JPH01155153A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01155153A
JPH01155153A JP31422887A JP31422887A JPH01155153A JP H01155153 A JPH01155153 A JP H01155153A JP 31422887 A JP31422887 A JP 31422887A JP 31422887 A JP31422887 A JP 31422887A JP H01155153 A JPH01155153 A JP H01155153A
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerant
air conditioner
suction side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31422887A
Other languages
Japanese (ja)
Inventor
Haruo Ishikawa
治男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31422887A priority Critical patent/JPH01155153A/en
Publication of JPH01155153A publication Critical patent/JPH01155153A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To ensure a stabilized heating effect by providing a bypath for circulating refrigerant by coupling the delivery side of a compressor with the suction side thereof or the cylinder of a compressor when the temperature of the compressor is lower than a specified level at the time of heating operation thereby the delivery temperature of refrigerant from the compressor at a high level. CONSTITUTION: A timer 26 is actuated when a compressor 16 is turned on at the time of heating operation and delivery temperature θof refrigerant from the compressor 16 is compared with a set level θ1 upon elapsing a predetermined time t0 . A two-way valve 23 is opened if θ<=θ1 and a part of high pressure high temperature refrigerant on the delivery of the compressor 16 is circulated to the suction side thereof with the flow rate being regulated by a capillary tube 24. Since low pressure low temperature refrigerant from an evaporator 20 and high pressure high temperature refrigerant from a bypath 22 are supplied to the suction side of the compressor 16, temperature of refrigerant being delivered from the compressor 16 increased as compared with the case when the bypath 22 is closed. Consequently, high temperature air can be blown out without decreasing the air volume and a good indoor temperature distribution can be attained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は空気調和機に係り、特に凝縮器の放熱エネルギ
を高めることができる空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an air conditioner, and particularly to an air conditioner that can increase the heat radiation energy of a condenser.

(従来の技術) 従来、空気調和機は第8図に示すように、主に圧縮機l
、凝縮器3、減圧装置である膨張弁5、蒸発器6及びこ
れらを順次接続する配管12により構成されている。そ
のモリエル線図が第9図に示されている。モリエル線図
(A)の8−9間のエンタルピ差10は凝縮器3の放熱
エネルギを示している。尚、11は飽和液線である。
(Prior art) Conventionally, air conditioners mainly use a compressor l as shown in Figure 8.
, a condenser 3, an expansion valve 5 which is a pressure reducing device, an evaporator 6, and a pipe 12 connecting these in sequence. The Mollier diagram is shown in FIG. The enthalpy difference 10 between 8 and 9 in the Mollier diagram (A) indicates the heat radiation energy of the condenser 3. Note that 11 is a saturated liquid line.

(発明が解決しようとする問題点) しかしながら、従来の空気調和機では凝縮器3の放熱エ
ネルギは、冷媒循環量が略一定の場合には圧縮機1の吐
出冷媒温度に依存するため、叶出冷媒温度が低ければ凝
縮器3からの吹出空気温度を高くすることができなかっ
た。
(Problem to be Solved by the Invention) However, in conventional air conditioners, the heat radiation energy of the condenser 3 depends on the temperature of the refrigerant discharged from the compressor 1 when the amount of refrigerant circulation is approximately constant. If the refrigerant temperature was low, the temperature of the air blown from the condenser 3 could not be increased.

また、放射式空気調和機の場合も吐出ガス温度が低けれ
ば放射面の温度を高くすることができなかった。
Also, in the case of a radiant air conditioner, if the discharge gas temperature is low, the temperature of the radiant surface cannot be increased.

前者の空気調和機の場合、吹出空気温度を高くするため
には凝縮器3の通過空気量を小さくすればよいが、通過
空気量減少に伴い温風到達範囲の縮小、温度分布の悪化
等が生じ、暖房能力が低下する。同時に、冷凍サイクル
内での低温高圧の大幅上昇により圧縮n1の寿命が短く
なるおそれがある。
In the case of the former type of air conditioner, in order to increase the temperature of the blown air, it is sufficient to reduce the amount of air passing through the condenser 3, but as the amount of air passing through decreases, the reach range of hot air is reduced, the temperature distribution deteriorates, etc. heating capacity decreases. At the same time, there is a risk that the life of the compression n1 will be shortened due to a significant increase in low temperature and high pressure within the refrigeration cycle.

また容置可変式空気調和機の場合、低容呈運転時は吐出
冷媒温度が低いため、快適性を優先すると最大風量運転
できず、容置可変式空気調和機の特徴である省エネ・快
適運転機能を発揮できない。
In addition, in the case of a variable capacity air conditioner, the discharge refrigerant temperature is low during low volume operation, so if comfort is prioritized, maximum air volume operation cannot be performed. unable to perform its functions.

本発明は上記事情を考慮してなされたもので、圧縮機か
らの吐出冷媒温度を高くすることにより凝縮器の放熱エ
ネルギを高め、安定した暖房効果を発揮・確保でき、更
に空気調和機の長寿命化を達成できる空気調和機を従供
することを目的とする。
The present invention has been made in consideration of the above circumstances, and by increasing the temperature of the refrigerant discharged from the compressor, the heat dissipation energy of the condenser can be increased, a stable heating effect can be achieved and ensured, and the air conditioner can be operated for a long time. The purpose is to provide air conditioners that can extend their service life.

[発明の構成] (問題点を解決するための手段) 本発明は上記目的を達成するために、圧縮機、凝縮器、
減圧装置、蒸発器を順次接続して、冷凍ザイクルを形成
してなる空気調和機に、暖房運転時、に泥圧縮機の温度
が所定値未満のとき、凝縮器に加熱冷媒を移送する圧縮
機の吐出側と吸込側あるいは圧縮機のシリンダとを結ん
で形成され冷媒を循環させるバイパス通路を設けて吐出
冷媒の温度を」−昇させるようにしたものである。
[Structure of the invention] (Means for solving the problems) In order to achieve the above object, the present invention includes a compressor, a condenser,
A compressor that transfers heated refrigerant to a condenser when the temperature of the mud compressor is less than a predetermined value during heating operation is used in an air conditioner formed by sequentially connecting a pressure reducing device and an evaporator to form a refrigerating cycle. A bypass passage is formed by connecting the discharge side and the suction side or the cylinder of the compressor and circulates the refrigerant to raise the temperature of the discharged refrigerant.

(作 用) バイパス通路は、圧縮機の吐出側から分岐して吸込側あ
るいは圧縮機のシリンダに接続されている。空気調和機
の暖房運転時、圧縮機の温度が所定値未満の場合には圧
縮機により加圧された温度の高い冷媒の一部が圧縮機の
吸込側あるいは圧縮機のシリンダに戻される。そして戻
された高温の冷媒と蒸発器からの低温の冷媒が圧縮機に
供給されることになる。これにより圧縮機の吸込側の冷
媒温度は」1昇し、圧縮機の吐出側の冷媒の温度ら」1
昇する。
(Function) The bypass passage branches off from the discharge side of the compressor and is connected to the suction side or the cylinder of the compressor. During heating operation of the air conditioner, if the temperature of the compressor is below a predetermined value, a portion of the high temperature refrigerant pressurized by the compressor is returned to the suction side of the compressor or to the cylinder of the compressor. The returned high-temperature refrigerant and low-temperature refrigerant from the evaporator are then supplied to the compressor. As a result, the temperature of the refrigerant on the suction side of the compressor increases by 1, and the temperature of the refrigerant on the discharge side of the compressor rises by 1.
rise

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明に係る空気調和機の一例とし。FIG. 1 shows an example of an air conditioner according to the present invention.

ての空気調和機15(以下「空気調和機」と称す)のブ
ロック線図である。
1 is a block diagram of an air conditioner 15 (hereinafter referred to as "air conditioner").

図示されるように空気調和1a15の暖房運転時の基本
的な部分は略従来例と同様に、圧縮機16、四方弁17
、′a、縮器18、減圧装置、例えば膨張弁19、蒸発
器20及びこれらを順次接続する配管21により構成さ
れているが、これらの他に、圧縮機16の吐出側から分
岐されて吸込側に接続されるバイパス通路22、バイパ
ス通路22を開閉する開閉弁である二方弁23、二方弁
23の下流に設けられ、冷媒通過量を調節するキャピラ
リチューブ24、圧縮機16の吐出冷媒温度を検知する
温度センサ25、空気調和機15の運転開始と同時に起
動されるタイマー26、このタイマー26により計測さ
れる時間tと温度センサ25により検知される温度θと
により二方弁23を開閉制御する弁制御手段27が備え
られている。
As shown in the figure, the basic parts of the air conditioner 1a15 during heating operation are substantially the same as in the conventional example, including a compressor 16, a four-way valve 17, and a four-way valve 17.
, 'a, consists of a compressor 18, a pressure reducing device, such as an expansion valve 19, an evaporator 20, and a pipe 21 connecting these in sequence. A bypass passage 22 connected to the side, a two-way valve 23 that is an on-off valve that opens and closes the bypass passage 22, a capillary tube 24 that is provided downstream of the two-way valve 23 and adjusts the amount of refrigerant passing through, and a refrigerant discharged from the compressor 16. A temperature sensor 25 that detects temperature, a timer 26 that starts at the same time as the air conditioner 15 starts operating, and a two-way valve 23 that opens and closes based on the time t measured by this timer 26 and the temperature θ detected by the temperature sensor 25. Valve control means 27 are provided for controlling.

弁制御手段27は詳しくは第2図のフローチャートに示
された如き制御をするように構成されている。即ち、圧
縮機16がONされる(ステップ51)と、タイマー2
6が起動される(ステップ52)、そして、タイマー2
6が計測する時間tが所定時間to、例えば1分未満か
否か判定され(ステップ53)、前者が後者と等しくな
るまでは三方弁23は閉じられたままでいる〈ステップ
54)、所定時間to経過後は、温度センサ25により
検知された吐出冷!jX温度θが予め設定された設定値
θ1 (以下「第1設定値」と称す)と比較され(ステ
ップ55)、第1設定値θ1、例えは70°Cよりも低
ければ二方弁23は開作動される(ステップ56)、そ
うでなければ、二方弁23は閉じられたままでいる(ス
テップ57)、ステップ56後はステップ55に戻り、
吐出冷媒温度θと第1設定値θ1とが比較されるが、ス
テップ57後は吐出冷媒温度θが、第1設定値θ1より
低い他の設定値θ2、例えば60℃(以下「第2設定値
」と称す)と比較されるステップ58に至り、第2設定
値θ2に達するまで二方弁23は閉じられたままでいる
The valve control means 27 is configured to carry out control as shown in the flowchart of FIG. 2 in detail. That is, when the compressor 16 is turned on (step 51), the timer 2
6 is started (step 52), and timer 2
6 is less than a predetermined time to, for example, one minute (step 53), and the three-way valve 23 remains closed until the former becomes equal to the latter (step 54), the predetermined time to After the elapsed time, the discharge cools as detected by the temperature sensor 25! The j actuated to open (step 56), otherwise the two-way valve 23 remains closed (step 57); after step 56, return to step 55;
The discharge refrigerant temperature θ and the first set value θ1 are compared, but after step 57, the discharge refrigerant temperature θ is set to another set value θ2 lower than the first set value θ1, for example, 60°C (hereinafter referred to as the "second set value θ1"). ''), the two-way valve 23 remains closed until the second set value θ2 is reached.

圧縮機16の起動後所定時間toが経過するまで二方弁
23が閉じられている理由は、圧縮機16の起動直後は
圧mtra内部の圧力が低いため、特にロータリ式圧縮
機においてはブレードの背圧不足によりジャンピングが
起き易く、圧縮不良を起こしたり、異常音を発するおそ
れがあるためである。二方弁23が圧縮fi16の起動
と同時に開かれると上述の不具合が発生し易く、圧縮機
16の起動後1分程度バイパス通路22を閉成ずべく二
方弁23を閉じる。
The reason why the two-way valve 23 is closed until a predetermined time to has elapsed after the start of the compressor 16 is because the pressure inside the pressure mtra is low immediately after the start of the compressor 16, especially in rotary compressors, the blades are closed. This is because jumping is likely to occur due to insufficient back pressure, which may result in poor compression or abnormal noise. If the two-way valve 23 is opened at the same time as the compression fi 16 is started, the above-mentioned problem is likely to occur, and the two-way valve 23 is closed to close the bypass passage 22 for about one minute after the compressor 16 is started.

二方弁23が第1設定値θ1に基づき一旦閉じられた後
、それより値の小さい第2設定値θ2を基準に開閉制御
されるのは、二方弁23の開・閉作動が頻繁に行われな
いようにするためであり、これにより滑らかな空気調和
機制御ができるわけである。具体的には第3図に示すよ
うに第1設定値θ1を70℃、第2設定値θ2を60℃
としたヒステリシスをもたせる例もある。
The reason why the two-way valve 23 is once closed based on the first set value θ1 and then controlled to open and close based on the second set value θ2, which is smaller than the first set value θ1, is because the opening and closing operations of the two-way valve 23 are frequently performed. This is to prevent this from happening, and this allows for smooth air conditioner control. Specifically, as shown in Figure 3, the first set value θ1 is set to 70°C, and the second set value θ2 is set to 60°C.
There are also examples of hysteresis.

次に以上のように構成された空気調和R15が暖房運転
されたときの作用を説明する。
Next, the operation when the air conditioner R15 configured as above is operated for heating will be explained.

圧ff111’l16がONされると第2図のフローチ
ャートに基づき説明したようにタイマー26が起動され
、所定時間toに達するまでは三方弁23は閉じられて
いる。所定時間to経過後、圧縮機16からの吐出冷媒
温度θと第1設定値θ1とが比較され、もしθ≦01な
らば二方弁23は開かれる。二方弁23が開かれると圧
縮fi16吐出側吐出圧高温冷媒の一部が圧縮a16の
吸込側に循環される。このとき循環される冷媒はキャピ
ラリチューブ24により流量調節される。従って、圧1
a11116の吸込側には蒸発器20から送られてくる
低圧低温の冷媒とバイパス通路22を経由してくる流量
調節された高圧高温の冷媒とが供給されることになる。
When the pressure ff111'l16 is turned on, the timer 26 is started as explained based on the flowchart of FIG. 2, and the three-way valve 23 is closed until the predetermined time to is reached. After the predetermined time to has elapsed, the temperature θ of the refrigerant discharged from the compressor 16 is compared with the first set value θ1, and if θ≦01, the two-way valve 23 is opened. When the two-way valve 23 is opened, a portion of the high temperature refrigerant at the discharge pressure on the discharge side of the compression fi16 is circulated to the suction side of the compression a16. At this time, the flow rate of the refrigerant being circulated is adjusted by the capillary tube 24. Therefore, pressure 1
The suction side of a11116 is supplied with a low-pressure, low-temperature refrigerant sent from the evaporator 20 and a high-pressure, high-temperature refrigerant whose flow rate is adjusted and which comes via the bypass passage 22.

この結果、圧縮機16から吐出される冷媒はバイパス通
路22が閉じられているときと比べ高温になる。第4図
にこのときのモリエル線図(B)と従来のモリエル線図
(^)を比較した図が示されている。
As a result, the refrigerant discharged from the compressor 16 has a higher temperature than when the bypass passage 22 is closed. FIG. 4 shows a comparison between the Mollier diagram (B) at this time and the conventional Mollier diagram (^).

モリエル線図(B)においては冷媒の循環量は多少減少
するが、熱交換器である凝縮器18の熱交換効率が高く
なるので凝縮器18の放熱エネルギは従来の10から2
9へ増加さAる。
In the Mollier diagram (B), although the amount of refrigerant circulation decreases somewhat, the heat exchange efficiency of the condenser 18, which is a heat exchanger, increases, so the heat radiation energy of the condenser 18 increases from the conventional 10 to 2.
Increased to 9.

よって本実施例においては、圧縮fi16の起動後所定
時間toが経過するまで二方弁23が閉じられているの
で、圧縮不良や異常音を発することがない。
Therefore, in this embodiment, since the two-way valve 23 is closed until the predetermined time to has elapsed after the compression fi 16 is started, there will be no compression failure or abnormal noise.

また、圧縮11116の吐出冷媒温度を上昇させて凝縮
器18の放熱エネルギを増大させることができる。これ
により風量を減少させることなく高温空気を吹き出すこ
とが可能となり、良好な室内温度分布を得られる。
Furthermore, the temperature of the refrigerant discharged from the compressor 11116 can be increased to increase the heat radiation energy of the condenser 18. This makes it possible to blow out high-temperature air without reducing the air volume, resulting in a good indoor temperature distribution.

更に、二方弁23の開閉を滑らかに制御できる。Furthermore, the opening and closing of the two-way valve 23 can be controlled smoothly.

加えて、冷凍サイクル内が低温高圧になることが避けら
れるので、空気調和1fi15の長寿命化が達成できる
In addition, since the inside of the refrigeration cycle is prevented from becoming low temperature and high pressure, the life of the air conditioner 1fi15 can be extended.

尚、上記実施例では二方弁23の開閉は圧縮機16の吐
出冷媒の温度に因ったが、圧縮a16の表面温度を弁制
御手段27への入力としてもよい。
In the above embodiment, the opening and closing of the two-way valve 23 depended on the temperature of the refrigerant discharged from the compressor 16, but the surface temperature of the compressor a16 may be input to the valve control means 27.

また、バイパス通路22にキャピラリチューブ24を設
けなくてもよいし、二方弁23の代わりに、電子膨張弁
等のように開度変化自在な弁を設けてもよい。
Further, the capillary tube 24 may not be provided in the bypass passage 22, and instead of the two-way valve 23, a valve whose opening degree can be changed, such as an electronic expansion valve, may be provided.

更に、圧縮機16の起動と同時にバイパス通路22を開
いても圧縮不良や異常音等の不具合が生じなければ、タ
イマー26を設けずに圧縮機16の起動と同時に吐出冷
媒の温度θを第1設定値θ1と比較してもよい。つまり
第2図のフローチャートの52乃至54を省略してもよ
い。
Furthermore, if opening the bypass passage 22 at the same time as the start of the compressor 16 does not cause problems such as poor compression or abnormal noise, the timer 26 is not provided and the temperature θ of the discharged refrigerant is set to the first level at the same time as the start of the compressor 16. It may also be compared with the set value θ1. In other words, steps 52 to 54 in the flowchart of FIG. 2 may be omitted.

加えて、放射式空気調和機、圧縮機が容量可変式の空気
調和機及びインジェクション式空気調和機においては冷
媒循環量の減少がない、あるいは回転数の上昇により維
持できるので上述の作用・効果が期待できる。
In addition, in radiant air conditioners, air conditioners with variable capacity compressors, and injection air conditioners, the amount of refrigerant circulation does not decrease or can be maintained by increasing the rotation speed, so the above-mentioned effects and effects are achieved. You can expect it.

特に部分的に高温を必要とする放射式空気調和機には有
効である。
This is particularly effective for radiant air conditioners that require high temperatures in certain areas.

また、圧縮機が容量可変式の空気調和機の場合は第5図
に示すCの如きモリエル線図が得られ、冷凍サイクルの
許容圧力が上限であったとしても高温冷媒による高温空
気吹出や高温放射が可能となる。同空気調和機の場合、
その安定運転時、室温が上昇し圧m機能力が下がると体
感温度も下がるおそれがあるので、吐出冷媒の温度が6
0℃以下になるとバイパス通路を開くようにする。
In addition, if the compressor is a variable capacity air conditioner, a Mollier diagram such as C shown in Figure 5 will be obtained, and even if the allowable pressure of the refrigeration cycle is at the upper limit, high temperature air blowing due to high temperature refrigerant and high temperature radiation becomes possible. In the case of the same air conditioner,
During stable operation, if the room temperature rises and the pressure m function decreases, the sensible temperature may also drop, so the temperature of the discharged refrigerant may be 6.
The bypass passage is opened when the temperature drops below 0°C.

更に、第6図に示すようにインジェクション式空気調和
機30では圧縮機16のシリンダ内に、その圧縮行程の
途中、吐出側からの冷媒を供給することになるが、この
場合、キャピラリチューブは通常不要である。このモリ
エル線図は第7図中のDによって示されるように、容量
可変でなくとも暖房能力を維持でき高温吐出冷媒を提供
することができる。尚、2つは放射面温度センサである
Furthermore, as shown in FIG. 6, in the injection air conditioner 30, refrigerant is supplied from the discharge side into the cylinder of the compressor 16 during the compression stroke, but in this case, the capillary tube is normally Not necessary. As shown by D in FIG. 7, this Mollier diagram makes it possible to maintain the heating capacity and provide high-temperature discharge refrigerant even if the capacity is not variable. Note that two of them are radiation surface temperature sensors.

[発明の効果] 以上間するに本発明によれば次のごとき優れた効果を発
揮する。
[Effects of the Invention] In summary, the present invention provides the following excellent effects.

圧縮機から吐出冷媒の温度が設定値未満のとき高温の吐
出冷媒をバイパス通路を経由させて吸込側あるいは圧縮
機のシリンダに循環できるので、吸込冷媒温度を高くす
ることができ、これにより吐出冷媒温度が上昇し、凝縮
器から高温空気を吹き出すことが可能となる。
When the temperature of the refrigerant discharged from the compressor is lower than the set value, the high temperature discharged refrigerant can be circulated to the suction side or the cylinder of the compressor via the bypass passage, so the temperature of the suction refrigerant can be increased, and this makes it possible to increase the temperature of the discharged refrigerant. The temperature rises and it becomes possible to blow hot air out of the condenser.

【図面の簡単な説明】 第1図は、本発明に係る空気調和機の一実施例としての
空気調和機のブロック線図、第2図は第1図に示された
空気調和機の弁制御手段を説明するためのフローヂャ−
1へ、第3図は第1図に示された二方弁の制御を説明す
る図、第4図は従来構造と第1図の空気調和機のモリエ
ル線図、第5図は本発明の他の実施例と従来構造のモリ
エル線図、第6図は本発明の他の天方麺例としてのイン
ジェクション式空気調和機のブロック線図、第7図は従
来構造と第6図の空気調和機のモリエル線図、第8図は
従来till造のブロック線図、第9図は第8図のモリ
エル線図である。 図中、15は空気調和機、16は圧縮機、18は凝縮器
、1つは減圧装置である膨張弁、20は蒸発器、22は
バイパス通路である。 代理人弁理士  則  近  憲  倍量      
 宇   治       弘第3図 第4図 工 第5図 第9図
[Brief Description of the Drawings] Fig. 1 is a block diagram of an air conditioner as an embodiment of the air conditioner according to the present invention, and Fig. 2 is a valve control diagram of the air conditioner shown in Fig. 1. Flowchart to explain the method
1, Fig. 3 is a diagram explaining the control of the two-way valve shown in Fig. 1, Fig. 4 is a Mollier diagram of the conventional structure and the air conditioner shown in Fig. 1, and Fig. 5 is a diagram explaining the control of the two-way valve shown in Fig. 1. Mollier diagrams of other embodiments and conventional structures, FIG. 6 is a block diagram of an injection type air conditioner as another example of Tenkata noodles of the present invention, and FIG. 7 is a conventional structure and the air conditioner of FIG. 6. FIG. 8 is a block diagram of a conventional till structure, and FIG. 9 is a Mollier diagram of FIG. In the figure, 15 is an air conditioner, 16 is a compressor, 18 is a condenser, one is an expansion valve which is a pressure reducing device, 20 is an evaporator, and 22 is a bypass passage. Representative Patent Attorney Nori Chika Ken
Hiroshi Uji Figure 3 Figure 4 Figure 5 Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1) 圧縮機、凝縮器、減圧装置、蒸発器を順次接続
して冷凍サイクルを形成してなる空気調和機において、
暖房運転時、上記圧縮機の温度が所定値未満のとき、上
記凝縮器に加熱冷媒を移送する上記圧縮機の吐出側と吸
込側あるいは圧縮機のシリンダとを結んで形成され冷媒
を循環させるバイパス通路を設けて、吐出冷媒の温度を
上昇させることを特徴とする空気調和機。
(1) In an air conditioner formed by sequentially connecting a compressor, condenser, pressure reducing device, and evaporator to form a refrigeration cycle,
A bypass is formed by connecting the discharge side of the compressor and the suction side or the cylinder of the compressor, which transfers the heated refrigerant to the condenser when the temperature of the compressor is less than a predetermined value during heating operation, and circulates the refrigerant. An air conditioner characterized by providing a passage to increase the temperature of discharged refrigerant.
(2) 上記圧縮機の温度が上記圧縮機からの吐出冷媒
の温度である上記特許請求の範囲第1項記載の空気調和
機。
(2) The air conditioner according to claim 1, wherein the temperature of the compressor is the temperature of the refrigerant discharged from the compressor.
(3) 上記上記圧縮機の温度が上記圧縮機の表面温度
である上記特許請求の範囲第1項記載の空気調和機。
(3) The air conditioner according to claim 1, wherein the temperature of the compressor is a surface temperature of the compressor.
(4) 上記バイパス通路に開閉弁を設け、上記圧縮機
が起動され所定時間経過後、上記開閉弁が開制御される
上記特許請求の範囲第1項記載の空気調和機。
(4) The air conditioner according to claim 1, wherein an on-off valve is provided in the bypass passage, and the on-off valve is controlled to open after a predetermined time has elapsed after the compressor is started.
JP31422887A 1987-12-14 1987-12-14 Air conditioner Pending JPH01155153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31422887A JPH01155153A (en) 1987-12-14 1987-12-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31422887A JPH01155153A (en) 1987-12-14 1987-12-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01155153A true JPH01155153A (en) 1989-06-19

Family

ID=18050826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31422887A Pending JPH01155153A (en) 1987-12-14 1987-12-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01155153A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037341A (en) * 1989-03-27 1991-01-14 Dainippon Printing Co Ltd Shaped sheet
JPH0361260U (en) * 1989-10-12 1991-06-17
JPH10115458A (en) * 1996-10-11 1998-05-06 Hoshizaki Electric Co Ltd Warm water generator using heat pump
WO2007126018A1 (en) * 2006-04-26 2007-11-08 Toshiba Carrier Corporation Air conditioner
CN105202796A (en) * 2015-10-10 2015-12-30 安徽美芝精密制造有限公司 Air conditioner system and air conditioner provided with same
WO2017059665A1 (en) * 2015-10-10 2017-04-13 广东美芝制冷设备有限公司 Air conditioning system and air conditioning apparatus having same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037341A (en) * 1989-03-27 1991-01-14 Dainippon Printing Co Ltd Shaped sheet
JPH0361260U (en) * 1989-10-12 1991-06-17
JPH10115458A (en) * 1996-10-11 1998-05-06 Hoshizaki Electric Co Ltd Warm water generator using heat pump
WO2007126018A1 (en) * 2006-04-26 2007-11-08 Toshiba Carrier Corporation Air conditioner
KR101015752B1 (en) * 2006-04-26 2011-02-22 도시바 캐리어 가부시키가이샤 Air conditioner
US7997097B2 (en) 2006-04-26 2011-08-16 Toshiba Carrier Corporation Air conditioner
CN105202796A (en) * 2015-10-10 2015-12-30 安徽美芝精密制造有限公司 Air conditioner system and air conditioner provided with same
WO2017059665A1 (en) * 2015-10-10 2017-04-13 广东美芝制冷设备有限公司 Air conditioning system and air conditioning apparatus having same

Similar Documents

Publication Publication Date Title
US4901534A (en) Defrosting control of air-conditioning apparatus
CN105371545B (en) The refrigerant circulation amount adjustment method of air conditioner and its refrigeration system
JP2504437B2 (en) air conditioner
JP2508860B2 (en) Operation control device for air conditioner
JP2989491B2 (en) Air conditioner
JP3668750B2 (en) Air conditioner
JPH01155153A (en) Air conditioner
JP5517891B2 (en) Air conditioner
JP2007051839A (en) Air conditioning unit
JP3356485B2 (en) Multi-room air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JPH07218005A (en) Air conditioner
JP2523534B2 (en) Air conditioner
JPS63135742A (en) Air conditioner
JPH0320571A (en) Air conditioner
JP7295318B1 (en) air conditioner
JP2911253B2 (en) Refrigerant heating multi refrigeration cycle
JP2536198B2 (en) Air conditioner
JPH01102235A (en) Method of operation control of radiator panel type air conditioner
KR100205683B1 (en) Airconditioner and defrosting method
JPH06272971A (en) Air conditioner
JPH04225756A (en) Multiple-room type air-conditioner
JPH04136669A (en) Multi-room air conditioner
JP2868926B2 (en) Refrigerant heating multi refrigeration cycle
JPH0718938Y2 (en) air conditioner