JPH0320571A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0320571A
JPH0320571A JP15491389A JP15491389A JPH0320571A JP H0320571 A JPH0320571 A JP H0320571A JP 15491389 A JP15491389 A JP 15491389A JP 15491389 A JP15491389 A JP 15491389A JP H0320571 A JPH0320571 A JP H0320571A
Authority
JP
Japan
Prior art keywords
pressure
compressor
solenoid valve
bypass path
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15491389A
Other languages
Japanese (ja)
Other versions
JPH0810088B2 (en
Inventor
Koji Ishikawa
石川 孝治
Shuichi Tani
秀一 谷
Yoshinobu Igarashi
五十嵐 好信
Setsu Nakamura
中村 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15491389A priority Critical patent/JPH0810088B2/en
Publication of JPH0320571A publication Critical patent/JPH0320571A/en
Publication of JPH0810088B2 publication Critical patent/JPH0810088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To enlarge the operational range of an air conditioner by a method wherein, when the pressure condition exceeds the allowable operational range of the compressor, a solenoid valve provided in a third bypass is first opened and next a solenoid valve provided in a second bypass is opened. CONSTITUTION:When the pressure condition has exceeded the allowable operational range of a compressor 1 subsequently to a decline of the operational capacity of the compressor to the minimum, a solenoid valve 10 provided in a third bypass 13 is opened so that the refrigeration oil separated by an oil separator 2 does not flow into an accumulator 7 and hence adequate return of oil to the compressor can be ensured. When the pressure condition has exceeded the allowable operational range of the compressor subsequently to the opening of the solenoid valve of the third bypass, a solenoid valve 9 provided in a second bypass 12 is opened so that the operation of the compressor can be continued and thus the operational capacity range of the air conditioner can be enlarged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空気調和機の冷凍サイク〃及び制御装置に関
するものであb1特に圧縮容量Mll可能な圧縮機を用
いた空気調和機の運転範囲の拡大に関するものである。
Detailed Description of the Invention [Field of Industrial Application] This invention relates to a refrigeration cycle and a control device for an air conditioner, and in particular, to a control device for controlling the operating range of an air conditioner using a compressor capable of compressing a capacity of Mll. It's about expansion.

〔従来の技術〕[Conventional technology]

従来この種の装置として、第5図に示すも゛のがある。 As a conventional device of this type, there is one shown in FIG.

図にかいて、(1)は圧縮機、(2)は油分離器、(3
)は四方弁、(4)は室外熱交換器、(5)は減圧装置
、(6)は室内熱交換器、(7)はアキュムレータ、(
11)は流量調整装置(8)(以下毛細管という)を介
して前記油分離器の〉底部よう前記圧縮機(1)の吸入
配管に接続された第1のバイパス路、(12)は電磁弁
A(9)を介して前記油分離器(2)底部よD前記アキ
ュムレータ(7)の流入配管に接続された第2のバイバ
ヌ路である。図中、実線矢印は冷房運転時の冷媒流れ方
向を、また破線矢印は暖房運転時の冷媒流れ方向を示し
ている。
In the figure, (1) is a compressor, (2) is an oil separator, and (3) is a compressor.
) is a four-way valve, (4) is an outdoor heat exchanger, (5) is a pressure reducing device, (6) is an indoor heat exchanger, (7) is an accumulator, (
11) is a first bypass passage connected to the bottom of the oil separator and the suction pipe of the compressor (1) via a flow rate regulator (8) (hereinafter referred to as a capillary tube); (12) is a solenoid valve; This is a second bivanu passage connected from the bottom of the oil separator (2) to the inflow pipe of the accumulator (7) via A (9). In the figure, solid arrows indicate the direction of refrigerant flow during cooling operation, and dashed arrows indicate the direction of refrigerant flow during heating operation.

次に、冷房運転時の動作について説明する。圧縮機(1
)でガス冷媒を圧縮し、吐出された高温高圧のガス冷媒
と冷凍機油は、油分離器(2)に流入して冷凍機油が分
離され、高温高圧のガス冷媒は四方弁(3)を介して室
外熱交換器(4)に流入し、室外空気に放熱する一方、
冷媒ぱIa縮して高圧の液冷媒となう,減圧装置(5)
で減圧され、低圧の気液混合冷媒となって室内熱交換器
(6)に供給される。室内熱交換器(6)では、室内空
気より採熱して冷房する一方、冷媒は蒸発して低圧のガ
ス冷媒となり、四方弁を介してアキュムレータ(7)に
流入する。アキュムレータ(7)では、室内熱交換器(
6)で蒸発し切れなかった液冷媒とガス冷媒を分離して
圧縮機(1)に吸入させる。
Next, the operation during cooling operation will be explained. Compressor (1
), the discharged high-temperature, high-pressure gas refrigerant and refrigerating machine oil flow into an oil separator (2) where the refrigerating machine oil is separated, and the high-temperature, high-pressure gas refrigerant is passed through a four-way valve (3). flows into the outdoor heat exchanger (4) and radiates heat to the outdoor air,
A pressure reducing device (5) that compresses the refrigerant Ia and becomes a high-pressure liquid refrigerant.
The refrigerant is depressurized at , becomes a low-pressure gas-liquid mixed refrigerant, and is supplied to the indoor heat exchanger (6). The indoor heat exchanger (6) extracts heat from the indoor air for cooling, while the refrigerant evaporates to become a low-pressure gas refrigerant, which flows into the accumulator (7) via the four-way valve. In the accumulator (7), the indoor heat exchanger (
The liquid refrigerant and gas refrigerant that were not completely evaporated in step 6) are separated and sucked into the compressor (1).

次に、暖房運転時の動作について説明する。圧縮機(1
)でガス冷媒を圧縮し、吐出された高温高圧のガス冷媒
は、油分離器(2)カよび四方弁(3)を介して室内熱
交換器(6)に供給され、室内空気に放熱して暖房する
一方、冷媒は凝縮して高圧の液冷媒となる。この液冷媒
は、減圧装置(5)で減圧され低圧の気液混合冷謀とな
り室外熱交換器(4)に供給され、室外空気より採熱し
て、低圧のガス冷媒となって、四方弁(3)シよびアキ
ュムレータ(7)を介して圧縮機(1)に吸入される。
Next, the operation during heating operation will be explained. Compressor (1
), the discharged high-temperature, high-pressure gas refrigerant is supplied to the indoor heat exchanger (6) via the oil separator (2) and the four-way valve (3), where it radiates heat to the indoor air. While heating the room, the refrigerant condenses into a high-pressure liquid refrigerant. This liquid refrigerant is depressurized by the pressure reducing device (5), becomes a low-pressure gas-liquid mixed refrigerant, and is supplied to the outdoor heat exchanger (4), where it extracts heat from the outdoor air and becomes a low-pressure gas refrigerant. 3) is sucked into the compressor (1) via the cylinder and accumulator (7).

また、油分離器(2)で分離された冷凍機油は毛細管(
8)を介して圧縮機(1)の吸入配管に常時返油され圧
縮機(1)内の油量を適正に確保される。また、第2の
バイパス路(12)に設けられた電磁弁A(9)は、室
内外空気温度の変化に伴う高圧圧力の上昇などがあった
場合に開路して、圧力上昇を抑制して、圧縮機(1)の
運転継続を可能とするものである。更に、圧縮s(1)
の起動時とか、暖房運転時に冷房サイクルに切換えて室
外熱交換器(4)に付着した霜を溶かすデ7ロヌト運転
時には,圧縮機(1)から多量の冷凍機油が流出するの
で、1磁弁A(9}を開路して素早くアキュムV一タ(
7)に冷凍機油を回収するように制御されている。
In addition, the refrigeration oil separated in the oil separator (2) is transferred to the capillary tube (
The oil is constantly returned to the suction pipe of the compressor (1) through the compressor (1) to ensure an appropriate amount of oil in the compressor (1). In addition, the solenoid valve A (9) provided in the second bypass path (12) opens when there is a rise in high pressure due to a change in indoor or outdoor air temperature, thereby suppressing the pressure rise. , which allows the compressor (1) to continue operating. Furthermore, the compression s(1)
When the compressor (1) starts up, or when switching to the cooling cycle during heating operation to melt frost on the outdoor heat exchanger (4), a large amount of refrigerating machine oil flows out from the compressor (1), so the solenoid valve 1 A(9} is opened and the accumulator V oneta(
7) is controlled to recover refrigerating machine oil.

〔発明が解決しようとする課題] 以上のように、従来の空気調和機では、第2のバイパス
路(12)が油分離器(2)の底部よりアキュムレータ
(7)の流入配管に接続されているので、高圧圧力の上
昇に伴い電磁弁A(9)が開路した場合には、油分虐器
(2)で分離された冷凍機油はアキュムレータ(7)に
流入するので、アキュムレータ(7)内の余剰冷媒液で
希釈され、結果的に圧縮機(1)への返油が遅れるとい
う問題がある。
[Problems to be Solved by the Invention] As described above, in the conventional air conditioner, the second bypass path (12) is connected to the inflow pipe of the accumulator (7) from the bottom of the oil separator (2). Therefore, when the solenoid valve A (9) opens due to an increase in high pressure, the refrigerating machine oil separated by the oil divider (2) flows into the accumulator (7), so that the inside of the accumulator (7) is There is a problem in that the oil is diluted with surplus refrigerant liquid, resulting in a delay in oil return to the compressor (1).

尚、空気調和機に使用する圧縮機(1)を容量可変形と
し、室内熱交換!(6)を複数とする多室形空気調和機
の場合には、電磁弁A(9)の開閉制御による圧縮機(
1)の運転継続を図る必要性が高く、容量制御範囲を拡
大しようとすればする程、電磁弁A(9)の開閉回数が
多くなり、信頼性の低下という問題がある。
In addition, the compressor (1) used in the air conditioner is of variable capacity type, allowing indoor heat exchange! In the case of a multi-chamber air conditioner with a plurality of (6), the compressor (
1) It is highly necessary to continue the operation, and the more the capacity control range is expanded, the more the solenoid valve A (9) is opened and closed, resulting in a problem of reduced reliability.

この発明は、かかる問題点を解決するためになされたも
ので、高圧上昇時とか容量減少時にかいてもト分な返油
量を確保すると共に、信頼性が高く、容量制御範囲の広
い空気調和機を得ることを目的としている。
This invention was made to solve these problems, and it is an air conditioner that is highly reliable and has a wide capacity control range, as well as ensuring a sufficient amount of oil return even when high pressure increases or capacity decreases. The purpose is to take advantage of the opportunity.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、圧縮機、油分離器、四方弁、室外熱交換器
、減圧装置、室内熱交換器、アキュムレー夕が配管接続
された冷媒回路を有する空気調和機にかいて、油分離器
の底部よう流量調整装置を介して圧縮機の吸入配管に接
続された第1のバイパス路、上記油分離器の底部より電
磁弁を介して上記アキュムレータの流入配管または上記
アキュムレータに接続された第2のバイパス路,上記油
分M器の頂部または上記油分離器と上記西方弁を接続す
る配管途中よDtlil弁を介して上記アキュムレータ
の流入配管または上記アキュムレータに接続された第3
のバイパス路、上記減圧装置と上記室外熱交換器を接続
する配管途中に設けられた配管温度検出手段、暖房運転
時に高圧圧力を検出すると共に、冷房運転時に低圧圧力
を検出する圧力検出手段、上記圧力検出手段により検出
された検出圧力あるいは空調負荷に基づき上記圧縮機の
運転容量を制御する運転容量制御手段、暖房運耘時に上
記配管温度検出手段により検出された検出温度に基づき
上記四方弁を切換えて室外熱交換器に付着した鞘を溶か
すデフロスト制御手段及び暖房運転時に上記運転容量制
御手段によ妙上記圧縮機の運転容量が最小となった後に
上記圧力検出手段による検出圧力が第1の制御圧力値以
上の場合に第3のバイパス路に設けられた[磁弁を開路
すると共に、上記第3のバイパス路の[磁弁開路後上記
圧力検出手段による検出圧力が上記第1の制御圧力値よ
υ高い第2の制御圧力値以上の場合に第2のバイパス路
に設けられた電磁弁を開路レ、冷房運転時には上記圧縮
機の運転容量が最小となった後に上記圧力検出手段によ
る検出圧力が第3の制御圧力値以下の場合に第3のバイ
パス路に設けられた電磁弁を開路すると共に、上記第3
のバイパス路の電磁弁を開路後、更に上記圧力検出手段
による検出圧力が上記第3の制御圧力値よう低い第4の
制御圧力値以下の場合に上記第2のバイパス路の電磁弁
を開路し、かつデフロスト運転時には、上記第2のパイ
バヌ路に設けられた電磁弁を開路すると共に、上記圧力
検出手段による検出圧力が第5の制御圧力値以下の場合
に上記第3のバイパス路に設けられた電磁弁を開路する
iElia弁制御手段を設けたものである。
This invention relates to an air conditioner having a refrigerant circuit to which a compressor, an oil separator, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator are connected via piping. A first bypass line is connected to the suction pipe of the compressor via a flow rate adjustment device, and a second bypass line is connected to the inlet pipe of the accumulator or the accumulator from the bottom of the oil separator via a solenoid valve. A third pipe connected to the inlet pipe of the accumulator or the accumulator via the Dtlil valve is connected to the top of the oil M vessel or the middle of the pipe connecting the oil separator and the west valve.
a bypass path for the above, a pipe temperature detection means provided in the middle of the pipe connecting the pressure reducing device and the outdoor heat exchanger, a pressure detection means for detecting high pressure during heating operation and low pressure during cooling operation; Operating capacity control means for controlling the operating capacity of the compressor based on the detected pressure detected by the pressure detecting means or the air conditioning load, and switching the four-way valve based on the detected temperature detected by the piping temperature detecting means during heating operation. a defrost control means for melting the sheath adhering to the outdoor heat exchanger; and a first control for controlling the pressure detected by the pressure detection means after the operating capacity of the compressor reaches a minimum during heating operation. When the pressure value is greater than or equal to the pressure value, the magnetic valve provided in the third bypass path is opened, and the pressure detected by the pressure detection means in the third bypass path is set to the first control pressure value. When the pressure is higher than the second control pressure value, which is higher than the second control pressure value, the solenoid valve provided in the second bypass path is opened, and during cooling operation, the pressure detected by the pressure detection means is is equal to or less than the third control pressure value, the solenoid valve provided in the third bypass path is opened, and the third control pressure value is lower than the third control pressure value.
After opening the solenoid valve of the bypass passage, if the pressure detected by the pressure detection means is equal to or lower than the fourth control pressure value, which is as low as the third control pressure value, the solenoid valve of the second bypass passage is opened. , and during defrost operation, the solenoid valve provided in the second bypass passage is opened, and when the pressure detected by the pressure detection means is equal to or lower than the fifth control pressure value, the electromagnetic valve provided in the third bypass passage is opened. The iElia valve control means is provided to open the solenoid valve.

筐た、デフロスト運転中には、第2のバイパス路並びに
第3のバイパス路に設けられたtla弁を常時開路する
ようにしたものである。
During the defrost operation, the TLA valves provided in the second bypass path and the third bypass path are always open.

〔作用〕[Effect]

この発明では、圧縮機運転容量が最小となった後に、圧
縮機の運転許容範囲を超える圧力状態になった場合に第
3のバイパス路に設けられた電磁弁を開路するようにし
たので、油分離器で分離された冷凍機油がアキュムレー
タに流入することがなく圧縮機への返油が十分に確保で
きる。更に、第3のバイパス絡の電磁弁開路後に、圧縮
機の運転許容範囲を超える圧力状態となった場合には、
第2のバイパス路に設けられた電磁弁を開路することに
より運転継続が可能となり運転容量範囲を拡大すること
ができる。筐た、デフ口スト運転中に第2のバイパス路
に設けられた電磁弁を開路するようにしたので、デフロ
スト運転中に圧縮機から流出する冷凍機油を素早く圧縮
機に返油することができる。さらに第2のバイパス路に
設けられた電磁弁を開路後、圧力検出手段による検出圧
力が第5の検出圧力以下の場合に、第3のバイパス路に
設けられた[磁弁を開路して圧縮機の冷媒循環量を増加
させ、デフロスト能力を向上させる。
In this invention, when the pressure exceeds the allowable operating range of the compressor after the compressor operating capacity reaches its minimum, the solenoid valve provided in the third bypass path is opened. The refrigerating machine oil separated by the separator does not flow into the accumulator, and sufficient oil return to the compressor can be ensured. Furthermore, if the pressure exceeds the allowable operating range of the compressor after the third bypass circuit solenoid valve is opened,
By opening the solenoid valve provided in the second bypass path, the operation can be continued and the operating capacity range can be expanded. Since the solenoid valve installed in the second bypass path is opened during defrost operation, the refrigerating machine oil that flows out from the compressor during defrost operation can be quickly returned to the compressor. . Further, after opening the solenoid valve provided in the second bypass path, if the detected pressure by the pressure detection means is equal to or lower than the fifth detection pressure, the solenoid valve provided in the third bypass path is opened and compressed. Increases the refrigerant circulation amount of the machine and improves the defrost ability.

筐た、デフロスト運転時、第8<イバヌ路及び第3のバ
イパス路に設けられた[磁弁を常時開路することによっ
ても、デフロスト中の冷媒循環量を増加させ、デフロス
ト能力を向上させることができる。
During defrost operation, the amount of refrigerant circulated during defrost can be increased and the defrost capacity can be improved by constantly opening the magnetic valves installed in the 8th Ivanu path and the 3rd bypass path. can.

〔実施例〕〔Example〕

第1図は、この発明の一実施例による空気調和機の全体
構或図である。図において、(1)〜(9)シよび(1
1) (12)は第5図に示す従来の空気調和機と同様
のものであり、(13)は油分離器(2)と四方弁(3
)を接続する配管途中よりKm弁B (10)を介して
アキュムレータ〈7〉の流入配管に接続された第3のバ
イバヌ路、(14)は四方弁(3〉と室内熱交換器(6
)の接続配管に設けられた冷媒ガスの圧力を検出する圧
力検出手段、(15)は室外熱交換器(4)と減圧装置
(5)とを接続する配管途中に設けられた冷媒ガスの温
度を検出する配IW温度検出手段、(16)は前記圧力
検出手段(l4)による検出圧力に基づき、圧縮機(1
)の運転容量を制御する運転容量制御手段、(17)は
第2、第3のバイパス路(12) (13)に設けられ
たt磁;q A (9) hよびW磁弁B (10)の
開閉制御を行う電磁弁制御手段、(18)は暖房運転時
に配管温度検出手段(15)による検出温度に基づきデ
フロスト運転を制御するデフロスト制御手段である・尚
、図中寮線矢印は冷房運転時シよびデフロスト運転時の
冷媒流れ方向を示し、破線矢印は暖房運転時の冷媒流れ
方向を示す。また、圧縮機(1)は、インバータ(図示
せず)によう運転周波数を変えることにより圧縮容量が
可変となっている。
FIG. 1 is a diagram showing the overall structure of an air conditioner according to an embodiment of the present invention. In the figure, (1) to (9) and (1)
1) (12) is the same as the conventional air conditioner shown in Fig. 5, and (13) is an oil separator (2) and a four-way valve (3).
) is connected to the inflow pipe of the accumulator <7> via the Km valve B (10) from the middle of the pipe connecting the pipe, (14) connects the four-way valve (3> and the indoor heat exchanger (6).
) pressure detection means for detecting the pressure of the refrigerant gas provided in the connecting pipe; (15) is the temperature of the refrigerant gas provided in the middle of the pipe connecting the outdoor heat exchanger (4) and the pressure reducing device (5); The distribution IW temperature detection means (16) detects the temperature of the compressor (1) based on the pressure detected by the pressure detection means (14).
), (17) is the t magnetic valve provided in the second and third bypass paths (12) (13); q A (9) h and W magnetic valve B (10 ), and (18) is a defrost control means that controls defrost operation based on the temperature detected by the pipe temperature detection means (15) during heating operation.In addition, the dormitory line arrow in the figure indicates the air conditioner. The direction of refrigerant flow during operation and defrost operation is shown, and the broken arrow indicates the direction of refrigerant flow during heating operation. Further, the compression capacity of the compressor (1) is variable by changing the operating frequency using an inverter (not shown).

冷房運転時並びに暖房運転時の冷媒側の動作については
第4図に示す従来の空気調和機と全く同様なので説明を
省略し、圧縮al (1)の運転容量制御釦よび[Fi
!i弁A・B (9) (10)の動作について説明す
る0 第2図は、暖房運転時の運転容量制御手段(16)およ
び電磁弁制御手段(l7)の制御状態を示すフローチャ
ートである。ステツ7″(2l)で暖房運転が開始する
と、圧力検出手段(l4)による検出圧力P。が、目標
圧力P。に対して一定の範囲にあるか否かをステン7”
 (22)で判定し、安定範囲内にある場合には圧縮機
(1)の運転周波数を維持する。ステップ(22)で検
出圧力P。が安定圧力上限の(P0+1)より高い場合
には、ステップ(23)に進み、現在の圧縮機(1)の
運転周波数が最小となっているか否かを判定し、最小局
波数でない場合にはステップ(32)に進んで周波数を
減少する。また、ステップ(23)で周波数が最小値と
なっている場合には、ステップ(24)に進んで、検出
圧力P。が第1の制御圧力P1より高いか否かを判定し
、低い場合には、ステップ(26) (27)と進み[
iia弁B (10)は閉路状otanしステップ(2
8)に進む。ステップ(28)では、検出圧力P。が上
記第1の制御圧力よシ高い第2の制御圧力P2より高い
か否かを判定する。尚、制御圧力設定値P, , P2
の関係はp.<p2となっているため、ステップ(28
)よりヌテツデ(30) (31)と進む。また、ステ
ツデ(24)で検出圧力P0が第1の制御圧力P,より
高い場合には、ステッグ(25)に進んで電磁弁B(1
0)を開路し、電磁弁B (10)開路後ステップ(2
6)で検出圧力P。が低下しているか否かを判定し、低
下している場合には、ステップ(27)で電磁弁B(1
0)は閉路し、低下していない場合には、ステップ(2
8)に進んで、検出圧力PCが第2の制御出力P2より
高いか否かを判定し、高い場合にはステップ(29)で
電磁弁A(9)を開路し、ステップ(30)に進む。
The operation of the refrigerant side during cooling operation and heating operation is exactly the same as that of the conventional air conditioner shown in Fig. 4, so the explanation will be omitted.
! Description of the operation of i-valve A/B (9) (10) 0 FIG. 2 is a flowchart showing the control state of the operating capacity control means (16) and the solenoid valve control means (17) during heating operation. When the heating operation starts at step 7'' (2l), it is checked whether the pressure P detected by the pressure detection means (l4) is within a certain range with respect to the target pressure P.
(22) is determined, and if it is within the stable range, the operating frequency of the compressor (1) is maintained. Detected pressure P in step (22). is higher than the stable pressure upper limit (P0+1), the process proceeds to step (23), where it is determined whether the current operating frequency of the compressor (1) is the minimum, and if it is not the minimum station frequency, Proceed to step (32) to decrease the frequency. Further, if the frequency is the minimum value in step (23), the process advances to step (24) and the detected pressure P is determined. It is determined whether or not is higher than the first control pressure P1, and if it is lower, the process proceeds to steps (26) and (27) [
The iia valve B (10) is closed and the step (2
Proceed to 8). In step (28), the detected pressure P. is higher than a second control pressure P2 which is higher than the first control pressure. In addition, the control pressure set value P, , P2
The relationship between p. <p2, so step (28
), proceed to Nutetsude (30) and (31). In addition, when the detected pressure P0 is higher than the first control pressure P in the step (24), the process proceeds to the step (25) and the solenoid valve B (1
0) Open the circuit and solenoid valve B (10) After opening the circuit, step (2
6) Detected pressure P. It is determined whether or not the voltage has decreased, and if it has decreased, the solenoid valve B (1
0) is closed, and if it is not decreasing, step (2
Proceeding to step 8), it is determined whether the detected pressure PC is higher than the second control output P2, and if it is higher, the solenoid valve A (9) is opened in step (29), and the process proceeds to step (30). .

なか、ステップ(22)で検出圧力P。が、安定圧力下
限の(p0−1)より低い場合には、ステップ(33)
に進んで電磁弁A (9) &よび電磁弁B (10)
を閉路して、ステップ(34)に進み、圧縮機(1)の
運転周波数が最大局波数か否かを判定し、最大周波数で
ない場合には、ステップ(35)に進んで運転周波数を
増加するように制御している。
Among them, the detected pressure P is detected in step (22). is lower than the stable pressure lower limit (p0-1), step (33)
Proceed to solenoid valve A (9) & solenoid valve B (10)
is closed, and the process proceeds to step (34), where it is determined whether the operating frequency of the compressor (1) is the maximum station wave number. If it is not the maximum frequency, the process proceeds to step (35), where the operating frequency is increased. It is controlled as follows.

なか、冷房運転時には、圧力検出手段(14)の検出圧
力P。は低圧圧力となり、低圧圧力が一定となるように
運転容量制御手段(16)で運転周波数が制御される。
During cooling operation, the pressure P detected by the pressure detection means (14). becomes a low pressure, and the operating frequency is controlled by the operating capacity control means (16) so that the low pressure is constant.

具体的には、第3図に示すフローチャートの如く制御さ
れる。基本的な動作は第2図に示す暖房運転時の場合と
同様であるので詳細な説明は省略する。冷房運転中には
、ステップ(52)で低圧圧力P0が周波数制御圧力P
。(暖房運転時のものと値は異なる)に対して一定の範
囲内にあるか否かを判定し、一定範囲以上の圧力の場合
にはステップ(63) (64) (65)と進んで運
転周波数を増加する。筐た、検出圧力P。が安定範囲以
下の場合にはステップ(53) (62)と進んで運転
周波数を減少すると共に、運転周波数が最小となった場
合には、ステップ(54)〜(6l)と進んで、電磁弁
B (10)並びに竃磁弁A(9)の開路制御が行われ
る。つtb、冷房運転時の電磁弁制御圧力は第3の制御
圧力P3と第4の制御圧力が設定されてかυtP3とP
4の関係は(P3>P4)となっているため、圧縮機(
1)の運転周波数が最小となった後に、検出圧力P。が
第3の制御圧力P3よb低くなった場合には、ステップ
(55)でIE磁弁B (10)が開路する。′fII
Fili弁B (10)開路後、更に検出圧力P0が低
下し、第4の制御圧力P4より低くなった場合には、ス
テップ(59)で電磁弁A(9)が開路する 次に、デフロスト制御手段(18)及びtm弁制御手段
(17)による制御状態を第4図に基づき説明する。ス
テップ(40)で運転モードを判定し、暖房運転の場合
には、ステッグ(4l)に進んでデフロスト運転中であ
るか否かを判定し、デフロスト運転中でない場合にはス
テッグ(42)に進む。ヌテッグ(42)では、デフロ
スト禁止時間11が経過しているか否かを判定し、デフ
ロスト禁止時間tlが経過していれば、ステップ(43
)に進み、配管温度検出手段(15)による検出温度T
0がデフロスト開始温度TIより低いか否かを判定し、
Toがf分に低下している場合にはステップ(44)に
進んでデフロストを開始し、四方弁(3)を冷房サイク
ル側に切換えて、圧縮機(1)から吐出される高温のガ
ス冷媒を室外熱交換器(4)に導き、室外熱交換器(4
)の表面に付着した霜を溶かす。デフロスト運転を開始
すると、ステップ(4l)からヌテッグ(45)に進ん
で′fI!.磁弁A(9)を開路し、デフロスト中に発
生する過渡的液バツクにより圧縮機(1)から流出され
る冷凍機油を素早く返油できるようにしている。更に、
ステップ(46)に進んで、圧力検出手段(14)の検
出圧力P。(デフロスト運転中は低圧圧力となっている
)が第5の所定iiPsよう低いか否かを判定し、Po
が低下している場合にはステップ(47)に進んで1I
l磁弁B (10)を開路して低圧圧力を高く維持し、
圧縮機(1)の冷媒流量を大きくすることができる.渣
た、ステッグ(4g) (49)では、検出温度Tcが
デフロスト終了温度T2以上になるか、あるいはデフロ
スト強制終了時閲t2が経過した場合にはステッグ(5
0)に進んで、デフロストを終了し、四方弁(2)を暖
房サイクル側に切換えると共に、its弁A − B(
9) (10)を閉路しタイマーt】・t2をリセット
して再び暖房運転を開路する。
Specifically, the control is performed as shown in the flowchart shown in FIG. The basic operation is the same as that during the heating operation shown in FIG. 2, so detailed explanation will be omitted. During cooling operation, the low pressure P0 is changed to the frequency control pressure P in step (52).
. (The value is different from that during heating operation) It is determined whether the pressure is within a certain range or not, and if the pressure is above a certain range, the operation proceeds to steps (63), (64), and (65). Increase frequency. Detected pressure P. is below the stable range, proceed to steps (53) and (62) to reduce the operating frequency, and when the operating frequency becomes the minimum, proceed to steps (54) to (6l) to reduce the solenoid valve. Opening control of B (10) and the receptacle valve A (9) is performed. tb, whether the solenoid valve control pressure during cooling operation is set to the third control pressure P3 and the fourth control pressure υtP3 and P
4 is (P3>P4), so the compressor (
After the operating frequency of 1) becomes the minimum, the detected pressure P. When the pressure becomes lower than the third control pressure P3, the IE magnetic valve B (10) opens in step (55). 'fII
After the Fili valve B (10) is opened, if the detected pressure P0 further decreases and becomes lower than the fourth control pressure P4, the solenoid valve A (9) is opened in step (59), and then the defrost control The control state by means (18) and tm valve control means (17) will be explained based on FIG. 4. The operation mode is determined in step (40), and if heating mode is selected, the process proceeds to step (4l) to determine whether defrost operation is in progress, and if defrost operation is not in progress, proceed to step (42). . Nuteg (42) determines whether or not the defrost prohibition time 11 has elapsed, and if the defrost prohibition time tl has elapsed, step (43) is performed.
), the detected temperature T by the pipe temperature detection means (15)
0 is lower than the defrost start temperature TI,
If To has decreased to f minutes, proceed to step (44) to start defrosting, switch the four-way valve (3) to the cooling cycle side, and cool the high-temperature gas refrigerant discharged from the compressor (1). is led to the outdoor heat exchanger (4), and the outdoor heat exchanger (4)
) to melt the frost that has adhered to the surface. When defrosting operation starts, the process proceeds from step (4l) to nuteg (45) and 'fI! .. The magnetic valve A (9) is opened so that the refrigerating machine oil discharged from the compressor (1) due to the transient liquid backflow generated during defrosting can be quickly returned. Furthermore,
Proceeding to step (46), the detected pressure P of the pressure detection means (14) is detected. (The pressure is low during defrost operation) is determined as to whether it is as low as the fifth predetermined iiPs, and Po
If the is decreasing, proceed to step (47) and
l Solenoid valve B (10) is opened to maintain the low pressure at a high level,
The refrigerant flow rate of the compressor (1) can be increased. In (49), if the detected temperature Tc becomes the defrost end temperature T2 or higher, or if the defrost forced end time check t2 has elapsed, the steg (5g) is removed.
0), end the defrost, switch the four-way valve (2) to the heating cycle side, and turn on its valves A-B (
9) Close (10), reset timer t]・t2, and open heating operation again.

尚、デフロスト運転中には、室内側への冷風吹出を防止
するため室内熱交換器(6)に装着された送風機(図示
していない)を停止させるため、冷媒の蒸発能力が低下
して極端に低圧圧力が低くなる。
Note that during defrost operation, the blower (not shown) attached to the indoor heat exchanger (6) is stopped to prevent cold air from blowing into the room, so the evaporation capacity of the refrigerant decreases, causing extreme The low pressure becomes low.

また、圧a機(1)の発揮する冷媒流量は低圧圧力に依
存し、低圧圧力が所定値以下となると極端に冷媒流量が
低下する場合がある。前述の如き低圧圧力の低下は、室
外空9C温度条件、室内側熱交換器(6)の熱容量並び
に冷媒回路を構或する冷媒配管等の熱容量などにより左
右される。従って、低圧圧力が低い状態でデフロスト運
転をした場合には、圧縮機(1)の冷媒流量が小さくな
り室外熱交換器(4)に十分な冷媒が到達しないため、
十分なデフロスト能力が得られない場合がある。しかし
ながら、この発明では、デフロスト運転中の低圧圧力を
検出して、低圧圧力が低下した場合には、第3のバイパ
ス路(l3)に設けられた電磁弁B (10)を開路し
て、低圧圧力を上昇させて圧縮機(1)の冷媒流量を大
きくしている。この電磁弁B (10)を制御する第5
の制御圧力P.は、圧a機(1)の特性に応じて、低圧
圧力の低下により極端に冷媒流量が減少するポイント、
つま沙電磁弁B (10)を開路し低圧を上昇したこと
による冷媒流量の増加魚が、電磁弁B(10)のバイパ
ス量よシも大きくなるように設定している。
Further, the refrigerant flow rate exerted by the pressure a machine (1) depends on the low pressure, and when the low pressure becomes less than a predetermined value, the refrigerant flow rate may be extremely reduced. The decrease in the low pressure as described above is influenced by the temperature conditions of the outdoor air 9C, the heat capacity of the indoor heat exchanger (6), the heat capacity of the refrigerant piping, etc. that constitute the refrigerant circuit, and the like. Therefore, when the defrost operation is performed in a state where the low pressure is low, the refrigerant flow rate of the compressor (1) becomes small and sufficient refrigerant does not reach the outdoor heat exchanger (4).
Sufficient defrost ability may not be obtained. However, in this invention, when the low pressure is detected during the defrost operation and the low pressure has decreased, the solenoid valve B (10) provided in the third bypass path (13) is opened to reduce the low pressure. The pressure is increased to increase the refrigerant flow rate of the compressor (1). A fifth valve that controls this solenoid valve B (10)
Control pressure P. is the point where the refrigerant flow rate is extremely reduced due to a decrease in low pressure, depending on the characteristics of the pressure A machine (1),
The increase in the refrigerant flow rate due to opening of the solenoid valve B (10) and raising the low pressure is set so that the amount of bypass of the solenoid valve B (10) is also increased.

尚、本実施例では、デフロスト運転中に圧力検出手段(
14)O検出圧力P0に応じて、tilia弁B (1
0)を開路するようにしているが、デフロスト運転中に
は常時、電磁弁A − B (9) (10)の双方を
開路した場合には、きめ細かなデフロスト能力の制御は
達或できないものの、デフロスト能力の向上が図れる。
In this embodiment, the pressure detection means (
14) Depending on the O detection pressure P0, tilia valve B (1
0) is open, but if both solenoid valves A-B (9) and (10) are always open during defrost operation, fine control of the defrost performance cannot be achieved. Defrost ability can be improved.

また、圧力検出手段(l4)を四方弁(3)と室内熱交
換器(6)とを接続する配管に設けて、運転容量制御手
段(16)、電磁弁制御手段(17)並びにデフロスト
制御手段(l8)に利用しているが、圧力検出手段を2
個設けて、暖房時の高圧側圧力、冷房時の低圧側圧力を
検出するようにしてもよい。また、運転容量制御手段(
16)を圧力検出手段(14)の検出圧力に基づき制御
させているが、室内側熱交換器(6)の冷媒温度あるい
は吸込空気温度により制御してもよい。
Further, a pressure detection means (14) is provided in the pipe connecting the four-way valve (3) and the indoor heat exchanger (6), and the operating capacity control means (16), the solenoid valve control means (17) and the defrost control means (18), but the pressure detection means is 2
It is also possible to provide two units to detect the high-pressure side pressure during heating and the low-pressure side pressure during cooling. In addition, the operating capacity control means (
16) is controlled based on the pressure detected by the pressure detection means (14), but it may also be controlled based on the refrigerant temperature of the indoor heat exchanger (6) or the suction air temperature.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように構或されているので、以
下に記載されるような効果を奏する。圧縮機運転容量が
最小となった後に、圧縮機の運転許容圧力範囲を超える
圧力状態となった場合、第3のバイパス路に設けられた
[磁弁を最初に開路するので、油分離器で分離した冷凍
機油がアキュムレータに流入することがなく圧縮機への
返油が遅れることがなく、圧縮機を良好な状態で運転継
続できる。また、第3のバイパス路の電磁弁開路状態で
更に圧縮機の運転許容範囲を超える圧力状態となった場
合、第2のバイパス路に設けられた[磁弁を開路するの
で、空9C調和機の運転範囲を拡大することが可能とな
る。1た、デフロスト運転時には、第2のバイパス路に
設けられた電磁弁を開路するのでデフロスト運転中に発
生する一時的な液バックに伴う冷凍機油の流出に対し、
効率よく圧縮機に返油することができる。
Since this invention is constructed as described above, it produces the effects described below. If the pressure exceeds the allowable operating pressure range of the compressor after the compressor operating capacity reaches its minimum, the magnetic valve installed in the third bypass path is opened first, so the oil separator Separated refrigerating machine oil does not flow into the accumulator, so there is no delay in oil return to the compressor, and the compressor can continue to operate in good condition. In addition, when the solenoid valve in the third bypass path is open and the pressure exceeds the allowable operating range of the compressor, the solenoid valve installed in the second bypass path is opened, so the air conditioner It becomes possible to expand the operating range of the 1.During defrost operation, the solenoid valve provided in the second bypass path is opened, so that the leakage of refrigerating machine oil due to temporary liquid backing that occurs during defrost operation can be prevented.
Oil can be returned to the compressor efficiently.

更に、デフロスト運転中の低圧圧力が第5の制御圧力値
以下の場合第3のバイパス路に設けられたwLlia弁
を開路するようにしたので,am弁を介したバイパス流
量と室外熱交換器に流入する冷媒流量を低圧圧力によっ
て制御することが可能となり、圧縮機の発揮し得るデフ
ロスト能力を効率よく取り出すことができる。つまりデ
フロスト運転中のバイパス流量を過大とした場合には、
低圧圧力が高くなう圧縮機流量も増加するが、室外熱交
換器に流入する冷媒流量が減少して、デフロスト能力が
低下してし1うケースもある。従って、圧縮機の冷謀流
量が極端に低下してし1う低圧レベルまで低圧が低下し
た時に限って、バイパス量を増加して、圧縮機の冷媒流
量を増加する方が効率的になるわけである。
Furthermore, when the low pressure during defrost operation is below the fifth control pressure value, the wLlia valve provided in the third bypass path is opened, so that the bypass flow rate via the am valve and the outdoor heat exchanger are It becomes possible to control the flow rate of inflowing refrigerant by low pressure, and the defrost ability that the compressor can exhibit can be efficiently extracted. In other words, if the bypass flow rate during defrost operation is set too high,
Although the flow rate of the compressor increases as the low pressure increases, the flow rate of refrigerant flowing into the outdoor heat exchanger decreases, and there are cases where the defrost ability decreases. Therefore, it is more efficient to increase the amount of bypass and increase the refrigerant flow rate of the compressor only when the refrigerant flow rate of the compressor is extremely reduced and the low pressure drops to a low pressure level. It is.

また、圧縮機運転容量が最小となった後に、圧縮機の運
転許容範囲以上の圧力となった場合に、2つの電磁弁で
圧力制御するようにしたので、電磁弁1個当りの圧力変
化幅を小さく抑えることができ([磁弁の通過流量を小
さくできるため)″f/t滋弁の開閉回数が減少でき、
信頼性を向上することができる。
In addition, if the pressure exceeds the allowable operating range of the compressor after the compressor operating capacity reaches its minimum, two solenoid valves are used to control the pressure, so the pressure change width per solenoid valve is can be kept small ([because the flow rate passing through the magnetic valve can be made small)" f/t The number of times the valve opens and closes can be reduced,
Reliability can be improved.

また、デフロスト運転中に第2かよび第3のバイパス路
に設けられた電磁弁を開路させることにより、テ゜フロ
スト運転中の低圧圧力を高く維持しデフロスト能力を大
きくすることができる。
Further, by opening the solenoid valves provided in the second and third bypass paths during the defrost operation, the low pressure during the defrost operation can be maintained high and the defrost capacity can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す空気調和機の全体
構成図、第2図釦よび第3図は同じく圧縮機の運転容量
制御手段及び電磁弁制御手段による暖房運転時かよび冷
房運転時のフローチャート、第4図は同じくデフロスト
運転時の制御状0を示すフローチャート、第5図は従来
の空気調和機の全体構或図である。 図中、(1)は圧縮機、(2)は油分離器、(3)は四
方弁、(4)は室外熱交換器、(5)は減圧装置、(6
)は室内熱交換器,(7)pアキュムレータ、(8)は
流量調整装置、(9)シよび(10)は電磁弁、(11
)は第1のバイパス路、(12)は第2のバイパス路、
(13)は第3のバイパス路、(l4)は圧力検出手段
、(l5)は配管温度検出手段、(16)は運転容量制
御手段、(17)は電磁弁制御手段、(18)はデフロ
スト制御手段である。 な訃、各図中同一符号は、同一筐たぱ相当部分を示す。 代 地 人  大  岩   増  雄第1図 −367− δ 弔5の滑1究力’)fan
FIG. 1 is an overall configuration diagram of an air conditioner showing an embodiment of the present invention, and FIG. 2 and FIG. FIG. 4 is a flowchart showing the control state 0 during defrost operation, and FIG. 5 is a diagram showing the overall structure of a conventional air conditioner. In the figure, (1) is a compressor, (2) is an oil separator, (3) is a four-way valve, (4) is an outdoor heat exchanger, (5) is a pressure reducing device, and (6) is a four-way valve.
) is an indoor heat exchanger, (7) is a p-accumulator, (8) is a flow rate regulator, (9) is a solenoid valve, and (11) is a solenoid valve.
) is the first bypass path, (12) is the second bypass path,
(13) is the third bypass path, (l4) is the pressure detection means, (l5) is the pipe temperature detection means, (16) is the operating capacity control means, (17) is the solenoid valve control means, and (18) is the defrost It is a control means. The same reference numerals in each figure indicate corresponding parts of the same case. Masuo Daiiwa Figure 1-367- δ Funeral 5's Sliding 1') fan

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機容量調整可能な圧縮機、油分離器、四方弁
、室外熱交換器、減圧装置、室内熱交換器及びアキュム
レータが配管接続された冷媒回路、上記油分離器の底部
より流量調整装置を介して上記圧縮機の吸入配管に接続
された第1のバイパス路、上記油分離器の底部より電磁
弁を介して上記アキュムレータの流入配管または上記ア
キュムレータに接続された第2のバイパス路、上記油分
離器の頂部または上記油分離器と上記四方弁を接続する
配管途中より電磁弁を介して上記アキユレータの流入配
管または上記アキユムレータに接続された第3のバイパ
ス路、上記減圧装置と上記室外熱交換器を接続する配管
途中に設けられた配管温度検出手段、暖房運転時に高圧
圧力を検出すると共に、冷房運転時に低圧圧力を検出す
る圧力検出手段、上記圧力検出手段により検出された検
出圧力あるいは空調負荷に基づき上記圧縮機の運転容量
を制御する運転容量制御手段、暖房運転時に、上記配管
温度検出手段により検出された検出温度に基づき上記四
方弁を切換えて室外熱交換器に付着した霜を溶かすデフ
ロスト制御手段、及び暖房運転時に上記運転容量制御手
段により上記圧縮機の運転容量が最小となつた後に上記
圧力検出手段による検出圧力が第1の制御圧力値以上の
場合に第3のバイパス路に設けられた電磁弁を開路する
と共に、上記第3のバイパス路の電磁弁開路後上記圧力
検出手段による検出圧力が上記第1の制御圧力値より高
い第2の制御圧力値以上の場合に第2のバイパス路に設
けられた電磁弁を開路し、冷房運転時には上記圧縮機の
運転容量が最小となつた後に上記圧力検出手段による検
出圧力が第3の制御圧力値以下の場合に第3のバイパス
路に設けられた電磁弁を開路すると共に、上記第3のバ
イパス路の電磁弁を開路後、さらに上記圧力検出手段に
よる検出圧力が上記第3の制御圧力値より低い第4の制
御圧力値以下の場合に上記第2のバイパス路の電磁弁を
開路し、かつデフロスト運転時には、上記第2のバイパ
ス路に設けられた電磁弁を開路すると共に、上記圧力検
出手段による検出圧力が第5の制御圧力値以下の場合に
上記第3のバイパス路に設けられた電磁弁を開路する電
磁弁制御手段を備えたことを特徴とする空気調和機。
(1) Refrigerant circuit with adjustable compressor capacity, oil separator, four-way valve, outdoor heat exchanger, pressure reduction device, indoor heat exchanger, and accumulator connected via piping, flow rate adjustment from the bottom of the oil separator. a first bypass path connected to the suction pipe of the compressor through a device; a second bypass path connected to the inlet pipe of the accumulator or the accumulator from the bottom of the oil separator through a solenoid valve; A third bypass path connected to the inflow pipe of the acumulator or the acumulator via a solenoid valve from the top of the oil separator or the middle of the pipe connecting the oil separator and the four-way valve, and the pressure reducing device and the outdoor air. A pipe temperature detection means provided in the middle of the pipe connecting the heat exchanger, a pressure detection means for detecting high pressure during heating operation and low pressure during cooling operation, detected pressure detected by the above pressure detection means, or Operating capacity control means for controlling the operating capacity of the compressor based on the air conditioning load; during heating operation, the four-way valve is switched based on the temperature detected by the piping temperature detection means to remove frost attached to the outdoor heat exchanger; a defrost control means for melting, and a third bypass path when the pressure detected by the pressure detection means is equal to or higher than a first control pressure value after the operating capacity of the compressor is minimized by the operating capacity control means during heating operation. When the solenoid valve provided in the third bypass path is opened and the pressure detected by the pressure detection means is equal to or higher than a second control pressure value higher than the first control pressure value, When the solenoid valve provided in the second bypass path is opened and the operating capacity of the compressor reaches the minimum during cooling operation, the third control pressure value is set when the pressure detected by the pressure detection means is below the third control pressure value. After opening the electromagnetic valve provided in the bypass path and opening the electromagnetic valve of the third bypass path, a fourth control pressure value whose detected pressure by the pressure detection means is lower than the third control pressure value is determined. In the following cases, the solenoid valve of the second bypass path is opened, and during defrost operation, the solenoid valve provided in the second bypass path is opened, and the pressure detected by the pressure detection means is An air conditioner comprising solenoid valve control means for opening a solenoid valve provided in the third bypass path when the pressure is equal to or less than a control pressure value.
(2)デフロスト運転中は、第2のバイパス路および第
3のバイパス路に設けられた電磁弁を常時開路するよう
にしたことを特徴とする請求項1記載の空気調和機。
(2) The air conditioner according to claim 1, wherein the solenoid valves provided in the second bypass path and the third bypass path are always open during the defrost operation.
JP15491389A 1989-06-15 1989-06-15 Air conditioner Expired - Lifetime JPH0810088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15491389A JPH0810088B2 (en) 1989-06-15 1989-06-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15491389A JPH0810088B2 (en) 1989-06-15 1989-06-15 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0320571A true JPH0320571A (en) 1991-01-29
JPH0810088B2 JPH0810088B2 (en) 1996-01-31

Family

ID=15594697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15491389A Expired - Lifetime JPH0810088B2 (en) 1989-06-15 1989-06-15 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0810088B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728343B1 (en) * 2006-03-20 2007-06-13 주식회사 대우일렉트로닉스 Heat pump air-conditioner having indoor heat exchanger of multi type
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
JP2014202399A (en) * 2013-04-03 2014-10-27 三菱電機株式会社 Refrigerator
WO2015059792A1 (en) * 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
CN116206795A (en) * 2023-01-04 2023-06-02 中国原子能科学研究院 Method for starting radioactive waste liquid treatment system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728343B1 (en) * 2006-03-20 2007-06-13 주식회사 대우일렉트로닉스 Heat pump air-conditioner having indoor heat exchanger of multi type
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
JP2014202399A (en) * 2013-04-03 2014-10-27 三菱電機株式会社 Refrigerator
WO2015059792A1 (en) * 2013-10-24 2015-04-30 三菱電機株式会社 Air conditioner
JP5992112B2 (en) * 2013-10-24 2016-09-14 三菱電機株式会社 Air conditioner
JPWO2015059792A1 (en) * 2013-10-24 2017-03-09 三菱電機株式会社 Air conditioner
CN116206795A (en) * 2023-01-04 2023-06-02 中国原子能科学研究院 Method for starting radioactive waste liquid treatment system
CN116206795B (en) * 2023-01-04 2024-03-22 中国原子能科学研究院 Method for starting radioactive waste liquid treatment system

Also Published As

Publication number Publication date
JPH0810088B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP4122349B2 (en) Refrigeration cycle apparatus and operation method thereof
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
CN101438109A (en) Multi-loop air conditioner system with variable capacity
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
CN106594964B (en) Control method for controlling operation of air conditioning system and air conditioning system
KR101161381B1 (en) Refrigerant cycle apparatus
JP4868049B2 (en) Refrigeration equipment
JP3147588B2 (en) Refrigeration equipment
JP5517891B2 (en) Air conditioner
JP2667741B2 (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
JPH0320571A (en) Air conditioner
CN110476024B (en) Refrigeration cycle device
KR100528292B1 (en) Heat-pump type air conditioner
JP3418891B2 (en) Refrigeration equipment
JPH04340046A (en) Operation control device of air conditioner
CN111219818B (en) Air conditioning system, air conditioner and control method of air conditioner
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JP6704513B2 (en) Refrigeration cycle equipment
JPH0752031B2 (en) Heat pump type air conditioner
JPH01155153A (en) Air conditioner
WO2024134852A1 (en) Air conditioning device
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPH02287060A (en) Air conditioner
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof