WO2015059792A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015059792A1
WO2015059792A1 PCT/JP2013/078779 JP2013078779W WO2015059792A1 WO 2015059792 A1 WO2015059792 A1 WO 2015059792A1 JP 2013078779 W JP2013078779 W JP 2013078779W WO 2015059792 A1 WO2015059792 A1 WO 2015059792A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
source side
heat source
opening
Prior art date
Application number
PCT/JP2013/078779
Other languages
French (fr)
Japanese (ja)
Inventor
傑 鳩村
山下 浩司
若本 慎一
直史 竹中
渡辺 和也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13895977.0A priority Critical patent/EP3062031B1/en
Priority to PCT/JP2013/078779 priority patent/WO2015059792A1/en
Priority to JP2015543648A priority patent/JP5992112B2/en
Publication of WO2015059792A1 publication Critical patent/WO2015059792A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor

Definitions

  • the present invention relates to an air conditioner.
  • an outdoor unit that is a heat source unit arranged outside a building is connected to an indoor unit (indoor unit) arranged inside the building by pipe connection.
  • the refrigerant circuit is configured to circulate the refrigerant.
  • heating or cooling of the air-conditioning target space is performed by heating and cooling the air using the heat radiation and heat absorption of the refrigerant.
  • the heat exchanger installed in the outdoor unit serves as an evaporator, and heat in the air is exchanged between the low-temperature refrigerant and the air, so that the moisture in the air becomes the fins of the heat exchanger. And it condenses on the heat transfer tube and forms frost on the heat exchanger.
  • the heat exchanger is frosted, the air path of the heat exchanger is blocked, and the heat transfer area of the heat exchanger that exchanges heat with air is reduced, which causes a problem of insufficient heating capacity.
  • the heating operation is stopped, the refrigerant flow is switched by the refrigerant flow switching device, and the heat exchanger installed in the outdoor unit is used as a condenser to perform the defrosting operation. .
  • the heat exchanger installed in the outdoor unit is used as a condenser to perform the defrosting operation.
  • the indoor heating operation is also stopped while the defrosting operation is being performed, the indoor temperature is lowered and the comfort of the indoor environment is impaired.
  • a plurality of heat exchangers are provided in the outdoor unit, and the discharge gas of the compressor is configured to be able to flow into each heat exchanger.
  • a bypass pipe is provided so that each of the plurality of heat exchangers can be bypassed via the on-off valve, and the plurality of heat exchangers are divided into an evaporator and a condenser for use in defrosting. Operation and heating operation can be performed simultaneously (see, for example, Patent Documents 1 to 3).
  • Medium pressure defrost is a defrost target condenser in which the pressure of the internal refrigerant is lower than the discharge pressure of the compressor and higher than the suction pressure (pressure that is slightly higher than 0 ° C. in terms of saturation temperature). This means defrost operation that is executed in the state.
  • the refrigerant amount of the entire refrigeration cycle decreases, the refrigerant amount supplied to the evaporator decreases, the indoor heating capacity decreases, and the comfort of the indoor environment is impaired. Will end up.
  • the latent heat of the two-phase part of the refrigerant cannot be used until the refrigerant is stored in the condenser, sufficient defrosting capacity cannot be obtained, and the defrosting time becomes longer, thereby reducing the indoor heating capacity. The comfort of the indoor environment will be impaired.
  • the present invention has been made against the background of the above problems.
  • the indoor heating capacity is reduced and the defrosting capacity is reduced.
  • An object of the present invention is to provide an air-conditioning apparatus that can suppress a decrease in the temperature.
  • the air conditioner according to the present invention is an air conditioner (100, 200) capable of simultaneously performing a heating operation and a defrosting operation, and includes a compressor (10), a load side heat exchanger (21), and a load side throttle.
  • a main circuit that forms at least a heating circuit by connecting a device (22), a plurality of heat source side heat exchangers (12) connected in parallel to each other, and an accumulator (13) by refrigerant piping; and the compressor ( 10), a first gas bypass pipe (5) branched from the discharge side of the plurality of heat source side heat exchangers (12) and allowing the refrigerant to flow into the heat source side heat exchanger (12) to be defrosted, Branched from the discharge side of the compressor (10) and provided in a second gas bypass pipe (7) for allowing the refrigerant to flow into the accumulator (13) and the first gas bypass pipe (5), the first gas Flow through bypass pipe (5)
  • the air conditioner according to the present invention operates the load-side heat exchanger as a condenser and operates a part of the heat-source-side heat exchanger as an evaporator to perform a heating operation, while the rest of the heat-source-side heat exchanger is operated.
  • the defrosting operation is performed by operating a part of the condenser as a condenser, the refrigerant remaining in the accumulator can be supplied to the evaporator and the condenser. Therefore, according to the air conditioning apparatus which concerns on this invention, the fall of the refrigerant
  • FIG. 1 shows the heating capability ratio at the time of defrost with respect to the saturation temperature in the heat source side heat exchanger which is a defrost object heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a flowchart which shows the control action at the time of operating the 2nd opening / closing apparatus at the time of the defrost operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. Saturation temperature change in which the pressure in the load-side heat exchanger is converted when the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator during the defrost mode of the air-conditioning apparatus according to Embodiment 1 of the present invention is changed.
  • FIG. 1 shows the heating capability ratio at the time of defrost with respect to the saturation temperature in the heat source side heat exchanger which is a defrost object heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a schematic circuit configuration diagram showing an example of a circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • the air conditioner 100 circulates refrigerant and performs air conditioning using a refrigeration cycle.
  • the air-conditioning apparatus 100 has a cooling only operation mode in which all the indoor units 2 to be operated are cooled, a heating only operation mode in which all the indoor units 2 to be heated are heated, or the indoor unit 2 is continuing the heating operation.
  • a defrosting operation mode for defrosting the heat exchanger (heat source side heat exchanger 12a, heat source side heat exchanger 12b) in the outdoor unit 1 can be selected.
  • the air conditioning apparatus 100 includes an outdoor unit 1 and an indoor unit 2, and is configured by connecting the outdoor unit 1 and the indoor unit 2 with a refrigerant main pipe 4.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b may be collectively referred to as the heat source side heat exchanger 12.
  • the outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11, such as a four-way valve, a heat source side heat exchanger 12a, a heat source side heat exchanger 12b, an accumulator 13, a first opening / closing device 30a, a first opening / closing device 30b, A second opening / closing device 35, a third opening / closing device 31a, a third opening / closing device 31b, a flow rate adjusting device 32a, and a flow rate adjusting device 32b are mounted.
  • these element devices are connected by a refrigerant pipe 3, a first gas bypass pipe 5, and a second gas bypass pipe 7.
  • the refrigerant pipe 3 connects the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12a, the heat source side heat exchanger 12b, the flow rate adjusting device 32a, the flow rate adjusting device 32b, and the accumulator 13.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are connected to each other in parallel by the refrigerant pipe 3.
  • the first gas bypass pipe 5 is connected to the refrigerant pipe 3 between the discharge part of the compressor 10 and the refrigerant flow switching device 11.
  • the first gas bypass pipe 5 is branched into two branches, one end of which is connected to the refrigerant pipe 3 between the heat source side heat exchanger 12a and the third switchgear 31a, and the other end is connected to the heat source side. It connects to the refrigerant
  • a first opening / closing device 30a is provided in the first gas bypass pipe 5 connected to the heat source side heat exchanger 12a.
  • a first opening / closing device 30b is provided in the first gas bypass pipe 5 connected to the heat source side heat exchanger 12b.
  • One end of the second gas bypass pipe 7 is connected to the refrigerant pipe 3 between the discharge part of the compressor 10 and the refrigerant flow switching device 11.
  • the other end of the second gas bypass pipe 7 is connected to the refrigerant pipe 3 between the refrigerant flow switching device 11 and the accumulator 13.
  • a second opening / closing device 35 is provided in the second gas bypass pipe 7.
  • the third opening / closing device 31 a that blocks the refrigerant flowing into the heat source side heat exchanger 12 a is installed in the refrigerant pipe 3 between the heat source side heat exchanger 12 a and the refrigerant flow switching device 11.
  • the third opening / closing device 31b for blocking the refrigerant flowing into the heat source side heat exchanger 12b is installed in the refrigerant pipe 3 between the heat source side heat exchanger 12b and the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b include a plurality of plate-like fins (fins 51 shown in FIG. 2) and heat transfer tubes (see FIG. 2) inserted so as to be orthogonal to the fins. And a fin tube type heat exchanger having a heat pipe 52).
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of the heat source side heat exchanger 12 of the air conditioner 100.
  • the heat source side heat exchanger 12 is divided into a plurality of heat exchangers.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b have two rows of fins 51 that are adjacent to each other in the row direction (the left-right direction in which each fin faces the same direction).
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are each configured in two stages in the step direction of the heat transfer tubes 52 (up and down directions in which the fins face the same direction).
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are configured by dividing the heat source side heat exchanger 12 in the casing of the outdoor unit 1, so that the fins 51 face the same direction. Are arranged vertically.
  • the heat source side heat exchanger 12a is disposed on the upper side
  • the heat source side heat exchanger 12b is disposed on the lower side
  • the fins 51 in the respective step directions are integrally formed (shared).
  • the refrigerant flow path of the heat source side heat exchanger 12a may be branched by a distributor 12a-1 and a header 12a-2.
  • the refrigerant flow path of the heat source side heat exchanger 12b may be branched by a distributor 12b-1 and a header 12b-2.
  • FIG. 2 In the configuration shown in FIG. 2, two rows of fins adjacent to each other in the row direction (left and right directions in which the respective fins face the same direction) have been described. A configuration may be used, and the path pattern may be different from that shown in FIG. Further, as the heat source side heat exchanger 12, a plurality of units such as three or more in the step direction (vertical direction in which each fin faces the same direction) is located, and the fins in each step direction are integrally formed (shared).
  • the number of stages is not limited to the number of stages shown in FIG. 2, and a larger number or a smaller number may be provided.
  • a plurality of the heat transfer tubes 52 are provided in the step direction perpendicular to the air passage direction and the row direction that is the air passage direction.
  • the fins 51 are arranged at intervals so that air passes in the air passage direction.
  • the heat source side heat exchanger 12 may be divided into left and right parts. However, when the heat source side heat exchanger 12 is divided into left and right parts, the refrigerant inlets to the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are respectively connected to the outdoor unit 1. Because it becomes the left and right ends of the pipe, the pipe connection becomes complicated. For this reason, it is desirable to divide up and down as shown in FIG.
  • the fins 51 may not be divided as shown in FIG. 2, or may be divided. Moreover, the division
  • the outdoor air is conveyed to the heat source side heat exchanger 12a and the heat source side heat exchanger 12b by a blower (not shown) such as a fan, for example.
  • the blower may be installed in each of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, but may share one unit.
  • the flow rate adjusting device 32a can change the opening degree, and is provided in the refrigerant pipe 3 on the load side expansion device 22 side of the heat source side heat exchanger 12a.
  • the flow rate adjusting device 32b can change the opening degree, and is provided in the refrigerant pipe 3 on the load side expansion device 22 side of the heat source side heat exchanger 12b.
  • the compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state.
  • the compressor 10 is configured by, for example, an inverter compressor capable of capacity control.
  • the refrigerant flow switching device 11 switches the refrigerant flow in the heating only operation mode and the refrigerant flow in the cooling only operation mode.
  • Both the heat source side heat exchanger 12a and the heat source side heat exchanger 12b function as an evaporator during the heating only operation mode and function as a condenser during the cooling only operation mode. Further, during the defrosting operation, one of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b functions as an evaporator and the other functions as a condenser.
  • the accumulator 13 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference in operation state between the heating only operation mode and the cooling only operation mode, and excess refrigerant with respect to a transient change in operation. .
  • the first switchgear 30a causes a high-temperature refrigerant to flow from the first gas bypass pipe 5 into the heat source side heat exchanger 12a. It is.
  • the first opening / closing device 30b allows a high-temperature refrigerant to flow into the heat source side heat exchanger 12b from the first gas bypass pipe 5. It is.
  • the first opening / closing device 30a and the first opening / closing device 30b may be configured to be capable of opening and closing the refrigerant flow path, such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
  • the first opening / closing device 30a and the first opening / closing device 30b may be collectively referred to as the first opening / closing device 30.
  • the third opening / closing device 31a is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4. The flow path of the refrigerant is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12a.
  • the third opening / closing device 31b is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4. The refrigerant flow path is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12b.
  • the third opening / closing device 31a and the third opening / closing device 31b may be configured to be capable of opening and closing the refrigerant flow path, such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
  • the third opening / closing device 31a and the third opening / closing device 31b may be collectively referred to as the third opening / closing device 31.
  • the flow rate adjusting device 32a and the flow rate adjusting device 32b are throttle devices that can change the opening degree (opening area) in order to adjust the pressure in the heat source side heat exchanger 12 serving as a condenser.
  • the flow rate adjusting device 32a and the flow rate adjusting device 32b may be configured by, for example, an electronic expansion valve that is driven by a stepping motor, or a device that can change the opening area by arranging a plurality of small electromagnetic valves in parallel.
  • the flow rate adjusting device 32a and the flow rate adjusting device 32b may be collectively referred to as the flow rate adjusting device 32.
  • the second opening / closing device 35 allows a part of the high-temperature / high-pressure gas refrigerant discharged from the compressor 10 to flow into the accumulator 13 during the defrosting operation mode.
  • the second opening / closing device 35 may be constituted by a device capable of opening and closing the refrigerant flow path, such as a two-way valve, a solenoid valve, or an electronic expansion valve.
  • the outdoor unit 1 is provided with a first pressure sensor 41 and a second pressure sensor 42 as pressure detection means.
  • the first pressure sensor 41 is provided in the refrigerant pipe 3 between the compressor 10 and the refrigerant flow switching device 11.
  • the first pressure sensor 41 detects the pressure of the high-temperature and high-pressure refrigerant discharged from the compressor 10.
  • the second pressure sensor 42 is provided in the refrigerant pipe 3 between the refrigerant flow switching device 11 and the accumulator 13.
  • the second pressure sensor 42 detects the pressure of the low-pressure refrigerant sucked into the compressor 10.
  • the outdoor unit 1 is provided with a first temperature sensor 43, a second temperature sensor 45, a third temperature sensor 48a, and a third temperature sensor 48b as temperature detection means.
  • the first temperature sensor 43, the second temperature sensor 45, the third temperature sensor 48a, and the third temperature sensor 48b may be configured by a thermistor, for example.
  • the first temperature sensor 43 is provided in the refrigerant pipe 3 between the compressor 10 and the refrigerant flow switching device 11.
  • the first temperature sensor 43 measures the temperature of the refrigerant discharged from the compressor 10.
  • the 2nd temperature sensor 45 is provided in the air suction part of either the heat source side heat exchanger 12a or the heat source side heat exchanger 12b.
  • the second temperature sensor 45 measures the air temperature around the outdoor unit 1.
  • the third temperature sensor 48 a is provided in the refrigerant pipe 3 between the heat source side heat exchanger 12 a and the refrigerant flow switching device 11.
  • the third temperature sensor 48a measures the temperature of the refrigerant flowing into the heat source side heat exchanger 12a operating as an evaporator or the refrigerant flowing out of the heat source side heat exchanger 12a operating as a condenser.
  • the third temperature sensor 48 b is provided in the refrigerant pipe 3 between the heat source side heat exchanger 12 b and the refrigerant flow switching device 11.
  • the third temperature sensor 48b measures the temperature of the refrigerant flowing into the heat source side heat exchanger 12b operating as an evaporator or the refrigerant flowing out of the heat source side heat exchanger 12b operating as a condenser.
  • a control device 50 is installed in the outdoor unit 1.
  • the pressure information detected by the first pressure sensor 41 and the second pressure sensor 42 and the temperature information detected by the first temperature sensor 43, the second temperature sensor 45, the third temperature sensor 48a, and the third temperature sensor 48b are: Is input to the control device 50.
  • the load-side heat exchanger 21 is connected to the outdoor unit 1 through the refrigerant main pipe 4, and the refrigerant flows in or out.
  • the load-side heat exchanger 21 performs heat exchange between air and a refrigerant supplied from a blower (not shown) such as a fan, for example.
  • the load-side heat exchanger 21 generates heating air or cooling air to be supplied to the indoor space.
  • the heat exchange medium that exchanges heat with the refrigerant in the load-side heat exchanger 21 is not limited to air, and water, brine, or the like may be used as the heat exchange medium.
  • the load-side throttle device 22 has a function as a pressure reducing valve and an expansion valve, and decompresses and expands the refrigerant.
  • the load side expansion device 22 is provided on the upstream side of the load side heat exchanger 21 in the refrigerant flow during the cooling only operation mode.
  • the load-side throttle device 22 is configured with an opening degree that can be variably controlled.
  • the load-side throttle device 22 may be configured with, for example, an electronic expansion valve.
  • the indoor unit 2 is provided with a fourth temperature sensor 46, a fifth temperature sensor 47, and a sixth temperature sensor 44 as temperature detection means.
  • the 4th temperature sensor 46, the 5th temperature sensor 47, and the 6th temperature sensor 44 are good to comprise a thermistor etc., for example.
  • the fourth temperature sensor 46 is provided in the refrigerant pipe 3 between the load side expansion device 22 and the load side heat exchanger 21.
  • the fourth temperature sensor 46 detects the temperature of the refrigerant flowing into the load side heat exchanger 21 or the refrigerant flowing out of the load side heat exchanger 21.
  • the fifth temperature sensor 47 is provided in the refrigerant pipe 3 between the load side heat exchanger 21 and the refrigerant flow switching device 11 of the outdoor unit 1.
  • the fifth temperature sensor 47 detects the temperature of the refrigerant flowing into the load side heat exchanger 21 or the refrigerant flowing out of the load side heat exchanger 21.
  • the sixth temperature sensor 44 is provided in the air suction portion of the load side heat exchanger 21. The sixth temperature sensor 44 detects the ambient air temperature in the room.
  • Temperature information detected by the fourth temperature sensor 46, the fifth temperature sensor 47, and the sixth temperature sensor 44 is input to the control device 50 installed in the outdoor unit 1.
  • the air conditioner 100 includes the compressor 10, the refrigerant flow switching device 11, the load side heat exchanger 21, the load side expansion device 22, and the heat source side heat exchanger 12a connected in parallel to each other.
  • the heat source side heat exchanger 12b is sequentially connected by piping to form a main circuit in which the refrigerant circulates.
  • a bypass circuit that branches a part of the refrigerant discharged from the compressor 10 and flows into one of the heat source side heat exchangers 12 to be defrosted among the heat source side heat exchanger 12a and the heat source side heat exchanger 12b.
  • FIG. 1 a case where one indoor unit 2 is connected to one outdoor unit 1 through the refrigerant main pipe 4 is shown as an example.
  • the present invention is not limited to this configuration.
  • a plurality of indoor units 2 may be provided, and the plurality of indoor units 2 may be connected to one outdoor unit 1 in parallel.
  • Two or more outdoor units may be connected in parallel.
  • a refrigerant circuit configuration that enables each indoor unit to perform cooling and heating simultaneous selection of cooling and heating is possible. It may be adopted.
  • the air conditioner 100 has a control device 50 composed of a microcomputer.
  • the control device 50 switches the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the switching of the refrigerant flow switching device 11, based on detection information from various detection means and instructions from the remote controller, Controlling the opening / closing of the opening / closing device 30a, the first opening / closing device 30b, the opening / closing of the third opening / closing device 31, the opening of the load-side throttle device 22, and the like, execute each operation mode to be described later.
  • control device 50 may be provided for each unit or may be provided in the indoor unit 2.
  • control devices 50 may be connected to each other by a wired or wireless connection so that information can be exchanged.
  • each operation mode executed by the air conditioner 100 will be described. Below, each operation mode is demonstrated with the flow of a refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode. Based on FIG. 3, the cooling only operation mode which the air conditioning apparatus 100 performs is demonstrated. In FIG. 3, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the load-side heat exchanger 21. In FIG. 3, the flow direction of the refrigerant is indicated by solid arrows.
  • the refrigerant flow switching device 11 is switched to the state shown by the solid line in FIG.
  • the first opening / closing device 30a, the first opening / closing device 30b, and the second opening / closing device 35 are each switched to a closed state and block the refrigerant.
  • the third opening / closing device 31a, the third opening / closing device 31b, the flow rate adjusting device 32a, and the flow rate adjusting device 32b are each switched to the open state and allow the refrigerant to pass therethrough.
  • the low-temperature and low-pressure refrigerant When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b via the refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat-source-side heat exchanger 12a and the heat-source-side heat exchanger 12b is radiated to the outdoor air in each of the heat-source-side heat exchanger 12a and the heat-source-side heat exchanger 12b, and is a high-pressure liquid refrigerant. It becomes.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b merges through the flow rate adjustment device 32a and the flow rate adjustment device 32b, respectively, and flows out of the outdoor unit 1.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4 and is expanded by the load-side expansion device 22 to become a low-temperature / low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load-side heat exchanger 21 that operates as an evaporator and absorbs heat from the room air, thereby cooling the room air and becoming a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the load-side heat exchanger 21 flows into the outdoor unit 1 again through the refrigerant main pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 again.
  • the control device 50 loads the throttle device on the load side so that the superheat (superheat degree) obtained as the difference between the temperature detected by the fourth temperature sensor 46 and the temperature detected by the fifth temperature sensor 47 is constant. 22 is controlled.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode. Based on FIG. 4, the heating only operation mode which the air conditioning apparatus 100 performs is demonstrated. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the load-side heat exchanger 21. In FIG. 4, the flow direction of the refrigerant is indicated by solid line arrows.
  • the refrigerant flow switching device 11 is switched to the state shown by the solid line in FIG.
  • the first opening / closing device 30a, the first opening / closing device 30b, and the second opening / closing device 35 are each switched to a closed state and block the refrigerant.
  • the third opening / closing device 31a, the third opening / closing device 31b, the flow rate adjusting device 32a, and the flow rate adjusting device 32b are each switched to the open state and allow the refrigerant to pass therethrough.
  • the compressor 10 When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant.
  • the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
  • the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b via the flow rate adjustment device 32a and the flow rate adjustment device 32b, respectively.
  • the refrigerant that has flowed into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b absorbs heat from the outdoor air and becomes a low-temperature / low-pressure gas refrigerant, and the compressor 10 passes through the refrigerant flow switching device 11 and the accumulator 13. Inhaled again.
  • the control device 50 has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 41 into a saturation temperature and a temperature detected by the fourth temperature sensor 46. Thus, the opening degree of the load side expansion device 22 is controlled.
  • the detection results of the third temperature sensor 48a and the third temperature sensor 48b provided on the respective outlet sides of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are equal to or less than a predetermined value.
  • the control device 50 performs the heating only operation mode, and when the detection results of the third temperature sensor 48a and the third temperature sensor 48b are below a predetermined value (for example, about ⁇ 10 ° C. or less), the heat source side heat exchanger 12a, it is determined that a predetermined amount of frost has been generated on the fins of the heat source side heat exchanger 12b, and the defrosting operation mode is performed.
  • frost formation determination for example, when the saturation temperature converted from the suction pressure of the compressor 10 is significantly lower than the preset outside air temperature, or the temperature difference between the outside air temperature and the evaporation temperature is It may be carried out by a method such as when a predetermined time has passed after a predetermined value or more.
  • the heat source side heat exchanger 12b located on the lower side is defrosted, and then the heat source side heat exchanger 12a located on the upper side is defrosted.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b the heat source side heat exchanger 12 that is not to be defrosted is operated as an evaporator, and the load side heat exchanger 21 of the indoor unit 2 is operated as a condenser. Let the heating operation continue.
  • FIG. 5 is a refrigerant circuit diagram illustrating the flow of the refrigerant when the defrosting of the heat source side heat exchanger 12b is performed in the defrosting operation mode of the air-conditioning apparatus 100.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • the refrigerant flow switching device 11 In the defrosting operation mode, the refrigerant flow switching device 11 is maintained in the state shown by the solid line in FIG.
  • the states of the first opening / closing device 30, the second opening / closing device 35, the third opening / closing device 31, and the flow rate adjusting device 32 when the heat source side heat exchanger 12b is to be defrosted are as follows. Street. Both are controlled by the control device 50.
  • the first opening / closing device 30b is switched to the open state and allows the refrigerant to pass therethrough.
  • the third opening / closing device 31b is switched to the closed state and blocks the refrigerant.
  • the first opening / closing device 30a is maintained in a closed state and blocks the refrigerant.
  • the third opening / closing device 31a is maintained in the open state and allows the refrigerant to pass therethrough.
  • the flow rate adjusting device 32a is set to a fully open state and allows the refrigerant to pass therethrough.
  • the flow rate adjusting device 32b has a preset pressure at which the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of saturation temperature (for example, about 0.8 MPa for R410A refrigerant).
  • the opening is controlled so that is constant.
  • the second opening / closing device 35 or the compressor 10 detected by the second pressure sensor 42 is used.
  • a first predetermined value for example, about 0.3 MPa or less with R410A refrigerant
  • the amount of refrigerant circulating in the main circuit may be regarded as insufficient.
  • FIG. 6 is a diagram showing a change in enthalpy difference that can be used for defrosting due to a saturation temperature change in the heat source side heat exchanger 12 that is a defrost target heat exchanger of the air conditioner 100.
  • the horizontal axis indicates the saturation temperature in the heat source side heat exchanger 12 that is the defrost target heat exchanger
  • the left side of the vertical axis indicates the average refrigerant density (kg / kg) in the heat source side heat exchanger 12 that is the defrost target heat exchanger.
  • the continuous line of FIG. 6 has shown the required average refrigerant
  • the enthalpy difference which can be used for the defrosting by the saturation temperature change in the vessel 12 is shown.
  • the enthalpy difference that can be used for defrosting increases in the vicinity of about 1 ° C. where the saturation temperature in the heat source side heat exchanger 12 that is the defrost target heat exchanger is greater than 0 ° C. It becomes clear that the latent heat of the part can be used more effectively, and the required average refrigerant density in the heat source side heat exchanger 12 at that time is about 600 (kg / m 3 ) or more.
  • the load side heat used as a condenser for heating operation moves into the heat source side heat exchanger 12. Therefore, the amount of refrigerant in the load-side heat exchanger 21 decreases, so that the pressure (high pressure) in the load-side heat exchanger 21 decreases, and the low pressure also decreases due to the decrease in the amount of gas refrigerant in the entire cycle.
  • the load-side heat exchanger 21 is used as a condenser, it is necessary to supply indoor air at a temperature that does not give the user unpleasant feeling due to cold air.
  • a predetermined temperature difference (for example, 10 ° C. or more) is required between the room temperature and the saturation temperature at the pressure in the load-side heat exchanger 21.
  • a predetermined temperature difference for example, 10 ° C. or more
  • JIS-B8616 which is a standard for performance tests of packaged air conditioners
  • the pressure in the load-side heat exchanger 21 The saturation temperature is required to be 30 ° C. or higher. Therefore, in the defrosting operation mode, the pressure on the low-pressure side in the situation where the saturation temperature in the pressure in the load-side heat exchanger 21 can be secured at 30 ° C. or more is about the first predetermined value of about 0.3 MPa. It becomes.
  • the low pressure side pressure is in an operating state below about 0.3 MPa. Therefore, in order to store the refrigerant in the heat source side heat exchanger 12 while suppressing a decrease in the pressure on the low pressure side, it is necessary to supply a refrigerant that is not used in the heating operation and the defrosting operation.
  • the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows through the first gas bypass pipe 5 and is depressurized by the first switchgear 30b so as to become higher than 0 ° C. in terms of saturation temperature, and the medium pressure -It becomes a high-temperature gas refrigerant and flows into the heat source side heat exchanger 12b.
  • the medium-pressure / high-temperature gas refrigerant flowing into the heat source side heat exchanger 12b is a two-phase refrigerant having a low intermediate pressure while melting frost adhering to the heat source side heat exchanger 12b, or an intermediate pressure liquid refrigerant. And passes through the flow rate adjusting device 32b.
  • the refrigerant that has passed through the flow rate adjusting device 32b joins the two-phase refrigerant or liquid refrigerant having a low intermediate pressure and low temperature that has flowed into the outdoor unit 1 from the indoor unit 2 and upstream of the flow rate adjusting device 32a.
  • the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
  • the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant that has flowed into the outdoor unit 1 merges with the refrigerant from the flow rate adjusting device 32b upstream of the flow rate adjusting device 32a, and flows into the heat source side heat exchanger 12a.
  • the refrigerant flowing into the heat source side heat exchanger 12a absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the heat source side heat exchanger 12a is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 13.
  • the control device 50 has a preset pressure at which the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of the saturation temperature (for example, about 0.8 MPa for the R410A refrigerant).
  • the opening degree of the flow rate adjusting device 32b is controlled so as to be constant. That is, the control device 50 has a saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b greater than a pressure (for example, about 0.8 MPa for the R410A refrigerant) that is greater than 0 ° C. in terms of saturation temperature. In this manner, the opening degree of the flow rate adjusting device 32b is controlled.
  • Completion of defrosting of the heat source side heat exchanger 12b is determined, for example, that the frost has melted when a predetermined time elapses or when the temperature of the third temperature sensor 48b becomes a predetermined value or higher (for example, 5 ° C.). do it. It is assumed that the predetermined time is set to be equal to or longer than the time required until all of the frost is melted, assuming that the entire heat source side heat exchanger 12b has been frosted without any gap and injecting a part of the high-temperature / high-pressure refrigerant. Good.
  • the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 flows through the second gas bypass pipe 7, and the second
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 a is joined via the switchgear 35 and flows into the accumulator 13.
  • the refrigerant that has flowed into the accumulator 13 evaporates the liquid refrigerant that remains in the accumulator 13. Therefore, the amount of the gas refrigerant flowing out from the accumulator 13 can be increased, and the density of the low-pressure gas refrigerant can be increased. Therefore, the pressure of the low-pressure gas refrigerant increases, and the pressure of the low-pressure gas refrigerant can be maintained in a state higher than the first predetermined value (for example, about 0.3 MPa for the R410A refrigerant).
  • the pressure of the low-pressure gas refrigerant is equal to or lower than a first predetermined value (for example, about 0.3 MPa or less for the R410A refrigerant)
  • a first predetermined value for example, about 0.3 MPa or less for the R410A refrigerant
  • the density of the low-pressure gas refrigerant is reduced and the amount of refrigerant discharged from the compressor 10 is reduced.
  • the air conditioner 100 by using the second gas bypass pipe 7, the amount of the gas refrigerant flowing out from the accumulator 13 can be increased and the pressure of the low-pressure gas refrigerant can be increased. Therefore, the fall of the refrigerant
  • the outdoor air temperature detected by the second temperature sensor 45 is equal to or lower than a second predetermined value (for example, 0 ° C. or lower)
  • the outdoor air temperature decreases and the influence of frost formation
  • coolant pressure in the heat source side heat exchanger 12a currently used as an evaporator falls. Therefore, the refrigerant temperature in the heat source side heat exchanger 12a reaches about ⁇ 27 ° C.
  • saturated pressure is about 0.3 MPa
  • the pressure of the low-pressure gas refrigerant in the suction portion of the compressor 10 is There is a possibility of reaching a predetermined value of 1 (for example, about 0.3 MPa with R410A refrigerant). Therefore, even when the outdoor air temperature is equal to or lower than the second predetermined value (for example, 0 ° C. or lower), the controller 50 maintains the second opening / closing device 35 in the open state, thereby discharging the compressor 10 from the compressor 10. Since the fall of the refrigerant
  • the compressor 10 sucks the gas refrigerant having a higher density than before the second opening / closing device 35 is opened. Therefore, the circulation amount of the refrigerant discharged from the compressor 10 can be increased.
  • the alphabet a in the description of the defrosting operation of the heat source side heat exchanger 12b is used. It becomes the operation
  • the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set to a medium pressure (for example, higher than 0 ° C., which is higher than the frost temperature).
  • R410A refrigerant is about 0.8 MPa or more).
  • the air conditioning apparatus 100 can defrost the heat source side heat exchanger 12a and the heat source side heat exchanger 12b while continuing the heating operation. Moreover, the defrost of the heat source side heat exchanger 12b located in the lower side of the housing
  • FIG. 7 shows a change in the heating capacity with respect to the saturation temperature in the heat source side heat exchanger 12 which is a defrost target heat exchanger.
  • FIG. 8 is a flowchart showing a control operation when operating the second opening / closing device 35 when the air-conditioning apparatus 100 is in the defrosting operation mode.
  • operation movement of the control apparatus 50 at the time of operating the 2nd opening / closing apparatus 35 at the time of a defrost operation mode is demonstrated.
  • CT1 When the detection result of the third temperature sensor 48a and the third temperature sensor 48b is equal to or lower than a predetermined value (for example, about ⁇ 10 ° C. or lower) in the heating operation mode, the control device 50 performs heat source side heat exchanger 12a and heat source side heat exchange. It determines with the predetermined amount of frost having generate
  • a predetermined value for example, about ⁇ 10 ° C. or lower
  • CT2 The control device 50 determines whether or not the outdoor air temperature detected by the second temperature sensor 45 is equal to or higher than a predetermined value (for example, 0 ° C.). This predetermined value corresponds to the second predetermined value. If the value detected by the second temperature sensor 45 is greater than or equal to the predetermined value, the process proceeds to CT3. If the value detected by the second temperature sensor 45 is not equal to or greater than the predetermined value, the process proceeds to CT4.
  • a predetermined value for example, 0 ° C.
  • CT3 The control device 50 determines whether or not the pressure substantially equal to the refrigerant pressure in the suction portion of the compressor 10 detected by the second pressure sensor 42 is equal to or higher than a predetermined value (for example, 0.3 MPa or higher for the R410A refrigerant). To do. This predetermined value corresponds to the first predetermined value. If the value detected by the second pressure sensor 42 is greater than or equal to the predetermined value, the process proceeds to CT5. If the value detected by the second pressure sensor 42 is not equal to or greater than the predetermined value, the process proceeds to CT4.
  • a predetermined value for example, 0.3 MPa or higher for the R410A refrigerant
  • CT4 The control device 50 opens the second opening / closing device 35, branches the high-temperature / high-pressure gas refrigerant discharged from the compressor 10, and passes through the second gas bypass pipe 7 and the second opening / closing device 35 to accumulate the accumulator 13. To flow into. As a result, the liquid refrigerant staying in the accumulator 13 is evaporated, the amount of the gas refrigerant flowing out of the accumulator 13 is increased, and the pressure of the low-pressure gas refrigerant can be increased.
  • the control device 50 proceeds to CT6 after opening the second opening / closing device 35.
  • CT5 The control device 50 closes the second opening / closing device 35, branches from the discharge side of the compressor 10, and flows into the accumulator 13 via the second gas bypass pipe 7 and the second opening / closing device 35. Block the refrigerant flow path. After closing the second opening / closing device 35, the control device 50 proceeds to CT6.
  • CT6 The control device 50 determines whether or not the defrosting operation mode has ended. If the defrosting operation mode has not ended, the process proceeds to CT2. When the defrosting operation mode is completed, the process proceeds to CT7.
  • CT7 When the defrosting operation mode is completed, the control device 50 closes the second opening / closing device 35, branches off from the discharge side of the compressor 10, and passes through the second gas bypass pipe 7 and the second opening / closing device 35. Thus, the flow path of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 is blocked. The control device 50 shifts to the heating only operation mode after closing the second opening / closing device 35.
  • the pressure substantially equal to the refrigerant pressure in the suction portion of the compressor 10 detected by the second pressure sensor 42 is set to about 0.3 MPa with the R410A refrigerant, but this is not limitative. Is not to be done. That is, a temperature difference of a predetermined value or more (for example, 10 ° C. or more) between the room temperature and the saturation temperature at the pressure in the load-side heat exchanger 21 so as not to give the user an unpleasant feeling due to cold air depending on the operating state. Can be ensured, the first predetermined value may be set smaller than 0.3 MPa.
  • the second pressure sensor 42 is not limited to the pressure sensor, and is provided with a temperature sensor such as a thermistor.
  • the control device 50 calculates the saturation pressure based on the detected value of the temperature sensor, and uses the saturation pressure. You may make it do.
  • the 2nd opening / closing device 35 has shown the example opened according to the detection result of the refrigerant
  • coolant can be supplied to the heat source side heat exchanger 12 used as a defrost object faster, and defrost time can be shortened.
  • the second pressure sensor 42 when the pressure approximately equal to the refrigerant pressure in the suction portion of the compressor 10 detected by the second pressure sensor 42 is equal to or higher than a first predetermined value (for example, 0.3 MPa or higher for the R410A refrigerant), the second Although the opening / closing device 35 is shown as being closed, the present invention is not limited to this.
  • the increase in the pressure of the refrigerant in the suction portion of the compressor 10 in the defrosting operation mode may be predicted in advance by a test or the like, and may be closed after a predetermined time has elapsed.
  • the time for keeping the second opening / closing device 35 open may be different depending on the outside air temperature.
  • the temperature difference between the outside air and the refrigerant in the heat source side heat exchanger 12 is obtained when the heat source side heat exchanger 12 used as an evaporator obtains a heat exchange amount equal to or higher than that in the low outside air during high outside air.
  • the pressure of the refrigerant in the heat source side heat exchanger 12 increases, and the pressure of the refrigerant in the suction portion of the compressor 10 also increases.
  • the circulation amount of the refrigerant in the refrigerant circuit is large, and the second opening / closing device 35 is opened, and the refrigerant remaining in the accumulator 13 is sufficiently defrosted and heated even if the amount of refrigerant supplied into the refrigerant circuit is small. You can drive. Therefore, when the outside air is high, the time for opening the second opening / closing device 35 can be set short.
  • the pressure of the refrigerant in the heat source side heat exchanger 12 decreases, and the pressure of the refrigerant in the suction portion of the compressor 10 also decreases. Therefore, the circulation amount of the refrigerant in the refrigerant circuit is small, and a large amount of the refrigerant staying in the accumulator 13 is required to be supplied into the refrigerant circuit, and the time for opening the second opening / closing device 35 is set long. There is a need. That is, by setting the time for opening the second opening / closing device 35 according to the change in the outside air temperature, the high-temperature and high-pressure gas refrigerant branched from the discharge side of the compressor 10 is wasted, particularly when the outside air is high. Bypassing can be prevented and a decrease in heating capacity can be suppressed.
  • FIG. 9 shows a change in saturation temperature in terms of the pressure in the load-side heat exchanger 21 when the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 during the defrost mode of the air conditioner 100 is changed.
  • FIG. 9 when the outdoor air temperature is about 0 ° C. and the indoor air temperature is about 20 ° C., the load-side heat exchange when the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 in the defrosting operation mode is changed.
  • the saturation temperature change which converted the pressure in the vessel 21 is shown. Further, in FIG.
  • gas refrigerant flow ratio A value obtained by dividing all the high-temperature and high-pressure gas refrigerants (hereinafter referred to as gas refrigerant flow ratio), and the vertical axis represents the saturation temperature obtained by converting the pressure in the load-side heat exchanger 21.
  • the size of the second opening / closing device 35 may be a valve having a size that satisfies the gas refrigerant flow rate ratio of less than 0.65.
  • FIG. 10 is a schematic circuit configuration diagram illustrating another example of the circuit configuration of the air-conditioning apparatus 100.
  • the other end of the second gas bypass pipe 7 may be connected to the accumulator 13.
  • the high-temperature / high-pressure gas refrigerant discharged from the compressor 10 is branched and directly flows into the accumulator 13 via the second gas bypass pipe 7 and the second opening / closing device 35. It becomes possible.
  • the high-temperature and high-pressure gas refrigerant branched from the discharge side of the compressor 10 evaporates.
  • the heat energy is reduced by dissipating heat to the low-temperature, low-pressure gas or two-phase refrigerant that has flowed from the heat source side heat exchanger 12 that is a heat exchanger.
  • heat is exchanged only with the liquid surface located above the liquid refrigerant staying in the accumulator 13.
  • heat exchange can be performed efficiently between the gas refrigerant that has flowed into the accumulator 13 and the liquid refrigerant that has accumulated in the accumulator 13. Therefore, the refrigerant staying in the accumulator 13 is defrosted faster than the case where the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is caused to flow into the piping of the inflow portion of the accumulator 13. It becomes possible to supply to a certain heat source side heat exchanger 12, and defrosting can be performed more quickly. Therefore, the indoor heating capacity can be further prevented from being lowered, and the room can be kept comfortable.
  • FIG. FIG. 11 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus 200 according to Embodiment 2 of the present invention. Based on FIG. 11, the detailed structure of the air conditioning apparatus 200 is demonstrated. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. Moreover, in FIG. 11, the flow direction of the refrigerant
  • a fourth opening / closing device 33 a that newly blocks the refrigerant flow path of the heat source side heat exchanger 12 a to the pipe on the load side expansion device 22 side of the heat source side heat exchanger 12 a.
  • a fourth opening / closing device 33b that blocks the refrigerant flow path of the heat source side heat exchanger 12b is installed in the piping on the load side expansion device 22 side of the heat source side heat exchanger 12b.
  • the refrigerant bypass pipe 6 is installed. One end of the refrigerant bypass pipe 6 is connected to the refrigerant pipe 3 between each of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b and each of the third switchgear 31a and the third switchgear 31b. . The other end of the refrigerant bypass pipe 6 is connected to a flow path between each of the fourth opening / closing device 33 a and the fourth opening / closing device 33 b and the load side expansion device 22.
  • the refrigerant bypass pipe 6 allows the refrigerant in the heat source side heat exchanger 12 serving as a condenser to flow into the refrigerant pipe 3 in the defrosting operation mode.
  • the fifth switching device 34a and the fifth switching device 34b for switching the refrigerant flow path of the refrigerant bypass pipe 6 are connected between the heat source side heat exchanger 12 and the third switching device 31 each corresponding to one end.
  • the refrigerant bypass pipe 6 is installed.
  • the flow rate adjusting device 32b (or the flow rate), which is a throttle device whose opening degree (opening area) is changed to adjust the pressure of the refrigerant in the heat source side heat exchanger 12 to the other end side of the refrigerant bypass pipe 6.
  • One of the adjusting devices 32a) is installed.
  • the fourth opening / closing device 33a is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4 when the heat source side heat exchanger 12a operates as a condenser during the defrosting operation mode. The flow path of the refrigerant is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12a.
  • the fourth switchgear 33b is a low-temperature two-phase flow that flows from the indoor unit 2 into the outdoor unit 1 through the refrigerant main pipe 4 when the heat source side heat exchanger 12b operates as a condenser during the defrosting operation mode. The refrigerant flow path is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12b.
  • the fourth opening / closing device 33a and the fourth opening / closing device 33b may be configured to be capable of opening / closing a refrigerant flow path, such as a two-way valve, an electromagnetic valve, or an electronic expansion valve.
  • a refrigerant flow path such as a two-way valve, an electromagnetic valve, or an electronic expansion valve.
  • the fourth switchgear 33a and the fourth switchgear 33b may be collectively referred to as the fourth switchgear 33.
  • the fifth opening / closing device 34a removes the refrigerant flowing out of the heat source side heat exchanger 12a from the flow rate adjusting device 32b (or the flow rate adjusting device). It is made to flow into the refrigerant pipe 3 via 32a).
  • the fifth opening / closing device 34b removes the refrigerant flowing out of the heat source side heat exchanger 12a from the flow rate adjustment device 32b (or the flow rate adjustment device). It is made to flow into the refrigerant pipe 3 via 32a).
  • the fifth opening / closing device 34a and the fifth opening / closing device 34b may be configured to be capable of opening and closing a refrigerant flow path, such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
  • a refrigerant flow path such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
  • the fifth opening / closing device 34a and the fifth opening / closing device 34b may be collectively referred to as the fifth opening / closing device 34.
  • the other end of the first gas bypass pipe 5 branched into two branches is connected to the refrigerant pipe 3 between the heat source side heat exchanger 12a and the fourth switchgear 33a, and the other is connected to the heat source side heat exchanger. It connects to the refrigerant
  • the 3rd temperature sensor 48a is provided in the refrigerant
  • the 3rd temperature sensor 48b is the heat source side heat exchanger 12b and 3rd. It is provided in the refrigerant pipe 3 between the switchgear 31b.
  • the third temperature sensor 48a measures the temperature of the refrigerant flowing out from the heat source side heat exchanger 12a operating as an evaporator or the refrigerant flowing out from the heat source side heat exchanger 12a operating as a condenser.
  • the third temperature sensor 48b measures the temperature of the refrigerant flowing in from the heat source side heat exchanger 12b operating as an evaporator or the refrigerant flowing out of the heat source side heat exchanger 12b operating as a condenser.
  • the fourth opening / closing device 33a and the fourth opening / closing device 33b are open, and the fifth opening / closing device 34a and the fifth opening / closing device 34b are closed. Since the other operations of the switchgear and the flow of the refrigerant are the same as those of the air conditioner 100 according to Embodiment 1, the description thereof is omitted.
  • the refrigerant flow switching device 11 In the defrosting operation mode, the refrigerant flow switching device 11 is maintained in the state indicated by the solid line in FIG. Further, in the defrosting operation mode, the first opening / closing device 30, the second opening / closing device 35, the third opening / closing device 31, the fourth opening / closing device 33, and the fifth opening / closing device when the heat source side heat exchanger 12b is to be defrosted. 34 and the state of the flow rate adjusting device 32 are as follows. Both are controlled by the control device 50.
  • the first opening / closing device 30b is switched to the open state and allows the refrigerant to pass therethrough.
  • the third opening / closing device 31b is switched to the closed state and blocks the refrigerant.
  • the fourth opening / closing device 33b is switched to the closed state and blocks the refrigerant.
  • the fifth opening / closing device 34b is switched to the open state and allows the refrigerant to pass therethrough.
  • the first opening / closing device 30a is maintained in a closed state and blocks the refrigerant.
  • the third opening / closing device 31a is maintained in the open state and allows the refrigerant to pass therethrough.
  • the fourth opening / closing device 33a is switched to the open state and allows the refrigerant to pass therethrough.
  • the fifth opening / closing device 34a is switched to the closed state and blocks the refrigerant.
  • the flow rate adjusting device 32b (or the flow rate adjusting device 32a) is configured such that the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b, which is the “defrosting refrigerant amount decrease detecting means”, is 0 ° C. in terms of saturation temperature.
  • the opening degree is controlled such that a preset pressure (for example, about 0.8 MPa for the R410A refrigerant) that becomes larger is constant.
  • the second opening / closing device 35 or the compressor 10 detected by the second pressure sensor 42 is used.
  • a first predetermined value for example, about 0.3 MPa or less with R410A refrigerant
  • the open state is maintained and the refrigerant passes.
  • the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows through the first gas bypass pipe 5 and is depressurized by the first switchgear 30b so as to become higher than 0 ° C. in terms of saturation temperature, and the medium pressure -It becomes a high-temperature gas refrigerant and flows into the heat source side heat exchanger 12b.
  • the medium-pressure and high-temperature gas refrigerant that has flowed into the heat source side heat exchanger 12b becomes a two-phase refrigerant having a low intermediate pressure or a medium pressure refrigerant while melting frost adhering to the heat source side heat exchanger 12b. And passes through the fifth opening / closing device 34b.
  • the refrigerant that has passed through the fifth opening / closing device 34b is depressurized by the flow rate adjusting device 32b (or the flow rate adjusting device 32a) and flows into the outdoor unit 1 from the indoor unit 2 into the outdoor unit 1 or a low-drying two-phase refrigerant having a low intermediate pressure or low temperature, or The liquid refrigerant merges on the upstream side of the fourth opening / closing device 33a.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant.
  • the liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
  • the low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant flowing into the outdoor unit 1 merges with the refrigerant from the flow rate adjusting device 32b (or the flow rate adjusting device 32a) upstream of the fourth opening / closing device 33a to perform heat source side heat exchange.
  • the refrigerant flowing into the heat source side heat exchanger 12a absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the heat source side heat exchanger 12a is again sucked into the compressor 10 via the third opening / closing device 31a, the refrigerant flow switching device 11, and the accumulator 13.
  • the control device 50 has a preset pressure at which the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of the saturation temperature (for example, about 0.8 MPa for the R410A refrigerant).
  • the opening degree of the flow rate adjusting device 32b (or the flow rate adjusting device 32a) is controlled so as to be constant. That is, the controller 50 adjusts the flow rate adjusting device 32b (or the flow rate adjusting device 32a) so that the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of saturation temperature. ) Is controlled.
  • Completion of defrosting of the heat source side heat exchanger 12b is determined, for example, that the frost has melted when a predetermined time elapses or when the temperature of the third temperature sensor 48b becomes a predetermined value or higher (for example, 5 ° C.). do it. It is assumed that the predetermined time is set to be equal to or longer than the time required until all of the frost is melted, assuming that the entire heat source side heat exchanger 12b has been frosted without any gap and injecting a part of the high-temperature / high-pressure refrigerant. Good.
  • control device 50 when operating the second opening / closing device 35 is also the same as that of the air conditioner 100 according to the first embodiment, and is therefore omitted.
  • the heat source side heat exchanger 12b when configured by two rows of heat exchangers and used as an evaporator, the heat source side heat exchanger 12b is positioned in the first row on the outdoor air inlet side of the heat source side heat exchanger 12b. Most of the outdoor air is dehumidified by the fins located in the first row, which is the side flowing into the heat source side heat exchanger 12b. That is, the frost formation amount of the fins located in the first row on the side flowing into the heat source side heat exchanger 12b is large, and the frost formation amount of the fins located in the second row is small.
  • the alphabet a in the description of the defrosting operation of the heat source side heat exchanger 12b is used. It becomes the operation
  • the open / close state is reversed, and the refrigerant flows in the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are switched.
  • the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set to a medium pressure (for example, higher than 0 ° C., which is higher than the frost temperature).
  • R410A refrigerant is about 0.8 MPa or more).
  • the air conditioning apparatus 200 can defrost the heat source side heat exchanger 12a and the heat source side heat exchanger 12b while continuing the heating operation. Moreover, the defrost of the heat source side heat exchanger 12b located in the lower side of the housing
  • the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is caused to flow into the piping of the inflow portion of the accumulator 13.
  • the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is supplied to the second gas bypass pipe 7 and the second opening / closing device 35. Therefore, a circuit configuration that flows directly into the accumulator 13 may be adopted. With such a configuration, it is possible to obtain the same effects as those of the air conditioner 100 according to Embodiment 1, efficiently perform defrosting, suppress a decrease in indoor heating capacity, It becomes possible to keep it comfortable.
  • non-flammable refrigerants such as R410A, R407C, and R22, HFO1234yf, HFO1234ze (E), R32, HC, a refrigerant containing R32 and HFO1234yf, a refrigerant exhibiting slight flammability such as a refrigerant using a refrigerant mixture containing at least one of the aforementioned refrigerants, a highly flammable refrigerant such as propane (R290), CO 2 (R744)
  • a refrigerant that operates supercritically on the high-pressure side such as) can be used as the heat-source-side refrigerant.
  • the air conditioner 100 according to the first embodiment and the flow rate adjusting device 32a and the flow rate adjusting device 32b of the air conditioner 200 according to the second embodiment are the throttle devices that can change the opening degree (opening area), Any device that can change the opening area of the road may be used.
  • the expansion device may be an electronic expansion valve that is driven by a stepping motor, or a plurality of small electromagnetic valves arranged in parallel and switched to change the opening area.
  • the air conditioner 100a which concerns on Embodiment 1 and the flow volume adjustment apparatus 32a of the air conditioning apparatus 200 which concerns on Embodiment 2
  • the flow volume adjustment apparatus 32b are set as the apparatus which can change the opening area of a flow path.
  • the flow rate adjusting device 32a may be a device capable of changing the opening area of the flow path
  • the flow rate adjusting device 32b may be configured by arranging a plurality of small solenoid valves in parallel. The same effect as 2 is obtained.
  • opening each opening / closing device means that each opening / closing device is fully open or close to full opening.
  • To close each opening / closing device means to make each opening / closing device fully closed or close to the fully closed position.
  • To open means to open the flow rate adjustment device to the full open or close to full open, and to close the flow rate adjustment device, to fully close or fully close the flow rate adjustment device.
  • the opening degree is close to 0, that is, the state is such that the refrigerant hardly flows.
  • the heat source side heat exchanger 12a and the heat source side heat exchanger 12b of the air conditioner 100 according to the first embodiment and the air conditioner 200 according to the second embodiment are arranged in the step direction (the fins face the same direction).
  • the heat source side heat exchanger 12 may be configured to have a plurality of units such as three or more in the step direction (vertical direction in which each fin faces the same direction).
  • the arrangement of the plurality of heat source side heat exchangers 12 is not limited to the upper and lower sides, and may be arranged in the left and right direction and the front and rear direction.
  • the air-conditioning apparatus 100 according to Embodiment 1 and the air-conditioning apparatus 200 according to Embodiment 2 have been described using the air-conditioning apparatus capable of switching between cooling and heating operations as an example.
  • the present invention can also be applied to an air conditioner having a possible circuit configuration.
  • a heating circuit refers to the refrigerant circuit structure of the air conditioning apparatus 100 and the air conditioning apparatus 200 formed at the time of heating operation mode.

Abstract

An air conditioner (100) comprises: first gas bypass piping (5) that branches from the discharge side of a compressor (10) and in which refrigerant flows to a heat source side heat exchanger (12) that is to be defrosted from among a plurality of heat source side heat exchangers (12); second gas bypass piping (7) that branches from the discharge side of the compressor (10) and in which refrigerant flows to an accumulator (13); a plurality of first opening and closing devices (30) that are provided in the first gas bypass piping (5) and that allows or blocks the passage of refrigerant flowing in the first gas bypass piping (5); and at least one second opening and closing device (35) that is provided in the second gas bypass piping (7) and that allows or blocks the passage of refrigerant flowing in the second gas bypass piping (7).

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関するものである。 The present invention relates to an air conditioner.
 従来、ビル用マルチエアコンなどの空気調和装置においては、例えば建物外に配置した熱源機である室外機(室外ユニット)と、建物内に配置した室内機(室内ユニット)との間を配管接続して冷媒回路を構成し、冷媒を循環させている。そして、冷媒の放熱、吸熱を利用して、空気を加熱、冷却することで、空調対象空間の暖房又は冷房を行っている。 Conventionally, in an air conditioner such as a multi air conditioning system for buildings, for example, an outdoor unit (outdoor unit) that is a heat source unit arranged outside a building is connected to an indoor unit (indoor unit) arranged inside the building by pipe connection. The refrigerant circuit is configured to circulate the refrigerant. And heating or cooling of the air-conditioning target space is performed by heating and cooling the air using the heat radiation and heat absorption of the refrigerant.
 このようなビル用マルチエアコンの暖房運転時は、室外機に設置されている熱交換器が蒸発器となり、低温の冷媒と空気が熱交換することで、空気中の水分が熱交換器のフィン及び伝熱管に凝結して、熱交換器に着霜する。このように、熱交換器に着霜すると、熱交換器の風路が塞がれ、空気と熱交換する熱交換器の伝熱面積が小さくなるため、暖房能力不足の問題が生じる。 During the heating operation of such a building multi-air conditioner, the heat exchanger installed in the outdoor unit serves as an evaporator, and heat in the air is exchanged between the low-temperature refrigerant and the air, so that the moisture in the air becomes the fins of the heat exchanger. And it condenses on the heat transfer tube and forms frost on the heat exchanger. As described above, when the heat exchanger is frosted, the air path of the heat exchanger is blocked, and the heat transfer area of the heat exchanger that exchanges heat with air is reduced, which causes a problem of insufficient heating capacity.
 そこで、一般的には、暖房運転を停止して、冷媒流路切替装置により冷媒の流れを切り替えて、室外機に設置されている熱交換器を凝縮器とすることで、除霜運転を行う。このような除霜運転を実行することによって、暖房能力の低下を防ぐことができる。しかしながら、除霜運転を実行している間は、室内の暖房運転も停止することになるため、室内温度が低下して室内環境の快適性が損なわれてしまう。 Therefore, in general, the heating operation is stopped, the refrigerant flow is switched by the refrigerant flow switching device, and the heat exchanger installed in the outdoor unit is used as a condenser to perform the defrosting operation. . By performing such a defrosting operation, it is possible to prevent a reduction in heating capacity. However, since the indoor heating operation is also stopped while the defrosting operation is being performed, the indoor temperature is lowered and the comfort of the indoor environment is impaired.
 従来の技術では、このような問題点を解決するために、室外機に熱交換器を複数設けて、圧縮機の吐出ガスをそれぞれの熱交換器に流入可能に構成している。具体的には、開閉弁を介して複数の熱交換器のそれぞれをバイパスできるようにバイパス配管を設け、その複数の熱交換器を蒸発器と凝縮器とに分けて利用することで、除霜運転と暖房運転とを同時に実行できるようにしている(例えば、特許文献1~3参照)。 In the conventional technology, in order to solve such problems, a plurality of heat exchangers are provided in the outdoor unit, and the discharge gas of the compressor is configured to be able to flow into each heat exchanger. Specifically, a bypass pipe is provided so that each of the plurality of heat exchangers can be bypassed via the on-off valve, and the plurality of heat exchangers are divided into an evaporator and a condenser for use in defrosting. Operation and heating operation can be performed simultaneously (see, for example, Patent Documents 1 to 3).
WO2010/082325号公報(図7、図8等)WO 2010/082325 (FIGS. 7, 8, etc.) US2010/0170270号公報(FIG.2等)US2010 / 0170270 (FIG. 2 etc.) WO2012/014345号公報(段落[0006]、図1等)WO2012 / 014345 (paragraph [0006], FIG. 1 etc.)
 特許文献1、特許文献2に記載されている空気調和装置では、複数の室外熱交換器を使用し、蒸発器で暖房運転、凝縮器で除霜運転を同時に実施している。しかし、凝縮器で除霜運転を実施する際に、圧縮機から吐出された一部のガス冷媒を凝縮器に流し、ガス冷媒の顕熱のみを利用して、除霜運転を実施するため、凝縮器前後で十分なエンタルピ差が確保できない。十分な除霜能力を得るためには、圧縮機から吐出された一部のガス冷媒の循環量を大きくする必要がある。このため、蒸発器に供給する冷媒量が低下することになり、室内の暖房能力が低下し、室内環境の快適性が損なわれる。 In the air conditioning apparatus described in Patent Document 1 and Patent Document 2, a plurality of outdoor heat exchangers are used, and heating operation is performed with an evaporator and defrosting operation is performed with a condenser at the same time. However, when carrying out the defrosting operation with the condenser, in order to carry out the defrosting operation by flowing only part of the gas refrigerant discharged from the compressor to the condenser and using only the sensible heat of the gas refrigerant, A sufficient enthalpy difference cannot be secured before and after the condenser. In order to obtain a sufficient defrosting capacity, it is necessary to increase the circulation amount of a part of the gas refrigerant discharged from the compressor. For this reason, the amount of refrigerant supplied to the evaporator is reduced, the indoor heating capacity is reduced, and the comfort of the indoor environment is impaired.
 これに対し、特許文献3に記載の空気調和装置では、凝縮器で除霜運転を実施する際に、凝縮器の冷媒の出口側の流路に開度が変化できる絞り装置を設けて、凝縮器内に冷媒を溜めるように中圧デフロストを実行可能にしている。こうすることで、凝縮器内の冷媒の圧力を上昇させ、冷媒の飽和温度を0℃と比較してやや高い温度となる状態(0℃~10℃程度)にし、霜の温度よりも高くなるようにしている。そのため、冷媒の二相部の潜熱が利用可能となり、凝縮器前後で、十分なエンタルピ差が確保でき、前述の除霜運転よりも少ない冷媒量で十分な除霜能力を得ることが可能となる。
 なお、中圧デフロストとは、デフロスト対象の凝縮器において、内部の冷媒の圧力が、圧縮機の吐出圧力より低く、吸入圧力より高い圧力(飽和温度換算で0℃よりやや高い温度となる圧力)となる状態で実行されるデフロスト運転を意味している。
On the other hand, in the air conditioner described in Patent Document 3, when performing the defrosting operation with the condenser, a condensing device is provided in the flow path on the outlet side of the refrigerant of the condenser so that the opening degree can be changed. Medium pressure defrosting is enabled to store the refrigerant in the chamber. By doing this, the refrigerant pressure in the condenser is increased, and the saturation temperature of the refrigerant is set to a slightly higher temperature (about 0 ° C. to 10 ° C.) compared to 0 ° C., so that it becomes higher than the frost temperature. I have to. Therefore, the latent heat of the two-phase part of the refrigerant can be used, a sufficient enthalpy difference can be secured before and after the condenser, and a sufficient defrosting capacity can be obtained with a smaller amount of refrigerant than the above-described defrosting operation. .
Medium pressure defrost is a defrost target condenser in which the pressure of the internal refrigerant is lower than the discharge pressure of the compressor and higher than the suction pressure (pressure that is slightly higher than 0 ° C. in terms of saturation temperature). This means defrost operation that is executed in the state.
 しかし、冷媒の二相部の潜熱を利用可能とするために、凝縮器内に冷媒を溜める必要がある。つまり、凝縮器内に冷媒を溜めることで、冷凍サイクル全体の冷媒量が低下し、蒸発器に供給する冷媒量が低下し、室内の暖房能力が低下し、室内環境の快適性が損なわれてしまうことになる。また、凝縮器内に冷媒を溜めるまでは、冷媒の二相部の潜熱が利用できないため、十分な除霜能力は得られず、除霜時間が長くなることで、室内の暖房能力が低下し、室内環境の快適性が損なわれてしまうことになる。 However, in order to make available the latent heat of the two-phase part of the refrigerant, it is necessary to store the refrigerant in the condenser. In other words, by storing the refrigerant in the condenser, the refrigerant amount of the entire refrigeration cycle decreases, the refrigerant amount supplied to the evaporator decreases, the indoor heating capacity decreases, and the comfort of the indoor environment is impaired. Will end up. In addition, since the latent heat of the two-phase part of the refrigerant cannot be used until the refrigerant is stored in the condenser, sufficient defrosting capacity cannot be obtained, and the defrosting time becomes longer, thereby reducing the indoor heating capacity. The comfort of the indoor environment will be impaired.
 本発明は、上記のような課題を背景になされたもので、室内で暖房運転を実施しながら、凝縮器で除霜運転を同時に実施する際に、室内の暖房能力が低下と、除霜能力の低下を抑制できる空気調和装置を提供することを目的とする。 The present invention has been made against the background of the above problems. When performing a defrosting operation simultaneously with a condenser while performing a heating operation indoors, the indoor heating capacity is reduced and the defrosting capacity is reduced. An object of the present invention is to provide an air-conditioning apparatus that can suppress a decrease in the temperature.
 本発明に係る空気調和装置は、暖房運転及び除霜運転を同時に実施可能な空気調和装置(100、200)であって、圧縮機(10)、負荷側熱交換器(21)、負荷側絞り装置(22)、互いに並列に接続された複数の熱源側熱交換器(12)、及び、アキュムレータ(13)、を冷媒配管で接続して少なくとも暖房回路を形成する主回路と、前記圧縮機(10)の吐出側から分岐され、前記複数の熱源側熱交換器(12)のうち除霜対象の前記熱源側熱交換器(12)に冷媒を流入させる第1ガスバイパス配管(5)と、前記圧縮機(10)の吐出側から分岐され、前記アキュムレータ(13)に冷媒を流入させる第2ガスバイパス配管(7)と、前記第1ガスバイパス配管(5)に設けられ、前記第1ガスバイパス配管(5)を流れる冷媒の通過又は遮断を行う複数の第1開閉装置(30)と、前記第2ガスバイパス配管(7)に設けられ、前記第2ガスバイパス配管(7)を流れる冷媒の通過又は遮断を行う少なくとも1つの第2開閉装置(35)と、を備えたものである。 The air conditioner according to the present invention is an air conditioner (100, 200) capable of simultaneously performing a heating operation and a defrosting operation, and includes a compressor (10), a load side heat exchanger (21), and a load side throttle. A main circuit that forms at least a heating circuit by connecting a device (22), a plurality of heat source side heat exchangers (12) connected in parallel to each other, and an accumulator (13) by refrigerant piping; and the compressor ( 10), a first gas bypass pipe (5) branched from the discharge side of the plurality of heat source side heat exchangers (12) and allowing the refrigerant to flow into the heat source side heat exchanger (12) to be defrosted, Branched from the discharge side of the compressor (10) and provided in a second gas bypass pipe (7) for allowing the refrigerant to flow into the accumulator (13) and the first gas bypass pipe (5), the first gas Flow through bypass pipe (5) A plurality of first opening / closing devices (30) for passing or blocking the refrigerant, and at least for passing or blocking the refrigerant flowing in the second gas bypass pipe (7) provided in the second gas bypass pipe (7) And a second opening / closing device (35).
 本発明に係る空気調和装置は、負荷側熱交換器を凝縮器として動作させ、熱源側熱交換器の一部を蒸発器として動作させて暖房運転を実施しながら、熱源側熱交換器の残りの一部を凝縮器として動作させて除霜運転を実施する際に、アキュムレータに滞留している冷媒を、蒸発器と凝縮器に供給することができる。よって、本発明に係る空気調和装置によれば、冷凍サイクル全体の冷媒量の低下を抑制することができ、暖房能力と、除霜能力の低下を抑制することができる。したがって、本発明に係る空気調和装置によれば、除霜時間を短縮し、暖房能力の低下を抑制して、室内環境の快適性を確保したものとなる。 The air conditioner according to the present invention operates the load-side heat exchanger as a condenser and operates a part of the heat-source-side heat exchanger as an evaporator to perform a heating operation, while the rest of the heat-source-side heat exchanger is operated. When the defrosting operation is performed by operating a part of the condenser as a condenser, the refrigerant remaining in the accumulator can be supplied to the evaporator and the condenser. Therefore, according to the air conditioning apparatus which concerns on this invention, the fall of the refrigerant | coolant amount of the whole refrigerating cycle can be suppressed, and the fall of heating capability and a defrosting capability can be suppressed. Therefore, according to the air conditioner according to the present invention, the defrosting time is shortened, the decrease in heating capacity is suppressed, and the comfort of the indoor environment is ensured.
本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の熱源側熱交換器の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the heat source side heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の除霜運転モード時における熱源側熱交換器の除霜を実施している場合の冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of implementing the defrost of the heat source side heat exchanger at the time of the defrost operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置のデフロスト対象熱交換機である熱源側熱交換器内の飽和温度変化による除霜に使用できるエンタルピ差変化を示す図である。It is a figure which shows the enthalpy difference change which can be used for the defrost by the saturation temperature change in the heat source side heat exchanger which is a defrost object heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置のデフロスト対象熱交換機である熱源側熱交換器内の飽和温度に対するデフロスト時の暖房能力比を示す図である。It is a figure which shows the heating capability ratio at the time of defrost with respect to the saturation temperature in the heat source side heat exchanger which is a defrost object heat exchanger of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の除霜運転モード時における第2開閉装置を操作する際の制御動作を示すフローチャートである。It is a flowchart which shows the control action at the time of operating the 2nd opening / closing apparatus at the time of the defrost operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の除霜モード時のアキュムレータに流入する高温・高圧のガス冷媒の流量を変化させた場合の負荷側熱交換器内の圧力を換算した飽和温度変化を示す図である。Saturation temperature change in which the pressure in the load-side heat exchanger is converted when the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator during the defrost mode of the air-conditioning apparatus according to Embodiment 1 of the present invention is changed. FIG. 本発明の実施の形態1に係る空気調和装置の回路構成の別の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows another example of the circuit structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on Embodiment 2 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置100の回路構成の一例を示す概略回路構成図である。
 図1に基づいて、空気調和装置100の詳しい構成について説明する。
 この空気調和装置100は、冷媒を循環させ、冷凍サイクルを利用した空気調和を行うものである。空気調和装置100は、運転する全ての室内機2が冷房を行う全冷房運転モード、運転する全ての室内機2が暖房を行う全暖房運転モード、又は、室内機2が暖房運転を継続しつつ室外機1内の熱交換機(熱源側熱交換器12a、熱源側熱交換器12b)を除霜する除霜運転モード、を選択できるものである。
Embodiment 1 FIG.
FIG. 1 is a schematic circuit configuration diagram showing an example of a circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
Based on FIG. 1, the detailed structure of the air conditioning apparatus 100 is demonstrated.
The air conditioner 100 circulates refrigerant and performs air conditioning using a refrigeration cycle. The air-conditioning apparatus 100 has a cooling only operation mode in which all the indoor units 2 to be operated are cooled, a heating only operation mode in which all the indoor units 2 to be heated are heated, or the indoor unit 2 is continuing the heating operation. A defrosting operation mode for defrosting the heat exchanger (heat source side heat exchanger 12a, heat source side heat exchanger 12b) in the outdoor unit 1 can be selected.
 図1に示すように、空気調和装置100は、室外機1及び室内機2を備え、室外機1と室内機2とを冷媒主管4で接続して構成されている。なお、以下の説明において、熱源側熱交換器12a及び熱源側熱交換器12bをまとめて熱源側熱交換器12と称する場合があるものとする。 As shown in FIG. 1, the air conditioning apparatus 100 includes an outdoor unit 1 and an indoor unit 2, and is configured by connecting the outdoor unit 1 and the indoor unit 2 with a refrigerant main pipe 4. In the following description, the heat source side heat exchanger 12a and the heat source side heat exchanger 12b may be collectively referred to as the heat source side heat exchanger 12.
[室外機1]
 室外機1には、圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12a、熱源側熱交換器12b、アキュムレータ13、第1開閉装置30a、第1開閉装置30b、第2開閉装置35、第3開閉装置31a、第3開閉装置31b、流量調整装置32a、流量調整装置32bが、搭載されている。これらの要素機器は、室外機1において、冷媒配管3、第1ガスバイパス配管5、第2ガスバイパス配管7で接続されている。
[Outdoor unit 1]
The outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11, such as a four-way valve, a heat source side heat exchanger 12a, a heat source side heat exchanger 12b, an accumulator 13, a first opening / closing device 30a, a first opening / closing device 30b, A second opening / closing device 35, a third opening / closing device 31a, a third opening / closing device 31b, a flow rate adjusting device 32a, and a flow rate adjusting device 32b are mounted. In the outdoor unit 1, these element devices are connected by a refrigerant pipe 3, a first gas bypass pipe 5, and a second gas bypass pipe 7.
 冷媒配管3は、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12a、熱源側熱交換器12b、流量調整装置32a、流量調整装置32b、アキュムレータ13を接続している。熱源側熱交換器12a及び熱源側熱交換器12bは、冷媒配管3で互いに並列に接続されている。 The refrigerant pipe 3 connects the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12a, the heat source side heat exchanger 12b, the flow rate adjusting device 32a, the flow rate adjusting device 32b, and the accumulator 13. The heat source side heat exchanger 12a and the heat source side heat exchanger 12b are connected to each other in parallel by the refrigerant pipe 3.
 第1ガスバイパス配管5の一端は、圧縮機10の吐出部と冷媒流路切替装置11との間の冷媒配管3に接続される。また、第1ガスバイパス配管5は2分岐し、他端の一方が、熱源側熱交換器12aと第3開閉装置31aとの間の冷媒配管3に接続され、他端の他方が、熱源側熱交換器12bと第3開閉装置31bとの間の冷媒配管3に接続される。
 熱源側熱交換器12aに接続された第1ガスバイパス配管5には、第1開閉装置30aが設けられている。
 熱源側熱交換器12bに接続された第1ガスバイパス配管5には、第1開閉装置30bが設けられている。
One end of the first gas bypass pipe 5 is connected to the refrigerant pipe 3 between the discharge part of the compressor 10 and the refrigerant flow switching device 11. The first gas bypass pipe 5 is branched into two branches, one end of which is connected to the refrigerant pipe 3 between the heat source side heat exchanger 12a and the third switchgear 31a, and the other end is connected to the heat source side. It connects to the refrigerant | coolant piping 3 between the heat exchanger 12b and the 3rd switchgear 31b.
A first opening / closing device 30a is provided in the first gas bypass pipe 5 connected to the heat source side heat exchanger 12a.
A first opening / closing device 30b is provided in the first gas bypass pipe 5 connected to the heat source side heat exchanger 12b.
 第2ガスバイパス配管7の一端は、圧縮機10の吐出部と冷媒流路切替装置11との間の冷媒配管3に接続される。また、第2ガスバイパス配管7の他端は、冷媒流路切替装置11とアキュムレータ13の間の冷媒配管3に接続される。
 第2ガスバイパス配管7には、第2開閉装置35が設けられている。
One end of the second gas bypass pipe 7 is connected to the refrigerant pipe 3 between the discharge part of the compressor 10 and the refrigerant flow switching device 11. The other end of the second gas bypass pipe 7 is connected to the refrigerant pipe 3 between the refrigerant flow switching device 11 and the accumulator 13.
A second opening / closing device 35 is provided in the second gas bypass pipe 7.
 熱源側熱交換器12aに流入する冷媒を遮断する第3開閉装置31aは、熱源側熱交換器12aと冷媒流路切替装置11との間の冷媒配管3に設置されている。
 熱源側熱交換器12bに流入する冷媒を遮断する第3開閉装置31bは、熱源側熱交換器12bと冷媒流路切替装置11との間の冷媒配管3に設置されている。
The third opening / closing device 31 a that blocks the refrigerant flowing into the heat source side heat exchanger 12 a is installed in the refrigerant pipe 3 between the heat source side heat exchanger 12 a and the refrigerant flow switching device 11.
The third opening / closing device 31b for blocking the refrigerant flowing into the heat source side heat exchanger 12b is installed in the refrigerant pipe 3 between the heat source side heat exchanger 12b and the refrigerant flow switching device 11.
 熱源側熱交換器12a及び熱源側熱交換器12bは、複数枚の板状のフィン(図2に示すフィン51)と、このフィンに直交するように挿入された伝熱管(図2に示す伝熱管52)と、を有するフィンチューブ型熱交換器で構成されている。図2に基づいて、熱源側熱交換器12の構成の一例について説明する。図2は、空気調和装置100の熱源側熱交換器12の構成の一例を示す概略図である。 The heat source side heat exchanger 12a and the heat source side heat exchanger 12b include a plurality of plate-like fins (fins 51 shown in FIG. 2) and heat transfer tubes (see FIG. 2) inserted so as to be orthogonal to the fins. And a fin tube type heat exchanger having a heat pipe 52). An example of the configuration of the heat source side heat exchanger 12 will be described based on FIG. FIG. 2 is a schematic diagram illustrating an example of the configuration of the heat source side heat exchanger 12 of the air conditioner 100.
 図2に示すように、熱源側熱交換器12は、複数の熱交換器に分割されている。ここでは、熱源側熱交換器12が2つの熱源側熱交換器12a、熱源側熱交換器12bに分割されている場合を例に説明する。熱源側熱交換器12a及び熱源側熱交換器12bは、列方向(それぞれのフィンが同一方向を向くような左右方向)に、隣合った2列のフィン51を有している。そして、熱源側熱交換器12a及び熱源側熱交換器12bは、それぞれ、伝熱管52の段方向(それぞれのフィンが同一方向を向くような上下方向)に2段で構成されている。 As shown in FIG. 2, the heat source side heat exchanger 12 is divided into a plurality of heat exchangers. Here, the case where the heat source side heat exchanger 12 is divided into two heat source side heat exchangers 12a and heat source side heat exchangers 12b will be described as an example. The heat source side heat exchanger 12a and the heat source side heat exchanger 12b have two rows of fins 51 that are adjacent to each other in the row direction (the left-right direction in which each fin faces the same direction). The heat source side heat exchanger 12a and the heat source side heat exchanger 12b are each configured in two stages in the step direction of the heat transfer tubes 52 (up and down directions in which the fins face the same direction).
 すなわち、熱源側熱交換器12a及び熱源側熱交換器12bは、室外機1の筐体内において熱源側熱交換器12を分割して構成されており、それぞれの、フィン51が同一方向を向くような上下方向に配置されている。例えば、図2に示すように、上側に熱源側熱交換器12aが配置され、下側に熱源側熱交換器12bが配置され、それぞれの段方向のフィン51が一体で形成(共有)されている。 That is, the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are configured by dividing the heat source side heat exchanger 12 in the casing of the outdoor unit 1, so that the fins 51 face the same direction. Are arranged vertically. For example, as shown in FIG. 2, the heat source side heat exchanger 12a is disposed on the upper side, the heat source side heat exchanger 12b is disposed on the lower side, and the fins 51 in the respective step directions are integrally formed (shared). Yes.
 図2に示すように、熱源側熱交換器12aの冷媒流路を、分配器12a-1と、ヘッダー12a-2によって分岐できるような構成としてもよい。同様に、図2に示すように、熱源側熱交換器12bの冷媒流路を、分配器12b-1と、ヘッダー12b-2によって、分岐できるような構成としてもよい。 As shown in FIG. 2, the refrigerant flow path of the heat source side heat exchanger 12a may be branched by a distributor 12a-1 and a header 12a-2. Similarly, as shown in FIG. 2, the refrigerant flow path of the heat source side heat exchanger 12b may be branched by a distributor 12b-1 and a header 12b-2.
 図2に示す構成では、列方向(それぞれのフィンが同一方向を向くような左右方向)に、隣合った2列のフィンで説明したが、これに限らず、1列、3列、その他複数列としてもよく、パスパターンも図2と異なる構成を採用してもよい。また、熱源側熱交換器12としては、段方向(それぞれのフィンが同一方向を向くような上下方向)に3段以上など、複数台位置し、それぞれの段方向のフィンが一体で形成(共有)されている構成としてもよく、段数も図2に示す段数に限らず、さらに多数設けてもよく、少数にしてもよい。 In the configuration shown in FIG. 2, two rows of fins adjacent to each other in the row direction (left and right directions in which the respective fins face the same direction) have been described. A configuration may be used, and the path pattern may be different from that shown in FIG. Further, as the heat source side heat exchanger 12, a plurality of units such as three or more in the step direction (vertical direction in which each fin faces the same direction) is located, and the fins in each step direction are integrally formed (shared). The number of stages is not limited to the number of stages shown in FIG. 2, and a larger number or a smaller number may be provided.
 伝熱管52は、内部を冷媒が通過し、空気通過方向に対して垂直方向の段方向、及び、空気通過方向である列方向に複数設けられている。
 フィン51は、空気通過方向に空気が通過するように間隔を空けて配置されている。
A plurality of the heat transfer tubes 52 are provided in the step direction perpendicular to the air passage direction and the row direction that is the air passage direction.
The fins 51 are arranged at intervals so that air passes in the air passage direction.
 なお、熱源側熱交換器12の分割は、左右に分割されていてもよいが、左右に分割すると、熱源側熱交換器12a、熱源側熱交換器12bのそれぞれへの冷媒入口が室外機1の左右両端になるため、配管接続が複雑になる。このため、図2に示すように上下方向に分割することが望ましい。 The heat source side heat exchanger 12 may be divided into left and right parts. However, when the heat source side heat exchanger 12 is divided into left and right parts, the refrigerant inlets to the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are respectively connected to the outdoor unit 1. Because it becomes the left and right ends of the pipe, the pipe connection becomes complicated. For this reason, it is desirable to divide up and down as shown in FIG.
 なお、熱源側熱交換器12a、熱源側熱交換器12bは、図2に示すようにフィン51が分割されていなくてもよいし、分割されていてもよい。また、熱源側熱交換器12の分割は2つに限らず、任意の数とすることができる。
 また、熱源側熱交換器12a、熱源側熱交換器12bには、例えばファン等の送風機(図示省略)によって室外空気が搬送される。
 送風機は、熱源側熱交換器12a、熱源側熱交換器12bのそれぞれに設置されてもよいが、1台を共用してもよい。
In the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, the fins 51 may not be divided as shown in FIG. 2, or may be divided. Moreover, the division | segmentation of the heat source side heat exchanger 12 is not restricted to two, It can be made into arbitrary numbers.
The outdoor air is conveyed to the heat source side heat exchanger 12a and the heat source side heat exchanger 12b by a blower (not shown) such as a fan, for example.
The blower may be installed in each of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, but may share one unit.
 また、流量調整装置32aは、開度が変更できるようになっており、熱源側熱交換器12aの負荷側絞り装置22側の冷媒配管3に設けられている。
 また、流量調整装置32bは、開度が変更できるようになっており、熱源側熱交換器12bの負荷側絞り装置22側の冷媒配管3に設けられている。
Further, the flow rate adjusting device 32a can change the opening degree, and is provided in the refrigerant pipe 3 on the load side expansion device 22 side of the heat source side heat exchanger 12a.
The flow rate adjusting device 32b can change the opening degree, and is provided in the refrigerant pipe 3 on the load side expansion device 22 side of the heat source side heat exchanger 12b.
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にする。圧縮機10は、例えば、容量制御可能なインバータ圧縮機等で構成する。
 冷媒流路切替装置11は、全暖房運転モード時における冷媒の流れと、全冷房運転モード時における冷媒の流れとを切り替える。
The compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state. The compressor 10 is configured by, for example, an inverter compressor capable of capacity control.
The refrigerant flow switching device 11 switches the refrigerant flow in the heating only operation mode and the refrigerant flow in the cooling only operation mode.
 熱源側熱交換器12a及び熱源側熱交換器12bは、全暖房運転モード中には、共に蒸発器として機能し、全冷房運転モード中には、共に凝縮器として機能する。また、熱源側熱交換器12a及び熱源側熱交換器12bは、除霜運転中には、一方が蒸発器として機能し、他方が凝縮器として機能する。 Both the heat source side heat exchanger 12a and the heat source side heat exchanger 12b function as an evaporator during the heating only operation mode and function as a condenser during the cooling only operation mode. Further, during the defrosting operation, one of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b functions as an evaporator and the other functions as a condenser.
 アキュムレータ13は、圧縮機10の吸入側に設けられており、全暖房運転モード中と全冷房運転モード中の運転状態の違いによる余剰冷媒、過渡的な運転の変化に対する余剰冷媒を蓄えるものである。 The accumulator 13 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference in operation state between the heating only operation mode and the cooling only operation mode, and excess refrigerant with respect to a transient change in operation. .
 第1開閉装置30aは、除霜運転モード中に、熱源側熱交換器12aが凝縮器として動作する場合に、第1ガスバイパス配管5から高温の冷媒を熱源側熱交換器12aに流入させるものである。
 第1開閉装置30bは、除霜運転モード中に、熱源側熱交換器12bが凝縮器として動作する場合に、第1ガスバイパス配管5から高温の冷媒を熱源側熱交換器12bに流入させるものである。
When the heat source side heat exchanger 12a operates as a condenser during the defrosting operation mode, the first switchgear 30a causes a high-temperature refrigerant to flow from the first gas bypass pipe 5 into the heat source side heat exchanger 12a. It is.
When the heat source side heat exchanger 12b operates as a condenser during the defrosting operation mode, the first opening / closing device 30b allows a high-temperature refrigerant to flow into the heat source side heat exchanger 12b from the first gas bypass pipe 5. It is.
 第1開閉装置30a及び第1開閉装置30bは、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成するとよい。
 なお、以下の説明において、第1開閉装置30a及び第1開閉装置30bをまとめて第1開閉装置30と称する場合があるものとする。
The first opening / closing device 30a and the first opening / closing device 30b may be configured to be capable of opening and closing the refrigerant flow path, such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
In the following description, the first opening / closing device 30a and the first opening / closing device 30b may be collectively referred to as the first opening / closing device 30.
 第3開閉装置31aは、除霜運転モード中に、熱源側熱交換器12aが凝縮器として動作する場合に、室内機2から冷媒主管4を介して室外機1に流入される低温の二相冷媒を、熱源側熱交換器12aに流入させないように、冷媒の流路を遮断するものである。
 第3開閉装置31bは、除霜運転モード中に、熱源側熱交換器12bが凝縮器として動作する場合に、室内機2から冷媒主管4を介して室外機1に流入される低温の二相冷媒を、熱源側熱交換器12bに流入させないように、冷媒の流路を遮断するものである。
When the heat source side heat exchanger 12a operates as a condenser during the defrosting operation mode, the third opening / closing device 31a is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4. The flow path of the refrigerant is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12a.
When the heat source side heat exchanger 12b operates as a condenser during the defrosting operation mode, the third opening / closing device 31b is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4. The refrigerant flow path is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12b.
 第3開閉装置31a及び第3開閉装置31bは、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成するとよい。
 なお、以下の説明において、第3開閉装置31a及び第3開閉装置31bをまとめて第3開閉装置31と称する場合があるものとする。
The third opening / closing device 31a and the third opening / closing device 31b may be configured to be capable of opening and closing the refrigerant flow path, such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
In the following description, the third opening / closing device 31a and the third opening / closing device 31b may be collectively referred to as the third opening / closing device 31.
 流量調整装置32a及び流量調整装置32bは、凝縮器となる熱源側熱交換器12内の圧力調整を行うため、開度(開口面積)が変化させられる絞り装置である。
 流量調整装置32a及び流量調整装置32bは、例えば、ステッピングモータで駆動させる電子式膨張弁、小型の電磁弁を複数並列に並べてそれらを切り替えて開口面積を変えられるもの等で構成するとよい。
 なお、以下の説明において、流量調整装置32a及び流量調整装置32bをまとめて流量調整装置32と称する場合があるものとする。
The flow rate adjusting device 32a and the flow rate adjusting device 32b are throttle devices that can change the opening degree (opening area) in order to adjust the pressure in the heat source side heat exchanger 12 serving as a condenser.
The flow rate adjusting device 32a and the flow rate adjusting device 32b may be configured by, for example, an electronic expansion valve that is driven by a stepping motor, or a device that can change the opening area by arranging a plurality of small electromagnetic valves in parallel.
In the following description, the flow rate adjusting device 32a and the flow rate adjusting device 32b may be collectively referred to as the flow rate adjusting device 32.
 第2開閉装置35は、除霜運転モード中に、圧縮機10から吐出された高温・高圧のガス冷媒の一部を、アキュムレータ13に流入させるものである。
 第2開閉装置35は、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成するとよい。
The second opening / closing device 35 allows a part of the high-temperature / high-pressure gas refrigerant discharged from the compressor 10 to flow into the accumulator 13 during the defrosting operation mode.
The second opening / closing device 35 may be constituted by a device capable of opening and closing the refrigerant flow path, such as a two-way valve, a solenoid valve, or an electronic expansion valve.
 室外機1には、圧力検出手段として、第1圧力センサ41及び第2圧力センサ42が設けられている。
 第1圧力センサ41は、圧縮機10と冷媒流路切替装置11との間の冷媒配管3に設けられている。第1圧力センサ41は、圧縮機10が吐出した高温・高圧の冷媒の圧力を検出する。
 第2圧力センサ42は、冷媒流路切替装置11とアキュムレータ13との間の冷媒配管3に設けられている。第2圧力センサ42は、圧縮機10に吸入される低圧の冷媒の圧力を検出する。
The outdoor unit 1 is provided with a first pressure sensor 41 and a second pressure sensor 42 as pressure detection means.
The first pressure sensor 41 is provided in the refrigerant pipe 3 between the compressor 10 and the refrigerant flow switching device 11. The first pressure sensor 41 detects the pressure of the high-temperature and high-pressure refrigerant discharged from the compressor 10.
The second pressure sensor 42 is provided in the refrigerant pipe 3 between the refrigerant flow switching device 11 and the accumulator 13. The second pressure sensor 42 detects the pressure of the low-pressure refrigerant sucked into the compressor 10.
 室外機1には、温度検出手段として、第1温度センサ43、第2温度センサ45、第3温度センサ48a、第3温度センサ48bが設けられている。第1温度センサ43、第2温度センサ45、第3温度センサ48a、第3温度センサ48bは、例えばサーミスタ等で構成するとよい。 The outdoor unit 1 is provided with a first temperature sensor 43, a second temperature sensor 45, a third temperature sensor 48a, and a third temperature sensor 48b as temperature detection means. The first temperature sensor 43, the second temperature sensor 45, the third temperature sensor 48a, and the third temperature sensor 48b may be configured by a thermistor, for example.
 第1温度センサ43は、圧縮機10と冷媒流路切替装置11との間の冷媒配管3に設けられている。第1温度センサ43は、圧縮機10が吐出した冷媒の温度を測定する。
 第2温度センサ45は、熱源側熱交換器12a又は熱源側熱交換器12bのいずれかの空気吸込み部に設けられている。第2温度センサ45は、室外機1の周囲の空気温度を測定する。
The first temperature sensor 43 is provided in the refrigerant pipe 3 between the compressor 10 and the refrigerant flow switching device 11. The first temperature sensor 43 measures the temperature of the refrigerant discharged from the compressor 10.
The 2nd temperature sensor 45 is provided in the air suction part of either the heat source side heat exchanger 12a or the heat source side heat exchanger 12b. The second temperature sensor 45 measures the air temperature around the outdoor unit 1.
 第3温度センサ48aは、熱源側熱交換器12aと冷媒流路切替装置11との間の冷媒配管3に設けられている。第3温度センサ48aは、蒸発器として動作する熱源側熱交換器12aに流入する冷媒、又は、凝縮器として動作する熱源側熱交換器12aから流出した冷媒の温度を測定する。
 第3温度センサ48bは、熱源側熱交換器12bと冷媒流路切替装置11との間の冷媒配管3に設けられている。第3温度センサ48bは、蒸発器として動作する熱源側熱交換器12bに流入する冷媒、又は、凝縮器として動作する熱源側熱交換器12bから流出した冷媒の温度を測定する。
The third temperature sensor 48 a is provided in the refrigerant pipe 3 between the heat source side heat exchanger 12 a and the refrigerant flow switching device 11. The third temperature sensor 48a measures the temperature of the refrigerant flowing into the heat source side heat exchanger 12a operating as an evaporator or the refrigerant flowing out of the heat source side heat exchanger 12a operating as a condenser.
The third temperature sensor 48 b is provided in the refrigerant pipe 3 between the heat source side heat exchanger 12 b and the refrigerant flow switching device 11. The third temperature sensor 48b measures the temperature of the refrigerant flowing into the heat source side heat exchanger 12b operating as an evaporator or the refrigerant flowing out of the heat source side heat exchanger 12b operating as a condenser.
 また、室外機1には、制御装置50が設置されている。第1圧力センサ41及び第2圧力センサ42で検出された圧力情報、及び、第1温度センサ43、第2温度センサ45、第3温度センサ48a及び第3温度センサ48bで検出された温度情報は、制御装置50に入力される。 In addition, a control device 50 is installed in the outdoor unit 1. The pressure information detected by the first pressure sensor 41 and the second pressure sensor 42 and the temperature information detected by the first temperature sensor 43, the second temperature sensor 45, the third temperature sensor 48a, and the third temperature sensor 48b are: Is input to the control device 50.
[室内機2]
 室内機2には、負荷側熱交換器21と、負荷側絞り装置22と、が直列に接続されて搭載されている。
[Indoor unit 2]
In the indoor unit 2, a load-side heat exchanger 21 and a load-side expansion device 22 are mounted connected in series.
 負荷側熱交換器21は、冷媒主管4を介して室外機1と接続され、冷媒が流入又は流出する。負荷側熱交換器21は、例えばファン等の送風機(図示省略)から供給される空気と冷媒との間で熱交換を行う。負荷側熱交換器21は、室内空間に供給するための、暖房用の空気、又は冷房用の空気を生成する。なお、負荷側熱交換器21の冷媒と熱交換器する熱交換媒体を空気に限定するものではなく、水やブライン等を熱交換媒体としてもよい。 The load-side heat exchanger 21 is connected to the outdoor unit 1 through the refrigerant main pipe 4, and the refrigerant flows in or out. The load-side heat exchanger 21 performs heat exchange between air and a refrigerant supplied from a blower (not shown) such as a fan, for example. The load-side heat exchanger 21 generates heating air or cooling air to be supplied to the indoor space. The heat exchange medium that exchanges heat with the refrigerant in the load-side heat exchanger 21 is not limited to air, and water, brine, or the like may be used as the heat exchange medium.
 負荷側絞り装置22は、減圧弁、膨張弁としての機能を有し、冷媒を減圧して膨張させる。負荷側絞り装置22は、全冷房運転モード中の冷媒の流れにおいて、負荷側熱交換器21の上流側に設けられている。負荷側絞り装置22は、開度が可変に制御可能であるもので構成する。負荷側絞り装置22は、例えば電子式膨張弁等で構成するとよい。 The load-side throttle device 22 has a function as a pressure reducing valve and an expansion valve, and decompresses and expands the refrigerant. The load side expansion device 22 is provided on the upstream side of the load side heat exchanger 21 in the refrigerant flow during the cooling only operation mode. The load-side throttle device 22 is configured with an opening degree that can be variably controlled. The load-side throttle device 22 may be configured with, for example, an electronic expansion valve.
 室内機2には、温度検出手段として、第4温度センサ46、第5温度センサ47、第6温度センサ44が設けられている。第4温度センサ46、第5温度センサ47、第6温度センサ44は、例えばサーミスタ等で構成するとよい。 The indoor unit 2 is provided with a fourth temperature sensor 46, a fifth temperature sensor 47, and a sixth temperature sensor 44 as temperature detection means. The 4th temperature sensor 46, the 5th temperature sensor 47, and the 6th temperature sensor 44 are good to comprise a thermistor etc., for example.
 第4温度センサ46は、負荷側絞り装置22と負荷側熱交換器21との間の冷媒配管3に設けられている。第4温度センサ46は、負荷側熱交換器21に流入する冷媒、又は、負荷側熱交換器21から流出した冷媒の温度を検出する。
 第5温度センサ47は、負荷側熱交換器21と室外機1の冷媒流路切替装置11との間の冷媒配管3に設けられている。第5温度センサ47は、負荷側熱交換器21に流入する冷媒、又は、負荷側熱交換器21から流出した冷媒の温度を検出する。
 第6温度センサ44は、負荷側熱交換器21の空気吸込み部に設けられている。第6温度センサ44は、室内の周囲空気温度を検出する。
The fourth temperature sensor 46 is provided in the refrigerant pipe 3 between the load side expansion device 22 and the load side heat exchanger 21. The fourth temperature sensor 46 detects the temperature of the refrigerant flowing into the load side heat exchanger 21 or the refrigerant flowing out of the load side heat exchanger 21.
The fifth temperature sensor 47 is provided in the refrigerant pipe 3 between the load side heat exchanger 21 and the refrigerant flow switching device 11 of the outdoor unit 1. The fifth temperature sensor 47 detects the temperature of the refrigerant flowing into the load side heat exchanger 21 or the refrigerant flowing out of the load side heat exchanger 21.
The sixth temperature sensor 44 is provided in the air suction portion of the load side heat exchanger 21. The sixth temperature sensor 44 detects the ambient air temperature in the room.
 第4温度センサ46、第5温度センサ47、及び、第6温度センサ44で検出された温度情報は、室外機1に設置されている制御装置50に入力される。 Temperature information detected by the fourth temperature sensor 46, the fifth temperature sensor 47, and the sixth temperature sensor 44 is input to the control device 50 installed in the outdoor unit 1.
 上記の構成より、空気調和装置100は、圧縮機10、冷媒流路切替装置11、負荷側熱交換器21、負荷側絞り装置22、及び、互いに並列に接続された熱源側熱交換器12a、熱源側熱交換器12bが、配管で順次接続されて冷媒が循環する主回路を形成する。 また、圧縮機10が吐出した冷媒の一部を分岐し、熱源側熱交換器12a、熱源側熱交換器12bのうち除霜対象の熱源側熱交換器12のいずれかに流入させるバイパス回路を形成する。 With the above configuration, the air conditioner 100 includes the compressor 10, the refrigerant flow switching device 11, the load side heat exchanger 21, the load side expansion device 22, and the heat source side heat exchanger 12a connected in parallel to each other. The heat source side heat exchanger 12b is sequentially connected by piping to form a main circuit in which the refrigerant circulates. Also, a bypass circuit that branches a part of the refrigerant discharged from the compressor 10 and flows into one of the heat source side heat exchangers 12 to be defrosted among the heat source side heat exchanger 12a and the heat source side heat exchanger 12b. Form.
 なお、本実施の形態1の構成例では、図1に示したように、1台の室内機2が、冷媒主管4を介して1台の室外機1に接続されている場合を例に示しているが、本発明はこの構成に限定されない。室内機2を複数台備え、複数台の室内機2を1台の室外機1にそれぞれ並列に接続してもよい。また、2台以上の室外機を並列に接続してもよい。さらに、延長配管を3本並列に接続したり、室内機側で切替弁を設けたりすることで、それぞれの室内機が冷房、暖房を選択可能な冷暖同時運転をできるようにした冷媒回路構成を採用してもよい。 In the configuration example of the first embodiment, as shown in FIG. 1, a case where one indoor unit 2 is connected to one outdoor unit 1 through the refrigerant main pipe 4 is shown as an example. However, the present invention is not limited to this configuration. A plurality of indoor units 2 may be provided, and the plurality of indoor units 2 may be connected to one outdoor unit 1 in parallel. Two or more outdoor units may be connected in parallel. Furthermore, by connecting three extension pipes in parallel or by providing a switching valve on the indoor unit side, a refrigerant circuit configuration that enables each indoor unit to perform cooling and heating simultaneous selection of cooling and heating is possible. It may be adopted.
 空気調和装置100は、マイクロコンピュータで構成された制御装置50を有している。制御装置50は、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON・OFF含む)、冷媒流路切替装置11の切り替え、第1開閉装置30a、第1開閉装置30bの開閉、第3開閉装置31の開閉、負荷側絞り装置22の開度、等を制御し、後述する各運転モードを実行する。 The air conditioner 100 has a control device 50 composed of a microcomputer. The control device 50 switches the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the switching of the refrigerant flow switching device 11, based on detection information from various detection means and instructions from the remote controller, Controlling the opening / closing of the opening / closing device 30a, the first opening / closing device 30b, the opening / closing of the third opening / closing device 31, the opening of the load-side throttle device 22, and the like, execute each operation mode to be described later.
 なお、図1では、制御装置50が室外機1に設置されている状態を例に示しているが、これに限定するものではない。例えば、制御装置50をユニット毎に設けてもよく、室内機2に設けてもよい。制御装置50をユニット毎に設ける場合には、情報のやりとりが可能なように、制御装置50同士を有線又は無線で接続し、連携制御ができるように構成するとよい。 In addition, in FIG. 1, although the state which the control apparatus 50 is installed in the outdoor unit 1 is shown as an example, it is not limited to this. For example, the control device 50 may be provided for each unit or may be provided in the indoor unit 2. When the control device 50 is provided for each unit, the control devices 50 may be connected to each other by a wired or wireless connection so that information can be exchanged.
 次に、空気調和装置100が実行する各運転モードについて説明する。
 以下に、各運転モードについて、冷媒の流れとともに説明する。
Next, each operation mode executed by the air conditioner 100 will be described.
Below, each operation mode is demonstrated with the flow of a refrigerant | coolant.
[全冷房運転モード]
 図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。図3に基づいて、空気調和装置100が実行する全冷房運転モードについて説明する。この図3では、負荷側熱交換器21で冷熱負荷が発生している場合を例に、全冷房運転モードについて説明する。なお、図3では、冷媒の流れ方向を実線矢印で示している。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode. Based on FIG. 3, the cooling only operation mode which the air conditioning apparatus 100 performs is demonstrated. In FIG. 3, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the load-side heat exchanger 21. In FIG. 3, the flow direction of the refrigerant is indicated by solid arrows.
 全冷房運転モードでは、冷媒流路切替装置11が図2の実線で示される状態に切り替えられる。第1開閉装置30a、第1開閉装置30b、及び第2開閉装置35は、それぞれ、閉状態に切り替えられ、冷媒を遮断する。第3開閉装置31a、第3開閉装置31b、流量調整装置32a、及び流量調整装置32bは、それぞれ、開状態に切り替えられ、冷媒を通過させる。 In the cooling only operation mode, the refrigerant flow switching device 11 is switched to the state shown by the solid line in FIG. The first opening / closing device 30a, the first opening / closing device 30b, and the second opening / closing device 35 are each switched to a closed state and block the refrigerant. The third opening / closing device 31a, the third opening / closing device 31b, the flow rate adjusting device 32a, and the flow rate adjusting device 32b are each switched to the open state and allow the refrigerant to pass therethrough.
 圧縮機10が駆動すると、低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して、熱源側熱交換器12a及び熱源側熱交換器12bに流入する。熱源側熱交換器12a及び熱源側熱交換器12bに流入した高温・高圧ガス冷媒は、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれで、室外空気に放熱して高圧の液冷媒となる。熱源側熱交換器12a及び熱源側熱交換器12bから流出した高圧の液冷媒は、それぞれ、流量調整装置32a及び流量調整装置32bを経て合流し、室外機1から流出する。 When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b via the refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed into the heat-source-side heat exchanger 12a and the heat-source-side heat exchanger 12b is radiated to the outdoor air in each of the heat-source-side heat exchanger 12a and the heat-source-side heat exchanger 12b, and is a high-pressure liquid refrigerant. It becomes. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b merges through the flow rate adjustment device 32a and the flow rate adjustment device 32b, respectively, and flows out of the outdoor unit 1.
 室外機1から流出した高圧の液冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側絞り装置22で膨張されて、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として動作する負荷側熱交換器21に流入し、室内空気から吸熱することで、室内空気を冷却して、低温・低圧のガス冷媒となる。負荷側熱交換器21から流出したガス冷媒は、冷媒主管4を通って、再び室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11及びアキュムレータ13を通って、圧縮機10に再度吸入される。 The high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4 and is expanded by the load-side expansion device 22 to become a low-temperature / low-pressure two-phase refrigerant. The two-phase refrigerant flows into the load-side heat exchanger 21 that operates as an evaporator and absorbs heat from the room air, thereby cooling the room air and becoming a low-temperature and low-pressure gas refrigerant. The gas refrigerant that has flowed out of the load-side heat exchanger 21 flows into the outdoor unit 1 again through the refrigerant main pipe 4. The refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 again.
 制御装置50は、第4温度センサ46で検出された温度と、第5温度センサ47で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように、負荷側絞り装置22の開度を制御する。 The control device 50 loads the throttle device on the load side so that the superheat (superheat degree) obtained as the difference between the temperature detected by the fourth temperature sensor 46 and the temperature detected by the fifth temperature sensor 47 is constant. 22 is controlled.
[全暖房運転モード]
 図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。図4に基づいて、空気調和装置100が実行する全暖房運転モードについて説明する。この図4では、負荷側熱交換器21で温熱負荷が発生している場合を例に、全暖房運転モードについて説明する。なお、図4では、冷媒の流れ方向を実線矢印で示している。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode. Based on FIG. 4, the heating only operation mode which the air conditioning apparatus 100 performs is demonstrated. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the load-side heat exchanger 21. In FIG. 4, the flow direction of the refrigerant is indicated by solid line arrows.
 全暖房運転モードでは、冷媒流路切替装置11が図3の実線で示される状態に切り替えられる。第1開閉装置30a、第1開閉装置30b、及び第2開閉装置35は、それぞれ、閉状態に切り替えられ、冷媒を遮断する。第3開閉装置31a、第3開閉装置31b、流量調整装置32a、及び流量調整装置32bは、それぞれ、開状態に切り替えられ、冷媒を通過させる。 In the heating only operation mode, the refrigerant flow switching device 11 is switched to the state shown by the solid line in FIG. The first opening / closing device 30a, the first opening / closing device 30b, and the second opening / closing device 35 are each switched to a closed state and block the refrigerant. The third opening / closing device 31a, the third opening / closing device 31b, the flow rate adjusting device 32a, and the flow rate adjusting device 32b are each switched to the open state and allow the refrigerant to pass therethrough.
 圧縮機10が駆動すると、低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して、室外機1から流出する。 When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11.
 室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。 The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant. The liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
 室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、流量調整装置32a及び流量調整装置32bを介し、それぞれ、熱源側熱交換器12a及び熱源側熱交換器12bに流入する。熱源側熱交換器12a及び熱源側熱交換器12bに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となり、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。 The low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b via the flow rate adjustment device 32a and the flow rate adjustment device 32b, respectively. The refrigerant that has flowed into the heat source side heat exchanger 12a and the heat source side heat exchanger 12b absorbs heat from the outdoor air and becomes a low-temperature / low-pressure gas refrigerant, and the compressor 10 passes through the refrigerant flow switching device 11 and the accumulator 13. Inhaled again.
 制御装置50は、第1圧力センサ41で検出された圧力を飽和温度に換算した値と、第4温度センサ46で検出された温度との差として得られるサブクール(過冷却度)が一定になるように、負荷側絞り装置22の開度を制御する。 The control device 50 has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the first pressure sensor 41 into a saturation temperature and a temperature detected by the fourth temperature sensor 46. Thus, the opening degree of the load side expansion device 22 is controlled.
[除霜運転モード]
 除霜運転モードは、熱源側熱交換器12a及び熱源側熱交換器12bのそれぞれの出口側に設けられた、第3温度センサ48a、第3温度センサ48bの検出結果が、所定値以下であるときに実施される。すなわち、制御装置50は、全暖房運転モードを実施し、第3温度センサ48a、第3温度センサ48bの検出結果が、所定値以下(例えば約-10℃以下)となると、熱源側熱交換器12a、熱源側熱交換器12bのフィンに着霜が所定量発生したと判定し、除霜運転モードを実施する。
[Defrost operation mode]
In the defrosting operation mode, the detection results of the third temperature sensor 48a and the third temperature sensor 48b provided on the respective outlet sides of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are equal to or less than a predetermined value. Sometimes implemented. That is, the control device 50 performs the heating only operation mode, and when the detection results of the third temperature sensor 48a and the third temperature sensor 48b are below a predetermined value (for example, about −10 ° C. or less), the heat source side heat exchanger 12a, it is determined that a predetermined amount of frost has been generated on the fins of the heat source side heat exchanger 12b, and the defrosting operation mode is performed.
 なお、着霜判定としては、例えば圧縮機10の吸入圧力から換算される飽和温度が、予め設定した外気温度と比較して大幅に低下したとき、または、外気温度と蒸発温度との温度差が予め設定した値以上で一定時間経過したとき、などの方法によって行ってもよい。 In addition, as frost formation determination, for example, when the saturation temperature converted from the suction pressure of the compressor 10 is significantly lower than the preset outside air temperature, or the temperature difference between the outside air temperature and the evaporation temperature is It may be carried out by a method such as when a predetermined time has passed after a predetermined value or more.
 空気調和装置100の除霜運転モードにおいては、下側に位置する熱源側熱交換器12bの除霜を実施し、その後、上側に位置する熱源側熱交換器12aの除霜を実施する。また、熱源側熱交換器12a及び熱源側熱交換器12bのうち、除霜対象でない熱源側熱交換器12を蒸発器として動作させ、室内機2の負荷側熱交換器21を凝縮器として動作させて暖房運転を継続する。 In the defrosting operation mode of the air conditioner 100, the heat source side heat exchanger 12b located on the lower side is defrosted, and then the heat source side heat exchanger 12a located on the upper side is defrosted. Of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b, the heat source side heat exchanger 12 that is not to be defrosted is operated as an evaporator, and the load side heat exchanger 21 of the indoor unit 2 is operated as a condenser. Let the heating operation continue.
(熱源側熱交換器12bの除霜)
 図5は、空気調和装置100の除霜運転モード時における熱源側熱交換器12bの除霜を実施している場合の冷媒の流れを示す冷媒回路図である。なお、図4では、冷媒の流れ方向を実線矢印で示している。
(Defrosting of heat source side heat exchanger 12b)
FIG. 5 is a refrigerant circuit diagram illustrating the flow of the refrigerant when the defrosting of the heat source side heat exchanger 12b is performed in the defrosting operation mode of the air-conditioning apparatus 100. In FIG. 4, the flow direction of the refrigerant is indicated by solid line arrows.
 除霜運転モードでは、冷媒流路切替装置11が図5の実線で示される状態に維持される。
 また、除霜運転モードにおいて、熱源側熱交換器12bを除霜対象とする場合の第1開閉装置30、第2開閉装置35、第3開閉装置31、及び流量調整装置32の状態は以下の通りである。
 なお、いずれも制御装置50により制御される。
In the defrosting operation mode, the refrigerant flow switching device 11 is maintained in the state shown by the solid line in FIG.
In the defrosting operation mode, the states of the first opening / closing device 30, the second opening / closing device 35, the third opening / closing device 31, and the flow rate adjusting device 32 when the heat source side heat exchanger 12b is to be defrosted are as follows. Street.
Both are controlled by the control device 50.
 第1開閉装置30bは、開状態に切り替えられ、冷媒を通過させる。
 第3開閉装置31bは、閉状態に切り替えられ、冷媒を遮断する。
 第1開閉装置30aは、閉状態に維持され、冷媒を遮断する。
 第3開閉装置31aは、開状態に維持され、冷媒を通過させる。
 流量調整装置32aは、全開状態に設定され、冷媒を通過させる。
 流量調整装置32bは、第3温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が飽和温度換算で0℃より大きくなる予め設定された圧力(例えばR410A冷媒で約0.8MPa程度)が一定になるように、開度が制御される。
The first opening / closing device 30b is switched to the open state and allows the refrigerant to pass therethrough.
The third opening / closing device 31b is switched to the closed state and blocks the refrigerant.
The first opening / closing device 30a is maintained in a closed state and blocks the refrigerant.
The third opening / closing device 31a is maintained in the open state and allows the refrigerant to pass therethrough.
The flow rate adjusting device 32a is set to a fully open state and allows the refrigerant to pass therethrough.
The flow rate adjusting device 32b has a preset pressure at which the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of saturation temperature (for example, about 0.8 MPa for R410A refrigerant). The opening is controlled so that is constant.
 第2開閉装置35は、第2温度センサ45で検出された室外空気温度が、第2の所定値以下(たとえば0℃以下)となる場合、もしくは第2圧力センサ42で検出された圧縮機10の吸入部の圧力が第1の所定値以下(例えばR410A冷媒で約0.3MPa以下)となる場合、のどちらか一つ、もしくは両方を満たした場合に、開状態に維持され、冷媒を通過させる。
 第2温度センサ45、第2圧力センサ42は、本発明の「除霜時冷媒量減少検出手段」に対応する。
When the outdoor air temperature detected by the second temperature sensor 45 is equal to or lower than a second predetermined value (for example, 0 ° C. or lower), the second opening / closing device 35 or the compressor 10 detected by the second pressure sensor 42 is used. When the pressure of the suction part is less than a first predetermined value (for example, about 0.3 MPa or less with R410A refrigerant), when one or both of them are satisfied, the open state is maintained and the refrigerant passes. Let
The second temperature sensor 45 and the second pressure sensor 42 correspond to the “defrosting refrigerant amount decrease detecting means” of the present invention.
 除霜運転モード中に、第2温度センサ45と、第2圧力センサ42のどちらかの判定の一方を満たせば、主回路を循環している冷媒の量が不足していると見なしてよいが、両方で判定することにより、どちらかのセンサが故障した場合などにも、「除霜時冷媒量減少検出手段」としての機能をより確実に実施できる。 If one of the determinations of the second temperature sensor 45 and the second pressure sensor 42 is satisfied during the defrosting operation mode, the amount of refrigerant circulating in the main circuit may be regarded as insufficient. By determining both, even when one of the sensors fails, the function as the “defrosting refrigerant amount decrease detecting means” can be more reliably performed.
 図6は、空気調和装置100のデフロスト対象熱交換機である熱源側熱交換器12内の飽和温度変化による除霜に使用できるエンタルピ差変化を示す図である。図6では、横軸がデフロスト対象熱交換機である熱源側熱交換器12内の飽和温度を、縦軸の左側がデフロスト対象熱交換機である熱源側熱交換器12内の平均冷媒密度(kg/m)を、縦軸の右側がデフロスト対象熱交換機である熱源側熱交換器12の出入り口のエンタルピ差(kJ/kg)を、それぞれ示している。また、図6の実線は、デフロスト対象熱交換機である熱源側熱交換器12内の飽和温度に対する必要平均冷媒密度を示しており、図6の破線は、デフロスト対象熱交換機である熱源側熱交換器12内の飽和温度変化による除霜に使用できるエンタルピ差を示している。 FIG. 6 is a diagram showing a change in enthalpy difference that can be used for defrosting due to a saturation temperature change in the heat source side heat exchanger 12 that is a defrost target heat exchanger of the air conditioner 100. In FIG. 6, the horizontal axis indicates the saturation temperature in the heat source side heat exchanger 12 that is the defrost target heat exchanger, and the left side of the vertical axis indicates the average refrigerant density (kg / kg) in the heat source side heat exchanger 12 that is the defrost target heat exchanger. m 3 ), and the right side of the vertical axis represents the enthalpy difference (kJ / kg) at the entrance and exit of the heat source side heat exchanger 12 which is the defrost target heat exchanger. Moreover, the continuous line of FIG. 6 has shown the required average refrigerant | coolant density with respect to the saturation temperature in the heat source side heat exchanger 12 which is a defrost object heat exchanger, and the broken line of FIG. 6 shows the heat source side heat exchange which is a defrost object heat exchanger. The enthalpy difference which can be used for the defrosting by the saturation temperature change in the vessel 12 is shown.
 図6の破線より、デフロスト対象熱交換機である熱源側熱交換器12内の飽和温度が0℃より大きい、約1℃近辺にて、除霜に使用できるエンタルピ差が大きくなり、冷媒の二相部の潜熱をより有効に使用できるようになり、その時の熱源側熱交換器12内の必要平均冷媒密度は約600(kg/m)以上であることがわかる。すなわち、冷媒の二相部の潜熱を有効に利用した除霜運転を実施する際には、平均冷媒密度が約600(kg/m)以上の冷媒を熱源側熱交換器12内に溜める必要がある。 From the broken line in FIG. 6, the enthalpy difference that can be used for defrosting increases in the vicinity of about 1 ° C. where the saturation temperature in the heat source side heat exchanger 12 that is the defrost target heat exchanger is greater than 0 ° C. It becomes clear that the latent heat of the part can be used more effectively, and the required average refrigerant density in the heat source side heat exchanger 12 at that time is about 600 (kg / m 3 ) or more. That is, when carrying out the defrosting operation that effectively uses the latent heat of the two-phase part of the refrigerant, it is necessary to store a refrigerant having an average refrigerant density of about 600 (kg / m 3 ) or more in the heat source side heat exchanger 12. There is.
 除霜運転モード中に、熱源側熱交換器12内に平均冷媒密度が約600(kg/m)以上の冷媒を供給する際、暖房運転のために凝縮器として使用している負荷側熱交換器21内の冷媒が、熱源側熱交換器12内に移動する。そのため、負荷側熱交換器21内の冷媒量が減少することで、負荷側熱交換器21内の圧力(高圧)が低下し、そして、サイクル全体のガス冷媒量減少により低圧も低下する。負荷側熱交換器21を凝縮器として使用する際には、冷風による不快感をユーザーに与えない温度の空気を室内に供給する必要がある。 During the defrosting operation mode, when supplying a refrigerant having an average refrigerant density of about 600 (kg / m 3 ) or more into the heat source side heat exchanger 12, the load side heat used as a condenser for heating operation The refrigerant in the exchanger 21 moves into the heat source side heat exchanger 12. Therefore, the amount of refrigerant in the load-side heat exchanger 21 decreases, so that the pressure (high pressure) in the load-side heat exchanger 21 decreases, and the low pressure also decreases due to the decrease in the amount of gas refrigerant in the entire cycle. When the load-side heat exchanger 21 is used as a condenser, it is necessary to supply indoor air at a temperature that does not give the user unpleasant feeling due to cold air.
 そのため、室内温度と、負荷側熱交換器21内の圧力における飽和温度との間に、所定以上の温度差(例えば10℃以上)が必要である。例えば、パッケージエアコンディショナの性能試験の規格である日本工業規格JIS-B8616によれば、暖房運転時の室内環境の設定温度が20℃の場合には、負荷側熱交換器21内の圧力における飽和温度は30℃以上必要となっている。そのため、除霜運転モード時においては、負荷側熱交換器21内の圧力における飽和温度が30℃以上確保可能な状況での低圧側の圧力は、第1の所定値である約0.3MPa程度となる。 Therefore, a predetermined temperature difference (for example, 10 ° C. or more) is required between the room temperature and the saturation temperature at the pressure in the load-side heat exchanger 21. For example, according to Japanese Industrial Standard JIS-B8616, which is a standard for performance tests of packaged air conditioners, when the set temperature of the indoor environment during heating operation is 20 ° C., the pressure in the load-side heat exchanger 21 The saturation temperature is required to be 30 ° C. or higher. Therefore, in the defrosting operation mode, the pressure on the low-pressure side in the situation where the saturation temperature in the pressure in the load-side heat exchanger 21 can be secured at 30 ° C. or more is about the first predetermined value of about 0.3 MPa. It becomes.
 また、室外空気温度が第2の所定値である約0℃以下での除霜運転モード時には、低圧側の圧力は約0.3MPaを下回る運転状態となる。そのため、低圧側の圧力の低下を抑制しつつ、熱源側熱交換器12内に冷媒を溜めるためには、暖房運転及び除霜運転に使用されていない冷媒を供給する必要がある。 In the defrosting operation mode in which the outdoor air temperature is about 0 ° C. or less, which is the second predetermined value, the low pressure side pressure is in an operating state below about 0.3 MPa. Therefore, in order to store the refrigerant in the heat source side heat exchanger 12 while suppressing a decrease in the pressure on the low pressure side, it is necessary to supply a refrigerant that is not used in the heating operation and the defrosting operation.
 除霜運転モード時の冷媒の流れについて詳しく説明する。
 圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。
 圧縮機10から吐出された高温・高圧のガス冷媒の一部は、第1ガスバイパス配管5を流れ、第1開閉装置30bにて飽和温度換算で0℃より大きくなる程度に減圧され、中圧・高温のガス冷媒となり、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した中圧・高温のガス冷媒は、熱源側熱交換器12bに付着した霜を融かしながら中圧の低い乾き度の二相冷媒、もしくは中圧の液冷媒となり、流量調整装置32bを通過する。流量調整装置32bを通過した冷媒は、室内機2より室外機1に流入した中圧・低温の低い乾き度の二相冷媒、もしくは液冷媒と、流量調整装置32aの上流側で合流する。
The refrigerant flow during the defrosting operation mode will be described in detail.
When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
A part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows through the first gas bypass pipe 5 and is depressurized by the first switchgear 30b so as to become higher than 0 ° C. in terms of saturation temperature, and the medium pressure -It becomes a high-temperature gas refrigerant and flows into the heat source side heat exchanger 12b. The medium-pressure / high-temperature gas refrigerant flowing into the heat source side heat exchanger 12b is a two-phase refrigerant having a low intermediate pressure while melting frost adhering to the heat source side heat exchanger 12b, or an intermediate pressure liquid refrigerant. And passes through the flow rate adjusting device 32b. The refrigerant that has passed through the flow rate adjusting device 32b joins the two-phase refrigerant or liquid refrigerant having a low intermediate pressure and low temperature that has flowed into the outdoor unit 1 from the indoor unit 2 and upstream of the flow rate adjusting device 32a.
 圧縮機10から吐出された高温・高圧のガス冷媒の他部は、冷媒流路切替装置11を介して、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。 The other part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant. The liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
 室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、流量調整装置32aの上流で、流量調整装置32bからの冷媒と合流し、熱源側熱交換器12aに流入する。熱源側熱交換器12aに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12aを流出したガス冷媒は、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。 The low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant that has flowed into the outdoor unit 1 merges with the refrigerant from the flow rate adjusting device 32b upstream of the flow rate adjusting device 32a, and flows into the heat source side heat exchanger 12a. The refrigerant flowing into the heat source side heat exchanger 12a absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant that has flowed out of the heat source side heat exchanger 12a is again sucked into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 13.
 制御装置50は、第3温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が飽和温度換算で0℃より大きくなる予め設定された圧力(例えばR410A冷媒で約0.8MPa程度)が一定になるように、流量調整装置32bの開度を制御する。つまり、制御装置50は、第3温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が飽和温度換算で0℃より大きくなる圧力(例えばR410A冷媒で約0.8MPa程度)より大きくなるように、流量調整装置32bの開度を制御する。 The control device 50 has a preset pressure at which the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of the saturation temperature (for example, about 0.8 MPa for the R410A refrigerant). The opening degree of the flow rate adjusting device 32b is controlled so as to be constant. That is, the control device 50 has a saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b greater than a pressure (for example, about 0.8 MPa for the R410A refrigerant) that is greater than 0 ° C. in terms of saturation temperature. In this manner, the opening degree of the flow rate adjusting device 32b is controlled.
 熱源側熱交換器12bの除霜完了は、例えば、所定時間経過後した場合、もしくは第3温度センサ48bの温度がある所定値以上(例えば5℃)となった場合に、霜が融けたと判断すればよい。なお、所定時間は、熱源側熱交換器12bの全体に隙間なく着霜したと想定し、高温・高圧の冷媒の一部を流入させた場合、霜が全て融けるまでの所要時間以上で設定するとよい。 Completion of defrosting of the heat source side heat exchanger 12b is determined, for example, that the frost has melted when a predetermined time elapses or when the temperature of the third temperature sensor 48b becomes a predetermined value or higher (for example, 5 ° C.). do it. It is assumed that the predetermined time is set to be equal to or longer than the time required until all of the frost is melted, assuming that the entire heat source side heat exchanger 12b has been frosted without any gap and injecting a part of the high-temperature / high-pressure refrigerant. Good.
 また、制御装置50によって、第2開閉装置35が開状態に維持された場合、圧縮機10の吐出側から分岐された高温・高圧のガス冷媒は、第2ガスバイパス配管7を流れ、第2開閉装置35を介して、熱源側熱交換器12aを流出した低温・低圧のガス冷媒と合流して、アキュムレータ13に流入する。アキュムレータ13に流入した冷媒は、アキュムレータ13内に滞留している液冷媒を蒸発させる。そのため、アキュムレータ13から流出するガス冷媒の量を増加させ、低圧のガス冷媒の密度が上昇することができる。よって、低圧のガス冷媒の圧力が上昇し、低圧のガス冷媒の圧力を第1の所定値よりも高い状態(例えばR410A冷媒で約0.3MPa)で、維持可能となる。 When the second opening / closing device 35 is maintained in the open state by the control device 50, the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 flows through the second gas bypass pipe 7, and the second The low-temperature and low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 a is joined via the switchgear 35 and flows into the accumulator 13. The refrigerant that has flowed into the accumulator 13 evaporates the liquid refrigerant that remains in the accumulator 13. Therefore, the amount of the gas refrigerant flowing out from the accumulator 13 can be increased, and the density of the low-pressure gas refrigerant can be increased. Therefore, the pressure of the low-pressure gas refrigerant increases, and the pressure of the low-pressure gas refrigerant can be maintained in a state higher than the first predetermined value (for example, about 0.3 MPa for the R410A refrigerant).
 低圧のガス冷媒の圧力が第1の所定値以下(例えばR410A冷媒で約0.3MPa以下)となることで、低圧のガス冷媒の密度が低下し、圧縮機10から吐出される冷媒量が減少し、暖房能力及び除霜能力の低下に繋がる。しかしながら、空気調和装置100によれば、第2ガスバイパス配管7を利用することで、アキュムレータ13から流出するガス冷媒の量を増加させて、低圧のガス冷媒の圧力を上昇させることができる。そのため、圧縮機10から吐出される冷媒量の低下を抑制でき、暖房能力及び除霜能力の低減を抑制することが可能になる。 When the pressure of the low-pressure gas refrigerant is equal to or lower than a first predetermined value (for example, about 0.3 MPa or less for the R410A refrigerant), the density of the low-pressure gas refrigerant is reduced and the amount of refrigerant discharged from the compressor 10 is reduced. However, this leads to a decrease in heating capacity and defrosting capacity. However, according to the air conditioner 100, by using the second gas bypass pipe 7, the amount of the gas refrigerant flowing out from the accumulator 13 can be increased and the pressure of the low-pressure gas refrigerant can be increased. Therefore, the fall of the refrigerant | coolant amount discharged from the compressor 10 can be suppressed, and it becomes possible to suppress the reduction of a heating capability and a defrosting capability.
 第2温度センサ45で検出された室外空気温度が第2の所定値以下(たとえば0℃以下)となる場合の除霜運転モードにおいては、室外空気温度が低下することと、着霜の影響とにより、蒸発器として使用している熱源側熱交換器12a内の冷媒圧力が低下する。そのため、熱源側熱交換器12a内の冷媒温度は、飽和温度換算で約-27℃程度(飽和圧力は約0.3MPa)まで達し、圧縮機10の吸入部の低圧ガス冷媒の圧力が、第1の所定値(例えばR410A冷媒で約0.3MPa)に達する可能性が生じる。そこで、室外空気温度が第2の所定値以下(たとえば0℃以下)となる場合においても、制御装置50によって、第2開閉装置35が開状態に維持されることで、圧縮機10から吐出される冷媒量の低下を抑制できるため、暖房能力及び除霜能力の低減を抑制できる。 In the defrosting operation mode in the case where the outdoor air temperature detected by the second temperature sensor 45 is equal to or lower than a second predetermined value (for example, 0 ° C. or lower), the outdoor air temperature decreases and the influence of frost formation Thereby, the refrigerant | coolant pressure in the heat source side heat exchanger 12a currently used as an evaporator falls. Therefore, the refrigerant temperature in the heat source side heat exchanger 12a reaches about −27 ° C. (saturation pressure is about 0.3 MPa) in terms of saturation temperature, and the pressure of the low-pressure gas refrigerant in the suction portion of the compressor 10 is There is a possibility of reaching a predetermined value of 1 (for example, about 0.3 MPa with R410A refrigerant). Therefore, even when the outdoor air temperature is equal to or lower than the second predetermined value (for example, 0 ° C. or lower), the controller 50 maintains the second opening / closing device 35 in the open state, thereby discharging the compressor 10 from the compressor 10. Since the fall of the refrigerant | coolant amount which can be suppressed can be reduced, the reduction of heating capability and defrosting capability can be suppressed.
 さらに、アキュムレータ13に滞留している冷媒を、圧縮機10の吸入部に供給することで、第2開閉装置35を開状態とする以前よりも高密度のガス冷媒を、圧縮機10に吸入させることが可能となり、圧縮機10から吐出される冷媒の循環量を増加させることができる。 Furthermore, by supplying the refrigerant staying in the accumulator 13 to the suction portion of the compressor 10, the compressor 10 sucks the gas refrigerant having a higher density than before the second opening / closing device 35 is opened. Therefore, the circulation amount of the refrigerant discharged from the compressor 10 can be increased.
 このように、圧縮機10から吐出される冷媒循環量を増加させることにより、第2ガスバイパス配管7からアキュムレータ13に供給するガス冷媒量を確保しつつ、熱源側熱交換器12b内に多くの冷媒を供給することが可能となる。そのため、熱源側熱交換器12b内の二相冷媒の飽和圧力を、第2ガスバイパス配管7と、第2開閉装置35を介して高温・高圧のガス冷媒をアキュムレータ13に流入させない場合より速く、飽和温度換算で0℃よりも大きくすることが可能となる。よって、空気調和装置100によれば、霜を融かすために必要である霜と冷媒の温度差をより速く大きくできるため、除霜時間の短縮が図れる。 In this way, by increasing the refrigerant circulation amount discharged from the compressor 10, a large amount of gas refrigerant to be supplied from the second gas bypass pipe 7 to the accumulator 13 is secured, and a large amount of refrigerant is introduced into the heat source side heat exchanger 12 b. It becomes possible to supply a refrigerant. Therefore, the saturation pressure of the two-phase refrigerant in the heat source side heat exchanger 12b is faster than the case where the high-temperature / high-pressure gas refrigerant does not flow into the accumulator 13 via the second gas bypass pipe 7 and the second opening / closing device 35, It becomes possible to make it larger than 0 ° C. in terms of saturation temperature. Therefore, according to the air conditioner 100, since the temperature difference between the frost and the refrigerant necessary for melting the frost can be increased more quickly, the defrosting time can be shortened.
 熱源側熱交換器12bの除霜が完了した後、熱源側熱交換器12aの除霜を実施する場合は、前述の熱源側熱交換器12bの除霜動作の説明の中のアルファベットのaとbとを入れ替えた動作となる。すなわち、第1開閉装置30a、第1開閉装置30b、第3開閉装置31a、第3開閉装置31bの開閉状態が逆転し、熱源側熱交換器12aと熱源側熱交換器12bとの冷媒の流れが入れ替わる。また、流量調整装置32bが全開状態となり、流量調整装置32aの開度が制御される。 When defrosting of the heat source side heat exchanger 12b is performed after the defrosting of the heat source side heat exchanger 12b is completed, the alphabet a in the description of the defrosting operation of the heat source side heat exchanger 12b is used. It becomes the operation | movement which replaced b. That is, the open / close states of the first switchgear 30a, the first switchgear 30b, the third switchgear 31a, and the third switchgear 31b are reversed, and the refrigerant flows between the heat source side heat exchanger 12a and the heat source side heat exchanger 12b. Will be replaced. Further, the flow rate adjusting device 32b is fully opened, and the opening degree of the flow rate adjusting device 32a is controlled.
 このように熱源側熱交換器12の除霜運転モードにおいて、凝縮器となる熱源側熱交換器12内の冷媒の飽和温度を、霜の温度よりも高い、0℃より大きくなる中圧(例えばR410A冷媒で約0.8MPa以上)とする。このため、空気調和装置100によれば、冷媒の二相域(潜熱)を利用することができるため、少ない冷媒循環量で、効率よく除霜を行うことができ、室内の暖房能力の低下を抑制でき、室内を快適に保つことが可能となる。 Thus, in the defrosting operation mode of the heat source side heat exchanger 12, the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set to a medium pressure (for example, higher than 0 ° C., which is higher than the frost temperature). R410A refrigerant is about 0.8 MPa or more). For this reason, according to the air conditioning apparatus 100, since the two-phase area (latent heat) of a refrigerant | coolant can be utilized, it can defrost efficiently with little refrigerant | coolant circulation amount, and the fall of the indoor heating capability is reduced. It can be suppressed and the room can be kept comfortable.
 そして、このような除霜運転モードを実施することで、空気調和装置100は、暖房運転を継続しながら、熱源側熱交換器12a、熱源側熱交換器12bの除霜をすることができる。また、室外機1の筐体の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、上側に位置する熱源側熱交換器12aの除霜を実施する。このため、熱源側熱交換器12aの除霜によって溶けた水が、まだ除霜されていない下側の熱源側熱交換器12bにて再凍結を起こすことを防止することができ、効率よく除霜を行うことができる。 And by implementing such a defrosting operation mode, the air conditioning apparatus 100 can defrost the heat source side heat exchanger 12a and the heat source side heat exchanger 12b while continuing the heating operation. Moreover, the defrost of the heat source side heat exchanger 12b located in the lower side of the housing | casing of the outdoor unit 1 is implemented, and the defrost of the heat source side heat exchanger 12a located in the upper side is implemented after that. For this reason, it is possible to prevent the water melted by the defrosting of the heat source side heat exchanger 12a from being re-frozen in the lower heat source side heat exchanger 12b that has not yet been defrosted. Frost can be done.
なお、図7にデフロスト対象熱交換機である熱源側熱交換器12内の飽和温度に対する暖房能力の変化を示している。図7より、熱源側熱交換器12内の飽和温度が10℃より大きくなると、熱源側熱交換器12内に過剰に冷媒が滞留することとなる。これにより、アキュムレータ13内に滞留している液冷媒が無くなり、冷凍サイクル全体が冷媒不足に陥り、暖房能力の低下に繋がる。よって、熱源側熱交換器12内に過剰に冷媒が滞留することによる冷媒不足を解消するためには、熱源側熱交換器12内の飽和温度は0℃~10℃の範囲とするとよい。 FIG. 7 shows a change in the heating capacity with respect to the saturation temperature in the heat source side heat exchanger 12 which is a defrost target heat exchanger. From FIG. 7, when the saturation temperature in the heat source side heat exchanger 12 becomes higher than 10 ° C., the refrigerant is excessively retained in the heat source side heat exchanger 12. As a result, the liquid refrigerant staying in the accumulator 13 disappears, the entire refrigeration cycle falls short of the refrigerant, and the heating capacity is reduced. Therefore, in order to eliminate the refrigerant shortage due to excessive retention of the refrigerant in the heat source side heat exchanger 12, the saturation temperature in the heat source side heat exchanger 12 is preferably in the range of 0 ° C to 10 ° C.
 図8は、空気調和装置100の除霜運転モード時における第2開閉装置35を操作する際の制御動作を示すフローチャートである。図8を参照して、除霜運転モード時における第2開閉装置35を操作する際の制御装置50の動作を説明する。 FIG. 8 is a flowchart showing a control operation when operating the second opening / closing device 35 when the air-conditioning apparatus 100 is in the defrosting operation mode. With reference to FIG. 8, operation | movement of the control apparatus 50 at the time of operating the 2nd opening / closing apparatus 35 at the time of a defrost operation mode is demonstrated.
(CT1)
 制御装置50は、暖房運転モード時に第3温度センサ48a、第3温度センサ48bの検出結果が、所定値以下(例えば約-10℃以下)となると、熱源側熱交換器12a、熱源側熱交換器12bのフィンに着霜が所定量発生したと判定し、除霜運転モードを実行し、CT2に移行する。
(CT1)
When the detection result of the third temperature sensor 48a and the third temperature sensor 48b is equal to or lower than a predetermined value (for example, about −10 ° C. or lower) in the heating operation mode, the control device 50 performs heat source side heat exchanger 12a and heat source side heat exchange. It determines with the predetermined amount of frost having generate | occur | produced in the fin of the container 12b, performs a defrost operation mode, and transfers to CT2.
(CT2)
 制御装置50は、第2温度センサ45で検出された室外空気温度が所定値以上(たとえば0℃)であるか否かを判定する。なお、この所定値が第2の所定値に対応する。
 第2温度センサ45で検出された値が所定値以上である場合には、CT3に移行する。
 第2温度センサ45で検出された値が所定値以上でない場合には、CT4に移行する。
(CT2)
The control device 50 determines whether or not the outdoor air temperature detected by the second temperature sensor 45 is equal to or higher than a predetermined value (for example, 0 ° C.). This predetermined value corresponds to the second predetermined value.
If the value detected by the second temperature sensor 45 is greater than or equal to the predetermined value, the process proceeds to CT3.
If the value detected by the second temperature sensor 45 is not equal to or greater than the predetermined value, the process proceeds to CT4.
(CT3)
 制御装置50は、第2圧力センサ42で検出された圧縮機10の吸入部の冷媒の圧力とほぼ同等の圧力が所定値以上(たとえばR410A冷媒で0.3MPa以上)であるか否かを判定する。なお、この所定値が第1の所定値に対応する。
 第2圧力センサ42で検出された値が所定値以上である場合には、CT5に移行する。
 第2圧力センサ42で検出された値が所定値以上でない場合には、CT4に移行する。
(CT3)
The control device 50 determines whether or not the pressure substantially equal to the refrigerant pressure in the suction portion of the compressor 10 detected by the second pressure sensor 42 is equal to or higher than a predetermined value (for example, 0.3 MPa or higher for the R410A refrigerant). To do. This predetermined value corresponds to the first predetermined value.
If the value detected by the second pressure sensor 42 is greater than or equal to the predetermined value, the process proceeds to CT5.
If the value detected by the second pressure sensor 42 is not equal to or greater than the predetermined value, the process proceeds to CT4.
(CT4)
 制御装置50は、第2開閉装置35を開とし、圧縮機10から吐出された高温・高圧のガス冷媒を分岐し、第2ガスバイパス配管7と、第2開閉装置35を介して、アキュムレータ13に流入させる。これにより、アキュムレータ13内に滞留している液冷媒を蒸発させて、アキュムレータ13から流出するガス冷媒の量を増加させて、低圧のガス冷媒の圧力を上昇させることができる。
 制御装置50は、第2開閉装置35を開とした後に、CT6に移行する。
(CT4)
The control device 50 opens the second opening / closing device 35, branches the high-temperature / high-pressure gas refrigerant discharged from the compressor 10, and passes through the second gas bypass pipe 7 and the second opening / closing device 35 to accumulate the accumulator 13. To flow into. As a result, the liquid refrigerant staying in the accumulator 13 is evaporated, the amount of the gas refrigerant flowing out of the accumulator 13 is increased, and the pressure of the low-pressure gas refrigerant can be increased.
The control device 50 proceeds to CT6 after opening the second opening / closing device 35.
(CT5)
 制御装置50は、第2開閉装置35を閉とし、圧縮機10の吐出側から分岐され、第2ガスバイパス配管7と第2開閉装置35を介して、アキュムレータ13に流入する高温・高圧のガス冷媒の流路を遮断する。
 制御装置50は、第2開閉装置35を閉とした後に、CT6に移行する。
(CT5)
The control device 50 closes the second opening / closing device 35, branches from the discharge side of the compressor 10, and flows into the accumulator 13 via the second gas bypass pipe 7 and the second opening / closing device 35. Block the refrigerant flow path.
After closing the second opening / closing device 35, the control device 50 proceeds to CT6.
(CT6)
 制御装置50は、除霜運転モードが終了しているか否かを判定する。
 除霜運転モードが終了していない場合は、CT2に移行する。
 除霜運転モードが終了している場合は、CT7に移行する。
(CT6)
The control device 50 determines whether or not the defrosting operation mode has ended.
If the defrosting operation mode has not ended, the process proceeds to CT2.
When the defrosting operation mode is completed, the process proceeds to CT7.
(CT7)
 制御装置50は、除霜運転モードが終了している場合に、第2開閉装置35を閉とし、圧縮機10の吐出側から分岐され、第2ガスバイパス配管7と第2開閉装置35を介して、アキュムレータ13に流入する高温・高圧のガス冷媒の流路を遮断する。
 制御装置50は、第2開閉装置35を閉とした後に、全暖房運転モードに移行する。
(CT7)
When the defrosting operation mode is completed, the control device 50 closes the second opening / closing device 35, branches off from the discharge side of the compressor 10, and passes through the second gas bypass pipe 7 and the second opening / closing device 35. Thus, the flow path of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 is blocked.
The control device 50 shifts to the heating only operation mode after closing the second opening / closing device 35.
 なお、図8のCT3において、第2圧力センサ42で検出された圧縮機10の吸入部の冷媒の圧力とほぼ同等の圧力をR410A冷媒で約0.3MPaに設定しているが、これに限定されるものではない。すなわち、運転状態により、冷風による不快感をユーザーに与えない程度に、室内温度と、負荷側熱交換器21内の圧力における飽和温度との間に、所定以上の温度差(たとえば10℃以上)が確保できるのであれば、第1の所定値が0.3MPaよりも小さく設定してもよい。また、第2圧力センサ42は、圧力センサに限らず、サーミスタなどの温度センサを設け、その温度センサの検出値を元に制御装置50にて、飽和圧力を算出して、その飽和圧力を使用するようにしてもよい。 In CT3 in FIG. 8, the pressure substantially equal to the refrigerant pressure in the suction portion of the compressor 10 detected by the second pressure sensor 42 is set to about 0.3 MPa with the R410A refrigerant, but this is not limitative. Is not to be done. That is, a temperature difference of a predetermined value or more (for example, 10 ° C. or more) between the room temperature and the saturation temperature at the pressure in the load-side heat exchanger 21 so as not to give the user an unpleasant feeling due to cold air depending on the operating state. Can be ensured, the first predetermined value may be set smaller than 0.3 MPa. The second pressure sensor 42 is not limited to the pressure sensor, and is provided with a temperature sensor such as a thermistor. The control device 50 calculates the saturation pressure based on the detected value of the temperature sensor, and uses the saturation pressure. You may make it do.
 また、除霜時冷媒量減少検出手段の検出結果により、第2開閉装置35は開とされる例を示しているが、これに限らず、除霜運転モード開始時の各開閉装置と、流量調整装置の切替時には、冷媒回路内の冷媒が不足することが予測されるため、切り替えタイミングと合わせて第2開閉装置35を開としてもよい。このようにすることで、除霜対象となる熱源側熱交換器12に、より速く冷媒を供給することができ、除霜時間の短縮が図れる。 Moreover, although the 2nd opening / closing device 35 has shown the example opened according to the detection result of the refrigerant | coolant amount decrease detection means at the time of a defrost, not only this but each opening / closing device at the time of defrost operation mode start, and flow volume At the time of switching of the adjusting device, it is predicted that the refrigerant in the refrigerant circuit will be insufficient, and therefore the second opening / closing device 35 may be opened together with the switching timing. By doing in this way, a refrigerant | coolant can be supplied to the heat source side heat exchanger 12 used as a defrost object faster, and defrost time can be shortened.
 また、第2圧力センサ42で検出された圧縮機10の吸入部の冷媒の圧力とほぼ同等の圧力が第1の所定値以上(たとえばR410A冷媒で0.3MPa以上)である場合に、第2開閉装置35は閉とされる例を示しているが、これに限らない。例えば、予め試験などで除霜運転モード時の圧縮機10の吸入部の冷媒の圧力の上昇を予測して、一定時間経過後に閉としてもよい。このようにすることで、第2圧力センサ42が故障した場合でも、アキュムレータ13に滞留している冷媒を、冷媒回路内に、過剰に供給することを防ぐことができる。すなわち、圧縮機10の吐出側から分岐された高温・高圧のガス冷媒が、無駄にバイパスすることを防ぎ、暖房能力の低下を抑制できる。 Further, when the pressure approximately equal to the refrigerant pressure in the suction portion of the compressor 10 detected by the second pressure sensor 42 is equal to or higher than a first predetermined value (for example, 0.3 MPa or higher for the R410A refrigerant), the second Although the opening / closing device 35 is shown as being closed, the present invention is not limited to this. For example, the increase in the pressure of the refrigerant in the suction portion of the compressor 10 in the defrosting operation mode may be predicted in advance by a test or the like, and may be closed after a predetermined time has elapsed. By doing in this way, even when the 2nd pressure sensor 42 fails, it can prevent supplying the refrigerant | coolant which has accumulated in the accumulator 13 excessively in a refrigerant circuit. That is, it is possible to prevent the high-temperature and high-pressure gas refrigerant branched from the discharge side of the compressor 10 from being bypassed unnecessarily, and to suppress a decrease in heating capacity.
 また、第2開閉装置35を開として維持する時間は、外気温度に応じて異なる時間を設けてもよい。高外気時は、蒸発器として使用されている熱源側熱交換器12で、低外気時と同等以上の熱交換量を得る場合に、外気と熱源側熱交換器12内の冷媒との温度差が、高外気時と低外気時でほぼ同等とすると、熱源側熱交換器12内の冷媒の圧力は上昇し、圧縮機10の吸入部の冷媒の圧力も上昇する。そのため、冷媒回路内の冷媒の循環量は多く、第2開閉装置35を開として、アキュムレータ13に滞留している冷媒を、冷媒回路内に供給する量は少量でも、十分に除霜と、暖房運転を実施できる。よって、高外気時は、第2開閉装置35を開とする時間を短く設定できる。 Further, the time for keeping the second opening / closing device 35 open may be different depending on the outside air temperature. The temperature difference between the outside air and the refrigerant in the heat source side heat exchanger 12 is obtained when the heat source side heat exchanger 12 used as an evaporator obtains a heat exchange amount equal to or higher than that in the low outside air during high outside air. However, if it is substantially the same between high outside air and low outside air, the pressure of the refrigerant in the heat source side heat exchanger 12 increases, and the pressure of the refrigerant in the suction portion of the compressor 10 also increases. Therefore, the circulation amount of the refrigerant in the refrigerant circuit is large, and the second opening / closing device 35 is opened, and the refrigerant remaining in the accumulator 13 is sufficiently defrosted and heated even if the amount of refrigerant supplied into the refrigerant circuit is small. You can drive. Therefore, when the outside air is high, the time for opening the second opening / closing device 35 can be set short.
 逆に低外気時は、熱源側熱交換器12内の冷媒の圧力は低下し、圧縮機10の吸入部の冷媒の圧力も低下する。そのため、冷媒回路内の冷媒の循環量は少なく、アキュムレータ13に滞留している冷媒を、冷媒回路内に供給する量は多量に必要となり、第2開閉装置35を開とする時間を長く設定する必要がある。
 すなわち、外気温度変化に応じて、第2開閉装置35を開とする時間を設定することで、特に高外気時に、圧縮機10の吐出側から分岐された高温・高圧のガス冷媒が、無駄にバイパスすることを防ぎ、暖房能力の低下を抑制できる。
Conversely, when the outside air is low, the pressure of the refrigerant in the heat source side heat exchanger 12 decreases, and the pressure of the refrigerant in the suction portion of the compressor 10 also decreases. Therefore, the circulation amount of the refrigerant in the refrigerant circuit is small, and a large amount of the refrigerant staying in the accumulator 13 is required to be supplied into the refrigerant circuit, and the time for opening the second opening / closing device 35 is set long. There is a need.
That is, by setting the time for opening the second opening / closing device 35 according to the change in the outside air temperature, the high-temperature and high-pressure gas refrigerant branched from the discharge side of the compressor 10 is wasted, particularly when the outside air is high. Bypassing can be prevented and a decrease in heating capacity can be suppressed.
 図9は、空気調和装置100の除霜モード時のアキュムレータ13に流入する高温・高圧のガス冷媒の流量を変化させた場合の負荷側熱交換器21内の圧力を換算した飽和温度変化を示す図である。図9では、室外空気温度が約0℃、室内空気温度が約20℃における、除霜運転モード時のアキュムレータ13に流入する高温・高圧のガス冷媒の流量を変化させた場合の負荷側熱交換器21内の圧力を換算した飽和温度変化を示している。また、図9では、横軸が圧縮機10の吐出部に位置する配管から第2ガスバイパス配管7を介してアキュムレータ13に流入する高温・高圧のガス冷媒の流量を圧縮機10から吐出された高温・高圧のガス冷媒全てで除した値(以下ガス冷媒流量比)を、縦軸が負荷側熱交換器21内の圧力を換算した飽和温度を、それぞれ示している。 FIG. 9 shows a change in saturation temperature in terms of the pressure in the load-side heat exchanger 21 when the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 during the defrost mode of the air conditioner 100 is changed. FIG. In FIG. 9, when the outdoor air temperature is about 0 ° C. and the indoor air temperature is about 20 ° C., the load-side heat exchange when the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 in the defrosting operation mode is changed. The saturation temperature change which converted the pressure in the vessel 21 is shown. Further, in FIG. 9, the flow rate of the high-temperature and high-pressure gas refrigerant flowing into the accumulator 13 from the pipe whose horizontal axis is located at the discharge portion of the compressor 10 via the second gas bypass pipe 7 is discharged from the compressor 10. A value obtained by dividing all the high-temperature and high-pressure gas refrigerants (hereinafter referred to as gas refrigerant flow ratio), and the vertical axis represents the saturation temperature obtained by converting the pressure in the load-side heat exchanger 21.
 図9より、アキュムレータ13からデフロスト対象の熱源側熱交換器12に、平均冷媒密度が約600(kg/m)以上の冷媒をより速く供給するためには、アキュムレータ13に流入する高温・高圧のガス冷媒の流量を増加させる方がよい(図9の横軸の右方向にシフト)ことがわかる。一方、それに応じて、負荷側熱交換器21内の圧力を換算した飽和温度は減少していく(図9の縦軸下方向にシフト)ことがわかる。よって、室内空気温度約20℃との温度差10℃以上確保できるように、負荷側熱交換器21内の圧力を換算した飽和温度を30℃以上に保つためには、ガス冷媒流量比を0.65未満に設定する必要がある。そのため、第2開閉装置35のサイズは、ガス冷媒流量比が0.65未満を満たすサイズの弁を使用すればよい。 From FIG. 9, in order to supply the refrigerant having an average refrigerant density of about 600 (kg / m 3 ) or more from the accumulator 13 to the heat source side heat exchanger 12 to be defrosted more quickly, the high temperature / high pressure flowing into the accumulator 13 is obtained. It can be seen that it is better to increase the flow rate of the gas refrigerant (shift to the right of the horizontal axis in FIG. 9). On the other hand, it can be seen that the saturation temperature obtained by converting the pressure in the load-side heat exchanger 21 decreases accordingly (shifted downward in the vertical axis in FIG. 9). Therefore, in order to keep the saturation temperature converted to the pressure in the load-side heat exchanger 21 at 30 ° C. or higher so that a temperature difference of 10 ° C. or more from the indoor air temperature of about 20 ° C. can be secured, the gas refrigerant flow rate ratio is set to 0. Must be set to less than 65. Therefore, the size of the second opening / closing device 35 may be a valve having a size that satisfies the gas refrigerant flow rate ratio of less than 0.65.
(アキュムレータ13へのガス流入方式変形版)
 図10は、空気調和装置100の回路構成の別の一例を示す概略回路構成図である。図10に示すように、第2ガスバイパス配管7の他端をアキュムレータ13に接続する構成としてもよい。このような構成によれば、圧縮機10から吐出された高温・高圧のガス冷媒が分岐され、第2ガスバイパス配管7と第2開閉装置35を介して、アキュムレータ13内に直接流入させることが可能になる。
(Modified version of gas flow into the accumulator 13)
FIG. 10 is a schematic circuit configuration diagram illustrating another example of the circuit configuration of the air-conditioning apparatus 100. As shown in FIG. 10, the other end of the second gas bypass pipe 7 may be connected to the accumulator 13. According to such a configuration, the high-temperature / high-pressure gas refrigerant discharged from the compressor 10 is branched and directly flows into the accumulator 13 via the second gas bypass pipe 7 and the second opening / closing device 35. It becomes possible.
 第2ガスバイパス配管7の他端を冷媒流路切替装置11とアキュムレータ13の間の冷媒配管3に接続する場合は、圧縮機10の吐出側から分岐された高温・高圧のガス冷媒は、蒸発器である熱源側熱交換器12から流入した低温・低圧のガスまたは二相冷媒に放熱することで熱エネルギーが減少する。さらに、アキュムレータ13に流入した際に、アキュムレータ13内に滞留した液冷媒の上部に位置する液面とのみ熱交換することになる。 When the other end of the second gas bypass pipe 7 is connected to the refrigerant pipe 3 between the refrigerant flow switching device 11 and the accumulator 13, the high-temperature and high-pressure gas refrigerant branched from the discharge side of the compressor 10 evaporates. The heat energy is reduced by dissipating heat to the low-temperature, low-pressure gas or two-phase refrigerant that has flowed from the heat source side heat exchanger 12 that is a heat exchanger. Furthermore, when it flows into the accumulator 13, heat is exchanged only with the liquid surface located above the liquid refrigerant staying in the accumulator 13.
 そこで、図10に示すような回路構成とすることで、アキュムレータ13に流入させたガス冷媒とアキュムレータ13内に滞留した液冷媒とを効率よく熱交換させることができる。そのため、アキュムレータ13の流入部の配管に圧縮機10の吐出側から分岐された高温・高圧のガス冷媒を流入させる場合よりも速く、アキュムレータ13の内部に滞留している冷媒を、除霜対象である熱源側熱交換器12に供給することが可能となり、より速く除霜を行うことができる。よって、室内の暖房能力の低下をより抑制でき、室内を快適に保つことが可能となる。 Therefore, by adopting a circuit configuration as shown in FIG. 10, heat exchange can be performed efficiently between the gas refrigerant that has flowed into the accumulator 13 and the liquid refrigerant that has accumulated in the accumulator 13. Therefore, the refrigerant staying in the accumulator 13 is defrosted faster than the case where the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is caused to flow into the piping of the inflow portion of the accumulator 13. It becomes possible to supply to a certain heat source side heat exchanger 12, and defrosting can be performed more quickly. Therefore, the indoor heating capacity can be further prevented from being lowered, and the room can be kept comfortable.
実施の形態2.
 図11は、本発明の実施の形態2に係る空気調和装置200の回路構成の一例を示す概略回路構成図である。
 図11に基づいて、空気調和装置200の詳しい構成について説明する。
 なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。また、図11では、熱源側熱交換器12bの除霜を実施している場合の冷媒の流れ方向を実線矢印で示している。
Embodiment 2. FIG.
FIG. 11 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus 200 according to Embodiment 2 of the present invention.
Based on FIG. 11, the detailed structure of the air conditioning apparatus 200 is demonstrated.
In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. Moreover, in FIG. 11, the flow direction of the refrigerant | coolant in case defrosting of the heat source side heat exchanger 12b is shown with the solid line arrow.
 図11に示すように、空気調和装置200では、新たに熱源側熱交換器12aの負荷側絞り装置22側の配管に、熱源側熱交換器12aの冷媒流路を遮断する第4開閉装置33aを設置している。同様に、空気調和装置200では、熱源側熱交換器12bの負荷側絞り装置22側の配管に、熱源側熱交換器12bの冷媒流路を遮断する第4開閉装置33bを設置している。 As shown in FIG. 11, in the air conditioner 200, a fourth opening / closing device 33 a that newly blocks the refrigerant flow path of the heat source side heat exchanger 12 a to the pipe on the load side expansion device 22 side of the heat source side heat exchanger 12 a. Is installed. Similarly, in the air conditioner 200, a fourth opening / closing device 33b that blocks the refrigerant flow path of the heat source side heat exchanger 12b is installed in the piping on the load side expansion device 22 side of the heat source side heat exchanger 12b.
 さらに、空気調和装置200では、冷媒バイパス配管6を設置している。この冷媒バイパス配管6の一端は、熱源側熱交換器12a、熱源側熱交換器12bのそれぞれと、第3開閉装置31a、第3開閉装置31bのそれぞれの間の冷媒配管3に接続されている。冷媒バイパス配管6の他端は、第4開閉装置33a、第4開閉装置33bのそれぞれと負荷側絞り装置22との間の流路に接続されている。この冷媒バイパス配管6によって、除霜運転モード時に、凝縮器となる熱源側熱交換器12内の冷媒を、冷媒配管3に流入させるようにしている。 Furthermore, in the air conditioner 200, the refrigerant bypass pipe 6 is installed. One end of the refrigerant bypass pipe 6 is connected to the refrigerant pipe 3 between each of the heat source side heat exchanger 12a and the heat source side heat exchanger 12b and each of the third switchgear 31a and the third switchgear 31b. . The other end of the refrigerant bypass pipe 6 is connected to a flow path between each of the fourth opening / closing device 33 a and the fourth opening / closing device 33 b and the load side expansion device 22. The refrigerant bypass pipe 6 allows the refrigerant in the heat source side heat exchanger 12 serving as a condenser to flow into the refrigerant pipe 3 in the defrosting operation mode.
 また、冷媒バイパス配管6の冷媒流路を切り替えるための、第5開閉装置34a及び第5開閉装置34bを、一端がそれぞれ対応した熱源側熱交換器12と第3開閉装置31との間に接続されている冷媒バイパス配管6に設置している。そして、冷媒バイパス配管6の他端側に、熱源側熱交換器12内の冷媒の圧力を調整するための、開度(開口面積)が変化させられる絞り装置である流量調整装置32b(もしくは流量調整装置32a)の一つを設置している。 Further, the fifth switching device 34a and the fifth switching device 34b for switching the refrigerant flow path of the refrigerant bypass pipe 6 are connected between the heat source side heat exchanger 12 and the third switching device 31 each corresponding to one end. The refrigerant bypass pipe 6 is installed. Then, the flow rate adjusting device 32b (or the flow rate), which is a throttle device whose opening degree (opening area) is changed to adjust the pressure of the refrigerant in the heat source side heat exchanger 12 to the other end side of the refrigerant bypass pipe 6. One of the adjusting devices 32a) is installed.
 第4開閉装置33aは、除霜運転モード中に、熱源側熱交換器12aが凝縮器として動作する場合に、室内機2から冷媒主管4を介して室外機1に流入される低温の二相冷媒を、熱源側熱交換器12aに流入させないように、冷媒の流路を遮断するものである。
 第4開閉装置33bは、除霜運転モード中に、熱源側熱交換器12bが凝縮器として動作する場合に、室内機2から冷媒主管4を介して室外機1に流入される低温の二相冷媒を、熱源側熱交換器12bに流入させないように、冷媒の流路を遮断するものである。
The fourth opening / closing device 33a is a low-temperature two-phase flow that flows into the outdoor unit 1 from the indoor unit 2 through the refrigerant main pipe 4 when the heat source side heat exchanger 12a operates as a condenser during the defrosting operation mode. The flow path of the refrigerant is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12a.
The fourth switchgear 33b is a low-temperature two-phase flow that flows from the indoor unit 2 into the outdoor unit 1 through the refrigerant main pipe 4 when the heat source side heat exchanger 12b operates as a condenser during the defrosting operation mode. The refrigerant flow path is blocked so that the refrigerant does not flow into the heat source side heat exchanger 12b.
 第4開閉装置33a及び第4開閉装置33bは、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成するとよい。
 なお、以下の説明において、第4開閉装置33a及び第4開閉装置33bをまとめて第4開閉装置33と称する場合があるものとする。
The fourth opening / closing device 33a and the fourth opening / closing device 33b may be configured to be capable of opening / closing a refrigerant flow path, such as a two-way valve, an electromagnetic valve, or an electronic expansion valve.
In the following description, the fourth switchgear 33a and the fourth switchgear 33b may be collectively referred to as the fourth switchgear 33.
 第5開閉装置34aは、除霜運転モード中に、熱源側熱交換器12aが凝縮器として動作する場合に、熱源側熱交換器12aから流出した冷媒を、流量調整装置32b(もしくは流量調整装置32a)を介して、冷媒配管3に流入させるものである。
 第5開閉装置34bは、除霜運転モード中に、熱源側熱交換器12bが凝縮器として動作する場合に、熱源側熱交換器12aから流出した冷媒を、流量調整装置32b(もしくは流量調整装置32a)を介して、冷媒配管3に流入させるものである。
When the heat source side heat exchanger 12a operates as a condenser during the defrosting operation mode, the fifth opening / closing device 34a removes the refrigerant flowing out of the heat source side heat exchanger 12a from the flow rate adjusting device 32b (or the flow rate adjusting device). It is made to flow into the refrigerant pipe 3 via 32a).
When the heat source side heat exchanger 12b operates as a condenser during the defrosting operation mode, the fifth opening / closing device 34b removes the refrigerant flowing out of the heat source side heat exchanger 12a from the flow rate adjustment device 32b (or the flow rate adjustment device). It is made to flow into the refrigerant pipe 3 via 32a).
 第5開閉装置34a及び第5開閉装置34bは、例えば、二方弁、電磁弁、電子式膨張弁等、冷媒の流路を開閉可能なもので構成するとよい。
 なお、以下の説明において、第5開閉装置34a及び第5開閉装置34bをまとめて第5開閉装置34と称する場合があるものとする。
The fifth opening / closing device 34a and the fifth opening / closing device 34b may be configured to be capable of opening and closing a refrigerant flow path, such as a two-way valve, an electromagnetic valve, and an electronic expansion valve.
In the following description, the fifth opening / closing device 34a and the fifth opening / closing device 34b may be collectively referred to as the fifth opening / closing device 34.
 2分岐されている第1ガスバイパス配管5の他端は、一方が、熱源側熱交換器12aと第4開閉装置33aとの間の冷媒配管3に接続され、他方が、熱源側熱交換器12bと第4開閉装置33bとの間の冷媒配管3に接続される。 The other end of the first gas bypass pipe 5 branched into two branches is connected to the refrigerant pipe 3 between the heat source side heat exchanger 12a and the fourth switchgear 33a, and the other is connected to the heat source side heat exchanger. It connects to the refrigerant | coolant piping 3 between 12b and the 4th switchgear 33b.
 そして、第3温度センサ48aは、熱源側熱交換器12aと第3開閉装置31aとの間の冷媒配管3に設けられており、第3温度センサ48bは、熱源側熱交換器12bと第3開閉装置31bとの間の冷媒配管3に設けられている。
第3温度センサ48aは、蒸発器として動作する熱源側熱交換器12aから流出した冷媒、又は、凝縮器として動作する熱源側熱交換器12aから流出した冷媒の温度を測定する。第3温度センサ48bは、蒸発器として動作する熱源側熱交換器12bから流入した冷媒、又は、凝縮器として動作する熱源側熱交換器12bから流出した冷媒の温度を測定する。
And the 3rd temperature sensor 48a is provided in the refrigerant | coolant piping 3 between the heat source side heat exchanger 12a and the 3rd switchgear 31a, and the 3rd temperature sensor 48b is the heat source side heat exchanger 12b and 3rd. It is provided in the refrigerant pipe 3 between the switchgear 31b.
The third temperature sensor 48a measures the temperature of the refrigerant flowing out from the heat source side heat exchanger 12a operating as an evaporator or the refrigerant flowing out from the heat source side heat exchanger 12a operating as a condenser. The third temperature sensor 48b measures the temperature of the refrigerant flowing in from the heat source side heat exchanger 12b operating as an evaporator or the refrigerant flowing out of the heat source side heat exchanger 12b operating as a condenser.
 なお、その他の構成は、実施の形態1に係る空気調和装置100と同様であるため、説明を省略する。また、実施の形態1の説明で使用した図6~図9については、空気調和装置200についても同様に該当する。 In addition, since the other structure is the same as that of the air conditioning apparatus 100 which concerns on Embodiment 1, description is abbreviate | omitted. 6 to 9 used in the description of the first embodiment also applies to the air conditioner 200.
 空気調和装置200の全冷房運転モード及び全暖房運転モード時は、第4開閉装置33a、第4開閉装置33bはそれぞれ開となっており、第5開閉装置34a、第5開閉装置34bはそれぞれ閉となっており、その他開閉装置の動作と、冷媒の流れは、実施の形態1に係る空気調和装置100と同様であるため、説明を省略する。 When the air-conditioning apparatus 200 is in the cooling only operation mode or the heating only operation mode, the fourth opening / closing device 33a and the fourth opening / closing device 33b are open, and the fifth opening / closing device 34a and the fifth opening / closing device 34b are closed. Since the other operations of the switchgear and the flow of the refrigerant are the same as those of the air conditioner 100 according to Embodiment 1, the description thereof is omitted.
[除霜運転モード]
 空気調和装置200の除霜運転モードにおいても、室外機1の筐体内の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、室外機1の筐体内の上側に位置する熱源側熱交換器12aの除霜を実施する。
 なお、除霜運転モードを開始する条件は、実施の形態1に係る空気調和装置100と同様である。
[Defrost operation mode]
Even in the defrosting operation mode of the air conditioner 200, the heat source side heat exchanger 12b located on the lower side in the casing of the outdoor unit 1 is defrosted, and then positioned on the upper side in the casing of the outdoor unit 1. Defrosting of the heat source side heat exchanger 12a is performed.
The conditions for starting the defrosting operation mode are the same as those of the air conditioner 100 according to Embodiment 1.
(熱源側熱交換器12bの除霜)
 除霜運転モードでは、冷媒流路切替装置11が図11の実線で示される状態に維持される。
 また、除霜運転モードにおいて、熱源側熱交換器12bを除霜対象とする場合の第1開閉装置30、第2開閉装置35、第3開閉装置31、第4開閉装置33、第5開閉装置34、及び流量調整装置32の状態は以下の通りである。
 なお、いずれも制御装置50により制御される。
(Defrosting of heat source side heat exchanger 12b)
In the defrosting operation mode, the refrigerant flow switching device 11 is maintained in the state indicated by the solid line in FIG.
Further, in the defrosting operation mode, the first opening / closing device 30, the second opening / closing device 35, the third opening / closing device 31, the fourth opening / closing device 33, and the fifth opening / closing device when the heat source side heat exchanger 12b is to be defrosted. 34 and the state of the flow rate adjusting device 32 are as follows.
Both are controlled by the control device 50.
 第1開閉装置30bは、開状態に切り替えられ、冷媒を通過させる。
 第3開閉装置31bは、閉状態に切り替えられ、冷媒を遮断する。
 第4開閉装置33bは、閉状態に切り替えられ、冷媒を遮断する。
 第5開閉装置34bは、開状態に切り替えられ、冷媒を通過させる。
 第1開閉装置30aは、閉状態に維持され、冷媒を遮断する。
 第3開閉装置31aは、開状態に維持され、冷媒を通過させる。
 第4開閉装置33aは、開状態に切り替えられ、冷媒を通過させる。
 第5開閉装置34aは、閉状態に切り替えられ、冷媒を遮断する。
The first opening / closing device 30b is switched to the open state and allows the refrigerant to pass therethrough.
The third opening / closing device 31b is switched to the closed state and blocks the refrigerant.
The fourth opening / closing device 33b is switched to the closed state and blocks the refrigerant.
The fifth opening / closing device 34b is switched to the open state and allows the refrigerant to pass therethrough.
The first opening / closing device 30a is maintained in a closed state and blocks the refrigerant.
The third opening / closing device 31a is maintained in the open state and allows the refrigerant to pass therethrough.
The fourth opening / closing device 33a is switched to the open state and allows the refrigerant to pass therethrough.
The fifth opening / closing device 34a is switched to the closed state and blocks the refrigerant.
 流量調整装置32b(もしくは流量調整装置32a)は、「除霜時冷媒量減少検出手段」である第3温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が飽和温度換算で0℃より大きくなる予め設定された圧力(例えばR410A冷媒で約0.8MPa程度)が一定になるように、開度が制御される。 The flow rate adjusting device 32b (or the flow rate adjusting device 32a) is configured such that the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b, which is the “defrosting refrigerant amount decrease detecting means”, is 0 ° C. in terms of saturation temperature. The opening degree is controlled such that a preset pressure (for example, about 0.8 MPa for the R410A refrigerant) that becomes larger is constant.
 第2開閉装置35は、第2温度センサ45で検出された室外空気温度が、第2の所定値以下(たとえば0℃以下)となる場合、もしくは第2圧力センサ42で検出された圧縮機10の吸入部の圧力が第1の所定値以下(例えばR410A冷媒で約0.3MPa以下)となる場合、のどちらか一つ、もしくは両方を満たした場合に、開状態に維持され、冷媒を通過させる。
 第2温度センサ45、第2圧力センサ42、第3温度センサ48bは、本発明の「除霜時冷媒量減少検出手段」に対応する。
When the outdoor air temperature detected by the second temperature sensor 45 is equal to or lower than a second predetermined value (for example, 0 ° C. or lower), the second opening / closing device 35 or the compressor 10 detected by the second pressure sensor 42 is used. When the pressure of the suction part is less than a first predetermined value (for example, about 0.3 MPa or less with R410A refrigerant), when one or both of them are satisfied, the open state is maintained and the refrigerant passes. Let
The second temperature sensor 45, the second pressure sensor 42, and the third temperature sensor 48b correspond to the “defrosting refrigerant amount decrease detecting means” of the present invention.
 除霜運転モード時の冷媒の流れについて詳しく説明する。
 圧縮機10が駆動すると低温・低圧の冷媒が圧縮され、高温・高圧のガス冷媒となって吐出される。
 圧縮機10から吐出された高温・高圧のガス冷媒の一部は、第1ガスバイパス配管5を流れ、第1開閉装置30bにて飽和温度換算で0℃より大きくなる程度に減圧され、中圧・高温のガス冷媒となり、熱源側熱交換器12bに流入する。熱源側熱交換器12bに流入した中圧・高温のガス冷媒は、熱源側熱交換器12bに付着した霜を融かしながら中圧の低い乾き度の二相冷媒、もしくは中圧の冷媒となり、第5開閉装置34bを通過する。第5開閉装置34bを通過した冷媒は、流量調整装置32b(もしくは流量調整装置32a)で減圧され、室内機2より室外機1に流入した中圧・低温の低い乾き度の二相冷媒、もしくは液冷媒と、第4開閉装置33aの上流側で合流する。
The refrigerant flow during the defrosting operation mode will be described in detail.
When the compressor 10 is driven, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
A part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows through the first gas bypass pipe 5 and is depressurized by the first switchgear 30b so as to become higher than 0 ° C. in terms of saturation temperature, and the medium pressure -It becomes a high-temperature gas refrigerant and flows into the heat source side heat exchanger 12b. The medium-pressure and high-temperature gas refrigerant that has flowed into the heat source side heat exchanger 12b becomes a two-phase refrigerant having a low intermediate pressure or a medium pressure refrigerant while melting frost adhering to the heat source side heat exchanger 12b. And passes through the fifth opening / closing device 34b. The refrigerant that has passed through the fifth opening / closing device 34b is depressurized by the flow rate adjusting device 32b (or the flow rate adjusting device 32a) and flows into the outdoor unit 1 from the indoor unit 2 into the outdoor unit 1 or a low-drying two-phase refrigerant having a low intermediate pressure or low temperature, or The liquid refrigerant merges on the upstream side of the fourth opening / closing device 33a.
 圧縮機10から吐出された高温・高圧のガス冷媒の大半は、冷媒流路切替装置11を介して、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒主管4を通って、室内機2に流入し、負荷側熱交換器21で室内空気に放熱することで、室内空気を暖房しながら、液冷媒となる。負荷側熱交換器21から流出した液冷媒は、負荷側絞り装置22で膨張されて、低温・中圧の二相冷媒もしくは液冷媒となり、冷媒主管4を通って再び室外機1へ流入する。 Most of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the indoor unit 2 through the refrigerant main pipe 4, and dissipates heat to the indoor air in the load-side heat exchanger 21, thereby heating the indoor air. It becomes a liquid refrigerant. The liquid refrigerant that has flowed out of the load-side heat exchanger 21 is expanded by the load-side expansion device 22, becomes a low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant, and flows into the outdoor unit 1 again through the refrigerant main pipe 4.
 室外機1へ流入した低温・中圧の二相冷媒もしくは液冷媒は、第4開閉装置33aの上流で、流量調整装置32b(もしくは流量調整装置32a)からの冷媒と合流し、熱源側熱交換器12aに流入する。熱源側熱交換器12aに流入した冷媒は、室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12aを流出したガス冷媒は、第3開閉装置31a、冷媒流路切替装置11及びアキュムレータ13を介して、圧縮機10に再度吸入される。 The low-temperature / medium-pressure two-phase refrigerant or liquid refrigerant flowing into the outdoor unit 1 merges with the refrigerant from the flow rate adjusting device 32b (or the flow rate adjusting device 32a) upstream of the fourth opening / closing device 33a to perform heat source side heat exchange. Flow into the vessel 12a. The refrigerant flowing into the heat source side heat exchanger 12a absorbs heat from the outdoor air and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant that has flowed out of the heat source side heat exchanger 12a is again sucked into the compressor 10 via the third opening / closing device 31a, the refrigerant flow switching device 11, and the accumulator 13.
 制御装置50は、第3温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が飽和温度換算で0℃より大きくなる予め設定された圧力(例えばR410A冷媒で約0.8MPa程度)が一定になるように、流量調整装置32b(もしくは流量調整装置32a)の開度を制御する。つまり、制御装置50は、第3温度センサ48bの検出結果より算出される二相冷媒の飽和圧力が、飽和温度換算で0℃よりも大きくなるように、流量調整装置32b(もしくは流量調整装置32a)の開度を制御する。 The control device 50 has a preset pressure at which the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of the saturation temperature (for example, about 0.8 MPa for the R410A refrigerant). The opening degree of the flow rate adjusting device 32b (or the flow rate adjusting device 32a) is controlled so as to be constant. That is, the controller 50 adjusts the flow rate adjusting device 32b (or the flow rate adjusting device 32a) so that the saturation pressure of the two-phase refrigerant calculated from the detection result of the third temperature sensor 48b is greater than 0 ° C. in terms of saturation temperature. ) Is controlled.
 熱源側熱交換器12bの除霜完了は、例えば、所定時間経過後した場合、もしくは第3温度センサ48bの温度がある所定値以上(例えば5℃)となった場合に、霜が融けたと判断すればよい。なお、所定時間は、熱源側熱交換器12bの全体に隙間なく着霜したと想定し、高温・高圧の冷媒の一部を流入させた場合、霜が全て融けるまでの所要時間以上で設定するとよい。 Completion of defrosting of the heat source side heat exchanger 12b is determined, for example, that the frost has melted when a predetermined time elapses or when the temperature of the third temperature sensor 48b becomes a predetermined value or higher (for example, 5 ° C.). do it. It is assumed that the predetermined time is set to be equal to or longer than the time required until all of the frost is melted, assuming that the entire heat source side heat exchanger 12b has been frosted without any gap and injecting a part of the high-temperature / high-pressure refrigerant. Good.
 その他の除霜運転モードの動作は、実施の形態1に係る空気調和装置100と同様である。つまり、制御装置50によって第2開閉装置35が開状態に維持された場合も、アキュムレータ13に、圧縮機10の吐出側から分岐された高温・高圧のガス冷媒を流入させ、アキュムレータ13に滞留している冷媒を、圧縮機10の吸入部に供給する。こうすることで、空気調和装置200によれば、実施の形態1に係る空気調和装置100と同様の効果が得られ、室内の暖房能力と、除霜能力の低減を抑制できる。 Other operations in the defrosting operation mode are the same as those of the air conditioner 100 according to the first embodiment. That is, even when the second opening / closing device 35 is maintained in the open state by the control device 50, the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is caused to flow into the accumulator 13 and stay in the accumulator 13. The refrigerant is supplied to the suction portion of the compressor 10. By carrying out like this, according to the air conditioning apparatus 200, the effect similar to the air conditioning apparatus 100 which concerns on Embodiment 1 is acquired, and the reduction of a room heating capability and a defrosting capability can be suppressed.
 第2開閉装置35を操作する際の制御装置50の動作も、実施の形態1に係る空気調和装置100と同様であるため省略する。 The operation of the control device 50 when operating the second opening / closing device 35 is also the same as that of the air conditioner 100 according to the first embodiment, and is therefore omitted.
 また、たとえば、熱源側熱交換器12bが2列の熱交換器で構成され、蒸発器として使用される場合において、熱源側熱交換器12bの室外空気の流入口側である1列目に位置するフィンによって、室外空気の多くは、熱源側熱交換器12bに流入する側である1列目に位置するフィンで除湿される。すなわち、熱源側熱交換器12bに流入する側の1列目に位置するフィンの着霜量が多く、2列目に位置するフィンの着霜量は少なくなる。 Further, for example, when the heat source side heat exchanger 12b is configured by two rows of heat exchangers and used as an evaporator, the heat source side heat exchanger 12b is positioned in the first row on the outdoor air inlet side of the heat source side heat exchanger 12b. Most of the outdoor air is dehumidified by the fins located in the first row, which is the side flowing into the heat source side heat exchanger 12b. That is, the frost formation amount of the fins located in the first row on the side flowing into the heat source side heat exchanger 12b is large, and the frost formation amount of the fins located in the second row is small.
 そのため、実施の形態1に係る空気調和装置100とは違い、凝縮器となる熱源側熱交換器12bに、圧縮機10から吐出された高温・高圧のガス冷媒の一部を、熱源側熱交換器12bが蒸発器として使用される場合の流路と同じ方向に流すことで、より熱エネルギーが大きい二相冷媒を、着霜量が多い1列目に流入させることができる。よって、空気調和装置200では、実施の形態1に係る空気調和装置100よりも効率よく除霜を実施することが可能となり、除霜時間の短縮が図れ、室内の暖房能力の低減をさらに抑制できる。 Therefore, unlike the air conditioner 100 according to Embodiment 1, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is exchanged with the heat source side heat exchanger 12b serving as a condenser. By flowing in the same direction as the flow path when the vessel 12b is used as an evaporator, a two-phase refrigerant having a larger thermal energy can be caused to flow into the first row having a larger amount of frost formation. Therefore, in the air conditioning apparatus 200, it becomes possible to perform defrosting more efficiently than the air conditioning apparatus 100 according to Embodiment 1, the defrosting time can be shortened, and the reduction in indoor heating capacity can be further suppressed. .
 熱源側熱交換器12bの除霜が完了した後、熱源側熱交換器12aの除霜を実施する場合は、前述の熱源側熱交換器12bの除霜動作の説明の中のアルファベットのaとbとを入れ替えた動作となる。すなわち、第1開閉装置30a、第1開閉装置30b、第3開閉装置31a、第3開閉装置31b、第4開閉装置33a、第4開閉装置33b、第5開閉装置34a、第5開閉装置34bの開閉状態が逆転し、熱源側熱交換器12aと熱源側熱交換器12bとの冷媒の流れが入れ替わる。 When defrosting of the heat source side heat exchanger 12b is performed after the defrosting of the heat source side heat exchanger 12b is completed, the alphabet a in the description of the defrosting operation of the heat source side heat exchanger 12b is used. It becomes the operation | movement which replaced b. That is, the first switchgear 30a, the first switchgear 30b, the third switchgear 31a, the third switchgear 31b, the fourth switchgear 33a, the fourth switchgear 33b, the fifth switchgear 34a, and the fifth switchgear 34b. The open / close state is reversed, and the refrigerant flows in the heat source side heat exchanger 12a and the heat source side heat exchanger 12b are switched.
 このように熱源側熱交換器12の除霜運転モードにおいて、凝縮器となる熱源側熱交換器12内の冷媒の飽和温度を、霜の温度よりも高い、0℃より大きくなる中圧(例えばR410A冷媒で約0.8MPa以上)とする。このため、空気調和装置200によれば、冷媒の二相域(潜熱)を利用することができるため、少ない冷媒循環量で、効率よく除霜を行うことができ、室内の暖房能力の低下を抑制でき、室内を快適に保つことが可能となる。 Thus, in the defrosting operation mode of the heat source side heat exchanger 12, the saturation temperature of the refrigerant in the heat source side heat exchanger 12 serving as a condenser is set to a medium pressure (for example, higher than 0 ° C., which is higher than the frost temperature). R410A refrigerant is about 0.8 MPa or more). For this reason, according to the air conditioning apparatus 200, since the two-phase region (latent heat) of the refrigerant can be used, defrosting can be efficiently performed with a small amount of refrigerant circulation, and the indoor heating capacity can be reduced. It can be suppressed and the room can be kept comfortable.
 そして、このような除霜運転モードを実施することで、空気調和装置200は、暖房運転を継続しながら、熱源側熱交換器12a、熱源側熱交換器12bの除霜をすることができる。また、室外機1の筐体の下側に位置する熱源側熱交換器12bの除霜を実施し、その後、上側に位置する熱源側熱交換器12aの除霜を実施する。このため、熱源側熱交換器12aの除霜によって溶けた水が、まだ除霜されていない下側の熱源側熱交換器12bにて再凍結を起こすことを防止することができ、効率よく除霜を行うことができる。 And by implementing such a defrosting operation mode, the air conditioning apparatus 200 can defrost the heat source side heat exchanger 12a and the heat source side heat exchanger 12b while continuing the heating operation. Moreover, the defrost of the heat source side heat exchanger 12b located in the lower side of the housing | casing of the outdoor unit 1 is implemented, and the defrost of the heat source side heat exchanger 12a located in the upper side is implemented after that. For this reason, it is possible to prevent the water melted by the defrosting of the heat source side heat exchanger 12a from being re-frozen in the lower heat source side heat exchanger 12b that has not yet been defrosted. Frost can be done.
 なお、上記の説明では、実施の形態2に係る空気調和装置200において、アキュムレータ13の流入部の配管に圧縮機10の吐出側から分岐された高温・高圧のガス冷媒を流入させる場合の構成としているが、これに限定するものではない。例えば、実施の形態1に係る空気調和装置100における図10と同様に、圧縮機10の吐出側から分岐された高温・高圧のガス冷媒を、第2ガスバイパス配管7及び第2開閉装置35を介して、アキュムレータ13内に直接流入する回路構成としてもよい。このような構成とすれば、実施の形態1に係る空気調和装置100と同様の効果を得ることができ、効率よく除霜を行うことができ、室内の暖房能力の低下を抑制でき、室内を快適に保つことが可能となる。 In the above description, in the air-conditioning apparatus 200 according to Embodiment 2, the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is caused to flow into the piping of the inflow portion of the accumulator 13. However, it is not limited to this. For example, as in FIG. 10 in the air-conditioning apparatus 100 according to Embodiment 1, the high-temperature / high-pressure gas refrigerant branched from the discharge side of the compressor 10 is supplied to the second gas bypass pipe 7 and the second opening / closing device 35. Therefore, a circuit configuration that flows directly into the accumulator 13 may be adopted. With such a configuration, it is possible to obtain the same effects as those of the air conditioner 100 according to Embodiment 1, efficiently perform defrosting, suppress a decrease in indoor heating capacity, It becomes possible to keep it comfortable.
[冷媒]
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200に適用する熱源側冷媒としては、R410A、R407C、R22等の不燃性冷媒、HFO1234yf、HFO1234ze(E)、R32、HC、R32とHFO1234yfとを含む混合冷媒、前述の冷媒を少なくとも一成分に含む混合冷媒を用いた冷媒等の微燃性を示す冷媒、プロパン(R290)等の強燃性冷媒、CO(R744)等の高圧側が超臨界で動作する冷媒を、熱源側冷媒として用いることができる。
[Refrigerant]
As the heat source side refrigerant applied to the air conditioner 100 according to the first embodiment and the air conditioner 200 according to the second embodiment, non-flammable refrigerants such as R410A, R407C, and R22, HFO1234yf, HFO1234ze (E), R32, HC, a refrigerant containing R32 and HFO1234yf, a refrigerant exhibiting slight flammability such as a refrigerant using a refrigerant mixture containing at least one of the aforementioned refrigerants, a highly flammable refrigerant such as propane (R290), CO 2 (R744) A refrigerant that operates supercritically on the high-pressure side such as) can be used as the heat-source-side refrigerant.
[第1の開閉装置]
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200の第1開閉装置30a、第1開閉装置30bとしては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁を第1開閉装置30a、第1開閉装置30bとして使用してもよい。
[First switchgear]
As the first opening / closing device 30a and the first opening / closing device 30b of the air-conditioning apparatus 100 according to Embodiment 1 and the air-conditioning apparatus 200 according to Embodiment 2, an example in which an electromagnetic valve is used has been described. In addition, you may use the valve which can change an opening degree like the electronic expansion valve as the 1st opening / closing device 30a and the 1st opening / closing device 30b.
[第2の開閉装置]
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200の第2開閉装置35としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁を第2開閉装置35として使用してもよい。また、実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200では、第2開閉装置35を1つ使用する例を説明しているが、電磁弁を複数並列に並べて使用してもよく、この場合でも実施の形態1及び実施の形態2と同様の効果が得られる。
[Second switchgear]
Although the example which uses a solenoid valve was demonstrated as the 2nd opening / closing device 35 of the air conditioning apparatus 100 which concerns on Embodiment 1, and the air conditioning apparatus 200 which concerns on Embodiment 2, it is electronic expansion other than a solenoid valve. A valve whose opening degree can be varied, such as a valve, may be used as the second opening / closing device 35. In the air conditioner 100 according to the first embodiment and the air conditioner 200 according to the second embodiment, an example in which one second opening / closing device 35 is used has been described. However, a plurality of electromagnetic valves are arranged in parallel. Even in this case, the same effects as those of the first and second embodiments can be obtained.
[第3の開閉装置]
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200の第3開閉装置31a、第3開閉装置31bとしては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁を第3開閉装置31a、第3開閉装置31bとして使用してもよい。
[Third switchgear]
As the third opening / closing device 31a and the third opening / closing device 31b of the air-conditioning apparatus 100 according to Embodiment 1 and the air-conditioning apparatus 200 according to Embodiment 2, an example in which an electromagnetic valve is used has been described. In addition, a valve whose opening degree can be varied, such as an electronic expansion valve, may be used as the third opening / closing device 31a and the third opening / closing device 31b.
[流量調整装置]
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200の流量調整装置32a、流量調整装置32bを、開度(開口面積)を変化させられる絞り装置としたが、流路の開口面積を変更可能な装置であればよい。例えば、絞り装置としては、ステッピングモータで駆動させる電子式膨張弁でもよいし、小型の電磁弁を複数並列に並べてそれらを切り替えて開口面積を変えてもよい。
[Flow control device]
Although the air conditioner 100 according to the first embodiment and the flow rate adjusting device 32a and the flow rate adjusting device 32b of the air conditioner 200 according to the second embodiment are the throttle devices that can change the opening degree (opening area), Any device that can change the opening area of the road may be used. For example, the expansion device may be an electronic expansion valve that is driven by a stepping motor, or a plurality of small electromagnetic valves arranged in parallel and switched to change the opening area.
 また、実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200の流量調整装置32a、流量調整装置32bは、両方が流路の開口面積を変更可能な装置としているが、例えば流量調整装置32aを流路の開口面積を変更可能な装置とし、流量調整装置32bを小型の電磁弁を複数並列に並べた構成としてもよく、この場合でも実施の形態1及び実施の形態2と同様の効果が得られる。 Moreover, although both the air conditioner 100a which concerns on Embodiment 1, and the flow volume adjustment apparatus 32a of the air conditioning apparatus 200 which concerns on Embodiment 2, and the flow volume adjustment apparatus 32b are set as the apparatus which can change the opening area of a flow path. For example, the flow rate adjusting device 32a may be a device capable of changing the opening area of the flow path, and the flow rate adjusting device 32b may be configured by arranging a plurality of small solenoid valves in parallel. The same effect as 2 is obtained.
[第4の開閉装置]
 実施の形態2に係る空気調和装置200の第4開閉装置33としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁を第4開閉装置33として使用してもよい。
[Fourth switchgear]
Although the example which uses a solenoid valve was demonstrated as the 4th opening / closing apparatus 33 of the air conditioning apparatus 200 which concerns on Embodiment 2, the valve which can vary an opening degree like an electronic expansion valve other than a solenoid valve. The fourth opening / closing device 33 may be used.
[第5の開閉装置]
 実施の形態2に係る空気調和装置200の第5開閉装置34としては、電磁弁を使用する例を説明したが、電磁弁の他に、電子式膨張弁のように開度を可変できる弁を第5開閉装置として使用してもよい。
[Fifth switchgear]
Although the example which uses a solenoid valve was demonstrated as the 5th opening / closing apparatus 34 of the air conditioning apparatus 200 which concerns on Embodiment 2, in addition to a solenoid valve, the valve which can change an opening degree like an electronic expansion valve is used. You may use as a 5th switchgear.
 なお、各開閉装置として、電子式膨張弁等の開度(開口面積)を変化させられるものを用いた場合、各開閉装置を開にするとは、各開閉装置を全開または全開に近い開度にすることを指し、各開閉装置を閉にするとは、各開閉装置を全閉または全閉に近い開度にすることを指している。また、流量調整装置についても同様で、開にするとは、流量調整装置を全開または全開に近い開度にすることを指し、流量調整装置を閉にするとは、流量調整装置を全閉または全閉に近い開度、すなわち冷媒が殆ど流れない近い状態にすることを指している。 When each opening / closing device uses an electronic expansion valve or the like that can change the opening degree (opening area), opening each opening / closing device means that each opening / closing device is fully open or close to full opening. To close each opening / closing device means to make each opening / closing device fully closed or close to the fully closed position. The same applies to the flow rate adjustment device. To open means to open the flow rate adjustment device to the full open or close to full open, and to close the flow rate adjustment device, to fully close or fully close the flow rate adjustment device. The opening degree is close to 0, that is, the state is such that the refrigerant hardly flows.
[熱源側熱交換器]
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200の熱源側熱交換器12a、熱源側熱交換器12bは、段方向(それぞれのフィンが同一方向を向くような上下方向)に2段で位置する例を説明したが、本発明はこれに限定されない。例えば、上述したように、熱源側熱交換器12としては、段方向(それぞれのフィンが同一方向を向くような上下方向)に3段以上など、複数台位置する構成としてもよい。また、複数の熱源側熱交換器12の配置は、上下に限らず、左右方向、前後方向に配置してもよい。
[Heat source side heat exchanger]
The heat source side heat exchanger 12a and the heat source side heat exchanger 12b of the air conditioner 100 according to the first embodiment and the air conditioner 200 according to the second embodiment are arranged in the step direction (the fins face the same direction). Although the example which is located in two steps in the vertical direction) has been described, the present invention is not limited to this. For example, as described above, the heat source side heat exchanger 12 may be configured to have a plurality of units such as three or more in the step direction (vertical direction in which each fin faces the same direction). Moreover, the arrangement of the plurality of heat source side heat exchangers 12 is not limited to the upper and lower sides, and may be arranged in the left and right direction and the front and rear direction.
 実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200は、冷暖運転を切り替えることが可能な空気調和装置を例に説明したが、これに限らず、冷暖同時運転が可能な回路構成の空気調和装置についても適用できる。また、冷媒流路切替装置11を省略し、全暖房運転モードと除霜運転モードのみを実施する空気調和装置についても適用できる。なお、暖房回路とは、暖房運転モード時に形成される空気調和装置100、空気調和装置200の冷媒回路構成を指す。 The air-conditioning apparatus 100 according to Embodiment 1 and the air-conditioning apparatus 200 according to Embodiment 2 have been described using the air-conditioning apparatus capable of switching between cooling and heating operations as an example. The present invention can also be applied to an air conditioner having a possible circuit configuration. Moreover, it is applicable also to the air conditioning apparatus which abbreviate | omits the refrigerant | coolant flow path switching apparatus 11, and implements only a heating only operation mode and a defrost operation mode. In addition, a heating circuit refers to the refrigerant circuit structure of the air conditioning apparatus 100 and the air conditioning apparatus 200 formed at the time of heating operation mode.
 1 室外機、2 室内機、3 冷媒配管、4 冷媒主管、5 第1ガスバイパス配管、6 冷媒バイパス配管、7 第2ガスバイパス配管、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、12a 熱源側熱交換器、12b 熱源側熱交換器、13 アキュムレータ、21 負荷側熱交換器、22 負荷側絞り装置、30 第1開閉装置、30a 第1開閉装置、30b 第1開閉装置、31 第3開閉装置、31a 第3開閉装置、31b 第3開閉装置、32 流量調整装置、32a 流量調整装置、32b 流量調整装置、33 第4開閉装置、33a 第4開閉装置、33b 第4開閉装置、34 第5開閉装置、34a 第5開閉装置、34b 第5開閉装置、35 第2開閉装置、41 第1圧力センサ、42 第2圧力センサ、43 第1温度センサ、44 第6温度センサ、45 第2温度センサ、46 第4温度センサ、47 第5温度センサ、48a 第3温度センサ、48b 第3温度センサ、50 制御装置、51 フィン、52 伝熱管、100 空気調和装置、200 空気調和装置。 1 outdoor unit, 2 indoor unit, 3 refrigerant pipe, 4 refrigerant main pipe, 5 first gas bypass pipe, 6 refrigerant bypass pipe, 7 second gas bypass pipe, 10 compressor, 11 refrigerant flow switching device, 12 heat source side heat Exchanger, 12a heat source side heat exchanger, 12b heat source side heat exchanger, 13 accumulator, 21 load side heat exchanger, 22 load side expansion device, 30 first switchgear, 30a first switchgear, 30b first switchgear , 31 3rd switchgear, 31a 3rd switchgear, 31b 3rd switchgear, 32 flow rate regulator, 32a flow rate regulator, 32b flow rate regulator, 33 4th switchgear, 33a 4th switchgear, 33b 4th switchgear Device, 34 5th switchgear, 34a 5th switchgear, 34b 5th switchgear, 35 2nd switchgear, 41 1st pressure sensor, 4 2nd pressure sensor, 43 1st temperature sensor, 44 6th temperature sensor, 45 2nd temperature sensor, 46 4th temperature sensor, 47 5th temperature sensor, 48a 3rd temperature sensor, 48b 3rd temperature sensor, 50 control device , 51 fins, 52 heat transfer tubes, 100 air conditioners, 200 air conditioners.

Claims (13)

  1.  暖房運転及び除霜運転を同時に実施可能な空気調和装置であって、
     圧縮機、負荷側熱交換器、負荷側絞り装置、互いに並列に接続された複数の熱源側熱交換器、及び、アキュムレータ、を冷媒配管で接続して少なくとも暖房回路を形成する主回路と、
     前記圧縮機の吐出側から分岐され、前記複数の熱源側熱交換器のうち除霜対象の前記熱源側熱交換器に冷媒を流入させる第1ガスバイパス配管と、
     前記圧縮機の吐出側から分岐され、前記アキュムレータに冷媒を流入させる第2ガスバイパス配管と、
     前記第1ガスバイパス配管に設けられ、前記第1ガスバイパス配管を流れる冷媒の通過又は遮断を行う複数の第1開閉装置と、
     前記第2ガスバイパス配管に設けられ、前記第2ガスバイパス配管を流れる冷媒の通過又は遮断を行う少なくとも1つの第2開閉装置と、を備えた
     ことを特徴とする空気調和装置。
    An air conditioner capable of simultaneously performing heating operation and defrosting operation,
    A main circuit that forms at least a heating circuit by connecting a compressor, a load-side heat exchanger, a load-side expansion device, a plurality of heat-source-side heat exchangers connected in parallel to each other, and an accumulator by a refrigerant pipe;
    A first gas bypass pipe branched from the discharge side of the compressor and allowing a refrigerant to flow into the heat source side heat exchanger to be defrosted among the plurality of heat source side heat exchangers;
    A second gas bypass pipe branched from the discharge side of the compressor and allowing a refrigerant to flow into the accumulator;
    A plurality of first opening and closing devices that are provided in the first gas bypass pipe and perform passage or blocking of the refrigerant flowing through the first gas bypass pipe;
    An air conditioner comprising: at least one second opening / closing device provided in the second gas bypass pipe and configured to pass or block the refrigerant flowing through the second gas bypass pipe.
  2.  暖房運転及び除霜運転を同時に実施する際、
     前記第1開閉装置により、前記除霜対象の熱源側熱交換器に前記圧縮機が吐出した冷媒の一部を流入させて凝縮器として機能させ、
     除霜対象以外の前記熱源側熱交換器を蒸発器として機能させ、
     前記主回路を循環する冷媒の量に応じて、前記第2開閉装置により、前記アキュムレータに前記圧縮機が吐出した冷媒の一部を流入させる
     ことを特徴とする請求項1に記載の空気調和装置。
    When carrying out heating operation and defrosting operation at the same time,
    The first opening / closing device causes a part of the refrigerant discharged from the compressor to flow into the heat source heat exchanger to be defrosted to function as a condenser,
    The heat source side heat exchanger other than the defrost target functions as an evaporator,
    2. The air conditioner according to claim 1, wherein a part of the refrigerant discharged from the compressor is caused to flow into the accumulator by the second opening / closing device in accordance with an amount of refrigerant circulating in the main circuit. .
  3.  前記主回路を循環する冷媒の量を検知する除霜時冷媒量減少検出手段を備え、
     前記除霜時冷媒量減少検出手段の検出結果に基づいて、前記第2開閉装置の開閉を制御する
     ことを特徴とする請求項1又は2に記載の空気調和装置。
    A defrosting refrigerant amount decrease detecting means for detecting the amount of refrigerant circulating in the main circuit;
    The air conditioning apparatus according to claim 1 or 2, wherein opening and closing of the second opening and closing device is controlled based on a detection result of the defrosting refrigerant amount decrease detecting means.
  4.  前記圧縮機の吐出側に設けられた冷媒流路切替装置と、
     前記複数の熱源側熱交換器のそれぞれと前記冷媒流路切替装置との間に設けられ、前記複数の熱源側熱交換器から前記アキュムレータへ流れる冷媒の通過又は遮断を行う複数の第3開閉装置と、
     開度が変化可能であって、前記複数の熱源側熱交換器と前記負荷側絞り装置との間に設けられた少なくとも1つの流量調整装置と、を備え、
     前記除霜対象の熱源側熱交換器に対応する前記第3開閉装置を閉にし、
     前記流量調整装置によって、前記除霜対象の熱源側熱交換器から流出する冷媒の圧力を飽和温度換算で0℃よりも大きくなるように調整する
     ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置。
    A refrigerant flow switching device provided on the discharge side of the compressor;
    A plurality of third opening / closing devices provided between each of the plurality of heat source side heat exchangers and the refrigerant flow switching device, for passing or blocking the refrigerant flowing from the plurality of heat source side heat exchangers to the accumulator. When,
    The opening degree is variable, and includes at least one flow rate adjustment device provided between the plurality of heat source side heat exchangers and the load side expansion device,
    Close the third switchgear corresponding to the heat source side heat exchanger to be defrosted,
    The pressure of the refrigerant flowing out of the heat source side heat exchanger to be defrosted is adjusted by the flow rate adjusting device so as to be greater than 0 ° C in terms of saturation temperature. The air conditioning apparatus according to one item.
  5.  前記圧縮機の吐出側に設けられた冷媒流路切替装置と、
     前記複数の熱源側熱交換器のそれぞれと前記冷媒流路切替装置との間に設けられ、前記複数の熱源側熱交換器から前記アキュムレータへ流れる冷媒の通過又は遮断を行う複数の第3開閉装置と、
     前記複数の熱源側熱交換器のそれぞれと前記負荷側絞り装置との間に設けられ、前記複数の熱源側熱交換器から前記負荷側絞り装置へ流れる冷媒の通過又は遮断を行う複数の第4開閉装置と、
     前記複数の熱源側熱交換器と前記複数の第3開閉装置との間のそれぞれの流路と、前記複数の第4開閉装置と前記負荷側絞り装置との間の流路と、を接続し、前記除霜対象の熱源側熱交換器から流出する冷媒を前記複数の第4開閉装置と前記負荷側絞り装置との間の流路に流入させる冷媒バイパス配管と、
     前記複数の熱源側熱交換器に対応して前記冷媒バイパス配管に設けられ、冷媒の通過又は遮断を行う複数の第5開閉装置と、
     開度が変化可能であって、前記冷媒バイパス配管に設けられた少なくとも1つの流量調整装置と、を備え、
     前記除霜対象の熱源側熱交換器と対応する前記第3開閉装置及び前記第4開閉装置を閉にし、前記除霜対象の熱源側熱交換器と対応する前記第1開閉装置及び前記第5開閉装置を開にし、
     前記流量調整装置によって、前記除霜対象の熱源側熱交換器から流出する冷媒の圧力を飽和温度換算で0℃よりも大きくなるように調整する
     ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置。
    A refrigerant flow switching device provided on the discharge side of the compressor;
    A plurality of third opening / closing devices provided between each of the plurality of heat source side heat exchangers and the refrigerant flow switching device, for passing or blocking the refrigerant flowing from the plurality of heat source side heat exchangers to the accumulator. When,
    A plurality of fourths which are provided between each of the plurality of heat source side heat exchangers and the load side expansion device, and pass or block the refrigerant flowing from the plurality of heat source side heat exchangers to the load side expansion device. A switchgear;
    Connecting each flow path between the plurality of heat source side heat exchangers and the plurality of third switchgears and a flow path between the plurality of fourth switchgears and the load side expansion device. A refrigerant bypass pipe that causes the refrigerant flowing out from the heat source side heat exchanger to be defrosted to flow into a flow path between the plurality of fourth opening / closing devices and the load side expansion device,
    A plurality of fifth opening and closing devices that are provided in the refrigerant bypass pipe corresponding to the plurality of heat source side heat exchangers, and that pass or block the refrigerant;
    The opening degree is variable, and includes at least one flow rate adjusting device provided in the refrigerant bypass pipe,
    The third switching device and the fourth switching device corresponding to the heat source side heat exchanger to be defrosted are closed, the first switching device and the fifth corresponding to the heat source side heat exchanger to be defrosted. Open the switchgear,
    The pressure of the refrigerant flowing out of the heat source side heat exchanger to be defrosted is adjusted by the flow rate adjusting device so as to be greater than 0 ° C in terms of saturation temperature. The air conditioning apparatus according to one item.
  6.  前記除霜時冷媒量減少検出手段として、前記圧縮機の吸入側の冷媒圧力を検知する圧力センサを用い、
     前記圧力センサの検出結果が予め設定されている第1の所定値以下となったとき、前記第2開閉装置を開とする
     ことを特徴とする請求項3、請求項3に従属する請求項4又は5に記載の空気調和装置。
    As the defrosting refrigerant amount decrease detection means, using a pressure sensor for detecting the refrigerant pressure on the suction side of the compressor,
    The subordinate to the third and third aspects, wherein the second opening / closing device is opened when a detection result of the pressure sensor becomes equal to or lower than a first predetermined value set in advance. Or the air conditioning apparatus of 5.
  7.  前記除霜時冷媒量減少検出手段として、室外空気温度を検知する温度センサを用い、
     前記温度センサの検出結果が予め設定されている第2の所定値以下となったとき、前記第2開閉装置を開とする
     ことを特徴とする請求項3、請求項3に従属する請求項4又は5に記載の空気調和装置。
    As the defrosting refrigerant amount decrease detection means, using a temperature sensor that detects outdoor air temperature,
    The subordinate to the third and third aspects, wherein the second opening / closing device is opened when a detection result of the temperature sensor becomes equal to or lower than a second predetermined value set in advance. Or the air conditioning apparatus of 5.
  8.  前記除霜時冷媒量減少検出手段として、前記圧縮機の吸入側の冷媒圧力を検知する圧力センサと、室外空気温度を検知する温度センサと、を用い、
     前記圧力センサの検出結果が予め設定されている第1の所定値以下であり、前記温度センサの検出結果が予め設定されている第2の所定値以下となったとき、前記第2開閉装置を開とする
     ことを特徴とする請求項3、請求項3に従属する請求項4又は5に記載の空気調和装置。
    As the defrosting refrigerant amount decrease detecting means, a pressure sensor for detecting the refrigerant pressure on the suction side of the compressor, and a temperature sensor for detecting the outdoor air temperature,
    When the detection result of the pressure sensor is equal to or less than a first predetermined value set in advance and the detection result of the temperature sensor is equal to or less than a second predetermined value set in advance, the second opening / closing device is The air conditioner according to claim 3 or claim 4 or claim 5 dependent on claim 3, wherein the air conditioner is open.
  9.  前記第1の所定値は使用される冷媒の飽和温度が-27℃以下となる飽和圧力に基づいて設定されており、
     前記圧力センサの検出結果が前記第1の所定値以下となったときに、前記第2開閉装置を開とし、
     前記除霜運転が完了した後に、前記第2開閉装置を閉とする
     ことを特徴とする請求項6に記載の空気調和装置。
    The first predetermined value is set based on a saturation pressure at which the saturation temperature of the refrigerant used is −27 ° C. or less,
    When the detection result of the pressure sensor becomes equal to or less than the first predetermined value, the second opening / closing device is opened,
    The air conditioner according to claim 6, wherein the second opening / closing device is closed after the defrosting operation is completed.
  10.  前記第2の所定値は、0℃以下に設定されており、
     前記温度センサの検出結果が前記第2の所定値以下となったときに、前記第2開閉装置を開とし、
     前記除霜運転が完了した後に、前記第2開閉装置を閉とする
     ことを特徴とする請求項7に記載の空気調和装置。
    The second predetermined value is set to 0 ° C. or less,
    When the detection result of the temperature sensor is equal to or less than the second predetermined value, the second opening / closing device is opened,
    The air conditioner according to claim 7, wherein the second opening and closing device is closed after the defrosting operation is completed.
  11.  前記第1の所定値は使用される冷媒の飽和温度が-27℃以下となる飽和圧力に基づいて設定されており、
     前記第2の所定値は0℃以下に設定されており、
     前記圧力センサの検出結果が前記第1の所定値以下となり、かつ、前記温度センサの検出結果が前記第2の所定値以下となったときに、前記第2開閉装置を開とし、
     前記圧力センサの検出結果が前記第1の所定値より大きくなり、かつ、前記温度センサの検出結果が前記第2の所定値より大きくなったときに、前記第2開閉装置を閉とする
     ことを特徴とする請求項8に記載の空気調和装置。
    The first predetermined value is set based on a saturation pressure at which the saturation temperature of the refrigerant used is −27 ° C. or less,
    The second predetermined value is set to 0 ° C. or lower,
    When the detection result of the pressure sensor is equal to or lower than the first predetermined value and the detection result of the temperature sensor is equal to or lower than the second predetermined value, the second opening / closing device is opened;
    When the detection result of the pressure sensor becomes larger than the first predetermined value and the detection result of the temperature sensor becomes larger than the second predetermined value, the second opening / closing device is closed. The air conditioning apparatus according to claim 8, wherein
  12.  前記第2開閉装置は、
     前記第2ガスバイパス配管を流れる冷媒の流量を、前記圧縮機が吐出した冷媒の流量で除した値が、0.65未満となるもので選定される
     ことを特徴とする請求項1~11のいずれか一項に記載の空気調和装置。
    The second opening / closing device includes:
    12. The method according to claim 1, wherein a value obtained by dividing the flow rate of the refrigerant flowing through the second gas bypass pipe by the flow rate of the refrigerant discharged from the compressor is less than 0.65. The air conditioning apparatus according to any one of claims.
  13.  前記複数の熱源側熱交換器は、上下方向に、互いに隣り合って配置され、
     暖房運転及び除霜運転を同時に実施する際、
     下側に位置する前記熱源側熱交換器から除霜運転を実行し、
     その後、上側に位置する前記熱源側熱交換器の除霜運転を行う
     ことを特徴とする請求項1~12のいずれか一項に記載の空気調和装置。
    The plurality of heat source side heat exchangers are arranged adjacent to each other in the vertical direction,
    When carrying out heating operation and defrosting operation at the same time,
    The defrosting operation is executed from the heat source side heat exchanger located on the lower side,
    The air conditioning apparatus according to any one of claims 1 to 12, wherein after that, the defrosting operation of the heat source side heat exchanger located on the upper side is performed.
PCT/JP2013/078779 2013-10-24 2013-10-24 Air conditioner WO2015059792A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13895977.0A EP3062031B1 (en) 2013-10-24 2013-10-24 Air conditioner
PCT/JP2013/078779 WO2015059792A1 (en) 2013-10-24 2013-10-24 Air conditioner
JP2015543648A JP5992112B2 (en) 2013-10-24 2013-10-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078779 WO2015059792A1 (en) 2013-10-24 2013-10-24 Air conditioner

Publications (1)

Publication Number Publication Date
WO2015059792A1 true WO2015059792A1 (en) 2015-04-30

Family

ID=52992429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078779 WO2015059792A1 (en) 2013-10-24 2013-10-24 Air conditioner

Country Status (3)

Country Link
EP (1) EP3062031B1 (en)
JP (1) JP5992112B2 (en)
WO (1) WO2015059792A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146522A1 (en) * 2014-11-25 2016-05-26 Lennox Industries Inc. Methods and systems for operating hvac systems in low load conditions
CN106871381A (en) * 2017-04-01 2017-06-20 青岛海尔空调器有限总公司 Air conditioner without shutting Defrost operation method
CN106940071A (en) * 2017-03-24 2017-07-11 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN107023946A (en) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 Air conditioner without shutting Defrost operation method
CN107023948A (en) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 Air conditioner and its do not shut down Defrost operation method
CN107084561A (en) * 2017-06-19 2017-08-22 Tcl空调器(中山)有限公司 Air conditioner and its defrosting control method
CN107560217A (en) * 2017-09-07 2018-01-09 珠海格力电器股份有限公司 Heat pump and its control method
CN110579014A (en) * 2019-09-03 2019-12-17 青岛海信日立空调系统有限公司 Heat exchange device and control method and control device thereof
CN110736203A (en) * 2019-09-25 2020-01-31 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
JPWO2019003291A1 (en) * 2017-06-27 2020-03-19 三菱電機株式会社 Air conditioner
WO2021090414A1 (en) * 2019-11-06 2021-05-14 三菱電機株式会社 Air conditioning device
WO2021169542A1 (en) * 2019-10-23 2021-09-02 珠海格力电器股份有限公司 Air conditioning system capable of performing continuous heating
CN115031439A (en) * 2022-06-16 2022-09-09 江苏省华扬太阳能有限公司 High-efficiency defrosting heat pump type large and medium air conditioning device
CN115077119A (en) * 2022-07-01 2022-09-20 江苏省华扬太阳能有限公司 Non-stop quick defrosting energy-saving air conditioner
CN115235141A (en) * 2022-07-14 2022-10-25 黄永年 Efficient defrosting heat pump type small air conditioner
JP7408942B2 (en) 2019-07-25 2024-01-09 株式会社富士通ゼネラル air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594964B (en) * 2016-11-07 2019-01-29 珠海格力电器股份有限公司 For controlling the control method and air-conditioning system of the operation of air-conditioning system
CN107023944B (en) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 Defrosting operation method for air conditioner without stopping
CN106918122B (en) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 Defrosting operation method for air conditioner without stopping
CN106871382B (en) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 Defrosting operation method for air conditioner without stopping
CN107940876A (en) * 2017-11-03 2018-04-20 广东美的暖通设备有限公司 The control method of air conditioner and air conditioner
JP7241880B2 (en) * 2019-07-25 2023-03-17 三菱電機株式会社 air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174868A (en) * 1987-12-28 1989-07-11 Daikin Ind Ltd Refrigerator
JPH0320571A (en) * 1989-06-15 1991-01-29 Mitsubishi Electric Corp Air conditioner
JPH06337178A (en) * 1993-05-27 1994-12-06 Mitsubishi Heavy Ind Ltd Defrosting method of air-conditioning machine
JP2010139097A (en) * 2008-12-09 2010-06-24 Mitsubishi Electric Corp Air conditioner
US20100170270A1 (en) 2009-01-06 2010-07-08 Lg Electronics Inc. Air conditioner and defrosting operation method of the same
WO2010082325A1 (en) 2009-01-15 2010-07-22 三菱電機株式会社 Air conditioner
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
JP2011163708A (en) * 2010-02-12 2011-08-25 Toshiba Carrier Corp Air conditioner
WO2012014345A1 (en) 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
WO2013111177A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174868A (en) * 1987-12-28 1989-07-11 Daikin Ind Ltd Refrigerator
JPH0320571A (en) * 1989-06-15 1991-01-29 Mitsubishi Electric Corp Air conditioner
JPH06337178A (en) * 1993-05-27 1994-12-06 Mitsubishi Heavy Ind Ltd Defrosting method of air-conditioning machine
JP2010139097A (en) * 2008-12-09 2010-06-24 Mitsubishi Electric Corp Air conditioner
US20100170270A1 (en) 2009-01-06 2010-07-08 Lg Electronics Inc. Air conditioner and defrosting operation method of the same
WO2010082325A1 (en) 2009-01-15 2010-07-22 三菱電機株式会社 Air conditioner
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
JP2011163708A (en) * 2010-02-12 2011-08-25 Toshiba Carrier Corp Air conditioner
WO2012014345A1 (en) 2010-07-29 2012-02-02 三菱電機株式会社 Heat pump
WO2013111177A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3062031A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190323750A1 (en) * 2014-11-25 2019-10-24 Lennox Industries Inc. Methods and systems for operating hvac systems in low load conditions
US11573038B2 (en) 2014-11-25 2023-02-07 Lennox Industries Inc. Methods and systems for operating HVAC systems in low load conditions
US11092368B2 (en) 2014-11-25 2021-08-17 Lennox Industries Inc. Methods and systems for operating HVAC systems in low load conditions
US20160146522A1 (en) * 2014-11-25 2016-05-26 Lennox Industries Inc. Methods and systems for operating hvac systems in low load conditions
US11493250B2 (en) 2014-11-25 2022-11-08 Lennox Industries Inc. Methods and systems for operating HVAC systems in low load conditions
CN106940071A (en) * 2017-03-24 2017-07-11 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN106871381B (en) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 Defrosting operation method for air conditioner without stopping
CN107023946B (en) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 Defrosting operation method for air conditioner without stopping
CN107023948B (en) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 Air conditioner and non-stop defrosting operation method thereof
CN107023948A (en) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 Air conditioner and its do not shut down Defrost operation method
CN107023946A (en) * 2017-04-01 2017-08-08 青岛海尔空调器有限总公司 Air conditioner without shutting Defrost operation method
CN106871381A (en) * 2017-04-01 2017-06-20 青岛海尔空调器有限总公司 Air conditioner without shutting Defrost operation method
CN107084561A (en) * 2017-06-19 2017-08-22 Tcl空调器(中山)有限公司 Air conditioner and its defrosting control method
JPWO2019003291A1 (en) * 2017-06-27 2020-03-19 三菱電機株式会社 Air conditioner
CN107560217A (en) * 2017-09-07 2018-01-09 珠海格力电器股份有限公司 Heat pump and its control method
JP7408942B2 (en) 2019-07-25 2024-01-09 株式会社富士通ゼネラル air conditioner
CN110579014A (en) * 2019-09-03 2019-12-17 青岛海信日立空调系统有限公司 Heat exchange device and control method and control device thereof
CN110736203A (en) * 2019-09-25 2020-01-31 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
WO2021169542A1 (en) * 2019-10-23 2021-09-02 珠海格力电器股份有限公司 Air conditioning system capable of performing continuous heating
WO2021090414A1 (en) * 2019-11-06 2021-05-14 三菱電機株式会社 Air conditioning device
CN114600341A (en) * 2019-11-06 2022-06-07 三菱电机株式会社 Air conditioner
JPWO2021090414A1 (en) * 2019-11-06 2021-05-14
CN115031439A (en) * 2022-06-16 2022-09-09 江苏省华扬太阳能有限公司 High-efficiency defrosting heat pump type large and medium air conditioning device
CN115031439B (en) * 2022-06-16 2023-07-14 江苏省华扬太阳能有限公司 Heat pump type large and medium air conditioner with efficient defrosting
CN115077119A (en) * 2022-07-01 2022-09-20 江苏省华扬太阳能有限公司 Non-stop quick defrosting energy-saving air conditioner
CN115077119B (en) * 2022-07-01 2024-04-09 江苏省华扬新能源有限公司 Energy-saving air conditioner capable of quickly defrosting without stopping
CN115235141A (en) * 2022-07-14 2022-10-25 黄永年 Efficient defrosting heat pump type small air conditioner
CN115235141B (en) * 2022-07-14 2023-10-31 黄永年 Efficient defrosting heat pump type small air conditioner

Also Published As

Publication number Publication date
EP3062031B1 (en) 2020-08-12
EP3062031A1 (en) 2016-08-31
EP3062031A4 (en) 2017-06-21
JPWO2015059792A1 (en) 2017-03-09
JP5992112B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5992112B2 (en) Air conditioner
JP6685409B2 (en) Air conditioner
JP5992089B2 (en) Air conditioner
JP6351848B2 (en) Refrigeration cycle equipment
JP5855312B2 (en) Air conditioner
JP5968534B2 (en) Air conditioner
JP6005255B2 (en) Air conditioner
JP5992088B2 (en) Air conditioner
JP5980349B2 (en) Air conditioner
JP5968519B2 (en) Air conditioner
JP6479181B2 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP6017048B2 (en) Air conditioner
WO2019064441A1 (en) Air conditioner
JP6017049B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543648

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013895977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013895977

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE