JPS6361584B2 - - Google Patents

Info

Publication number
JPS6361584B2
JPS6361584B2 JP18348582A JP18348582A JPS6361584B2 JP S6361584 B2 JPS6361584 B2 JP S6361584B2 JP 18348582 A JP18348582 A JP 18348582A JP 18348582 A JP18348582 A JP 18348582A JP S6361584 B2 JPS6361584 B2 JP S6361584B2
Authority
JP
Japan
Prior art keywords
solenoid valve
valve
heat exchanger
compressor
way switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18348582A
Other languages
Japanese (ja)
Other versions
JPS5971963A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18348582A priority Critical patent/JPS5971963A/en
Publication of JPS5971963A publication Critical patent/JPS5971963A/en
Publication of JPS6361584B2 publication Critical patent/JPS6361584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明はヒートポンプ式冷凍サイクルの除霜制
御方法に関するもので、特に除霜時暖房サイクル
から冷房サイクルに切り換えて行う方法に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a defrosting control method for a heat pump type refrigeration cycle, and particularly to a method of switching from a heating cycle to a cooling cycle during defrosting.

<従来技術> 従来のヒートプンプ式冷凍サイクルにおいては
第1図に示すごとく圧縮機1、四方切換弁3、室
外側熱交換器4、膨張装置5および室内側熱交換
器6を順次環状に接続し、冷房運転時には実線矢
印で示すごとく圧縮機1からの高温高圧の冷媒ガ
スを室外側熱交換器4に送り、ここで凝縮した後
膨張装置5を介して室内側熱交換器6で蒸発させ
暖房運転時には破線矢印で示すごとく圧縮機1か
らの高温高圧の冷媒ガスを逆循環させて暖房を行
うものである。
<Prior art> In a conventional heat pump refrigeration cycle, a compressor 1, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion device 5, and an indoor heat exchanger 6 are sequentially connected in an annular manner as shown in FIG. During cooling operation, high-temperature, high-pressure refrigerant gas from the compressor 1 is sent to the outdoor heat exchanger 4 as shown by the solid line arrow, where it is condensed and then evaporated in the indoor heat exchanger 6 via the expansion device 5 for heating. During operation, high-temperature, high-pressure refrigerant gas from the compressor 1 is reversely circulated as shown by the broken line arrow to perform heating.

一般にこの種の冷凍サイクルにおいて、暖房運
転時、除霜を行う場合、四方切換弁3を切換える
ことにより高温高圧の冷媒ガスを室外側熱交換器
4に流し、該熱交換器4に付着した霜と熱交換さ
せ、霜を融解除去するようになつているが、該四
方切換弁3を切換える際、室内側熱交換器6中に
あつた高圧の液冷媒が圧縮機1に逆流し、液圧縮
防止用のアキユムレーター2中に滞留してしまい
当冷凍サイクル中を循環する冷媒量が不足するた
め十分な除霜が行なえず、またこのために、除霜
に多大の時間を必要とし、その間暖房運転ができ
ないことより、室温の低下をまねき、快適性をそ
こなうという欠点があつた。
Generally, in this type of refrigeration cycle, when defrosting is performed during heating operation, the four-way switching valve 3 is switched to flow high-temperature, high-pressure refrigerant gas to the outdoor heat exchanger 4. However, when the four-way switching valve 3 is switched, the high-pressure liquid refrigerant in the indoor heat exchanger 6 flows back into the compressor 1, causing the liquid to be compressed. The amount of refrigerant that accumulates in the preventive accumulator 2 and circulates through the refrigeration cycle is insufficient, so sufficient defrosting cannot be performed. The disadvantage is that it causes a drop in room temperature and impairs comfort.

<本発明が解決する課題> 除霜切り換え時に、高圧側の冷媒が圧縮機に逆
流して滞留するのを防いで効率の良い除霜を行え
るようにすることである。
<Problems to be Solved by the Present Invention> It is an object of the present invention to prevent high-pressure refrigerant from flowing back into the compressor and stagnation during defrosting switching, thereby enabling efficient defrosting.

<課題を解決するための手段> 圧縮機、四方切換弁、室内側熱交換器、減圧装
置、室外側熱交換器を順次接続し、四方切換弁に
て通路を切り換えることにより冷房サイクル、暖
房サイクルを形成するものにおいて、上記減圧装
置を挾んで形成される低圧側と高圧側とを連通す
るバイパス流路を設けると共に、このバイパス流
路に第1の電磁弁を介装し、上記四方切換弁と圧
縮機吸込側との間に第2の電磁弁を介装し、除霜
運転切換え時に、第1電磁弁を開成すると共に第
2電磁弁を閉成し、その後第1電磁弁を閉成する
と共に四方弁を冷房サイクル側に切り換え、その
後に第2電磁弁を開成するようにする。
<Means for solving the problem> A compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected in sequence, and the cooling cycle and heating cycle are achieved by switching the passages with the four-way switching valve. A bypass flow path that communicates the low pressure side and the high pressure side formed by sandwiching the pressure reducing device is provided, and a first solenoid valve is interposed in the bypass flow path, and the four-way switching valve is connected to the four-way switching valve. A second solenoid valve is interposed between the and the compressor suction side, and when switching to defrosting operation, the first solenoid valve is opened and the second solenoid valve is closed, and then the first solenoid valve is closed. At the same time, the four-way valve is switched to the cooling cycle side, and then the second solenoid valve is opened.

<作用> 除霜時、先ず第1電磁弁が開成されると共に第
2電磁弁が閉成される。これにより、室内側熱交
換器を含む高圧側にある高温の冷媒がバイパス流
路を通つて室外側熱交換器に流入して除霜の一部
が行われる。
<Operation> During defrosting, the first solenoid valve is first opened and the second solenoid valve is closed. As a result, the high-temperature refrigerant on the high-pressure side including the indoor heat exchanger flows into the outdoor heat exchanger through the bypass passage, and part of defrosting is performed.

この時第2電磁弁が閉成されているので、高圧
側の冷媒が逆流して圧縮機に流入するのが確実に
阻止される。
Since the second solenoid valve is closed at this time, the refrigerant on the high pressure side is reliably prevented from flowing backward into the compressor.

このようにして高圧冷媒が室外熱交換器に流入
し減圧装置を挾んだ高低圧がバランスした段階で
第1電磁が閉成され、四方切換弁が暖房サイクル
から冷房(除霜)サイクルに切り換えられる。そ
して最後に第2電磁弁が開成されて完全な除霜
(冷房)サイクルでの運転となり、圧縮機からの
高温高圧の冷媒が室外熱交換器に送入されて除霜
が行われる。
In this way, when the high-pressure refrigerant flows into the outdoor heat exchanger and the high and low pressures across the pressure reducing device are balanced, the first solenoid is closed and the four-way switching valve switches from the heating cycle to the cooling (defrosting) cycle. It will be done. Finally, the second solenoid valve is opened to operate in a complete defrosting (cooling) cycle, and the high-temperature, high-pressure refrigerant from the compressor is sent to the outdoor heat exchanger to perform defrosting.

<実施例> 以下、本発明の一実施例を図面に基いて説明す
る。
<Example> An example of the present invention will be described below based on the drawings.

第2図は本発明に係るヒートポンプ式冷凍サイ
クルの冷媒回路図、第3図は同冷凍サイクルにお
ける四方切換弁及び第1、第2電磁弁の動作説明
図、第4図ないし第6図は本発明の他の実施例を
示した冷媒回路図である。
Fig. 2 is a refrigerant circuit diagram of a heat pump type refrigeration cycle according to the present invention, Fig. 3 is an explanatory diagram of the operation of the four-way switching valve and the first and second solenoid valves in the refrigeration cycle, and Figs. FIG. 7 is a refrigerant circuit diagram showing another embodiment of the invention.

なお、実線矢印は冷房運転時の冷媒の流れを示
し、また破線矢印は暖房運転時の冷媒の流れを示
す。
Note that solid arrows indicate the flow of refrigerant during cooling operation, and dashed arrows indicate the flow of refrigerant during heating operation.

第2図においては、11は冷媒ガスを圧縮する
圧縮機、12は液戻り防止用のアキユムレータ
ー、13は冷房運転と暖房運転を切換える四方切
換弁、14は冷房運転時には凝縮器、暖房運転時
には蒸発器として作用する室外側熱交換器、15
は膨張弁あるいはキヤピラリーチユーブ等の膨張
装置、16は冷房運転時には蒸発器、暖房運転時
には凝縮器として作用する室内側熱交換器、17
は本実施例では室外側熱交換器出口と室内側熱交
換器入口とを連通するバイパス流路、該バイパス
流路は第4図乃至第6図に他の実施例を示すが室
外側熱交換器14を含む四方切換弁13と膨張装
置15を結ぶ流路中の任意の点と、室内側熱交換
器16を含む四方切換弁13と膨張装置15を結
ぶ流路中の任意の点を連通するバイパス流路であ
れば、その場所はどこでも良い。18は上記バイ
パス流路に設けられた第1の電磁弁、19は圧縮
機1の吸入側と四方切換弁13とを結ぶ流路中に
設けられた第2の電磁弁である。
In Figure 2, 11 is a compressor that compresses refrigerant gas, 12 is an accumulator for preventing liquid return, 13 is a four-way switching valve that switches between cooling operation and heating operation, and 14 is a condenser during cooling operation, and an evaporator during heating operation. outdoor heat exchanger acting as a container, 15
16 is an expansion device such as an expansion valve or a capillary reach tube; 16 is an indoor heat exchanger that acts as an evaporator during cooling operation and as a condenser during heating operation; 17
In this embodiment, the bypass flow path communicates the outdoor heat exchanger outlet with the indoor heat exchanger inlet, and the bypass flow path is shown in other embodiments in FIGS. 4 to 6. An arbitrary point in the flow path connecting the four-way switching valve 13 including the chamber 14 and the expansion device 15 is communicated with an arbitrary point in the flow path connecting the four-way switching valve 13 including the indoor heat exchanger 16 and the expansion device 15. It can be located anywhere as long as it is a bypass flow path. 18 is a first solenoid valve provided in the bypass flow path, and 19 is a second solenoid valve provided in a flow path connecting the suction side of the compressor 1 and the four-way switching valve 13.

第3図は四方切換弁13、第1電磁弁18及び
第2電磁弁19の動作を示したものである。
FIG. 3 shows the operations of the four-way switching valve 13, the first solenoid valve 18, and the second solenoid valve 19.

この第3図を用いて上記冷凍サイクルの動作に
ついて説明する。
The operation of the refrigeration cycle will be explained using FIG. 3.

この冷凍サイクルにおいて、通常の暖房運転時
には、第1電磁弁18は常に閉成し、また第2電
磁弁19は常に開成し、第1図に示した従来サイ
クルの運転状態と全く同じである。
In this refrigeration cycle, during normal heating operation, the first solenoid valve 18 is always closed and the second solenoid valve 19 is always open, which is exactly the same as the operating state of the conventional cycle shown in FIG.

今、暖房運転時、タイマーデイアイサーあるい
は霜付検出装置等(図示せず)の信号により、除
霜を開始するため、冷凍サイクルを切換える場合
先ず第1電磁弁18を開成し、又、第2電磁弁1
9を閉成する。これは同時に行なつても良いしあ
るいは、若干遅延させても良い。こうすることに
よつて、室内側熱交換器16中の高温高圧の液冷
媒は圧縮機11に逆流することなく、室外側熱交
換器14中へと移動する。この移動した高温高圧
の液冷媒のもつ熱により、室外側熱交換器14に
付着した霜の一部は融解をはじめる。
Now, during heating operation, when switching the refrigeration cycle to start defrosting in response to a signal from a timer de-icer or a frost detection device (not shown), first open the first solenoid valve 18, and then open the second solenoid valve 18. Solenoid valve 1
Close 9. This may be done simultaneously or with a slight delay. By doing so, the high temperature and high pressure liquid refrigerant in the indoor heat exchanger 16 moves into the outdoor heat exchanger 14 without flowing back into the compressor 11. Due to the heat of the transferred high-temperature, high-pressure liquid refrigerant, a portion of the frost adhering to the outdoor heat exchanger 14 begins to melt.

こうして、室内側熱交換器16中の液冷媒が、
室外熱交換器14中へ移動し終つた後、第1電磁
弁18を閉成すると共に四方切換弁13を切換え
る。これは、室外側熱交換器14の圧力又は温度
を検出して行つても良いし、又、第1電磁弁18
の最初の開成時から時間的に制御しても良い。
In this way, the liquid refrigerant in the indoor heat exchanger 16
After moving into the outdoor heat exchanger 14, the first solenoid valve 18 is closed and the four-way switching valve 13 is switched. This may be done by detecting the pressure or temperature of the outdoor heat exchanger 14, or the first solenoid valve 18
It may be controlled temporally from the time of first opening.

しかる後、第2電磁弁19を開成すれば、本冷
凍サイクルは完全に逆サイクルに切換わつたこと
になり、圧縮機11から吐出された高温高圧冷媒
ガスにより、室外側熱交換器14の除霜が開始さ
れる。
After that, when the second solenoid valve 19 is opened, the main refrigeration cycle is completely switched to a reverse cycle, and the outdoor heat exchanger 14 is removed by the high-temperature, high-pressure refrigerant gas discharged from the compressor 11. Frost begins.

このように本冷凍サイクルでは、冷凍サイクル
切換時に液冷媒が圧縮機11のアキユムレーター
12に逆流し滞留することなく、凝縮器中にホー
ルドさせるので、冷凍サイクル切換直後から効率
の良い運転が可能となるため、効果的な除霜が可
能となると共に、圧縮機11への液戻りによる液
圧縮過電流等を防止でき、信頼性を向上させるこ
とができる。
In this way, in this refrigeration cycle, when the refrigeration cycle is switched, the liquid refrigerant is held in the condenser without flowing back into the accumulator 12 of the compressor 11 and staying there, so efficient operation is possible immediately after the refrigeration cycle is switched. Therefore, effective defrosting is possible, liquid compression overcurrent due to liquid returning to the compressor 11, etc. can be prevented, and reliability can be improved.

また除霜終了後、暖房運転に切換える時は、同
様に、第1電磁弁18を開成し、第2電磁弁19
を閉成した後、遅延させて第1電磁弁18を閉成
すると共に四方切換弁13を切換え、しかる後に
第2電磁弁19を開成すれば良い。
Similarly, when switching to heating operation after defrosting, the first solenoid valve 18 is opened and the second solenoid valve 19 is opened.
After closing, the first electromagnetic valve 18 may be closed with a delay, the four-way switching valve 13 may be switched, and then the second electromagnetic valve 19 may be opened.

<効果> 以上本発明によれば、除霜切換時に先ず第1の
電磁弁を開成すると共に第2の電磁弁を閉成する
ことにより、高圧側の冷媒をバイパス通路を通し
て室外側熱交換器に送り込むことにより除霜の一
部を行うことができると共に、第2電磁弁の閉成
により高圧冷媒が圧縮機に逆流するのを確実に阻
止することができる。
<Effects> According to the present invention, by first opening the first solenoid valve and closing the second solenoid valve when switching to defrost, the refrigerant on the high pressure side is passed through the bypass passage to the outdoor heat exchanger. By sending the refrigerant in, part of the defrosting can be performed, and by closing the second solenoid valve, it is possible to reliably prevent the high-pressure refrigerant from flowing back into the compressor.

このような状態になつてから第1電磁弁を開成
して四方切換弁を冷房(除霜)サイクルに切り換
えて最後に圧縮機に冷媒の流入を阻止している第
2の電磁弁を開成して完全に除霜サイクルに切り
換えて除霜を行うようにしたので、確実に圧縮機
での冷媒の滞留をなくして効率の良い除霜が行え
ると共に、既に一部除霜が行われているので効率
の良さとも相俟つて素早い除霜を行うことができ
る。
When this condition is reached, the first solenoid valve is opened, the four-way switching valve is switched to the cooling (defrosting) cycle, and finally the second solenoid valve, which prevents refrigerant from flowing into the compressor, is opened. By completely switching to the defrost cycle to perform defrosting, it is possible to reliably eliminate refrigerant stagnation in the compressor and defrost efficiently, and also because some defrosting has already been performed. Combined with high efficiency, it is possible to defrost quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式冷凍サイクルの
冷媒回路図、第2図は本発明に係るヒートポンプ
式冷凍サイクルの冷媒回路図、第3図は同冷凍サ
イクルにおける四方切換弁、第1電磁弁および第
2電磁弁の動作説明図、第4図、第5図及び第6
図は本発明に係る他の実施例を示した冷媒回路図
である。 11:圧縮機、12:アキユムレーター、1
3:四方切換弁、14:室外側熱交換器、15:
膨張装置、16:室内側熱交換器、17:バイパ
ス流路、18:第1電磁弁、19:第2電磁弁。
Fig. 1 is a refrigerant circuit diagram of a conventional heat pump refrigeration cycle, Fig. 2 is a refrigerant circuit diagram of a heat pump refrigeration cycle according to the present invention, and Fig. 3 shows a four-way switching valve, a first solenoid valve, and a 2 Operation explanatory diagrams of solenoid valves, Figures 4, 5, and 6
The figure is a refrigerant circuit diagram showing another embodiment according to the present invention. 11: Compressor, 12: Accumulator, 1
3: Four-way switching valve, 14: Outdoor heat exchanger, 15:
Expansion device, 16: indoor heat exchanger, 17: bypass passage, 18: first solenoid valve, 19: second solenoid valve.

Claims (1)

【特許請求の範囲】 1 圧縮機、四方切換弁、室内側熱交換器、減圧
装置、室外側熱交換器を順次接続し、四方切換弁
にて通路を切り換えることにより冷房サイクル、
暖房サイクルを形成するものにおいて、 上記減圧装置を挾んで形成される低圧側と高圧
側とを連通するバイパス流路を設けると共にこの
バイパス流路に第1の電磁弁を介装し、 上記四方切換弁と圧縮機吸込側との間に第2の
電磁弁を設け、 除霜運転切換え時に、第1電磁弁を開成すると
共に第2電磁弁を閉成し、その後第1電磁弁を閉
成すると共に四方弁を冷房サイクル側に切り換
え、その後に第2電磁弁を開成するようにしたヒ
ートポンプ式冷凍サイクルの除霜制御方法。
[Claims] 1. A cooling cycle is achieved by sequentially connecting a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, and switching passages with the four-way switching valve.
In the heating cycle forming device, a bypass flow path is provided that communicates the low pressure side and the high pressure side formed by sandwiching the pressure reducing device, and a first solenoid valve is interposed in the bypass flow path, and the four-way switching is performed. A second solenoid valve is provided between the valve and the compressor suction side, and when switching to defrosting operation, the first solenoid valve is opened and the second solenoid valve is closed, and then the first solenoid valve is closed. A defrosting control method for a heat pump type refrigeration cycle, in which a four-way valve is switched to the cooling cycle side at the same time, and a second solenoid valve is then opened.
JP18348582A 1982-10-18 1982-10-18 Heat pump type refrigeration cycle Granted JPS5971963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18348582A JPS5971963A (en) 1982-10-18 1982-10-18 Heat pump type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18348582A JPS5971963A (en) 1982-10-18 1982-10-18 Heat pump type refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5971963A JPS5971963A (en) 1984-04-23
JPS6361584B2 true JPS6361584B2 (en) 1988-11-29

Family

ID=16136632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18348582A Granted JPS5971963A (en) 1982-10-18 1982-10-18 Heat pump type refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5971963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219668A (en) * 1988-07-06 1990-01-23 Hitachi Ltd Compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073588B2 (en) * 2012-07-13 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6073587B2 (en) * 2012-07-13 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219668A (en) * 1988-07-06 1990-01-23 Hitachi Ltd Compressor

Also Published As

Publication number Publication date
JPS5971963A (en) 1984-04-23

Similar Documents

Publication Publication Date Title
US4356703A (en) Refrigeration defrost control
JPS6361584B2 (en)
JPH06265242A (en) Engine driven heat pump
JP2000111213A (en) Freezer
EP0077414B1 (en) Air temperature conditioning system
JP3343916B2 (en) Refrigeration equipment
JPS6346350B2 (en)
JPH0333991B2 (en)
JPH0120709B2 (en)
JPH0333990B2 (en)
JPH0381072B2 (en)
JPH06123527A (en) Refrigerating cycle of deep freezing refrigerating unit
JPS592454Y2 (en) Heat pump refrigeration equipment
JPH0333993B2 (en)
JP2003139459A (en) Refrigerator
JPH0333989B2 (en)
JP3407867B2 (en) Operation control method of air conditioner
JPS5971962A (en) Heat pump type refrigeration cycle
JPH0217370A (en) Operation control device for air conditioning device
JPH09318229A (en) Refrigerating device
JPS5856529Y2 (en) Refrigeration equipment
JPS5819020B2 (en) Cooling system
JPH04251144A (en) Operation control device of air conditioner
JPS6045345B2 (en) Heat recovery air conditioner
JPH01111175A (en) Engine heat pump type air conditioner