JPH0718938Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPH0718938Y2
JPH0718938Y2 JP1987011547U JP1154787U JPH0718938Y2 JP H0718938 Y2 JPH0718938 Y2 JP H0718938Y2 JP 1987011547 U JP1987011547 U JP 1987011547U JP 1154787 U JP1154787 U JP 1154787U JP H0718938 Y2 JPH0718938 Y2 JP H0718938Y2
Authority
JP
Japan
Prior art keywords
compressor
heat storage
heat exchanger
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987011547U
Other languages
Japanese (ja)
Other versions
JPS63120051U (en
Inventor
慶一 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1987011547U priority Critical patent/JPH0718938Y2/en
Publication of JPS63120051U publication Critical patent/JPS63120051U/ja
Application granted granted Critical
Publication of JPH0718938Y2 publication Critical patent/JPH0718938Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [考案の目的] (産業上の利用分野) 本考案は、冷凍サイクルに蓄熱槽を組み込んだ空調機に
係り、特に蓄熱槽に蓄熱するにおいて、最適に蓄熱でき
る空調機に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial field of application) The present invention relates to an air conditioner in which a heat storage tank is incorporated in a refrigeration cycle, and particularly when storing heat in the heat storage tank, an air conditioner capable of optimal heat storage. It is about.

(従来の技術) 蓄熱式の空調機は、インバータ装置で駆動される能力可
変圧縮機の吐出側に、その吐出冷媒と熱交換する蓄熱材
が封入された蓄熱槽が接続され、その蓄熱槽より室内熱
交換器,減圧装置,室外熱交換器を順に接続して冷凍サ
イクルを構成したものである。
(Prior Art) A heat storage type air conditioner is connected to a heat storage tank in which a heat storage material that exchanges heat with the discharged refrigerant is enclosed on the discharge side of a variable capacity compressor driven by an inverter device. An indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected in this order to form a refrigeration cycle.

この蓄熱式の空調機においては、空調運転を行わない時
に、蓄熱槽内の蓄熱材を圧縮機の吐出冷媒で加熱して蓄
熱するようにしている。
In this heat storage type air conditioner, when the air conditioning operation is not performed, the heat storage material in the heat storage tank is heated by the refrigerant discharged from the compressor to store heat.

すなわち、室内熱交換器の室内ファンを停止した状態と
し、室外熱交換器の室外ファンを駆動し、圧縮機の高温
高圧冷媒を蓄熱槽内で凝縮させて蓄熱するようにしてい
る。
That is, the indoor fan of the indoor heat exchanger is stopped, the outdoor fan of the outdoor heat exchanger is driven, and the high temperature and high pressure refrigerant of the compressor is condensed in the heat storage tank to store heat.

この蓄熱専用運転時は蓄熱層内の温度を検出し、蓄熱温
度が所定の温度に達したならば圧縮機を停止するように
している。
During the heat storage dedicated operation, the temperature in the heat storage layer is detected, and the compressor is stopped when the heat storage temperature reaches a predetermined temperature.

このように蓄熱槽に蓄熱したのちは、その蓄熱を暖房立
ち上り時の熱源に用いたり、或は除霜運転時の熱源に用
いたりしている。
After the heat is stored in the heat storage tank in this way, the heat storage is used as a heat source when the heating is started or used as a heat source during the defrosting operation.

(考案が解決しようとする課題) しかしながら、蓄熱槽内の蓄熱材として、パラフィンな
ど潜熱を利用する蓄熱材が使用されるため、蓄熱運転開
始時は、蓄熱材は固相状態であり、熱伝導率が低く、蓄
熱層内での温度勾配が大きく、その温度を検出してもセ
ンサの位置により検出温度がまちまちとなり、必ずしも
検出した温度が適正な蓄熱温度を検出しているとは言い
難い。
(Problems to be solved by the invention) However, since a heat storage material that uses latent heat such as paraffin is used as the heat storage material in the heat storage tank, the heat storage material is in a solid state at the start of the heat storage operation, and the heat conduction The rate is low, the temperature gradient in the heat storage layer is large, and even if the temperature is detected, the detected temperature varies depending on the position of the sensor, and it cannot be said that the detected temperature necessarily detects an appropriate heat storage temperature.

このため、実際の蓄熱層の温度はある程度上昇している
にもかかわらず検出温度が低いため、圧縮機の能力を高
い状態で運転させ続けると、その凝縮圧力が異常に上昇
し、圧縮機がブレークダウンして停止される問題があ
る。
Therefore, even though the actual temperature of the heat storage layer has risen to some extent, the detected temperature is low.Therefore, if the compressor is kept operating at a high capacity, its condensing pressure rises abnormally and the compressor There is a problem of breaking down and stopping.

通常圧縮機は、圧縮機保護のため、再起動には数分の時
間が必要となり、このため、蓄熱専用運転時に圧縮機が
思うように稼動せず極めて効率が悪い問題がある。
In order to protect the compressor, it usually takes a few minutes for the compressor to restart, so there is a problem that the compressor does not operate as expected during heat storage dedicated operation and is extremely inefficient.

本考案は、上記事情を考慮してなされたもので、蓄熱槽
に蓄熱するにおいて、実際に蓄熱される蓄熱量に応じた
蓄熱が行える空調機を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an air conditioner capable of storing heat according to the amount of heat that is actually stored in the heat storage tank.

[考案の構成] (課題を解決するための手段) 本考案は、上記の目的を達成するために、能力可変圧縮
機,四方弁,室内熱交換器,減圧装置,室外熱交換器を
順次接続して冷凍サイクルを形成し、該冷凍サイクルの
上記圧縮機と上記四方弁との間に、上記圧縮機からの吐
出冷媒が通る加熱熱交換器を接続すると共にその加熱熱
交換器を蓄熱槽内に収容した空調機において、蓄熱専用
運転時に凝縮器となる上記加熱熱交換器と室内熱交換器
の内、加熱熱交換器の冷媒出口側に冷媒温度センサを設
け、蓄熱専用運転時、圧縮機の最大運転周波数を通常暖
房時の最大運転周波数よりも低く設定して圧縮機を運転
すると共に室内ファンを停止し、上記冷媒温度センサで
検出する温度が一定値に達したとき、上記圧縮機からの
吐出冷媒が、加熱熱交換器に流れて凝縮した後、その凝
縮液が室内熱交換器をそのまま流れるように、上記能力
可変圧縮機の能力を低下させるようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention sequentially connects a variable capacity compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger. To form a refrigeration cycle, and between the compressor and the four-way valve of the refrigeration cycle, a heating heat exchanger through which refrigerant discharged from the compressor passes is connected and the heating heat exchanger is placed in a heat storage tank. In the air conditioner housed in the above, in the heating heat exchanger and the indoor heat exchanger, which serve as a condenser during the heat storage dedicated operation, a refrigerant temperature sensor is provided on the refrigerant outlet side of the heating heat exchanger, and the compressor is operated during the heat storage dedicated operation. When the maximum operating frequency of is set lower than the maximum operating frequency during normal heating, the compressor is operated, the indoor fan is stopped, and the temperature detected by the refrigerant temperature sensor reaches a certain value. The discharged refrigerant of the After condensed flows in, the condensate to flow directly to the indoor heat exchanger, in which so as to reduce the ability of the variable capacity compressor.

(作用) 上記構成によれば、先ず蓄熱専用運転時には、凝縮器と
なり得る熱交換器が熱交換器と室内熱交換器の2つとな
るので、室内熱交換器で凝縮が起こらないように、すな
わち加熱熱交換器を出た冷媒がそのまま室内熱交換器に
流入するように圧縮機の最大運転周波数を通常暖房時の
最大運転周波数よりも低く設定し、また蓄熱槽内の温度
が上昇し、冷媒温度センサで検出する温度が一定値に達
した時は、圧縮機の能力を制御することで、加熱熱交換
器を出た冷媒がそのまま室内熱交換器に流入するよう
に、すなわち加熱熱交換器で凝縮が完了するように制御
することで、蓄熱専用運転時に室内熱交換器での熱交換
を起こさずに(室内の温度に影響を及ぼさないで)、圧
縮機のブレークダウンによる停止などがない最適な蓄熱
専用運転が行える。
(Operation) According to the above configuration, at the time of exclusive heat storage operation, the heat exchangers that can be the condenser are the heat exchanger and the indoor heat exchanger, so that condensation does not occur in the indoor heat exchanger, that is, The maximum operating frequency of the compressor is set lower than the maximum operating frequency during normal heating so that the refrigerant leaving the heating heat exchanger flows into the indoor heat exchanger as it is, and the temperature inside the heat storage tank rises, When the temperature detected by the temperature sensor reaches a certain value, the capacity of the compressor is controlled so that the refrigerant leaving the heating heat exchanger flows into the indoor heat exchanger as it is, that is, the heating heat exchanger. By controlling so that the condensation is completed with, the heat exchange in the indoor heat exchanger does not occur during the dedicated heat storage operation (without affecting the indoor temperature), and there is no stop due to the breakdown of the compressor. Optimal heat storage dedicated operation You can do it.

(実施例) 以下本考案の空調機の好適実施例を添付図面に基づいて
説明する。
(Embodiment) A preferred embodiment of the air conditioner of the present invention will be described below with reference to the accompanying drawings.

第1図は本考案の空調機の冷凍サイクルを示し、図にお
いて、1は、インバータ装置2などで駆動される能力可
変圧縮機で、その吐出側に蓄熱槽3が接続される。
FIG. 1 shows a refrigerating cycle of an air conditioner of the present invention. In the figure, 1 is a variable capacity compressor driven by an inverter device 2 or the like, and a heat storage tank 3 is connected to its discharge side.

この蓄熱槽3より四方弁4の一方のポートを介し、室内
熱交換器5,第1二方弁6,膨張弁などの減圧装置7,室外熱
交換器8,四方弁4の他方のポートを介し、さらに逆止弁
9を介して圧縮機1の吸込側に接続され冷凍サイクルが
構成される。
From this heat storage tank 3 through one port of the four-way valve 4, the indoor heat exchanger 5, the first two-way valve 6, the decompression device 7 such as an expansion valve, the outdoor heat exchanger 8, the other port of the four-way valve 4 Through the check valve 9 and the suction side of the compressor 1 to form a refrigeration cycle.

蓄熱槽3は、圧縮機1からの高温高圧冷媒が流れる加熱
熱交換器10と、室内熱交換器5を通って凝縮された冷媒
が通る吸熱熱交換器11とを有すると共に槽3内にパラフ
ィンなど融点が40〜50℃前後の蓄熱材12が封入されて形
成される。
The heat storage tank 3 has a heating heat exchanger 10 through which the high-temperature high-pressure refrigerant from the compressor 1 flows, and an endothermic heat exchanger 11 through which the refrigerant condensed through the indoor heat exchanger 5 passes, and paraffin is stored in the tank 3. The heat storage material 12 having a melting point of about 40 to 50 ° C. is enclosed and formed.

この蓄熱槽3内には蓄熱材12の温度を検出する蓄熱温度
センサ21が設けられる。この蓄熱槽3の冷媒出口側、す
なわち加熱熱交換器10の出口側には冷媒温度センサ22が
設けられる。
In the heat storage tank 3, a heat storage temperature sensor 21 that detects the temperature of the heat storage material 12 is provided. A refrigerant temperature sensor 22 is provided on the refrigerant outlet side of the heat storage tank 3, that is, on the outlet side of the heating heat exchanger 10.

室内熱交換器5には横流ファンなどの室内ファン13が設
けられ、室外熱交換器8にはプロペラファンなどの室外
ファン14が設けられる。また室内熱交換器5には室内熱
交温度(凝縮温度)センサ23が設けられる。
The indoor heat exchanger 5 is provided with an indoor fan 13 such as a cross flow fan, and the outdoor heat exchanger 8 is provided with an outdoor fan 14 such as a propeller fan. Further, the indoor heat exchanger 5 is provided with an indoor heat exchange temperature (condensation temperature) sensor 23.

室内熱交換器5と第1二方弁6間には室内熱交換器5か
らの凝縮冷媒を蓄熱槽3の吸熱熱交換器11へ流す蓄熱利
用ライン15が接続され、そのライン15に第2二方弁16が
接続される。また吸熱熱交換器11には蓄熱利用ライン15
からの冷媒を圧縮機1の吸込側に戻す戻しライン17が接
続されると共に第3二方弁18が接続される。
Between the indoor heat exchanger 5 and the first two-way valve 6, a heat storage utilization line 15 for connecting the condensed refrigerant from the indoor heat exchanger 5 to the heat absorption heat exchanger 11 of the heat storage tank 3 is connected, and the line 15 is connected to the second A two-way valve 16 is connected. The heat absorption heat exchanger 11 has a heat storage utilization line 15
A return line 17 for returning the refrigerant from the above to the suction side of the compressor 1 is connected, and a third two-way valve 18 is connected.

戻しライン17には、そのライン17を流れる冷媒を室外熱
交換器8に流す除霜ライン19が接続されると共にそのラ
イン19に第4二方弁20が接続される。
The defrosting line 19 for flowing the refrigerant flowing through the line 17 to the outdoor heat exchanger 8 is connected to the return line 17, and the fourth two-way valve 20 is connected to the line 19.

インバータ装置2は、空調負荷に応じて出力周波数が例
えば30〜120Hzの三相交流を圧縮機1に出力し、圧縮機
1を空調負荷に応じて圧縮能力となるよう制御するもの
で、通常暖房或は後述する暖房蓄熱運転時は、設定温度
と室温の差に応じて周波数運転域が30〜120Hzとなるよ
う、また蓄熱専用運転時は運転域が蓄熱温度センサ21か
ら検出した蓄熱温度は応じて30〜90Hzとなるよう圧縮機
1を駆動する。
The inverter device 2 outputs a three-phase alternating current having an output frequency of, for example, 30 to 120 Hz to the compressor 1 according to the air conditioning load, and controls the compressor 1 to have a compression capacity according to the air conditioning load. Alternatively, during the heating heat storage operation described later, the frequency operation range is set to 30 to 120 Hz according to the difference between the set temperature and the room temperature, and during the heat storage dedicated operation, the heat storage temperature detected by the heat storage temperature sensor 21 corresponds to the heat storage temperature. The compressor 1 is driven so that the frequency becomes 30 to 90 Hz.

また本実施例では圧縮機1をインバータ装置2で能力可
変に制御する例で説明したが、圧縮機1を直接商用電源
で駆動し、それを起動・停止するようにしてもよい。
Further, in the present embodiment, the example in which the compressor 1 is controlled to be variable in capacity by the inverter device 2 has been described, but the compressor 1 may be directly driven by a commercial power source to start / stop it.

冷媒温度センサ22(又は室内熱交温度センサ23)の検出
出力は制御装置(図示せず)に入力され、蓄熱専用運転
時、第2図に示すようにその検出出力がある一定値(例
えば56℃)に達したときインバータ装置2の出力周波数
値を下げるよう、またその温度が一定値より下がった温
度(例えば50℃)となった場合、出力周波数値を上げる
ようインバータ装置2を制御する。また商用電源で圧縮
機1を駆動する場合には制御装置は一定値に達したとき
圧縮機1を停止し、ある温度まで下がったならば起動す
るように制御する。
The detection output of the refrigerant temperature sensor 22 (or the indoor heat exchange temperature sensor 23) is input to a control device (not shown), and during the heat storage dedicated operation, as shown in FIG. When the temperature reaches a temperature lower than a certain value (for example, 50 ° C.), the inverter device 2 is controlled to increase the output frequency value. Further, when the compressor 1 is driven by the commercial power source, the control device controls so that the compressor 1 is stopped when it reaches a certain value, and is started when the temperature drops to a certain temperature.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be described.

先ず、通常暖房時,蓄熱暖房時及び蓄熱専用運転時は、
第1〜4二方弁6,16,18,20のうち、第1二方弁6が開と
される以外、第2〜4二方弁16,18,20は閉じられる。
First, during normal heating, during heat storage heating and during heat storage dedicated operation,
Of the first to fourth two-way valves 6,16,18,20, the second to fourth two-way valves 16,18,20 are closed except that the first two-way valve 6 is opened.

通常暖房時は、圧縮機1からの高温高圧冷媒は蓄熱槽3
の加熱熱交換器10をそのまま通り、四方弁4の一方のポ
ートを介して室内熱交換器5に流れ、そこで、室内ファ
ン13で吸込み送風される室内空気との熱交換により凝縮
し、第1二方弁6を介し減圧装置7で減圧されたのち、
室外熱交換器8に流れ、そこで室外ファン14で送風され
た外気と熱交換して蒸発され四方弁4の他方のポート及
び逆止弁9を介して圧縮機1に戻る。
During normal heating, the high-temperature high-pressure refrigerant from the compressor 1 is stored in the heat storage tank 3
Of the four-way valve 4 to the indoor heat exchanger 5 through the heating heat exchanger 10 as it is, where it is condensed by heat exchange with the indoor air sucked and blown by the indoor fan 13, After the pressure is reduced by the pressure reducing device 7 via the two-way valve 6,
It flows to the outdoor heat exchanger 8, where it exchanges heat with the outside air blown by the outdoor fan 14 to be evaporated and returns to the compressor 1 via the other port of the four-way valve 4 and the check valve 9.

この暖房時には蓄熱槽3内の蓄熱材には蓄熱された状態
にあり、圧縮機1から吐出された高温高圧冷媒は、その
まま凝縮せずに室内熱交換器5側に流れる。
During this heating, the heat storage material in the heat storage tank 3 is in a state where heat is stored therein, and the high-temperature high-pressure refrigerant discharged from the compressor 1 flows to the indoor heat exchanger 5 side without being condensed.

また暖房蓄熱運転の場合にも冷媒の流れは通常暖房時と
同じであるが、蓄熱槽3内の蓄熱材12が未だ充分に蓄熱
されていない状態にあり、圧縮機1からの高温高圧冷媒
の熱の一部で蓄熱材12を加熱したのち室内熱交換器5に
流れることとなる。
Further, in the heating and heat storage operation, the flow of the refrigerant is the same as that in the normal heating, but the heat storage material 12 in the heat storage tank 3 is in a state where the heat is not yet sufficiently stored, and the high temperature and high pressure refrigerant from the compressor 1 is discharged. The heat storage material 12 is heated by a part of the heat and then flows into the indoor heat exchanger 5.

この通常暖房及び暖房蓄熱運転時のインバータ装置2の
出力周波数域は使用者が設定した設定温度と検出した室
温の差に応じ30〜120Hzの範囲で運転される。すなわ
ち、空調負荷が大きい時(設定温度に対して室温が低い
時)は最大周波数値である120Hzで運転され、その後空
調負荷が小さくなったならば順次段階的に30Hzまで落さ
れて運転される。
The output frequency range of the inverter device 2 during the normal heating and heating heat storage operation is operated in the range of 30 to 120 Hz according to the difference between the set temperature set by the user and the detected room temperature. That is, when the air conditioning load is large (when the room temperature is lower than the set temperature), it is operated at the maximum frequency value of 120 Hz, and if the air conditioning load decreases thereafter, it is gradually decreased to 30 Hz and operated. .

次に蓄熱専用運転の場合を説明する。Next, the case of the heat storage dedicated operation will be described.

先ず蓄熱専用運転を行う際、蓄熱温度センサ21により蓄
熱材12の温度が所定の温度以下の時、圧縮機1が所定の
能力(例えば、通常暖房運転時の最大運転周波数120Hz
に対して蓄熱専用運転時の最大出力周波数を120Hzより
低い90Hzに設定する)で運転され、室内ファン13は停止
され、室外ファン14が駆動された状態にされ、第1〜4
二方弁6,16,18,20は通常暖房及び暖房蓄熱運転と同様に
開閉される。
First, when the heat storage temperature sensor 21 measures the temperature of the heat storage material 12 at a predetermined temperature or less during the heat storage dedicated operation, the compressor 1 has a predetermined capacity (for example, a maximum operating frequency of 120 Hz during normal heating operation).
The maximum output frequency during heat storage dedicated operation is set to 90 Hz, which is lower than 120 Hz), the indoor fan 13 is stopped, and the outdoor fan 14 is driven.
The two-way valves 6, 16, 18, 20 are opened and closed in the same manner as in normal heating and heating heat storage operation.

この状態で圧縮機1からの高温高圧冷媒は蓄熱槽3の加
熱熱交換器10を流れ、そこで蓄熱材12と熱交換により凝
縮し、その凝縮液が、室内熱交換器5をそのまま流れ、
第1二方弁6を介して減圧装置7で減圧され、室外熱交
換器8で蒸発され、四方弁4及び逆止弁9を介して圧縮
機1に戻る。このように圧縮機1からの高温高圧冷媒が
蓄熱槽3内の蓄熱材12と熱交換することで蓄熱材12が加
熱され、蓄熱されることとなる。
In this state, the high-temperature high-pressure refrigerant from the compressor 1 flows through the heating heat exchanger 10 of the heat storage tank 3, where it is condensed by heat exchange with the heat storage material 12, and the condensate flows through the indoor heat exchanger 5 as it is.
The pressure is reduced by the pressure reducing device 7 through the first two-way valve 6, evaporated by the outdoor heat exchanger 8, and returned to the compressor 1 through the four-way valve 4 and the check valve 9. In this way, the high-temperature high-pressure refrigerant from the compressor 1 exchanges heat with the heat storage material 12 in the heat storage tank 3, whereby the heat storage material 12 is heated and the heat is stored.

蓄熱専用運転開始時においては、蓄熱材12は固相状態に
あり、その熱伝導率が低く、かつその蓄熱開始時の温度
と加熱熱交換器10の温度差が大きいため、蓄熱温度セン
サ21では、実際に蓄熱された温度を検出することは困難
である。従って冷媒温度センサ22(又は室内熱交温度セ
ンサ23)の検出温度により、凝縮温度を検出し、その凝
縮温度にて圧縮機1を制御する。
At the start of the heat storage dedicated operation, the heat storage material 12 is in a solid state, its thermal conductivity is low, and the temperature difference between the temperature at the start of heat storage and the temperature of the heating heat exchanger 10 is large, so the heat storage temperature sensor 21 However, it is difficult to detect the actually stored temperature. Therefore, the condensation temperature is detected by the temperature detected by the refrigerant temperature sensor 22 (or the indoor heat exchange temperature sensor 23), and the compressor 1 is controlled by the condensation temperature.

これを第2図,第3図により説明する。This will be described with reference to FIGS. 2 and 3.

蓄熱専用運転を行うと冷媒温度センサ22は蓄熱槽3を出
た冷媒の凝縮温度を検出する。この際、圧縮機1が、イ
ンバータ装置2で駆動される場合、通常空調運転の最大
周波数120Hzで駆動すると、圧縮機1のモータのブレー
クダウンや凝縮温度の急激な上昇により圧縮機1が停止
されやすいため、蓄熱専用運転時の最大周波数値を90Hz
として運転することで凝縮圧力が急激に上昇することは
なくなり、このため蓄熱槽3の加熱熱交換器10での放熱
量は固相状態の蓄熱材12を加熱するに最適な熱量とな
り、圧縮機1が停止されることがなくなる。また商用電
源で駆動される場合には、その圧縮能力はインバータ装
置2の最大周波数値の圧縮能力より十分低いため、その
まま起動しても支承がない。
When the heat storage dedicated operation is performed, the refrigerant temperature sensor 22 detects the condensation temperature of the refrigerant that has left the heat storage tank 3. At this time, when the compressor 1 is driven by the inverter device 2 and is driven at the maximum frequency of 120 Hz in the normal air conditioning operation, the compressor 1 is stopped due to the breakdown of the motor of the compressor 1 or the rapid rise of the condensation temperature. Since it is easy, the maximum frequency value during dedicated heat storage operation is 90 Hz
The condensing pressure does not rise sharply by operating as, and therefore the amount of heat radiated in the heating heat exchanger 10 of the heat storage tank 3 becomes the optimum amount of heat for heating the heat storage material 12 in the solid state, and the compressor 1 will not be stopped. Further, when it is driven by a commercial power source, its compression capability is sufficiently lower than the compression capability of the maximum frequency value of the inverter device 2, and therefore there is no support even if it is started as it is.

蓄熱専用運転が行われると蓄熱槽3内の蓄熱材12が徐々
にその温度が上昇し、同時に冷媒温度センサ22で検出さ
れる凝縮温度も上昇してくる。第2図に示すように凝縮
温度が56℃となったとき、インバータ装置2の出力周波
数値を下げ、また凝縮温度が50℃まで降下したならば出
力周波数を上げる。また商用電源で駆動した場合にはON
・OFF制御を行う。
When the dedicated heat storage operation is performed, the temperature of the heat storage material 12 in the heat storage tank 3 gradually rises, and at the same time, the condensation temperature detected by the refrigerant temperature sensor 22 also rises. As shown in FIG. 2, when the condensing temperature reaches 56 ° C., the output frequency value of the inverter device 2 is lowered, and when the condensing temperature drops to 50 ° C., the output frequency is raised. ON when driven by commercial power supply
・ Off control.

この周波数制御又はON・OFF制御を第3図によりさらに
詳しく説明する。
This frequency control or ON / OFF control will be described in more detail with reference to FIG.

先ず蓄熱専用運転が開始されると冷媒温度センサ22は冷
媒の凝縮温度を検出24し、その検出温度Tcと設定した一
定の温度(56℃)とを比較25し、それが一定値以上とな
った場合には一定的に周波数値を下げる(例えば10Hz降
下)或はON・OFF制御であれば圧縮機1をOFF26とする。
この周波数降下又は圧縮機1がOFF26された後、タイマ
がセット27され、その後再度凝縮温度Tcと設定温度が比
較28され、凝縮温度Tcが依然として設定温度(56℃)以
上であれば周波数値をさらに下げるか或はOFF状態を保
つ。凝縮温度Tcが50℃以下となり、かつタイマが3分間
をカウントアップ29したならば周波数を再度上昇させる
か、圧縮機1をON30とし、以後、上述の制御を繰り返
す。
First, when the heat storage exclusive operation is started, the refrigerant temperature sensor 22 detects the condensation temperature 24 of the refrigerant, compares the detected temperature Tc with a set constant temperature (56 ° C.) 25, and it becomes a certain value or more. If it is, the frequency value is constantly lowered (for example, 10 Hz drop), or if the control is ON / OFF, the compressor 1 is turned OFF 26.
After this frequency drop or the compressor 1 is turned off 26, the timer is set 27, and then the condensing temperature Tc and the set temperature are compared again 28, and if the condensing temperature Tc is still above the set temperature (56 ° C), the frequency value is changed. Lower it further or keep it in the OFF state. When the condensing temperature Tc becomes 50 ° C. or lower and the timer counts up 29 for 3 minutes 29, the frequency is increased again or the compressor 1 is turned on 30, and the above control is repeated thereafter.

このように蓄熱槽3で凝縮された冷媒の凝縮温度を検出
し、その温度に応じて圧縮機を制御することで、圧縮機
のブレークダウンなどによる停止がなくなり、蓄熱運転
が最適に行える。
In this way, by detecting the condensation temperature of the refrigerant condensed in the heat storage tank 3 and controlling the compressor according to the temperature, stoppage due to breakdown of the compressor is eliminated, and heat storage operation can be optimally performed.

尚、暖房開始時の立ち上がり運転時は、第1二方弁6及
び第4二方弁20を閉じ、第2二方弁16及び第3二方弁18
を開とし、圧縮機1で未だ充分に高温高圧となっていな
い冷媒を蓄熱槽3の加熱熱交換器10を通し室内熱交換器
5に流し、そこで凝縮させたのち、蓄熱利用ライン15の
第2二方弁16を通し、吸熱熱交換器11を通して蓄熱材12
と熱交換させて蒸発させ、戻しライン17の第3二方弁18
を介して圧縮機1に戻すことで蓄熱槽3の蓄熱を循環冷
媒の加熱に用い、暖房立ち上り運転を良好にする。
In addition, at the start-up operation at the start of heating, the first two-way valve 6 and the fourth two-way valve 20 are closed, and the second two-way valve 16 and the third two-way valve 18
Is opened, and the refrigerant that is not sufficiently high temperature and high pressure in the compressor 1 is passed through the heating heat exchanger 10 of the heat storage tank 3 to the indoor heat exchanger 5 and condensed there. 2 Through the two-way valve 16 and through the endothermic heat exchanger 11, the heat storage material 12
The third two-way valve 18 of the return line 17
By returning to the compressor 1 via the heat storage tank 3, the heat stored in the heat storage tank 3 is used for heating the circulating refrigerant, thereby improving the heating start-up operation.

また通常暖房時に室外熱交換器8が着霜し、除霜運転を
行う場合には第1二方弁6と第3二方弁18を閉じ、第2
二方弁16と第4二方弁20を開き、室内熱交換器5で凝縮
した冷媒を第2二方弁16を通し、蓄熱槽3を通したの
ち、除霜ライン19より第4二方弁20を介して室外熱交換
器8に流したのち圧縮機1に戻して室外熱交換器8の除
霜を行う。
Further, when the outdoor heat exchanger 8 is frosted during normal heating and the defrosting operation is performed, the first two-way valve 6 and the third two-way valve 18 are closed, and the second
After opening the two-way valve 16 and the fourth two-way valve 20, the refrigerant condensed in the indoor heat exchanger 5 is passed through the second two-way valve 16 and the heat storage tank 3, and then the fourth two-way direction from the defrost line 19. After flowing through the valve 20 to the outdoor heat exchanger 8, the air is returned to the compressor 1 to defrost the outdoor heat exchanger 8.

冷房運転を行う場合には第1〜4二方弁6,16,18,20は暖
房運転と同様に開閉しておき、四方弁4を図示の点線で
示したポートを接続するよう切換え、圧縮機1の吐出冷
媒を暖房時と逆サイクルに室外熱交換器8側に流せばよ
い。
When performing the cooling operation, the first to fourth two-way valves 6, 16, 18, 20 are opened and closed in the same manner as the heating operation, and the four-way valve 4 is switched to connect to the port shown by the dotted line in the drawing, and compressed. It suffices to let the refrigerant discharged from the machine 1 flow to the outdoor heat exchanger 8 side in a cycle reverse to that during heating.

尚上述の実施例においては蓄熱槽2を室内熱交換器4と
直列に接続する例を示したが、蓄熱槽2は冷凍サイクル
内で蓄熱できる位置(圧縮機1の吐出側と減圧装置7
間)であればどこに接続してもよく、例えば蓄熱運転時
の吐出冷媒を室内熱交換器4を通さずに蓄熱槽2から直
接減圧装置に導くようになし、蓄熱利用時には蓄熱槽へ
吐出冷媒が流れず直接室内熱交換器4に流れ、その凝縮
冷媒を蓄熱槽へ流すよう蓄熱利用回路を構成するように
してもよい。
Although the heat storage tank 2 is connected in series with the indoor heat exchanger 4 in the above embodiment, the heat storage tank 2 is at a position where heat can be stored in the refrigeration cycle (the discharge side of the compressor 1 and the decompression device 7).
Interval), the discharge refrigerant during heat storage operation may be directly led from the heat storage tank 2 to the pressure reducing device without passing through the indoor heat exchanger 4, and the discharge refrigerant may be discharged to the heat storage tank when using heat storage. May flow to the indoor heat exchanger 4 without flowing, and the heat storage utilization circuit may be configured to flow the condensed refrigerant to the heat storage tank.

[考案の効果] 以上説明してきたように本考案によれば次のごとき優れ
た効果を発揮する。
[Effect of the Invention] As described above, according to the present invention, the following excellent effects are exhibited.

(1) 圧縮機の吐出側に吐出冷媒の熱を蓄熱する蓄熱
槽を設け、蓄熱専用運転時、冷媒の凝縮温度を検出し、
その温度で圧縮機を制御することで、蓄熱槽への入熱量
に応じて圧縮機を制御でき、最適な蓄熱が行える。
(1) A heat storage tank that stores the heat of the discharged refrigerant is provided on the discharge side of the compressor, and the condensation temperature of the refrigerant is detected during the heat storage dedicated operation.
By controlling the compressor at that temperature, the compressor can be controlled according to the amount of heat input to the heat storage tank, and optimal heat storage can be performed.

(2) ブレークダウンによる圧縮機の停止がなくなる
ため、圧縮機の信頼性が向上する。
(2) Since the compressor is not stopped due to the breakdown, the reliability of the compressor is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す冷凍サイクル図、第2
図は本考案において蓄熱温度に対する圧縮機の制御を説
明する図、第3図は本考案において蓄熱専用運転時の圧
縮機の制御を示すフローシート図である。 図中、1は能力可変圧縮機、3は蓄熱槽、5は室内熱交
換器、7は減圧装置、8は室外熱交換器、22は冷媒温度
センサ、23は室内熱交温度センサである。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of the present invention, and FIG.
FIG. 3 is a diagram for explaining the control of the compressor with respect to the heat storage temperature in the present invention, and FIG. 3 is a flow sheet diagram showing the control of the compressor in the heat storage dedicated operation in the present invention. In the figure, 1 is a variable capacity compressor, 3 is a heat storage tank, 5 is an indoor heat exchanger, 7 is a pressure reducing device, 8 is an outdoor heat exchanger, 22 is a refrigerant temperature sensor, and 23 is an indoor heat exchange temperature sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】能力可変圧縮機,四方弁,室内熱交換器,
減圧装置,室外熱交換器を順次接続して冷凍サイクルを
形成し、該冷凍サイクルの上記圧縮機と上記四方弁との
間に、上記圧縮機からの吐出冷媒が通る加熱熱交換器を
接続すると共にその加熱熱交換器を蓄熱槽内に収容した
空調機において、蓄熱専用運転時に凝縮器となる上記加
熱熱交換器と室内熱交換器の内、加熱熱交換器の冷媒出
口側に冷媒温度センサを設け、蓄熱専用運転時、圧縮機
の最大運転周波数を通常暖房時の最大運転周波数よりも
低く設定して圧縮機を運転すると共に室内ファンを停止
し、上記冷媒温度センサで検出する温度が一定値に達し
たとき、上記圧縮機からの吐出冷媒が、加熱熱交換器に
流れて凝縮した後、その凝縮液が室内熱交換器をそのま
ま流れるように、上記能力可変圧縮機の能力を低下させ
ることを特徴とする空調機。
1. A variable capacity compressor, a four-way valve, an indoor heat exchanger,
A decompression device and an outdoor heat exchanger are sequentially connected to form a refrigeration cycle, and a heating heat exchanger through which refrigerant discharged from the compressor passes is connected between the compressor and the four-way valve in the refrigeration cycle. In the air conditioner that accommodates the heating heat exchanger in the heat storage tank, a refrigerant temperature sensor is provided on the refrigerant outlet side of the heating heat exchanger and the indoor heat exchanger that serves as a condenser during the heat storage dedicated operation. Is installed, the maximum operating frequency of the compressor is set lower than the maximum operating frequency of normal heating during the heat storage dedicated operation, the compressor is operated, the indoor fan is stopped, and the temperature detected by the refrigerant temperature sensor is constant. When the value is reached, the discharge refrigerant from the compressor flows into the heating heat exchanger and is condensed, and then the capacity of the variable capacity compressor is reduced so that the condensate flows through the indoor heat exchanger as it is. Characterized by Air conditioner.
JP1987011547U 1987-01-30 1987-01-30 air conditioner Expired - Lifetime JPH0718938Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987011547U JPH0718938Y2 (en) 1987-01-30 1987-01-30 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987011547U JPH0718938Y2 (en) 1987-01-30 1987-01-30 air conditioner

Publications (2)

Publication Number Publication Date
JPS63120051U JPS63120051U (en) 1988-08-03
JPH0718938Y2 true JPH0718938Y2 (en) 1995-05-01

Family

ID=30798860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987011547U Expired - Lifetime JPH0718938Y2 (en) 1987-01-30 1987-01-30 air conditioner

Country Status (1)

Country Link
JP (1) JPH0718938Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052872A (en) * 2009-08-31 2011-03-17 Fujitsu General Ltd Heat pump cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588956A (en) * 1981-07-10 1983-01-19 株式会社システム・ホ−ムズ Heat pump type air conditioner
JPS58214741A (en) * 1982-06-07 1983-12-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier
JPS5923071U (en) * 1982-08-02 1984-02-13 株式会社東芝 air conditioner
JPS6018462U (en) * 1983-07-15 1985-02-07 株式会社日立製作所 heat pump cycle
JPS61197956A (en) * 1985-02-26 1986-09-02 松下電器産業株式会社 Heat pump hot-water supply machine

Also Published As

Publication number Publication date
JPS63120051U (en) 1988-08-03

Similar Documents

Publication Publication Date Title
JP2504437B2 (en) air conditioner
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
JPS6155018B2 (en)
KR101964946B1 (en) temperature compensated cooling system high efficiency
JPH0718938Y2 (en) air conditioner
JPH043865A (en) Freezing cycle device
JP4074422B2 (en) Air conditioner and its control method
JPH086951B2 (en) air conditioner
JP2523534B2 (en) Air conditioner
JP2001193990A (en) Hot water air conditioner
JPH01155153A (en) Air conditioner
JP4046828B2 (en) Air conditioner
JP3462551B2 (en) Speed control device for blower for condenser
JP2822769B2 (en) Heat pump system
JPH05256497A (en) Controlling method for dry operation of air conditioner
JP2669069B2 (en) Heating and cooling machine
JPH09152168A (en) Separate type air conditioner
JPH0734299Y2 (en) Heat storage type air conditioner
JPH03217723A (en) Heat pump type space heater
JPH04363536A (en) Operation control method for air-conditioner
JPS6022260Y2 (en) air conditioner
JPS6325478Y2 (en)
JPH0544676Y2 (en)
JPS63187041A (en) Air conditioner
JPH062066U (en) Air conditioner