JPH0330766Y2 - - Google Patents

Info

Publication number
JPH0330766Y2
JPH0330766Y2 JP1983036045U JP3604583U JPH0330766Y2 JP H0330766 Y2 JPH0330766 Y2 JP H0330766Y2 JP 1983036045 U JP1983036045 U JP 1983036045U JP 3604583 U JP3604583 U JP 3604583U JP H0330766 Y2 JPH0330766 Y2 JP H0330766Y2
Authority
JP
Japan
Prior art keywords
compressor
evaporator
way valve
temperature
operation state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983036045U
Other languages
Japanese (ja)
Other versions
JPS59142669U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3604583U priority Critical patent/JPS59142669U/en
Publication of JPS59142669U publication Critical patent/JPS59142669U/en
Application granted granted Critical
Publication of JPH0330766Y2 publication Critical patent/JPH0330766Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、液体クーラ等の冷凍装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a refrigeration device such as a liquid cooler.

〔従来の技術〕[Conventional technology]

一般に、恒温水槽等で室温より低い定温水を得
る場合、液体クーラ等の冷凍装置が使用される。
すなわち、圧縮機、凝縮器、均圧細管、蒸発器等
により冷凍回路を構成し、前記蒸発器を恒温水槽
内に投入して低温水を得るようにしている。
Generally, when obtaining constant temperature water lower than room temperature in a constant temperature water tank or the like, a freezing device such as a liquid cooler is used.
That is, a refrigeration circuit is constituted by a compressor, a condenser, a pressure equalizing tube, an evaporator, etc., and the evaporator is placed in a constant temperature water bath to obtain low-temperature water.

ところで、この種従来の冷凍装置では、恒温水
槽内の水温を一定温度に保持する必要があるた
め、恒温水槽内に蒸発器とともに投込型の電気ヒ
ーターを投入し、圧縮機を連続運転しながらヒー
ターの駆動をオン、オフ制御し、一定の低温水を
得ている。ここで、圧縮機の運転をオン、オフ制
御して水槽内水温を一定温度に制御することも考
えられるが、負荷の状態によつては圧縮機をオフ
してからオンするまでの時間が非常に短かくな
り、冷凍回路の高圧側と低圧側とが均圧にならな
いうちに圧縮機をオンしようとすると、モータに
過大な負荷がかかり、起動不良を起こす危険性が
あり、したがつて、圧縮機を連続運転しながら定
水温を保持する必要がある。
By the way, in this type of conventional refrigeration equipment, it is necessary to maintain the water temperature in the constant temperature water tank at a constant temperature, so an immersion electric heater is installed together with the evaporator in the constant temperature water tank, and the compressor is continuously operated. The heater is turned on and off to obtain a constant low temperature water. Here, it is possible to control the water temperature in the water tank to a constant temperature by controlling the operation of the compressor on and off, but depending on the load condition, the time from turning off the compressor to turning it on can be very long. If you attempt to turn on the compressor before the pressure on the high-pressure side and low-pressure side of the refrigeration circuit are equalized, an excessive load will be placed on the motor and there is a risk of starting failure. It is necessary to maintain a constant water temperature while operating the compressor continuously.

〔考案が解決しようとする課題〕[The problem that the idea attempts to solve]

しかし、前記従来の冷凍装置によると、圧縮機
のオン、オフ制御による起動不良の危険性を回避
できるものの、冷凍回路とは別にヒーターを要す
る難点がある。
However, although the conventional refrigeration apparatus described above can avoid the risk of startup failure due to on/off control of the compressor, it has the disadvantage that it requires a heater separate from the refrigeration circuit.

なお、圧縮機を連続運転しながら蒸発器側を一
定温度に制御する方法として、圧縮機の吐出側と
吸引側とを開閉弁を備えたバイパス管で接続し、
蒸発器側の設定温度以下の検出時に開閉弁を開に
して吐出ガスを直接吸引側に戻すことが考えられ
る。
In addition, as a method of controlling the evaporator side to a constant temperature while continuously operating the compressor, the discharge side and suction side of the compressor are connected with a bypass pipe equipped with an on-off valve.
It is conceivable to open the on-off valve when the temperature on the evaporator side is detected to be lower than the set temperature and return the discharged gas directly to the suction side.

しかし、この場合には圧縮機からの吐出ガスの
一部が吐出側から吸引側に戻されるものの、残り
の吐出ガスが凝縮器および蒸発器に流れるため、
冷却運転が継続されることになり、負荷の状態に
よつては蒸発器側を一定温度に制御できなくな
り、別途ヒーター等を要する場合も生じる。
However, in this case, although part of the discharge gas from the compressor is returned from the discharge side to the suction side, the remaining discharge gas flows to the condenser and evaporator.
Cooling operation will continue, and depending on the load condition, it may become impossible to control the evaporator side to a constant temperature, and a separate heater or the like may be required.

しかも、圧縮機の継続運転のために、設定温度
以下に冷却したにもかかわらず冷却運転を継続す
るため、消費電力が大きい欠点がある。
Furthermore, in order to continue operating the compressor, the cooling operation is continued even though the compressor has been cooled to a set temperature or lower, so there is a drawback that power consumption is large.

この考案は、従来の技術の有するこのような問
題点に留意してなされたものであり、その目的と
するところは、圧縮機を連続運転しながら蒸発器
側の温度をヒーター等を用いることなく設定温度
に保持でき、しかも消費電力を大幅に低減できる
冷凍装置を提供しようとするものである。
This invention was made keeping in mind these problems of the conventional technology, and its purpose is to maintain the temperature of the evaporator while continuously operating the compressor without using a heater or the like. The present invention aims to provide a refrigeration system that can maintain a set temperature and can significantly reduce power consumption.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、この考案の冷凍装
置においては、圧縮機の吐出側と吸引側との間
に、圧縮機からの吐出ガスをすべて凝縮器および
蒸発器に通して前記吸引側に戻す冷却運転状態と
圧縮機からの吐出ガスをすべて直接前記吸引側に
戻す短絡運転状態とに切換自在の四方弁を設け、
かつ、前記蒸発器側の温度を検出し設定温度以下
で動作して前記四方弁のみを冷却運転状態から短
絡運転状態に切換えるサーモスイツチを設けたこ
とを特徴とするものである。
In order to achieve the above object, in the refrigeration system of this invention, between the discharge side and the suction side of the compressor, all discharged gas from the compressor is passed through a condenser and an evaporator and returned to the suction side. A four-way valve is provided that can be freely switched between a cooling operation state and a short-circuit operation state in which all gas discharged from the compressor is returned directly to the suction side,
Further, the present invention is characterized in that a thermoswitch is provided that detects the temperature on the evaporator side and operates at a temperature below a set temperature to switch only the four-way valve from a cooling operation state to a short circuit operation state.

〔作用〕[Effect]

前述のように構成された冷凍装置にあつては、
蒸発器側の温度を検出するサーモスイツチにより
四方弁が冷却運転状態に切換わると、圧縮機から
の吐出ガスがすべて四方弁より凝縮器および蒸発
器に流れ再び四方弁を通つて圧縮機に戻り、蒸発
器における吸熱作用で所定の冷却動作が行なわれ
る。
In the case of a refrigeration system configured as described above,
When the four-way valve is switched to cooling mode by the thermoswitch that detects the temperature on the evaporator side, all discharged gas from the compressor flows through the four-way valve to the condenser and evaporator and returns to the compressor through the four-way valve. A predetermined cooling operation is performed by the endothermic action in the evaporator.

又、蒸発器側の設定温度以下の温度を検出した
サーモスイツチにより四方弁が短絡運転状態に切
換わると、圧縮機からの吐出ガスがすべて四方弁
を通つて直接圧縮機に戻されるようになり、凝縮
器および蒸発器は圧縮機から切離されて四方弁と
ともに閉回路を構成し、冷却停止状態となる。
Additionally, when the thermoswitch detects a temperature below the set temperature on the evaporator side and switches the four-way valve to short-circuit operation, all gas discharged from the compressor will be returned directly to the compressor through the four-way valve. , the condenser and evaporator are separated from the compressor to form a closed circuit with the four-way valve, and the cooling is stopped.

このとき、通常冷却運転時に液状態にある冷媒
が前記閉回路内に閉じ込められて運転系路から遮
断されるため、この種冷凍回路系内の充填冷媒の
大部分がこの閉回路に閉じ込められることにな
り、圧縮機と四方弁とで構成する運転系内にはご
くわずかの冷媒が残るのみで冷媒が非常に少ない
量しか充填されない状態と同一条件になり、圧縮
機が極めて軽負荷の運転状態となり、消費電力が
大幅に低減されることになる。
At this time, the refrigerant that is in a liquid state during normal cooling operation is trapped in the closed circuit and cut off from the operating system, so most of the refrigerant charged in this type of refrigeration circuit system is trapped in this closed circuit. This means that only a small amount of refrigerant remains in the operating system consisting of the compressor and the four-way valve, which is the same condition as when only a very small amount of refrigerant is charged, and the compressor is operating under an extremely light load. Therefore, power consumption is significantly reduced.

〔実施例〕〔Example〕

つぎにこの考案を、液体クーラに適用した場合
の1実施例を示した図面とともに詳細に説明す
る。
Next, this invention will be explained in detail with reference to a drawing showing one embodiment when applied to a liquid cooler.

図面において、1は圧縮機、2は凝縮器、3は
ドライヤー、4はキヤピラリチユーブ等の均圧細
管、5は投込型の蒸発器、6は圧縮機1の吐出側
と吸込側との間に設けられた四方弁であり、該四
方弁6には4個の口a,b,c,dが形成され、
四方弁6への電源通電時には第1、第2口a,b
間および第3、第4口c,d間がそれぞれ連通さ
れるとともに、通電停止時には第1、第4口a,
d間および第2、第3口b,c間がそれぞれ連通
される。
In the drawing, 1 is a compressor, 2 is a condenser, 3 is a dryer, 4 is a pressure equalizing tube such as a capillary tube, 5 is an immersion type evaporator, and 6 is a connection between the discharge side and the suction side of the compressor 1. It is a four-way valve provided in between, and the four-way valve 6 has four ports a, b, c, and d,
When power is applied to the four-way valve 6, the first and second ports a and b
and between the third and fourth ports c and d, respectively, and when the power supply is stopped, the first and fourth ports a,
d and the second and third ports b and c are communicated with each other.

そして、圧縮機1の吐出パイプAが四方弁6の
第1口aに接続されるとともに、第2口bに凝縮
器2の入口側パイプBが接続され、凝縮器2の出
口側がドライヤー3、均圧細管4およびステンレ
ス製の第1可撓管7を介して蒸発器5の入口側に
接続され、さらに、蒸発器5の出口側が第2可撓
管8および連結パイプCを介して四方弁6の第3
口cに接続され、かつ、圧縮機1の吸引パイプD
が四方弁6の第4口dに接続されている。
The discharge pipe A of the compressor 1 is connected to the first port a of the four-way valve 6, and the inlet pipe B of the condenser 2 is connected to the second port b, and the outlet side of the condenser 2 is connected to the dryer 3, It is connected to the inlet side of the evaporator 5 via the pressure equalizing tube 4 and the first flexible tube 7 made of stainless steel, and the outlet side of the evaporator 5 is connected to the four-way valve via the second flexible tube 8 and the connecting pipe C. 3rd of 6
The suction pipe D of the compressor 1 is connected to the port c.
is connected to the fourth port d of the four-way valve 6.

9は凝縮器2の冷却用フアン、10はフアンモ
ータ、11は液体クーラのユニツト本体であり、
該ユニツト本体11内に圧縮機1、凝縮器2、ド
ライヤー3、四方弁6、フアン9およびフアンモ
ータ10が収容されている。12は均圧細管4お
よび両可撓管7,8を内装しユニツト本体11と
蒸発器5とを連結するフレキシブルチユーブ、1
3は恒温水槽であり、該恒温水槽13内の液中に
蒸発器5が投入されている。
9 is a cooling fan for the condenser 2, 10 is a fan motor, 11 is a liquid cooler unit body,
A compressor 1, a condenser 2, a dryer 3, a four-way valve 6, a fan 9, and a fan motor 10 are housed within the unit body 11. Reference numeral 12 denotes a flexible tube which includes the pressure equalizing tube 4 and both flexible tubes 7 and 8 and connects the unit main body 11 and the evaporator 5;
3 is a constant temperature water tank, and an evaporator 5 is placed in the liquid in the constant temperature water tank 13.

また、第3図は電気回路図を示し、AC100Vの
電源14にメインスイツチ15が直列接続される
とともに、該直列回路に圧縮機1およびフアンモ
ータ10がそれぞれ並列に接続され、さらに、恒
温水槽13内の水温を検出し設定温度以下でオフ
するサーモスイツチ16が四方弁6に直列接続さ
れ、当該直列回路が圧縮機1に並列に接続されて
いる。
Further, FIG. 3 shows an electric circuit diagram, in which a main switch 15 is connected in series to an AC 100V power supply 14, a compressor 1 and a fan motor 10 are each connected in parallel to the series circuit, and a constant temperature water tank 13 is connected in parallel to the series circuit. A thermoswitch 16 that detects the water temperature inside the compressor and turns off when the temperature is below a set temperature is connected in series to the four-way valve 6, and the series circuit is connected in parallel to the compressor 1.

つぎに、前記実施例の動作について説明する。 Next, the operation of the above embodiment will be explained.

室温より低い温度で使用される恒温水槽13内
に蒸発器5を投入したのち、メインスイツチ15
をオンにすると、圧縮機1およびフアンモータ1
0がそれぞれ所定の駆動を開始し、ここで、恒温
水槽13内の水温が設定温度より高い場合、サー
モスイツチ16を介して四方弁6が通電されるた
め、該四方弁6は第1図に実線に示すような連通
状態、すなわち冷却運転状態となる。したがつ
て、圧縮機1より吐出されたガス冷媒は、同図に
実線矢印に示すように、四方弁6の第1、第2口
a,bを通つて凝縮器2に入り、該所で熱放出し
て液化したのち、ドライヤー3および均圧細管4
を通つて蒸発器5に送られ、蒸発器5内の冷媒は
恒温水槽13内の水等から熱を奪いながら蒸発
し、さらに、四方弁の第3、第4口c,dを通つ
て圧縮機1に戻り、以下前述の動作が継続され、
蒸発器5における熱吸収により恒温水槽13内の
水温が徐々に低下される。
After putting the evaporator 5 into the constant temperature water tank 13 which is used at a temperature lower than room temperature, the main switch 15 is turned on.
When turned on, compressor 1 and fan motor 1
0 starts a predetermined drive, and if the water temperature in the constant temperature water tank 13 is higher than the set temperature, the four-way valve 6 is energized via the thermoswitch 16, so the four-way valve 6 operates as shown in FIG. A communication state as shown by the solid line, that is, a cooling operation state is established. Therefore, the gas refrigerant discharged from the compressor 1 enters the condenser 2 through the first and second ports a and b of the four-way valve 6, as shown by the solid line arrow in the figure, and is discharged there. After releasing heat and liquefying, dryer 3 and pressure equalizing thin tube 4
The refrigerant in the evaporator 5 evaporates while taking heat from the water in the constant temperature water tank 13, and is further compressed through the third and fourth ports c and d of the four-way valve. Returning to machine 1, the above-mentioned operation continues,
Due to heat absorption in the evaporator 5, the water temperature in the constant temperature water tank 13 is gradually lowered.

そして、恒温水槽13内水温が設定温度にまで
低下すると、サーモスイツチ16がオフとなつて
四方弁6への通電が停止されるため、該四方弁6
は第1図に破線に示す連通状態、すなわち短絡運
転状態となる。したがつて、充填冷媒の大部分
は、四方弁6、凝縮器2、ドライヤー3、均圧細
管4、蒸発器5および四方弁6の閉回路内に閉じ
込められるとともに、冷却フアン9による空冷に
より完全に液化され、蒸発器5における吸熱作用
が停止し、他方、圧縮機1は連続運転されるた
め、その吐出ガス冷媒は破線矢印に示すように四
方弁6の第1、第4口a,dを通つて圧縮機1に
戻される。このとき、圧縮機1、四方弁6および
圧縮機1の動作回路内にはごくわずかの冷媒しか
残らないため、吐出側と吸引側との平衡圧が低く
保持され、このため、圧縮機1内のバルブ折損等
の事故も起こりにくくなる。
Then, when the water temperature in the constant temperature water tank 13 falls to the set temperature, the thermoswitch 16 is turned off and power supply to the four-way valve 6 is stopped.
is in the communication state shown by the broken line in FIG. 1, that is, the short-circuit operating state. Therefore, most of the charged refrigerant is confined within the closed circuit of the four-way valve 6, condenser 2, dryer 3, pressure equalizing tube 4, evaporator 5, and four-way valve 6, and is completely cooled by air cooling by the cooling fan 9. The gas refrigerant is liquefied and the endothermic action in the evaporator 5 is stopped, while the compressor 1 is continuously operated, so the discharged gas refrigerant flows through the first and fourth ports a and d of the four-way valve 6 as shown by the broken line arrow. is returned to the compressor 1 through the At this time, only a small amount of refrigerant remains in the compressor 1, the four-way valve 6, and the operating circuit of the compressor 1, so the equilibrium pressure between the discharge side and the suction side is maintained low. Accidents such as valve breakage are also less likely to occur.

さらに、恒温水槽13内の水温が室温や負荷に
より設定温度より上昇すると、サーモスイツチ1
6がオンするため、四方弁6が切換わつて冷却運
転状態となり、以下前述の繰返しにより、恒温水
槽13内水温が設定温度に保持される。
Furthermore, if the water temperature in the constant temperature water tank 13 rises above the set temperature due to room temperature or load, the thermoswitch 1
6 is turned on, the four-way valve 6 is switched to enter the cooling operation state, and by repeating the above, the water temperature in the constant temperature water tank 13 is maintained at the set temperature.

〔考案の効果〕[Effect of idea]

この考案は、以上説明したように構成されてい
るため、つぎに記載する効果を奏する。
Since this invention is configured as described above, it produces the effects described below.

圧縮機の吐出側と吸引側との間に冷却運転状態
と短絡運転状態とに切換える四方弁を設け、この
四方弁のみを蒸発器側の温度を検出するサーモス
イツチにより切換えるようにしたため、圧縮機を
連続運転しながら蒸発器側の温度を設定温度に制
御でき、圧縮機をオン、オフ制御する場合のよう
な起動不良等の危険を回避できるとともに、蒸発
器側の温度が設定温度以下になつた時に冷却運転
動作を完全に停止させるためヒーターを不要にで
き、特にサーモスイツチのオン、オフによつて圧
縮機をオン、オフさせることなく冷却運転を断続
させることができるため、サーモスイツチのデイ
フアレンシヤルを小さくして冷却運転を頻繁に断
続させることが可能となり、負荷の温度を常に設
定温度近くに維持させることができ、より緻密な
温度制御が可能になるものである。
A four-way valve is installed between the discharge side and the suction side of the compressor to switch between the cooling operation state and the short-circuit operation state, and only this four-way valve is switched by a thermoswitch that detects the temperature on the evaporator side. The temperature on the evaporator side can be controlled to the set temperature while operating the compressor continuously, avoiding risks such as startup failures that occur when controlling the compressor on and off, and also ensuring that the temperature on the evaporator side does not drop below the set temperature. This eliminates the need for a heater because the cooling operation can be completely stopped when the thermoswitch is turned on or off. By reducing the differential, it becomes possible to frequently intermittent cooling operation, and the temperature of the load can always be maintained close to the set temperature, making it possible to perform more precise temperature control.

しかも、短絡運転状態において、液冷媒を含む
凝縮器および蒸発器の回路を圧縮機の短絡回路か
ら完全に切離すことができるため、圧縮機の大幅
な軽負荷運転が可能となり、消費電力を大幅に低
減できるものである。
Furthermore, in short-circuit operating conditions, the condenser and evaporator circuits containing liquid refrigerant can be completely disconnected from the short-circuit circuit of the compressor, making it possible to operate the compressor at a significantly lighter load, significantly reducing power consumption. This can be reduced to

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの考案の冷凍装置を液体クーラに適用
した場合の1実施例を示し、第1図は配管図、第
2図は使用状態の説明図、第3図は電気回路図で
ある。 1……圧縮機、2……凝縮器、5……蒸発器、
6……四方弁、16…サーモスイツチ。
The drawings show an embodiment in which the refrigeration system of this invention is applied to a liquid cooler; FIG. 1 is a piping diagram, FIG. 2 is an explanatory diagram of the state of use, and FIG. 3 is an electric circuit diagram. 1... Compressor, 2... Condenser, 5... Evaporator,
6... Four-way valve, 16... Thermo switch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機の吐出側と吸引側との間に、前記圧縮機
からの吐出ガスをすべて凝縮器および蒸発器に通
して前記吸引側に戻す冷却運転状態と前記圧縮機
からの吐出ガスをすべて直接前記吸引側に戻す短
絡運転状態とに切換自在の四方弁を設け、かつ、
前記蒸発器側の温度を検出し設定温度以下で動作
して前記四方弁のみを前記冷却運転状態から前記
短絡運転状態に切換えるサーモスイツチを設けた
冷凍装置。
Between the discharge side and the suction side of the compressor, there is a cooling operation state in which all the discharged gas from the compressor passes through a condenser and an evaporator and is returned to the suction side, and a cooling operation state in which all the discharged gas from the compressor is passed directly to the suction side. A four-way valve is provided that can freely switch between the short-circuit operating state and the return to the suction side, and
A refrigeration system comprising a thermoswitch that detects the temperature on the evaporator side and operates at a temperature below a set temperature to switch only the four-way valve from the cooling operation state to the short circuit operation state.
JP3604583U 1983-03-11 1983-03-11 Refrigeration equipment Granted JPS59142669U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3604583U JPS59142669U (en) 1983-03-11 1983-03-11 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3604583U JPS59142669U (en) 1983-03-11 1983-03-11 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS59142669U JPS59142669U (en) 1984-09-22
JPH0330766Y2 true JPH0330766Y2 (en) 1991-06-28

Family

ID=30166717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3604583U Granted JPS59142669U (en) 1983-03-11 1983-03-11 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS59142669U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995824B2 (en) * 1999-03-19 2007-10-24 株式会社Nttファシリティーズ air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198652A (en) * 1982-05-13 1983-11-18 日産自動車株式会社 Cooler cycle of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079048U (en) * 1973-11-19 1975-07-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198652A (en) * 1982-05-13 1983-11-18 日産自動車株式会社 Cooler cycle of air conditioner

Also Published As

Publication number Publication date
JPS59142669U (en) 1984-09-22

Similar Documents

Publication Publication Date Title
TW522214B (en) Temperature adjusting device for thermal fluid medium
JP2003148820A (en) Refrigerant circuit
JPH0330766Y2 (en)
JPS59200170A (en) Drain device for steam compression refrigerator and operation method thereof
JP3050114B2 (en) Control method of ice storage type chiller
JPS58179764A (en) Heat pump water heater
JPH0791776A (en) Cooler
JPH03211380A (en) Air conditioner
KR100643689B1 (en) Heat pump air-conditioner
JPH07305903A (en) Controller for freezer
JPH05308943A (en) Freezing equipment
JPH0260950B2 (en)
JP6327499B2 (en) Heat pump water heater
JPS5856529Y2 (en) Refrigeration equipment
JPH0233108Y2 (en)
KR0131267Y1 (en) Refrigerant quantity controlling apparatus for a refrigeration cycle
JPH09159210A (en) Cooling system
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPS6340758Y2 (en)
JP3229111B2 (en) Ice storage type air conditioner
JPH06313644A (en) Controlling method for very low temperature refrigerating plant
JPS61101739A (en) Method of cooling fluid
JPH0769086B2 (en) Heat pump system
JPS5950024B2 (en) water heater
JPS6129655A (en) Refrigerator