JPH03211380A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03211380A
JPH03211380A JP478090A JP478090A JPH03211380A JP H03211380 A JPH03211380 A JP H03211380A JP 478090 A JP478090 A JP 478090A JP 478090 A JP478090 A JP 478090A JP H03211380 A JPH03211380 A JP H03211380A
Authority
JP
Japan
Prior art keywords
defrosting
temperature
way valve
heat exchanger
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP478090A
Other languages
Japanese (ja)
Inventor
Koji Wada
宏二 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP478090A priority Critical patent/JPH03211380A/en
Publication of JPH03211380A publication Critical patent/JPH03211380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To shorten the defrosting operation time by providing a controller by which a defrosting two-way valve on a defrosting bypass pipe is opened when the temperature of an outdoor heat exchanger becomes below the defrosting start temperature, and the two-way valve is closed and a four-way valve is turned to the cooling position when the temperature of a heat accumulator drops below the specified temperature after defrosting operation starts. CONSTITUTION:A controller is provided, by which a two-way valve 10 on a defrosting bypass pipe 9 is opened when the temperature of an outdoor heat exchanger 8 drops below the defrosting start temperature, and the defrosting two-way valve 10 is closed and a four-way valve 5 is turned to the cooling position when the temperature of a heat accumulator 2 falls below the specified temperature after defrosting operation starts. During defrosting operation, the refrigerant which is heated to a high temperature by a compressor 1 and further absorbs heat as the heat accumulator 2 is sent to the outdoor heat exchanger 8 through the defrosting bypass pipe 9. And when defrosting is not satisfactorily carried out by the refrigerant through the defrosting bypass pipe 9, the temperature drop of the heat accumulator 2 is detected and the refrigerating cycle is turned to cooling operation mode to perform reverse defrosting operation. Thereby, the defrosting operation time can be shortened even in the case the controller is applied to a large size apparatus with a large capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷凍サイクルに蓄熱槽が組み込まれた蓄熱式の
空気調和機に係り、特に除霜時間の短縮を図った空気調
和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat storage type air conditioner in which a heat storage tank is incorporated in a refrigeration cycle, and particularly relates to an air conditioner in which defrosting time is shortened.

〔従来の技術〕[Conventional technology]

四方弁を切り替えることにより、冷房運転と暖房運転を
選択的に行うことのできる従来のヒートポンプ式の空気
調和機においては、暖房運転時の室外熱交換器の除霜方
式として、二方弁が組み込まれた除霜用のバイパス回路
を利用する方式が採用されている。このバイパス回路は
、圧縮機と室外熱交換器との間を接続するように設けら
れている。除霜にあたっては当該バイパス回路の二方弁
が開くことによって圧縮機で断熱圧縮された高温の冷媒
が室外熱交換器に送られるようになっている。
Conventional heat pump air conditioners, which can selectively perform cooling and heating operations by switching the four-way valve, incorporate a two-way valve to defrost the outdoor heat exchanger during heating operation. A method using a defrosting bypass circuit is adopted. This bypass circuit is provided to connect between the compressor and the outdoor heat exchanger. During defrosting, the two-way valve of the bypass circuit is opened, and the high-temperature refrigerant that has been adiabatically compressed by the compressor is sent to the outdoor heat exchanger.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この種の除霜方式は、小型の比較的冷暖
房能力の低い機種には適しているが、大型の機種には向
かない難点がある。すなわち、小型のmtiでは、圧縮
機によって冷媒に加えられる熱量が、除霜に必要な熱量
よりも大きいので、四方弁を反転させて冷房運転に冷凍
サイクルを切り替え除霜するリバース除霜に較べて、上
記バイパス回路方式が効率の上で有利である。これに対
して、大型の機種になると、圧縮機の熱容量と除霜に必
要な熱容量が路間等になり、上記バイパス方式では所要
除霜時間が長くなる不都合がある。
However, this type of defrosting method is suitable for small models with relatively low heating and cooling capacity, but has the disadvantage that it is not suitable for large models. In other words, in a small MTI, the amount of heat added to the refrigerant by the compressor is greater than the amount of heat required for defrosting, so compared to reverse defrosting, which reverses the four-way valve and switches the refrigeration cycle to cooling operation. , the above-mentioned bypass circuit system is advantageous in terms of efficiency. On the other hand, in the case of large-sized models, the heat capacity of the compressor and the heat capacity required for defrosting are spaced between roads, etc., and the above-mentioned bypass method has the disadvantage that the required defrosting time becomes longer.

そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、能力の大きな大型機種にバイパス回路
を用いての除霜方式を採用しても所要除霜時間を短縮し
得る蓄熱式空気調和機を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the conventional technology described above, and to provide a heat storage system that can shorten the required defrosting time even if a defrosting method using a bypass circuit is adopted for large-capacity models. Our goal is to provide type air conditioners.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、圧縮機の吐出側
と四方弁の間の配管に組み込まれた蓄熱槽と、上記蓄熱
槽の出口側と室外熱交換器の暖房時における入口側とを
結び除霜用の二方弁が組み込まれた除霜バイパス配管と
、室外熱交換器の温度か除霜開始温度以下になったとき
に上記除霜バイパス配管の除霜用二方弁を開成し、除霜
開始後蓄熱槽の温度が所定温度以下になったときに上記
除霜用二方弁を閉じ且つ四方弁を冷房位置に反転させる
制御部を備えることを特徴とするものである。
In order to achieve the above object, the present invention provides a heat storage tank incorporated in piping between the discharge side of a compressor and a four-way valve, and an outlet side of the heat storage tank and an inlet side of an outdoor heat exchanger during heating. Connect the defrost bypass piping with a built-in two-way defrosting valve, and open the two-way defrosting valve of the defrosting bypass piping when the temperature of the outdoor heat exchanger falls below the defrosting start temperature. The present invention is characterized by comprising a control section that closes the two-way defrosting valve and reverses the four-way valve to the cooling position when the temperature of the heat storage tank becomes lower than a predetermined temperature after the start of defrosting.

〔作 用〕[For production]

本発明によれば、除霜時には、圧縮機で高温にされしか
も蓄熱槽で熱を吸収した冷媒が除霜バイパス配管を通っ
て室外熱交換器に送られる。そして、除霜バイパス配管
を通しての除霜では十分出ないときには、蓄熱槽の温度
の低下を検出して冷凍サイクルを冷房運転に反転させて
のリバース除霜が実行される。
According to the present invention, during defrosting, the refrigerant that has been heated to a high temperature by the compressor and has absorbed heat in the heat storage tank is sent to the outdoor heat exchanger through the defrost bypass pipe. When defrosting through the defrosting bypass piping is not sufficient, reverse defrosting is performed by detecting a drop in the temperature of the heat storage tank and reversing the refrigeration cycle to cooling operation.

〔実施例〕〔Example〕

以下、本発明の一実施例について添付の図面を参照して
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明による空気調和機の冷凍サイクルを表
わした回路図である。同図において、符号1は、圧縮機
を示し、この圧縮機1の吐出側1aは、配管によって蓄
熱槽2の入口側と接続される。この蓄熱槽2は、その内
側に蓄熱用の熱交換器、蓄熱材を設けてなるものであり
、夫々一対の人口3a、3bと、出口4 a s 4 
bを備えている。この蓄熱槽2の出口4aは、冷房運転
と暖房運転をとの間で選択的に冷凍サイクルを切り替え
るための四方弁5を介して室内熱交換器6に接続されて
いる。この室内熱交換器6は、減圧装置としてのエクス
パンションバルブ7が途中に配設された配管を介して室
外熱交換器8に接続されている。この室外熱交換器8の
暖房時における出口側は、上記四方弁5に接続される。
FIG. 1 is a circuit diagram showing a refrigeration cycle of an air conditioner according to the present invention. In the figure, reference numeral 1 indicates a compressor, and a discharge side 1a of the compressor 1 is connected to an inlet side of a heat storage tank 2 through piping. This heat storage tank 2 is provided with a heat exchanger for heat storage and a heat storage material inside thereof, and has a pair of ports 3a, 3b and an outlet 4a, s4, respectively.
It is equipped with b. An outlet 4a of the heat storage tank 2 is connected to an indoor heat exchanger 6 via a four-way valve 5 for selectively switching the refrigeration cycle between cooling operation and heating operation. This indoor heat exchanger 6 is connected to an outdoor heat exchanger 8 via a pipe in which an expansion valve 7 as a pressure reducing device is disposed. The outlet side of this outdoor heat exchanger 8 during heating is connected to the four-way valve 5 .

また、この四方弁5は圧縮機1の2つある吸入側1b、
lcのうち1bに接続される。
Moreover, this four-way valve 5 has two suction sides 1b of the compressor 1,
Connected to 1b of lc.

上記蓄熱槽2の出口4a側は、除霜用バイパス配管9に
よってエクスパンションバルブ7と室外熱交換器8の暖
房時における入口側との間に接続されている。そして。
The outlet 4a side of the heat storage tank 2 is connected by a defrosting bypass pipe 9 between the expansion valve 7 and the inlet side of the outdoor heat exchanger 8 during heating. and.

この除霜用バイパス配管9には、室外熱交換器8に向か
って順に除霜用の二方弁10、キャピラリーチューブ1
1が組み込まれるものである。
This defrosting bypass piping 9 includes a defrosting two-way valve 10 and a capillary tube 1 in order toward the outdoor heat exchanger 8.
1 is incorporated.

また、上記蓄熱槽2の入口3b、出口4b側を通るよう
にして圧縮機1の吸入側1cと室内熱交換器6の暖房時
における出口側とは暖房立上用バイパス配管12によっ
て接続されている。この暖房室土用バイパス配管12に
は、上記蓄熱槽2の出口4b側から順にキャピラリーチ
ューブ13、暖房立ち上がり時に開成する暖房立上用二
方弁14が組み込まれている。
Further, the suction side 1c of the compressor 1 and the outlet side of the indoor heat exchanger 6 during heating are connected by a heating start-up bypass pipe 12 so as to pass through the inlet 3b and outlet 4b sides of the heat storage tank 2. There is. A capillary tube 13 and a heating start-up two-way valve 14 that are opened at the time of heating start-up are installed in this heating room earth bypass pipe 12 in order from the outlet 4b side of the heat storage tank 2.

次に、第2図は、冷凍サイクルを構成する圧縮機1、四
方弁5、除霜用二方弁10、暖房立上用二方弁14のシ
ーケンス回路図である。圧縮機1を駆動するモーター1
は、リレー15を介して交流電源16に接続されている
。四方弁5は、リレー17の0N−OFFによって冷凍
サイクルを冷房運転、暖房運転のいずれかに切り替える
ようになっている。ノーマルクローズドタイプの除霜用
二方弁10、暖房立上用二方弁14は、夫々リレー18
.19のON・OFFによって開閉される。
Next, FIG. 2 is a sequence circuit diagram of the compressor 1, four-way valve 5, two-way defrosting valve 10, and two-way heating start-up valve 14 that constitute the refrigeration cycle. Motor 1 that drives compressor 1
is connected to an AC power source 16 via a relay 15. The four-way valve 5 switches the refrigeration cycle to either cooling operation or heating operation when the relay 17 is turned ON-OFF. The normally closed type defrosting two-way valve 10 and heating start-up two-way valve 14 each have a relay 18
.. It is opened and closed by turning ON/OFF 19.

符号20は、ファンモーターを示し、このファンモータ
ーは、リレー21によってON・OFFされる。
Reference numeral 20 indicates a fan motor, and this fan motor is turned on and off by a relay 21.

上記リレー15.17.18.19.21は、マイクロ
コンピュータが適用された制御部22によってON・O
FF制御される。この制御部22は、蓄熱槽2の内部に
配設される蓄熱槽温度検出器23、室外熱交換器8に配
設される室外熱交換器温度検出器24、室内温度検出器
25の出力に基づいて上記リレーにON・OFF信号を
出力する。なお、符号26は、温度設定器を示す。
The relays 15, 17, 18, 19, 21 are turned on and off by a control unit 22 to which a microcomputer is applied.
FF controlled. This control unit 22 controls the outputs of a heat storage tank temperature detector 23 disposed inside the heat storage tank 2, an outdoor heat exchanger temperature detector 24 disposed in the outdoor heat exchanger 8, and an indoor temperature detector 25. Based on this, an ON/OFF signal is output to the relay. Note that the reference numeral 26 indicates a temperature setting device.

以上のように構成される本発明による空気調和機の暖房
運転時には、圧縮機1から吐出された高温のガス冷媒は
、蓄熱槽2を通りここで一部の熱が蓄積され、さらに四
方弁5を経て室内熱交換器6に入る。この室内熱交換器
6においてガス冷媒と室内の空気との間で熱交換が行わ
れ、室内が暖房される。その後、冷媒は、エクスパンシ
ョンバルブ7を通る間に適当な圧力に減圧されて室外熱
交換器8において外気から熱を吸収して気化した後、圧
縮機1に戻る。
During heating operation of the air conditioner according to the present invention configured as described above, the high-temperature gas refrigerant discharged from the compressor 1 passes through the heat storage tank 2, where a part of the heat is accumulated, and then the four-way valve 5 It then enters the indoor heat exchanger 6. In this indoor heat exchanger 6, heat exchange is performed between the gas refrigerant and indoor air, heating the room. Thereafter, the refrigerant is reduced to an appropriate pressure while passing through the expansion valve 7, absorbs heat from the outside air in the outdoor heat exchanger 8, and is vaporized, after which it returns to the compressor 1.

本発明の空気調和機によるときは、暖房運転の立ち上が
り時には、暖房立上用バイパス配管12に設けられた暖
房立上用二方弁14が開かれる。
When using the air conditioner of the present invention, the two-way heating start-up valve 14 provided in the heating start-up bypass pipe 12 is opened at the start of heating operation.

このため、室内熱交換器6を出た冷媒の一部は当該暖房
立上用バイパス配管12を経て蓄熱162で熱を吸収し
て気化した後圧縮機1で再圧縮され高温になって室内熱
交換器6に送られるので、立ち上がり時間が短縮される
Therefore, a part of the refrigerant that exits the indoor heat exchanger 6 passes through the bypass pipe 12 for heating start-up, absorbs heat in the heat storage 162, evaporates, and is then recompressed in the compressor 1, becoming high temperature and generating indoor heat. Since the signal is sent to the exchanger 6, the start-up time is shortened.

次に、第3図は、暖房運転時において、制御部22に対
応するマイクロコンピュータの処理手順を表わしたフロ
ーチャートである。
Next, FIG. 3 is a flowchart showing the processing procedure of the microcomputer corresponding to the control section 22 during heating operation.

先ず、暖房運転の開始にともなって室外熱交換器8に配
設される室外熱交換器温度検出器24はその検出した温
度Tcを制御部22に出力する。
First, with the start of heating operation, the outdoor heat exchanger temperature detector 24 disposed in the outdoor heat exchanger 8 outputs the detected temperature Tc to the control unit 22.

制御部22は、この室外熱交換器8の温度Tcと予め温
度設定器26を介して入力されている除霜開始温度αと
比較する(ステップ101)。制御部22は、温度T、
が除霜開始温度αよりも高い間は通常の暖房運転制御を
行う(ステップ102)。
The control unit 22 compares the temperature Tc of the outdoor heat exchanger 8 with the defrosting start temperature α inputted in advance via the temperature setting device 26 (step 101). The control unit 22 controls the temperature T,
Normal heating operation control is performed while the temperature is higher than the defrosting start temperature α (step 102).

これに対して、温度Tcが除霜開始温度Tαよりも低い
温度になると、制御部22は、次のような除霜運転制御
を行う。すなわち、蓄熱槽2の温度1丁と、四方弁5を
冷房位置に反転させて除霜を開始するか否かの基準とな
る所定のリバース除霜温度βとが比較される(ステップ
103)。この判断の結果、温度TTが上記リバース除
霜温度βよりも高い場合には蓄熱槽2の熱を利用して除
霜ができるので、リレー18の図示しないソレノイドが
励磁される。従って、リレー18の接点が閉じられ、除
霜用バイパス配管9に設けた除霜用二方弁10が開かれ
る(ステップ104)。これによって、蓄熱槽2から当
該除霜用バイパス配管9を通って高温のガス冷媒が室外
熱交換器8に導入されるので、当該室外熱交換器8は、
ガス冷媒の熱によって除霜される。
On the other hand, when the temperature Tc becomes lower than the defrosting start temperature Tα, the control unit 22 performs the following defrosting operation control. That is, the temperature of the heat storage tank 2 is compared with a predetermined reverse defrosting temperature β, which is a reference for determining whether to reverse the four-way valve 5 to the cooling position and start defrosting (step 103). As a result of this determination, if the temperature TT is higher than the reverse defrosting temperature β, defrosting can be performed using the heat of the heat storage tank 2, so a solenoid (not shown) of the relay 18 is energized. Therefore, the contacts of the relay 18 are closed, and the two-way defrosting valve 10 provided in the defrosting bypass pipe 9 is opened (step 104). As a result, the high temperature gas refrigerant is introduced into the outdoor heat exchanger 8 from the heat storage tank 2 through the defrosting bypass pipe 9, so that the outdoor heat exchanger 8
Defrost is achieved by the heat of the gas refrigerant.

しかして、除霜中は、室外熱交換器8の温度Tcと予め
設定されている除霜終了温度γとの比較が行われ(ステ
ップ105)、温度Tcが上記除霜終了温度γよりも低
い場合、すなわち、まだ除霜が十分でないときはステッ
プ103に戻る。
During defrosting, the temperature Tc of the outdoor heat exchanger 8 is compared with a preset defrosting end temperature γ (step 105), and the temperature Tc is lower than the defrosting end temperature γ. In other words, if defrosting is not yet sufficient, the process returns to step 103.

蓄熱槽2の温度TTが上記リバース除霜温度βよりも高
い場合は、そのまま上記の除霜用バイパス配管9を使用
しての除霜が継続される。その後、温度Tcが上記除霜
終了温度γよりも高くなると、四方弁5の位置が暖房位
置にあることを確認して(ステップ106)、除霜が終
了する。このような除霜用バイパス配管9を使用した除
霜では、蓄熱槽2から直接送られるガス冷媒が除霜に際
して放出する熱量は、圧縮機1の仕事によって加えられ
た熱量と蓄熱槽2で吸収した熱量の総和であり、従って
、大型の機種であっても所要除霜時間を短縮することが
できる。
When the temperature TT of the heat storage tank 2 is higher than the reverse defrosting temperature β, defrosting is continued using the defrosting bypass pipe 9 described above. Thereafter, when the temperature Tc becomes higher than the defrosting end temperature γ, it is confirmed that the four-way valve 5 is in the heating position (step 106), and the defrosting ends. In defrosting using such defrosting bypass piping 9, the amount of heat released by the gas refrigerant directly sent from the heat storage tank 2 during defrosting is equal to the amount of heat added by the work of the compressor 1 and the amount of heat absorbed by the heat storage tank 2. Therefore, even for large models, the required defrosting time can be shortened.

一方、ステップ103において、蓄熱槽2の温度1丁が
上記リバース除霜温度βよりも低くなってしまった場合
、すなわち、除霜用バイパス配管9を使用しての除霜で
は不十分な場合には、リレー18がOFFになって除霜
用二方弁10が閉じられるとともにリレー17がOFF
にされ四方弁5が冷房位置に切り替えられ、リバース除
霜が実行される(ステップ107)。これにより、冷凍
サイクルが冷房運転になるので、室外熱交換器8では冷
媒の熱が放出される。爾後、室外熱交換器8の温度Tc
が除霜終了温度γよりも高くなるのを待って(ステップ
105)、リレー17がONにされ四方弁5が暖房位置
に切り替えられる(ステップ106)。以上のようにし
て、リバース除霜も付加することによって、残霜なく十
分な除霜をおこなえる。
On the other hand, in step 103, when the temperature of one heat storage tank 2 becomes lower than the reverse defrosting temperature β, that is, when defrosting using the defrosting bypass piping 9 is insufficient. When the relay 18 is turned OFF and the two-way defrosting valve 10 is closed, the relay 17 is also turned OFF.
The four-way valve 5 is switched to the cooling position, and reverse defrosting is performed (step 107). As a result, the refrigeration cycle enters cooling operation, so that the heat of the refrigerant is released in the outdoor heat exchanger 8. After that, the temperature Tc of the outdoor heat exchanger 8
After waiting for the temperature to become higher than the defrosting end temperature γ (step 105), the relay 17 is turned on and the four-way valve 5 is switched to the heating position (step 106). By adding reverse defrosting as described above, sufficient defrosting can be performed without residual frost.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、蓄熱
槽の出口側と室外熱交換器の暖房時における入口側とを
結び除霜用の二方弁が組み込まれた除霜バイパス配管を
設け、除霜する時には、室外熱交換器の温度が除霜開始
温度以下になったときに上記除霜バイパス配管の除霜用
二方弁を開成し、除霜開始後蓄熱槽の温度が所定温度以
下になったときに上記除霜用二方弁を閉じ且つ四方弁を
冷房位置に反転させるように制御出来るので、能力の大
きな大型機種に適用しても除霜に要する時間を短縮する
ことが出来るばかりでなく、厳寒地のように条件の厳し
いところでの暖房に際しても、十分な除霜能力を発揮す
ることかできる等の効果を奏する。
As is clear from the above description, according to the present invention, a defrosting bypass pipe is provided that connects the outlet side of the heat storage tank and the inlet side of the outdoor heat exchanger during heating and incorporates a two-way valve for defrosting. When the temperature of the outdoor heat exchanger falls below the defrosting start temperature, the defrosting two-way valve of the defrosting bypass piping is opened, and after the defrosting starts, the temperature of the heat storage tank reaches the predetermined temperature. Since the two-way defrosting valve can be closed and the four-way valve reversed to the cooling position when the temperature drops below the temperature, the time required for defrosting can be shortened even when applied to large models with high capacity. Not only is it possible to do this, but it also has the effect of being able to exhibit sufficient defrosting ability even when heating in places with severe conditions such as extremely cold regions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による空気調和機の回路図、第2図は当
該空気調和機の冷凍サイクルのシーケンス回路図、第3
図は当該空気調和機の備える制御部の動作を記述したー
フローチャートである。 1・・・圧縮機、2・・・蓄熱槽、5・・・四方弁、6
・・・室内熱交換器、7・・・エクスパンションバルブ
、8・・・室外熱交換器、9・・・除霜用バイパス配管
、10・・・除霜用二方弁、12・・・暖房立上バイパ
ス配管、14・・・、暖房立上用二方弁、22・・・制
御部。
FIG. 1 is a circuit diagram of an air conditioner according to the present invention, FIG. 2 is a sequence circuit diagram of a refrigeration cycle of the air conditioner, and FIG.
The figure is a flowchart describing the operation of the control unit included in the air conditioner. 1... Compressor, 2... Heat storage tank, 5... Four-way valve, 6
... Indoor heat exchanger, 7... Expansion valve, 8... Outdoor heat exchanger, 9... Bypass piping for defrosting, 10... Two-way valve for defrosting, 12... Heating Start-up bypass piping, 14..., two-way valve for heating start-up, 22... control section.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方弁、室内熱交換器、減圧装置、室外熱交
換器で冷凍サイクルを構成し冷房、暖房運転を選択的に
切り替えられる空気調和機において、圧縮機の吐出側と
四方弁の間の配管に組み込まれた蓄熱槽と、上記蓄熱槽
の出口側と室外熱交換器の暖房時における入口側とを結
び除霜用の二方弁が組み込まれた除霜バイパス配管と、
室外熱交換器の温度が除霜開始温度以下になったときに
上記除霜バイパス配管の除霜用二方弁を開成し、除霜開
始後蓄熱槽の温度が所定温度以下になったときに除霜用
二方弁を閉じ且つ四方弁を冷房位置に反転させる制御部
を備えることを特徴とする空気調和機。
In an air conditioner that consists of a compressor, four-way valve, indoor heat exchanger, pressure reducer, and outdoor heat exchanger to form a refrigeration cycle and can selectively switch between cooling and heating operation, the a heat storage tank built into the piping; a defrosting bypass pipe incorporating a two-way valve for defrosting that connects the outlet side of the heat storage tank and the inlet side of the outdoor heat exchanger during heating;
When the temperature of the outdoor heat exchanger falls below the defrosting start temperature, the defrosting two-way valve of the defrosting bypass piping is opened, and after the start of defrosting, when the temperature of the heat storage tank falls below the predetermined temperature. An air conditioner comprising a control unit that closes a two-way defrosting valve and reverses a four-way valve to a cooling position.
JP478090A 1990-01-12 1990-01-12 Air conditioner Pending JPH03211380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP478090A JPH03211380A (en) 1990-01-12 1990-01-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP478090A JPH03211380A (en) 1990-01-12 1990-01-12 Air conditioner

Publications (1)

Publication Number Publication Date
JPH03211380A true JPH03211380A (en) 1991-09-17

Family

ID=11593335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP478090A Pending JPH03211380A (en) 1990-01-12 1990-01-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPH03211380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
JPH10318621A (en) * 1997-05-19 1998-12-04 Toshiba Corp Freezing cycle device
JP2002504660A (en) * 1998-02-18 2002-02-12 ユーティ―バテル エルエルシー Heat pump with improved defrost system
JP2007051821A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air-conditioner
JP2018080899A (en) * 2016-11-18 2018-05-24 ダイキン工業株式会社 Refrigeration unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
JPH10318621A (en) * 1997-05-19 1998-12-04 Toshiba Corp Freezing cycle device
JP2002504660A (en) * 1998-02-18 2002-02-12 ユーティ―バテル エルエルシー Heat pump with improved defrost system
JP2007051821A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air-conditioner
JP2018080899A (en) * 2016-11-18 2018-05-24 ダイキン工業株式会社 Refrigeration unit

Similar Documents

Publication Publication Date Title
US7089754B2 (en) Apparatus and method for controlling heating operation in heat pump system
CN104832989A (en) Air conditioner and control method for air conditioner
KR900008853B1 (en) Room air conditioner
JP2000346478A (en) Refrigerator
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JPH03211380A (en) Air conditioner
JP3271296B2 (en) Defrosting operation control device for refrigeration system
JP2007051820A (en) Air conditioner
JPS6346350B2 (en)
KR100205683B1 (en) Airconditioner and defrosting method
JPH07269977A (en) Motor operated expansion valve controller for air conditioner
JPH0828974A (en) Cold heat carrying equipment
JPH0643653Y2 (en) Air conditioner
KR20090021594A (en) Heat pump air conditioner
JPH04136669A (en) Multi-room air conditioner
JPS6029561A (en) Defroster for air conditioner
KR20020032071A (en) A defroster and control method for the heat pump type air-conditioner
JPH0330766Y2 (en)
JPH0656274B2 (en) Refrigeration cycle equipment
JPH0233108Y2 (en)
JPS6029562A (en) Defroster for air conditioner
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPH01256763A (en) Heat pump type air conditioner
JPH0699729A (en) Heat pump type air conditioner for vehicle
KR0133026B1 (en) Apparatus for controlling movement of airconditioner