すとおり、所定の時間を超えて水温が
高かった場合、暖房蓄熱利用運転を切りかえる制御を行
なわず、そのまま蓄熱利用を終了まで続けるものであ
る。
When the load is small and the heating capacity has a margin,
Since the amount of heat storage is reduced, there is a possibility that the heat storage will not be used up at the end of the air conditioning operation but will be left over. In the present embodiment, as shown in FIG. 5, when the water temperature is higher than a predetermined time, the control for switching the heating and heat storage use operation is not performed, and the heat storage use is continued until the end.

【0053】これにより、中間期など負荷が小さいと
き、途中で非利用運転を行なわないので、蓄熱利用率が
低くて蓄熱を残してしまうことが無くなり、熱ロスによ
る無駄な電力の消費を少なくすることができる。
Thus, when the load is small, for example, during the interim period, the unused operation is not performed on the way, so that the heat storage utilization rate is low and the heat storage is not left, thereby reducing wasteful power consumption due to heat loss. be able to.

【0054】次に、本発明の第4および第5の実施の形
態を示す。図6は、第4の実施の形態における暖房運転
の状態を示しており、図7は第5の実施の形態における
暖房運転の状態を示している。本実施の形態は、本発明
の第1の実施の形態における図2と同じく、暖房蓄熱利
用運転から一旦暖房蓄熱利用運転を止め、再度暖房蓄熱
利用運転に切り換わる場合の判定方法を示している。双
方とも暖房能力が低い時に暖房蓄熱利用運転を行なうよ
うになっており、図6は例えばリモートコントローラに
て設定される室内設定温度と吸込み温度の差により必要
能力を演算した結果として扱い、これが図中に示す蓄熱
利用一旦移行能力以下になったときに暖房蓄熱非利用運
転に移行し、また夕方空調負荷が増え図中蓄熱利用運転
再開能力を超えたとき、暖房蓄熱利用運転に切換える。
Next, fourth and fifth embodiments of the present invention will be described. FIG. 6 shows a state of the heating operation in the fourth embodiment, and FIG. 7 shows a state of the heating operation in the fifth embodiment. This embodiment shows a determination method in a case where the heating and heat storage operation is temporarily stopped from the heating and heat storage operation and then switched to the heating and heat storage operation again, similarly to FIG. 2 in the first embodiment of the present invention. . In both cases, the heating heat storage operation is performed when the heating capacity is low, and FIG. 6 illustrates a case where the required capacity is calculated based on a difference between an indoor set temperature and a suction temperature set by, for example, a remote controller. When the heat storage use temporarily becomes lower than the transfer capacity shown in the figure, the operation shifts to the heating heat storage non-use operation, and when the evening air conditioning load increases and exceeds the heat storage use operation restart ability in the figure, the operation is switched to the heating heat storage use operation.

【0055】一方、図7は暖房能力を圧縮機運転容量で
判断するもので、圧縮機運転周波数の合計が、図中の蓄
熱非利用運転上限周波数を超えた場合は暖房蓄熱利用運
転を行ない、それ以下の場合は暖房蓄熱非利用運転を行
なう。暖房能力すなわち負荷を示す数値により切換える
ので、より確実に暖房能力が必要な時に暖房蓄熱利用運
転を行なうことができる。
On the other hand, FIG. 7 is a diagram for judging the heating capacity based on the compressor operating capacity. When the total of the compressor operating frequencies exceeds the upper limit frequency of the heat storage non-use operation in the figure, the heating / heat storage operation is performed. If it is less than that, the heating / heat storage non-use operation is performed. Since the switching is performed based on the heating capacity, that is, the numerical value indicating the load, the heating / heat storage operation can be performed more reliably when the heating capacity is required.

【0056】以上の実施の形態によれば、蓄熱を利用す
る運転を朝夕に分割することができるため、空調全時間
に暖房蓄熱利用運転を行なう場合よりも蓄熱容量が少な
くて済み、機器の設置面積の小型化、運転質量の軽量化
を図ることができる。
According to the above embodiment, since the operation using heat storage can be divided into morning and evening, the heat storage capacity can be reduced as compared with the case where the heating and heat storage operation is performed during the entire air-conditioning period. The area can be reduced and the operating mass can be reduced.

【0057】また、暖房運転において早朝など暖房負荷
が高い早朝に高暖房能力を発揮するとともに、夕方の電
力ピークが発生する時間帯に消費電力を低減した運転が
可能なので、電力の平準化に貢献することができる。
Further, in the heating operation, high heating capacity is exhibited in the early morning when the heating load is high, such as in the early morning, and operation can be performed with reduced power consumption during the time when the peak power occurs in the evening, contributing to power leveling. can do.

【0058】さらに、中間期など負荷が小さいときに途
中で蓄熱非利用運転を行なわないので、蓄熱利用率が低
くて蓄熱を残してしまうことが無くなり、熱ロスによる
無駄な電力の消費を少なくすることができる。
Further, since the heat storage non-use operation is not performed in the middle when the load is small, such as in the intermediate period, the heat storage utilization rate is low, so that heat storage is not left, and wasteful power consumption due to heat loss is reduced. be able to.

【0059】さらに、暖房負荷が小さく蓄熱消費量が少
ない場合を検知して、蓄熱非利用運転を行なうことなく
蓄熱利用運転を続けるので、空調運転が終了しても蓄熱
が残存していることが無くなるので、蓄熱槽周囲への放
熱による熱ロスを少なくすることができ、運転効率が向
上される。
Further, since it is detected that the heating load is small and the heat storage consumption is small and the heat storage use operation is continued without performing the heat storage non-use operation, the heat storage may remain even after the air conditioning operation ends. Since there is no heat loss, heat loss due to heat radiation around the heat storage tank can be reduced, and operation efficiency is improved.

【0060】[0060]

【発明の効果】以上述べたように本発明によれば、寒冷
地域においても、十分な暖房能力を発揮するとともに、
蓄熱容量が少なくて済み、機器の設置面積の小型化、運
転質量の軽量化を図ることができる。
As described above, according to the present invention, sufficient heating capacity can be exhibited even in cold regions,
The heat storage capacity can be reduced, and the installation area of the device can be reduced and the operating mass can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における冷凍サイクル構
成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a refrigeration cycle according to an embodiment of the present invention.

【図2】本発明の一実施の形態における暖房運転の状態
を示すグラフ。
FIG. 2 is a graph showing a state of a heating operation in one embodiment of the present invention.

【図3】本発明の他の実施の形態における冷凍サイクル
構成を示すブロック図。
FIG. 3 is a block diagram showing a configuration of a refrigeration cycle according to another embodiment of the present invention.

【図4】本発明の他の実施の形態における暖房運転の状
態を示すグラフ。
FIG. 4 is a graph showing a state of a heating operation according to another embodiment of the present invention.

【図5】本発明のさらに他の実施の形態における暖房運
転の状態を示す
FIG. 5 shows a state of a heating operation in still another embodiment of the present invention.

【図6】本発明のさらに他の実施の形態における暖房運
転の状態を示すグラフ。
FIG. 6 is a graph showing a state of a heating operation in still another embodiment of the present invention.

【図7】本発明のさらに他の実施の形態における暖房運
転の状態を示すグラフ。
FIG. 7 is a graph showing a state of a heating operation in still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…容量制御圧縮機、2a、2b…一定速圧縮機、3…
アキュムレータ、4…オイルセパレータ、5…四方弁、
6a、6b…室外熱交換器、7a、7b…室外膨張弁、
8a、8b…過冷却器、9a、9b…室外送風機、10
…レシーバ、11…ガス液熱交換器、12…ガス阻止
弁、13…液阻止弁、14…蓄熱ガス阻止弁、15…ガ
スバイパス、16a、16b…蓄熱回路用電磁弁、20
…容量制御圧縮機用液インジェクション膨張弁、21
a、21b…一定速圧縮機用液インジェクション膨張
弁、22…容量制御圧縮機用液インジェクション電磁
弁、23a、23b…一定速圧縮機用液インジェクショ
ン電磁弁、24…容量制御圧縮機用液インジェクション
キャピラリーチューブ、25a、25b…一定速圧縮機
用液インジェクションキャピラリーチューブ、30…室
外制御装置、31…室外温度センサー、32…容量制御
圧縮機用吐出温度センサー、33a、33b…一定速圧
縮機用吐出温度センサー、34…吸入温度センサー、3
6…高圧圧力センサー、37…低圧圧力センサー、40
…ガス接続配管、41…液接続配管、42…蓄熱ガス接
続配管、45…伝送線、50a、50b、50c…室内
熱交換器、51a、51b、51c…室内膨張弁、52
a、52b、52c…室内送風機、53a、53b、5
3c…室内制御装置、54a、54b、54c…室内吸
込温度センサー、55a、55b、55c…リモートコ
ントローラー、60…蓄熱槽、61…蓄熱熱交換器、6
2…蓄熱回路用膨張弁、63a、63b…蓄熱回路用電
磁弁、65…蓄熱制御装置、66…蓄熱媒体温度センサ
ー、蓄熱コントローラー67、100…室外機、200
a、200b、200c…室内機、300…蓄熱機。
1 ... capacity control compressor, 2a, 2b ... constant speed compressor, 3 ...
Accumulator, 4 ... oil separator, 5 ... four-way valve,
6a, 6b ... outdoor heat exchanger, 7a, 7b ... outdoor expansion valve,
8a, 8b: supercooler, 9a, 9b: outdoor blower, 10
... Receiver, 11 ... Gas liquid heat exchanger, 12 ... Gas check valve, 13 ... Liquid check valve, 14 ... Heat storage gas check valve, 15 ... Gas bypass, 16a, 16b ... Solenoid valve for heat storage circuit, 20
... Liquid injection expansion valve for displacement control compressor, 21
a, 21b: Liquid injection expansion valve for constant speed compressor, 22: Liquid injection solenoid valve for displacement control compressor, 23a, 23b: Liquid injection solenoid valve for constant speed compressor, 24: Liquid injection capillary for displacement control compressor Tubes, 25a, 25b: Liquid injection capillary tube for constant speed compressor, 30: Outdoor controller, 31: Outdoor temperature sensor, 32: Discharge temperature sensor for displacement control compressor, 33a, 33b: Discharge temperature for constant speed compressor Sensor, 34 ... suction temperature sensor, 3
6 high pressure sensor, 37 low pressure sensor, 40
... gas connection pipe, 41 ... liquid connection pipe, 42 ... heat storage gas connection pipe, 45 ... transmission line, 50a, 50b, 50c ... indoor heat exchanger, 51a, 51b, 51c ... indoor expansion valve, 52
a, 52b, 52c ... indoor blowers, 53a, 53b, 5
3c: indoor control device, 54a, 54b, 54c: indoor suction temperature sensor, 55a, 55b, 55c: remote controller, 60: heat storage tank, 61: heat storage heat exchanger, 6
2 ... Expansion valve for heat storage circuit, 63a, 63b ... Solenoid valve for heat storage circuit, 65 ... Heat storage control device, 66 ... Heat storage medium temperature sensor, heat storage controller 67, 100 ... Outdoor unit, 200
a, 200b, 200c: indoor unit, 300: heat storage unit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 13/00 351 F25B 13/00 351 (72)発明者 土橋 一浩 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 山田 訓良 静岡県清水市村松390番地 日立清水エン ジニアリング株式会社内 Fターム(参考) 3L060 AA03 AA05 CC04 CC08 DD07 EE01 EE09 EE10 EE41 EE45 3L071 CC04 CE03 CF02 CG00 CH06 CJ00 3L092 AA01 AA02 BA04 BA28 DA19 EA02 EA15 FA22 FA23 FA32──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F25B 13/00 351 F25B 13/00 351 (72) Inventor Kazuhiro Dobashi 390 Muramatsu, Shimizu, Shizuoka Prefecture Hitachi, Ltd. Air conditioning system Shimizu Production Headquarters (72) Inventor Noriyoshi Yamada 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Hitachi Shimizu Engineering Co., Ltd. F-term (reference) 3L060 AA03 AA05 CC04 CC08 DD07 EE01 EE09 EE10 EE41 EE45 3L071 CC04 CE03 CF02 CG00 CH06 CJ00 3L092 AA01 AA02 BA04 BA28 DA19 EA02 EA15 FA22 FA23 FA32

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、室外熱交換器を有した室外機と、
蓄熱熱交換器と、室内熱交換器を有した室内機と、を備
え、暖房蓄熱運転、蓄熱利用暖房運転、蓄熱非利用暖房
運転を切換える蓄熱式ヒートポンプ空気調和機におい
て、 前記蓄熱利用暖房運転で運転を開始し、空調負荷が比較
的小さいと判定されたときは前記蓄熱非利用暖房運転に
切換え、その後蓄熱利用暖房運転を行なうべきだと判定
されたときは再び前記蓄熱利用暖房運転を行うことを特
徴とする寒冷地用蓄熱式ヒートポンプ空気調和機。
An outdoor unit having a compressor and an outdoor heat exchanger;
A heat storage heat pump air conditioner that includes a heat storage heat exchanger and an indoor unit having an indoor heat exchanger, and switches between a heating heat storage operation, a heat storage use heating operation, and a heat storage non-use heating operation. Starting the operation, when it is determined that the air conditioning load is relatively small, the operation is switched to the heat storage non-heating heating operation, and thereafter, when it is determined that the heat storage heating operation should be performed, the heat storage heating operation is performed again. A regenerative heat pump air conditioner for cold climates.
【請求項2】請求項1に記載のものにおいて、時刻計時
装置を備え、所定の時刻になったときに前記蓄熱非利用
暖房運転から前記蓄熱利用暖房運転に移行させることを
特徴とする寒冷地用蓄熱式ヒートポンプ空気調和機。
2. A cold district according to claim 1, further comprising a time keeping device, wherein when a predetermined time has come, the heating operation not using the heat storage is switched to the heating operation using the heat storage. Storage heat pump air conditioner.
【請求項3】請求項1に記載のものにおいて、前記蓄熱
熱交換器を主として蒸発器として用いる運転を行う時間
帯は16時〜18時を含むことを特徴とする寒冷地用蓄
熱式ヒートポンプ空気調和機。
3. A regenerative heat pump air for cold districts according to claim 1, wherein the time zone in which the operation using the heat storage heat exchanger as an evaporator is mainly performed includes 16:00 to 18:00. Harmony machine.
【請求項4】請求項1に記載のものにおいて、冷媒吸入
部から冷媒吐出部の圧縮過程にある中間圧部に液冷媒が
インジェクションされるようにされた前記圧縮機と、イ
ンジェクションされる前記液冷媒の量を制御する液イン
ジェクション流量制御装置とを備え、前記蓄熱非利用暖
房運転時は前記液インジェクション流量制御装置により
液インジェクション量が制御された運転を行なうことを
特徴とする寒冷地用蓄熱式ヒートポンプ空気調和機。
4. The compressor according to claim 1, wherein the liquid refrigerant is injected from a refrigerant suction part to an intermediate pressure part in a process of compressing the refrigerant discharge part, and the liquid to be injected is provided. A liquid injection flow rate control device for controlling the amount of the refrigerant, wherein during the heating operation not using heat storage, the liquid injection amount is controlled by the liquid injection flow rate control device, and a heat storage type for a cold region, Heat pump air conditioner.
【請求項5】請求項1に記載のものにおいて、空調負荷
が比較的小さいと判定された前記蓄熱非利用暖房運転
は、前記室外熱交換器と前記蓄熱熱交換器の熱源を併用
して運転されることを特徴とする寒冷地用蓄熱式ヒート
ポンプ空気調和機。
5. The heating operation not utilizing heat storage in which the air conditioning load is determined to be relatively small according to claim 1, wherein the outdoor heat exchanger and the heat source of the heat storage heat exchanger are used in combination. A regenerative heat pump air conditioner for cold climates.
【請求項6】請求項1に記載のものにおいて、前記蓄熱
非利用暖房運転における暖房能力は、前記蓄熱利用暖房
運転における暖房能力の85%以上100%未満の比率
であることを特徴とする寒冷地用蓄熱式ヒートポンプ空
気調和機。
6. The cooling system according to claim 1, wherein the heating capacity in the heating operation not using heat storage is a ratio of 85% or more and less than 100% of the heating capacity in the heating operation using heat storage. Ground storage heat pump air conditioner.
【請求項7】請求項1に記載のものにおいて、所定の時
刻において蓄熱量が所定量以上残存している場合、空調
負荷が比較的小さいと判定されたときは前記蓄熱利用暖
房運転を継続することを特徴とする寒冷地用蓄熱式ヒー
トポンプ空気調和機。
7. The heating operation utilizing heat storage according to claim 1, wherein if the heat storage amount remains at a predetermined time or more at a predetermined time, and if it is determined that the air conditioning load is relatively small, the heat storage utilizing heating operation is continued. A heat storage heat pump air conditioner for cold regions.
【請求項8】請求項1に記載のものにおいて、空調負荷
は前記室内機の吸込温度または吸込温度と設定温度の差
により演算することを特徴とする寒冷地用蓄熱式ヒート
ポンプ空気調和機。
8. The air conditioner according to claim 1, wherein the air conditioning load is calculated based on a suction temperature of the indoor unit or a difference between the suction temperature and a set temperature.
【請求項9】液インジェクションされるようにされた圧
縮機、室外熱交換器を有した室外機と、蓄熱熱交換器
と、室内熱交換器を有した室内機と、を備え、暖房蓄熱
運転、蓄熱利用暖房運転、蓄熱非利用暖房運転を切換え
る蓄熱式ヒートポンプ空気調和機において、 前記液インジェクション量を制御する液インジェクショ
ン流量制御装置を備え、 前記蓄熱利用暖房運転で運転
を開始し、前記液インジェクション量を制御された前記
蓄熱非利用暖房運転に切換えられることを特徴とする寒
冷地用蓄熱式ヒートポンプ空気調和機。
9. A heating and heat storage operation comprising: a compressor adapted to be liquid-injected; an outdoor unit having an outdoor heat exchanger; a heat storage heat exchanger; and an indoor unit having an indoor heat exchanger. A regenerative heat pump air conditioner that switches between a heat storage use heating operation and a heat storage non-use heating operation, comprising: a liquid injection flow control device that controls the liquid injection amount; A heat storage type heat pump air conditioner for cold districts, wherein the operation is switched to the heat storage non-use heating operation in which the amount is controlled.
JP2000300555A 2000-09-28 2000-09-28 Thermal storage heat pump air conditioner for cold regions Expired - Fee Related JP3567168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000300555A JP3567168B2 (en) 2000-09-28 2000-09-28 Thermal storage heat pump air conditioner for cold regions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000300555A JP3567168B2 (en) 2000-09-28 2000-09-28 Thermal storage heat pump air conditioner for cold regions
KR10-2001-0026943A KR100419407B1 (en) 2000-09-28 2001-05-17 Heat storage type heat pump air-conditioner

Publications (2)

Publication Number Publication Date
JP2002106917A true JP2002106917A (en) 2002-04-10
JP3567168B2 JP3567168B2 (en) 2004-09-22

Family

ID=18782221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000300555A Expired - Fee Related JP3567168B2 (en) 2000-09-28 2000-09-28 Thermal storage heat pump air conditioner for cold regions

Country Status (2)

Country Link
JP (1) JP3567168B2 (en)
KR (1) KR100419407B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370196C (en) * 2006-04-05 2008-02-20 哈尔滨工业大学 Household heat pump type energy accumulation central air conditioner set
JP2008215697A (en) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp Air conditioning device
JP2010054193A (en) * 2008-07-31 2010-03-11 Daikin Ind Ltd Refrigerating device
JP2010281521A (en) * 2009-06-05 2010-12-16 Mitsubishi Electric Corp Humidification device, method of controlling humidification device, and air conditioner having humidification device
JP2011052883A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Air conditioner
KR101534340B1 (en) * 2008-08-18 2015-07-09 엘지전자 주식회사 Hot water circulation system associated with heat pump and method controlling the same
CN105240919A (en) * 2015-10-30 2016-01-13 北京建筑大学 Energy storage type air source heat pump heating system and operation method thereof
JP2016121812A (en) * 2014-12-24 2016-07-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
WO2019187760A1 (en) * 2018-03-29 2019-10-03 株式会社富士通ゼネラル Air-conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605022B1 (en) * 2004-10-15 2006-07-28 주식회사 삼화에이스 Regenerative Cooling and Air Conditioning System and Method Thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370196C (en) * 2006-04-05 2008-02-20 哈尔滨工业大学 Household heat pump type energy accumulation central air conditioner set
JP2008215697A (en) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp Air conditioning device
JP2010054193A (en) * 2008-07-31 2010-03-11 Daikin Ind Ltd Refrigerating device
KR101534340B1 (en) * 2008-08-18 2015-07-09 엘지전자 주식회사 Hot water circulation system associated with heat pump and method controlling the same
JP2010281521A (en) * 2009-06-05 2010-12-16 Mitsubishi Electric Corp Humidification device, method of controlling humidification device, and air conditioner having humidification device
JP2011052883A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Air conditioner
JP2016121812A (en) * 2014-12-24 2016-07-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
CN105240919A (en) * 2015-10-30 2016-01-13 北京建筑大学 Energy storage type air source heat pump heating system and operation method thereof
CN105240919B (en) * 2015-10-30 2018-03-30 北京建筑大学 A kind of accumulating type air source heat pump heating system and its operation method
WO2019187760A1 (en) * 2018-03-29 2019-10-03 株式会社富士通ゼネラル Air-conditioning device
JP2019174072A (en) * 2018-03-29 2019-10-10 株式会社富士通ゼネラル Air conditioning equipment

Also Published As

Publication number Publication date
KR20020025648A (en) 2002-04-04
KR100419407B1 (en) 2004-02-19
JP3567168B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US20170130997A1 (en) Heat pump system
KR100846266B1 (en) Air conditioner
JP5121922B2 (en) Air conditioning and hot water supply complex system
US8984901B2 (en) Heat pump system
JP4799347B2 (en) Hot water supply, cold and hot water air conditioner
JP5409715B2 (en) Air conditioner
JPWO2011089637A1 (en) Air conditioning and hot water supply complex system
CN213841111U (en) Air conditioner
JP3882056B2 (en) Refrigeration air conditioner
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JPWO2016121068A1 (en) Refrigeration cycle equipment
CN111692708A (en) Air conditioning system with frosting inhibition function and frosting inhibition control method
JP2004347272A (en) Refrigerating plant
JPWO2020194435A1 (en) Air conditioner
JP3668750B2 (en) Air conditioner
JP5163161B2 (en) Auxiliary heating unit and air conditioner
CN113007831A (en) Three-pipe multi-online hot water system and control method thereof
CN112443999A (en) Air conditioner
JP2004347262A (en) Refrigerating plant
CN112443997A (en) Air conditioner
EP2918921B1 (en) Hot water generator
CN112444001A (en) Air conditioner
JP2004190916A (en) Refrigeration device
CN109798633A (en) The control method and air-conditioning system of air-conditioning system
JP3945949B2 (en) Air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees