JP3462551B2 - Speed control device for blower for condenser - Google Patents

Speed control device for blower for condenser

Info

Publication number
JP3462551B2
JP3462551B2 JP35044693A JP35044693A JP3462551B2 JP 3462551 B2 JP3462551 B2 JP 3462551B2 JP 35044693 A JP35044693 A JP 35044693A JP 35044693 A JP35044693 A JP 35044693A JP 3462551 B2 JP3462551 B2 JP 3462551B2
Authority
JP
Japan
Prior art keywords
condenser
blower
mode
control device
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35044693A
Other languages
Japanese (ja)
Other versions
JPH07198214A (en
Inventor
勤 山口
伸八郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP35044693A priority Critical patent/JP3462551B2/en
Publication of JPH07198214A publication Critical patent/JPH07198214A/en
Application granted granted Critical
Publication of JP3462551B2 publication Critical patent/JP3462551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 【0001】【発明の属する技術分野】 本発明は、空気調和機や低温
ショーケース等の空調・冷凍装置の冷凍サイクルを構成
する凝縮器を空冷するための凝縮器用送風機の速調装置
に関するものである。 【0002】 【従来の技術】従来よりこの種空調・冷凍装置において
は、冷凍サイクルの凝縮器を凝縮器用送風機にて空冷し
ており、更に、凝縮器における凝縮温度に基づいてこの
凝縮器用送風機の回転数を制御する速調装置が設けられ
ていた。そして、この速調装置は凝縮器用送風機の回転
数特性を切り換えることにより、凝縮圧力が高くなる設
定高モードを選択可能とされていた。 【0003】即ち、この凝縮圧力が高くなる高モードで
は、凝縮器における冷媒の凝縮温度が比較的高い段階か
ら凝縮器用送風機の回転数を低減する特性となる。これ
によって、凝縮器における凝縮圧力は比較的高くなるも
のの、凝縮器用送風機の騒音を低く抑えることができる
と共に、熱回収運転に好適なものとなる。 【0004】 【発明が解決しようとする課題】しかしながら、係る従
来の速調装置において前記高モードが設定されている場
合、運転条件によっては圧縮機の起動後の凝縮圧力の上
昇に凝縮器用送風機の回転数上昇が追随できなくなる場
合があった。係る状態を図3で説明する。図において、
横軸は圧縮機の起動からの経過時間T(s)、縦軸は凝
縮器における凝縮圧力HP(kg/平方センチメート
ル)と凝縮器用送風機の回転率(回転数)N(%)を示
している。 【0005】圧縮機の起動によって凝縮圧力HPは急激
に上昇して行くが、圧縮機の起動と同時に凝縮器用送風
機も起動され、その回転率Nも上昇して行き、凝縮器の
空冷が開始される。しかしながら、前記高モードが設定
されている場合、凝縮器用送風機の回転率Nの上昇は、
図中下段破線で示す如く緩慢であり、凝縮器の空冷が不
足するため、凝縮圧力HPの上昇を抑え切れず、30秒
経過後には22kgに達する。 【0006】係る高圧力になると、圧縮機等に過剰な負
荷が加わって損傷が発生する危険性があるため、通常は
高圧スイッチが作動して圧縮機が異常停止されてしま
う。そのため、従来では凝縮器の凝縮圧力を検知して動
作する圧力スイッチを追加し、例えば21kgにて圧力
スイッチを動作させて、前記高モード設定に係わらず、
図中下段一点鎖線で示す如く凝縮器用送風機を全速運転
(100%)とすることにより、図中上段一点鎖線で示
す如く圧力上昇を22kg手前で抑える必要があった。 【0007】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、格別な圧力スイッチを設
けること無く、圧縮機の異常停止を回避することができ
る凝縮器用送風機の速調装置を提供することを目的とす
る。 【0008】 【課題を解決するための手段】本発明の速調装置18
は、圧縮機1、凝縮器3、減圧装置(膨張弁)7及び蒸
発器8を順次環状に接続して成る冷凍サイクルの凝縮器
3を空冷する凝縮器用送風機11の回転数を制御するも
のであって、凝縮器3の温度を検出する凝縮温度センサ
14と、この凝縮温度センサ14の検出する温度の上昇
に合わせて凝縮器用送風機11の回転数が上昇するよう
な回転数特性を有して凝縮器用送風機11の回転数を制
御する制御装置16を備えており、この制御装置16
は、凝縮器用送風機11の回転数特性を複数の回転数特
性の中から変更することにより、凝縮器3の凝縮圧力設
定モードを選択切換するモード切換スイッチを有し、
縮圧力が高くなるモードに設定されている状態で凝縮器
用送風機11が起動される場合には、所定期間凝縮圧力
が低くなる回転数特性にて凝縮器用送風機11を制御す
るものである。 【0009】本発明の凝縮器用送風機11の速調装置1
8によれば、凝縮圧力が高くなるモードに設定されてい
る状態で凝縮器用送風機11が起動される場合には、自
動的に所定期間凝縮圧力が低くなる回転数特性にて凝縮
器用送風機11を制御するので、係る設定モードに係わ
らず、圧縮機1の起動時に凝縮器3を強力に空冷し、異
常な凝縮圧力の上昇を防止することができる。 【0010】従って、格別な圧力スイッチ等を設けるこ
と無く、且つ、設定されたモードに係わらず、凝縮圧力
の異常上昇による圧縮機1の異常停止を未然に回避し、
安定した冷却運転を可能とすることができる。 【0011】【発明の実施の形態】 次に、図面に基づき本発明の実施
例を詳述する。図1は本発明の凝縮器用送風機11の速
調装置18を適用する冷凍サイクルの冷媒回路図、図2
は本発明の速調装置18による凝縮器用送風機11の回
転数特性を示す図をそれぞれ示す。図1において、例え
ばレシプロ、ロータリー或いはスクロール型の圧縮機1
の吐出側の配管2には凝縮器3を構成する配管4が接続
され、この凝縮器3の配管4の出口側は配管6を介して
減圧装置としての膨張弁7に接続されている。そして、
この膨張弁7の出口側は蒸発器8に接続され、蒸発器8
の出口側は圧縮機1の吸込側の配管5に接続されること
により環状の冷凍サイクルが構成されている。 【0012】前記凝縮器3は、複数枚の熱交換フィン9
に前記配管4を蛇行状に挿通して構成されたフィンチュ
ーブ型の熱交換器であり、この凝縮器3に対応して凝縮
器用送風機11が配設されている。この凝縮器用送風機
11は、凝縮器3に外気を通風して空冷するためのもの
であり、モータ12とプロペラファン13とから構成さ
れている。 【0013】18は本発明の速調装置であり、例えば汎
用のマイクロコンピュータから成る制御装置16から構
成されている。前記凝縮器3の配管4の入口側には、前
記速調装置18を構成する例えばサーミスタの凝縮温度
センサ14が交熱的に添設されており、この凝縮温度セ
ンサ14の出力は制御装置16に入力されている。 【0014】この速調装置18の制御装置16は、例え
ばインバータ等の周波数変調装置によって前記凝縮器用
送風機11のモータ12の回転数を制御するものであ
る。また、制御装置16には前記凝縮器3における冷媒
の凝縮圧力HPが高くなる高モード、通常の中モード、
及び、低くなる低モードの三種類の凝縮圧力設定モード
を選択切換する図示しないモード切換スイッチが設けら
れており、制御装置16は係るスイッチの切換操作に基
づいて、前記凝縮器用送風機11(モータ12)の回転
数特性を変更する。 【0015】即ち、制御装置16は凝縮温度センサ14
の出力に基づき、前記高モードが設定されている状態で
は、図2に実線で示す如く、凝縮器3における冷媒の凝
縮温度CT(℃)が高い状態から例えば+60℃までの
範囲は凝縮器用送風機11の回転率(回転数)Nを10
0%として全速運転し、+60℃から+30℃までの範
囲では100%から0%(停止)まで直線的に減少させ
る制御を行う。即ち、凝縮温度CTがより高い段階から
凝縮器用送風機11が減速されるため、凝縮器11にお
ける冷媒の凝縮圧力HPは比較的高くなる。 【0016】一方、前記中モードに設定されている状態
では、図2に一点鎖線で示す如く、凝縮温度CT(℃)
が高い状態から例えば+50℃までの範囲は凝縮器用送
風機11の回転率(回転数)Nを100%として全速運
転し、+50℃から+20℃までの範囲では100%か
ら0%(停止)まで直線的に減少させる通常の制御を行
う。 【0017】他方、前記低モードに設定されている状態
では、図2に破線で示す如く、凝縮温度CT(℃)が高
い状態から例えば+40℃までの範囲は凝縮器用送風機
11の回転率(回転数)Nを100%として全速運転
し、+40℃から+10℃までの範囲では100%から
0%(停止)まで直線的に減少させる制御を行う。即
ち、凝縮温度CTがより低くなるまで凝縮器用送風機1
1を全速運転するため、凝縮器11における冷媒の凝縮
圧力HPは比較的低くなる。 【0018】このように、通常の中モードの他に高モー
ドと低モードとを設定可能としていることにより、高モ
ードでは凝縮器用送風機11を低騒音で運転することが
でき、また、熱回収運転を行うと共に、低モードでは省
エネルギー運転を行うことができるようになる。 【0019】以上の構成で圧縮機1が起動されると、圧
縮機1から吐出された高温高圧のガス冷媒は配管2を経
て凝縮器3の配管4に流入する。凝縮器3には前述の凝
縮器用送風機11から外気が通風され、そこで冷媒は空
冷されて凝縮液化する。凝縮器3から出た冷媒は配管6
を経て膨張弁7に至り、そこで減圧された後、蒸発器8
に流入してそこで蒸発する。 【0020】このときの吸熱作用により冷却作用を発揮
する。そして、蒸発器8から出た冷媒は配管5から圧縮
機1に吸入される。尚、圧縮機1の吐出側には図示しな
い高圧スイッチが設けられており、この高圧スイッチは
圧縮機1の吐出圧力が異常な高圧力に達すると圧縮機1
の運転を強制的に停止し、圧力が設定値以下に復帰して
圧縮機1の運転を許容する動作を行う。 【0021】一方、速調装置18の制御装置16は前記
圧縮機1の起動と同時に凝縮器用送風機11のモータ1
2を起動し、凝縮器3の空冷を開始すると共に、凝縮温
度センサ14の出力に基づき、設定された前記モード
(高モード、中モード、低モード)に応じて図2の回転
数特性にて凝縮器用送風機11の回転数を切換制御す
る。 【0022】しかしながら、速調装置18の制御装置1
6は、圧縮機1及び凝縮器用送風機11の起動時に図4
に示す制御を実行する。図4は係る起動時における制御
装置16のプログラムのフローチャートを示している。
即ち、制御装置16はステップS1で圧縮機1が起動さ
れると、ステップS2で設定が高モードであるか否か判
断し、中モード或いは低モードに設定されている場合に
はステップS5に進んで凝縮器用送風機11を起動し、
当該設定されたモードにて凝縮器用送風機11を運転す
る。 【0023】一方、係る凝縮器用送風機11の起動時
に、制御装置16が高モードに設定されている場合に
は、制御装置16はステップS2からステップS3に進
んで通常の前記中モードにて凝縮器用送風機11を起動
し、運転する。そして、ステップS4にて起動から例え
ば1分30秒経過したか否か判断し、経過するまで中モ
ードで運転する。そして、経過した後はステップS5に
進み、以後は設定された高モードにて凝縮器用送風機1
1は運転される。 【0024】係る制御による圧縮機1及び凝縮器用送風
機11の起動からの凝縮器用送風機11の回転率Nの推
移を図3の下段に実線で示し、凝縮器3における凝縮圧
力HPの推移を同図上段に実線で示す。同図から明らか
な如く、高モードに設定されているにも係わらず、凝縮
器用送風機11の起動時には自動的に中モードとされ
て、凝縮器用送風機11の回転率Nはより高くなる。そ
れによって、凝縮器3は強力に空冷されるようになり、
圧縮機1の起動直後の凝縮圧力HPの上昇が抑制され、
前記高圧スイッチによる圧縮機1の異常停止も回避され
ることになる。 【0025】尚、実施例では高モードに設定されている
場合の起動時の凝縮器用送風機11の運転モードを中モ
ードにしたが、それに限らず、高モードよりも凝縮圧力
HPが低くなる特性に変更するもの(例えば低モード)
であれば差し支えない。また、実施例における各値はそ
れに限られるものではなく、装置能力等に応じて種々変
更可能である。 【0026】 【発明の効果】以上詳述した如く本発明によれば、凝縮
圧力が高くなるモードに設定されている状態で凝縮器用
送風機が起動される場合には、自動的に所定期間凝縮圧
力が低くなる回転数特性にて凝縮器用送風機を制御する
ので、係る設定モードに係わらず、圧縮機の起動時に凝
縮器を強力に空冷し、異常な凝縮圧力の上昇を防止する
ことができる。 【0027】従って、格別な圧力スイッチ等を設けるこ
と無く、且つ、設定されたモードに係わらず、凝縮圧力
の異常上昇による圧縮機の異常停止を未然に回避し、安
定した冷却運転を可能とすることができるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blower for a condenser for air-cooling a condenser constituting a refrigeration cycle of an air conditioner / refrigeration apparatus such as an air conditioner and a low-temperature showcase. Related to the speed adjusting device. 2. Description of the Related Art Conventionally, in this type of air conditioning / refrigeration apparatus, a condenser of a refrigerating cycle is air-cooled by a blower for the condenser, and further based on the condensation temperature in the condenser. A speed control device for controlling the number of revolutions was provided. The speed control device can select a set high mode in which the condensing pressure is increased by switching the rotation speed characteristic of the blower for the condenser. That is, in the high mode in which the condensation pressure is increased, the rotation speed of the blower for the condenser is reduced from the stage where the condensation temperature of the refrigerant in the condenser is relatively high. Thereby, although the condensing pressure in the condenser becomes relatively high, the noise of the blower for the condenser can be suppressed to a low level, and it is suitable for the heat recovery operation. [0004] However, when the high speed mode is set in such a conventional speed control device, depending on the operating conditions, the condensing pressure after the compressor is started may rise and the blower for the condenser may not operate. In some cases, the increase in the number of revolutions could not follow. Such a state will be described with reference to FIG. In the figure,
The horizontal axis indicates the elapsed time T (s) from the start of the compressor, and the vertical axis indicates the condensing pressure HP (kg / square centimeter) in the condenser and the rotation rate (rotation speed) N (%) of the condenser blower. Although the condensing pressure HP rises sharply by the start of the compressor, the blower for the condenser is also started at the same time as the start of the compressor, the rotation rate N also increases, and the air cooling of the condenser is started. You. However, when the high mode is set, the rotation rate N of the condenser blower increases.
As shown by the broken line in the lower part of the figure, the cooling is slow, and the air cooling of the condenser is insufficient, so that the increase in the condensing pressure HP cannot be suppressed and reaches 30 kg after 30 seconds. At such a high pressure, there is a danger that an excessive load is applied to the compressor or the like, causing damage. Therefore, normally, the high pressure switch is operated and the compressor is abnormally stopped. Therefore, conventionally, a pressure switch that operates by detecting the condensing pressure of the condenser is added. For example, by operating the pressure switch at 21 kg, regardless of the high mode setting,
By operating the condenser blower at full speed (100%) as shown by the lower dashed line in the drawing, it was necessary to suppress the pressure rise to 22 kg before as shown by the upper dashed line in the drawing. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional technical problems, and has been made to solve the above-mentioned problems. Therefore, it is possible to avoid an abnormal stop of the compressor without providing a special pressure switch. It is an object to provide a control device. [0008] The speed adjusting device 18 of the present invention.
Controls the number of revolutions of the condenser blower 11 for air-cooling the condenser 3 of the refrigeration cycle, which is formed by sequentially connecting the compressor 1, the condenser 3, the pressure reducing device (expansion valve) 7 and the evaporator 8 in a ring shape. there are a condensation temperature sensor 14 for detecting the temperature of the condenser 3, increase in the temperature detected in the condensation temperature sensor 14
So that the rotation speed of the condenser blower 11 increases
A control device 16 having a high rotation speed characteristic and controlling the rotation speed of the condenser blower 11 is provided.
Describes the rotational speed characteristics of the condenser blower 11 with a plurality of rotational speed characteristics.
The condensing pressure of the condenser 3 can be set by changing
When the condenser blower 11 is started in a state in which the mode is set to a mode in which the condensing pressure is increased , a mode switching switch for selectively switching the constant mode is provided. It controls the blower 11 for the condenser. [0009] Speed control device 1 of condenser blower 11 of the present invention
According to 8, when the condenser blower 11 is started in a state in which the mode is set to a mode in which the condensing pressure is increased, the condenser blower 11 is automatically operated at a rotation speed characteristic in which the condensing pressure is decreased for a predetermined period. Since the control is performed, regardless of the setting mode, the condenser 3 can be strongly air-cooled when the compressor 1 is started, and an abnormal increase in the condensing pressure can be prevented. Therefore, without providing an extraordinary pressure switch or the like, and irrespective of the set mode, the abnormal stop of the compressor 1 due to the abnormal increase of the condensing pressure can be avoided.
A stable cooling operation can be performed. Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle to which the speed adjusting device 18 of the condenser blower 11 of the present invention is applied.
3A and 3B are diagrams respectively showing the rotational speed characteristics of the condenser blower 11 by the speed adjusting device 18 of the present invention. In FIG. 1, for example, a reciprocating, rotary or scroll type compressor 1
A pipe 4 constituting a condenser 3 is connected to a pipe 2 on the discharge side of the condenser 3. An outlet side of the pipe 4 of the condenser 3 is connected via a pipe 6 to an expansion valve 7 as a pressure reducing device. And
The outlet side of the expansion valve 7 is connected to an evaporator 8.
Is connected to a pipe 5 on the suction side of the compressor 1 to form an annular refrigeration cycle. The condenser 3 includes a plurality of heat exchange fins 9.
Is a fin tube type heat exchanger constructed by inserting the pipe 4 in a meandering shape, and a condenser blower 11 is provided corresponding to the condenser 3. The condenser blower 11 is for cooling the air by passing outside air through the condenser 3 and includes a motor 12 and a propeller fan 13. Reference numeral 18 denotes a speed controller of the present invention, which is constituted by a controller 16 comprising, for example, a general-purpose microcomputer. At the inlet side of the pipe 4 of the condenser 3, a condensing temperature sensor 14 of, for example, a thermistor constituting the speed adjusting device 18 is provided in a heat-exchange manner. Has been entered. The control device 16 of the speed adjusting device 18 controls the rotation speed of the motor 12 of the condenser blower 11 by a frequency modulation device such as an inverter. Further, the control device 16 has a high mode in which the condensation pressure HP of the refrigerant in the condenser 3 is high, a normal mode,
In addition, a mode change switch (not shown) for selecting and switching between three types of condensing pressure setting modes of a low mode, which is a low mode, is provided, and the control device 16 controls the condenser blower 11 (motor 12 ) Change the rotation speed characteristics. That is, the controller 16 controls the condensation temperature sensor 14
In the state where the high mode is set based on the output of the condenser blower, as shown by a solid line in FIG. 2, the range from the state where the refrigerant condensation temperature CT (° C.) in the condenser 3 is high to + 60 ° C. The rotation rate (rotation speed) N of 11 is 10
Full speed operation is performed with 0%, and control is performed to linearly decrease from 100% to 0% (stop) in the range from + 60 ° C to + 30 ° C. That is, since the condenser blower 11 is decelerated from the stage where the condensation temperature CT is higher, the refrigerant condensation pressure HP in the condenser 11 becomes relatively high. On the other hand, when the medium mode is set, the condensation temperature CT (° C.) as shown by the dashed line in FIG.
From high to + 50 ° C., for example, at full speed operation with the rotation rate (rotation speed) N of the condenser blower 11 as 100%, and linearly from 100% to 0% (stop) in the range from + 50 ° C. to + 20 ° C. The normal control for reducing the total is performed. On the other hand, in the state where the low mode is set, as shown by the broken line in FIG. 2, the range from the state where the condensation temperature CT (° C.) is high to + 40 ° C., for example, is the rotation rate (rotation speed) of the blower 11 for the condenser. Numeral) Full speed operation with N being 100%, and control to linearly decrease from 100% to 0% (stop) in the range of + 40 ° C to + 10 ° C. That is, until the condensing temperature CT becomes lower, the condenser blower 1
1 is operated at full speed, the condensing pressure HP of the refrigerant in the condenser 11 becomes relatively low. As described above, since the high mode and the low mode can be set in addition to the normal medium mode, the condenser blower 11 can be operated with low noise in the high mode, and the heat recovery operation can be performed. And the energy saving operation can be performed in the low mode. When the compressor 1 is started with the above configuration, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the pipe 4 of the condenser 3 through the pipe 2. Outside air is passed through the condenser 3 from the condenser blower 11, where the refrigerant is air-cooled and condensed and liquefied. The refrigerant flowing out of the condenser 3 is supplied to a pipe 6
Through the expansion valve 7 where the pressure is reduced.
And evaporates there. The cooling effect is exerted by the endothermic effect at this time. Then, the refrigerant flowing out of the evaporator 8 is sucked into the compressor 1 from the pipe 5. A high-pressure switch (not shown) is provided on the discharge side of the compressor 1.
Operation is forcibly stopped, the pressure returns to the set value or less, and an operation of permitting the operation of the compressor 1 is performed. On the other hand, the control device 16 of the speed adjusting device 18 starts the motor 1 of the condenser blower 11 at the same time when the compressor 1 is started.
2 to start the air cooling of the condenser 3 and, based on the output of the condensing temperature sensor 14, according to the set mode (high mode, medium mode, low mode) in accordance with the rotation speed characteristic of FIG. The number of rotations of the condenser blower 11 is switched and controlled. However, the controller 1 of the speed controller 18
6 shows the state when the compressor 1 and the condenser blower 11 are started up.
The following control is executed. FIG. 4 shows a flowchart of a program of the control device 16 at the time of such startup.
That is, when the compressor 1 is started in step S1, the control device 16 determines whether or not the setting is the high mode in step S2, and proceeds to step S5 if the setting is the middle mode or the low mode. To start the condenser blower 11,
The condenser blower 11 is operated in the set mode. On the other hand, if the control device 16 is set to the high mode when the condenser blower 11 is started, the control device 16 proceeds from step S2 to step S3 to execute the condenser mode in the normal medium mode. The blower 11 is started and operated. Then, in step S4, it is determined whether, for example, 1 minute and 30 seconds have elapsed from the start, and the operation is performed in the middle mode until the elapse. Then, after the elapse, the process proceeds to step S5, and thereafter, the blower 1 for the condenser is set in the set high mode.
1 is driven. The transition of the rotation rate N of the condenser blower 11 from the start of the compressor 1 and the condenser blower 11 under such control is shown by the solid line in the lower part of FIG. 3, and the transition of the condensing pressure HP in the condenser 3 is shown in FIG. It is shown by a solid line at the top. As is clear from the figure, even when the high mode is set, the mode is automatically set to the middle mode when the condenser blower 11 is started, and the rotation rate N of the condenser blower 11 becomes higher. Thereby, the condenser 3 is strongly air-cooled,
An increase in the condensing pressure HP immediately after the start of the compressor 1 is suppressed,
An abnormal stop of the compressor 1 due to the high pressure switch is also avoided. In the embodiment, the operation mode of the condenser blower 11 at the time of startup when the high mode is set is set to the medium mode. However, the present invention is not limited to this. Things to change (eg low mode)
If so, it does not matter. Further, each value in the embodiment is not limited thereto, and can be variously changed according to the device capability and the like. As described above in detail, according to the present invention, if the blower for the condenser is started in the mode in which the condensing pressure is set to be high, the condensing pressure is automatically set for a predetermined period. Since the blower for the condenser is controlled based on the rotation speed characteristic at which the pressure becomes low, the condenser can be strongly air-cooled when the compressor is started, regardless of the setting mode, and an abnormal increase in the condensation pressure can be prevented. Therefore, without providing a special pressure switch or the like, and irrespective of the set mode, the abnormal stop of the compressor due to the abnormal rise of the condensing pressure can be avoided beforehand, and the stable cooling operation can be performed. Is what you can do.

【図面の簡単な説明】 【図1】本発明の凝縮器用送風機の速調装置を適用する
冷凍サイクルの冷媒回路図である。 【図2】本発明の速調装置による凝縮器用送風機の回転
数特性を示す図である。 【図3】圧縮機の起動からの経過時間に対する凝縮圧力
と凝縮器用送風機の回転率の推移を示す図である。 【図4】本発明の凝縮器用送風機の速調装置の制御装置
のプログラムを示すフローチャートである。 【符号の説明】 1 圧縮機 3 凝縮器 7 膨張弁 8 蒸発器 11 凝縮器用送風機 14 凝縮温度センサ 16 制御装置 18 速調装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle to which a speed control device for a blower for a condenser according to the present invention is applied. FIG. 2 is a diagram showing a rotation speed characteristic of a blower for a condenser by the speed control device of the present invention. FIG. 3 is a graph showing changes in the condensing pressure and the rotation rate of the condenser blower with respect to the elapsed time from the start of the compressor. FIG. 4 is a flowchart showing a program of a control device of a speed control device for a blower for a condenser according to the present invention. [Description of Signs] 1 Compressor 3 Condenser 7 Expansion valve 8 Evaporator 11 Blower for condenser 14 Condensation temperature sensor 16 Control device 18 Speed control device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 381 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) F25B 1/00 381

Claims (1)

(57)【特許請求の範囲】 【請求項1】 圧縮機、凝縮器、減圧装置及び蒸発器を
順次環状に接続して成る冷凍サイクルの前記凝縮器を空
冷する凝縮器用送風機の速調装置において、前記凝縮器
の温度を検出する凝縮温度センサと、この凝縮温度セン
の検出する温度の上昇に合わせて前記凝縮器用送風機
の回転数が上昇するような回転数特性を有して当該凝縮
器用送風機の回転数を制御する制御装置を備え、この制
御装置は、前記凝縮器用送風機の回転数特性を複数の回
転数特性の中から変更することにより、前記凝縮器の凝
縮圧力設定モードを選択切換するモード切換スイッチを
有し、前記凝縮圧力が高くなるモードに設定されている
状態で前記凝縮器用送風機が起動される場合には、所定
期間凝縮圧力が低くなる回転数特性にて前記凝縮器用送
風機を制御することを特徴とする凝縮器用送風機の速調
装置。
(57) [Claim 1] A speed adjusting device for a blower for a condenser for air-cooling the condenser of a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected in a ring shape. A condenser temperature sensor for detecting the temperature of the condenser, and a blower for the condenser in accordance with an increase in the temperature detected by the condenser temperature sensor.
A control device for controlling the rotation speed of the condenser blower having a rotation speed characteristic such that the rotation speed of the condenser increases . The control device controls the rotation speed characteristic of the condenser blower for a plurality of times.
By changing the speed characteristics, the condenser
Set the mode switch to select and switch the compression pressure setting mode.
A, wherein when the condenser blower in a state in which the condensing pressure is set to becomes higher mode is activated, the controller controls the condenser blower at a rotation speed characteristic of a predetermined period condensing pressure is low Characteristic speed control device for condenser blower.
JP35044693A 1993-12-28 1993-12-28 Speed control device for blower for condenser Expired - Lifetime JP3462551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35044693A JP3462551B2 (en) 1993-12-28 1993-12-28 Speed control device for blower for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35044693A JP3462551B2 (en) 1993-12-28 1993-12-28 Speed control device for blower for condenser

Publications (2)

Publication Number Publication Date
JPH07198214A JPH07198214A (en) 1995-08-01
JP3462551B2 true JP3462551B2 (en) 2003-11-05

Family

ID=18410554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35044693A Expired - Lifetime JP3462551B2 (en) 1993-12-28 1993-12-28 Speed control device for blower for condenser

Country Status (1)

Country Link
JP (1) JP3462551B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100094466A1 (en) * 2008-10-14 2010-04-15 Libert Corporation Integrated quiet and energy efficient modes of operation for air-cooled condenser
CN103925755B (en) * 2013-01-16 2016-06-08 珠海格力电器股份有限公司 Operation control method for condensation side fan unit of refrigerating system
JP2017110853A (en) * 2015-12-16 2017-06-22 株式会社鷺宮製作所 Controller for EC fan motor control

Also Published As

Publication number Publication date
JPH07198214A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
WO2010137344A1 (en) Air-conditioning device
CN111780362B (en) Air conditioner and control method thereof
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP2723339B2 (en) Heat pump heating equipment
JP3668121B2 (en) Speed adjusting device for condenser blower
JP2002174450A (en) Air-conditioning device
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
JP2004028429A (en) Air conditioner
JP3462551B2 (en) Speed control device for blower for condenser
JPH0814672A (en) Freezer device
JP3311432B2 (en) Speed control device for blower for condenser
JP3329603B2 (en) Air conditioner
JP3676327B2 (en) Air conditioner and indoor heat exchanger frost prevention method for air conditioner
JP3219583B2 (en) Gas conditioner for air conditioner
JP2003050066A (en) Controller for air conditioner
KR100488010B1 (en) Control method of Airconditioner
JPH09303892A (en) Outdoor machine of air conditioner
JP2006194552A (en) Air conditioner
KR20000037566A (en) Method for controlling inverter compressor of air conditioner
JP3443442B2 (en) Air conditioner
JP4131619B2 (en) Outdoor fan control method and apparatus for air conditioner and air conditioner
KR0146310B1 (en) Defrost device and method of airconditioner
JP2529433B2 (en) Multi-room air conditioner
JP4404420B2 (en) Air conditioner control device
JP2896628B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

EXPY Cancellation because of completion of term