JPH05308943A - Freezing equipment - Google Patents

Freezing equipment

Info

Publication number
JPH05308943A
JPH05308943A JP11743892A JP11743892A JPH05308943A JP H05308943 A JPH05308943 A JP H05308943A JP 11743892 A JP11743892 A JP 11743892A JP 11743892 A JP11743892 A JP 11743892A JP H05308943 A JPH05308943 A JP H05308943A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
reheater
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11743892A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishikawa
弘 西川
Hiroshi Arai
博 新井
Kensuke Oka
健助 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11743892A priority Critical patent/JPH05308943A/en
Publication of JPH05308943A publication Critical patent/JPH05308943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a freezing equipment capable of improving drying ability and simultaneously carrying out good drying operation without increasing a charge amount of refrigeration medium. CONSTITUTION:In the objective freezing equipment connecting a compressor 1, a condenser 2, a receiver 3, an expanding valve 4 and an evaporator 5 through piping and simultaneously providing a reheater 6 side by side to the evaporator 5 and allowing the refrigeration medium to flow to both of the reheater 6 and evaporator 5 so as to dry the interior of a chamber, a three-way valve 7 is provided in a discharge piping of the compressor 1 and the three-way valve 7 is changed over in drying operation and a refrigeration medium discharged from the compressor 1 is made to flow in the order of the reheater 6, receiver 3 and evaporator 5 thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乾燥庫内に貯蔵された
魚類や麺類や農産物等を適温で冷風乾燥させるために使
用される冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus used to dry fish, noodles, agricultural products and the like stored in a drying cabinet at a suitable temperature with cold air.

【0002】[0002]

【従来の技術】従来、この種の冷凍装置は、特開平4−
43270号公報等に示される如く種々の冷凍回路が考
案されている。
2. Description of the Related Art Conventionally, a refrigerating apparatus of this type has been disclosed in Japanese Patent Laid-Open No.
Various refrigeration circuits have been devised as shown in Japanese Patent No. 43270.

【0003】例えば、図8に示すように圧縮機50、凝
縮器51、受液器52、膨張弁53、蒸発器54を配管
接続すると共に、前記蒸発器54に並設して再熱器55
を設け、更に、前記凝縮器51の出口から分岐して前記
再熱器55に接続される分岐管56を設けて構成されて
いる。また、前記分岐管56、受液器52の入口側、膨
張弁53の入口側には電磁弁57,58,59が設けら
れている。尚、図8において、破線内は室外ユニット
内、二点鎖線内は乾燥庫内を示し、60,61は逆止
弁、62は温度センサー、63は湿度センサー、64は
庫内の温度及び湿度を制御する制御装置を示す。
For example, as shown in FIG. 8, a compressor 50, a condenser 51, a liquid receiver 52, an expansion valve 53, and an evaporator 54 are connected by pipes, and a reheater 55 is installed in parallel with the evaporator 54.
And a branch pipe 56 branched from the outlet of the condenser 51 and connected to the reheater 55. Further, electromagnetic valves 57, 58 and 59 are provided on the branch pipe 56, the inlet side of the liquid receiver 52 and the inlet side of the expansion valve 53. In FIG. 8, the inside of the broken line indicates the inside of the outdoor unit, the inside of the chain double-dashed line indicates the inside of the drying cabinet, 60 and 61 are check valves, 62 is a temperature sensor, 63 is a humidity sensor, and 64 is the temperature and humidity inside the cabinet. 2 shows a control device for controlling.

【0004】そして、冷却運転時には、圧縮機50、凝
縮器51、受液器52、膨張弁53、蒸発器54の順で
冷媒を流して乾燥庫内の冷却を行う。
In the cooling operation, the refrigerant is flowed in the order of the compressor 50, the condenser 51, the liquid receiver 52, the expansion valve 53, and the evaporator 54 to cool the inside of the drying chamber.

【0005】また、乾燥運転時には、凝縮器51を出た
冷媒を分岐管56を介して再熱器55へ導入した後、受
液器52、蒸発器54の順で流し、前記再熱器55と蒸
発器54の双方に冷媒を流しつつ通風して庫内を乾燥す
る構成である。
During the drying operation, the refrigerant discharged from the condenser 51 is introduced into the reheater 55 through the branch pipe 56, and then the liquid receiver 52 and the evaporator 54 are flowed in this order to the reheater 55. And the evaporator 54 are made to flow while the refrigerant is flowing to dry the inside of the refrigerator.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の構
成によると乾燥運転時には、凝縮器51を出た冷媒が再
熱器55に流入することとなるため、再熱器55に流入
する冷媒の温度が低く、再熱器55による乾燥能力が不
足するという問題があった。
However, according to the above construction, during the drying operation, the refrigerant discharged from the condenser 51 flows into the reheater 55, so that the temperature of the refrigerant flowing into the reheater 55 is increased. There was a problem that the drying capacity of the reheater 55 was low, which was low.

【0007】また、乾燥運転時における冷媒の回収シス
テムがないため、冷却運転時に凝縮器51の出口側配管
にあった冷媒がそのまま残留してしまい冷媒チャージ量
を多く必要とするため、大容量の冷凍装置においては不
経済となるという問題があった。
Further, since there is no refrigerant recovery system during the dry operation, the refrigerant in the outlet side pipe of the condenser 51 remains as it is during the cooling operation, and a large amount of refrigerant charge is required, resulting in a large capacity. The refrigeration system has a problem of being uneconomical.

【0008】本発明は斯る点に鑑みなされたもので、乾
燥能力を向上できると共に、冷媒チャージ量も多くなる
ことがない良好な乾燥運転が行える冷凍装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a refrigerating apparatus which can improve the drying capacity and can perform a good drying operation without increasing the refrigerant charge amount.

【0009】[0009]

【課題を解決するための手段】本発明は、圧縮機、凝縮
器、受液器、減圧装置、蒸発器を配管接続すると共に、
前記蒸発器に並設して再熱器を設け、乾燥運転時には前
記再熱器と蒸発器の双方に冷媒を流して庫内を乾燥する
ようにした冷凍装置において、前記圧縮機の吐出配管に
三方弁を設け、乾燥運転時には三方弁を切替えて圧縮機
から吐出された冷媒を再熱器、受液器、蒸発器の順で流
す構成としたものである。
According to the present invention, a compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and
In the refrigerating apparatus in which a reheater is provided in parallel with the evaporator and the inside of the refrigerator is dried by flowing the refrigerant to both the reheater and the evaporator during the drying operation, in the discharge pipe of the compressor. A three-way valve is provided, and during the drying operation, the three-way valve is switched to allow the refrigerant discharged from the compressor to flow in the order of the reheater, the liquid receiver, and the evaporator.

【0010】また、圧縮機、凝縮器、受液器、減圧装
置、蒸発器を配管接続すると共に、前記蒸発器に並設し
て再熱器を設け、乾燥運転時には前記再熱器と蒸発器の
双方に冷媒を流して庫内を乾燥するようにした冷凍装置
において、前記圧縮機の吐出配管に三方弁を設けると共
に、この三方弁の出口配管と圧縮機の吸入配管とを接続
する冷媒回収配管を設け、乾燥運転時には三方弁を切替
えて圧縮機から吐出された冷媒を再熱器、受液器、蒸発
器の順で流すと共に、冷媒回収配管を介して凝縮器内に
残留した冷媒を回収する構成としたものである。
Further, a compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and a reheater is provided in parallel with the evaporator, and during the drying operation, the reheater and the evaporator. In a refrigerating device in which a refrigerant is allowed to flow in both sides to dry the inside of the refrigerator, a three-way valve is provided in the discharge pipe of the compressor, and a refrigerant recovery that connects the outlet pipe of the three-way valve and the suction pipe of the compressor A pipe is provided to switch the three-way valve during the drying operation to allow the refrigerant discharged from the compressor to flow in the order of the reheater, the liquid receiver, and the evaporator, and the refrigerant remaining in the condenser through the refrigerant recovery pipe. It is configured to be collected.

【0011】[0011]

【作用】本発明の冷凍装置は上記の構成により、乾燥運
転時には圧縮機から吐出された高温冷媒を直接に再熱器
に流入させることができ、乾燥能力を向上することがで
きる。特に、乾燥運転時に凝縮器を通過しない構成であ
るため、外気温の低い場合でも乾燥能力が低下するよう
なことはない。
With the above-described structure, the refrigerating apparatus of the present invention allows the high-temperature refrigerant discharged from the compressor to directly flow into the reheater during the drying operation, thereby improving the drying capacity. In particular, since the condenser does not pass through during the drying operation, the drying capacity does not decrease even when the outside air temperature is low.

【0012】また、三方弁の出口配管と圧縮機の吸入配
管とを接続する冷媒回収配管を設けているため、冷却運
転時に凝縮器にあった冷媒を乾燥運転サイクルに導入す
ることができ、凝縮器内の冷媒の残留を防ぐことができ
る。この結果、冷媒チャージ量を増加する必要はなくな
り、大容量の冷凍装置にも対応できる。
Further, since the refrigerant recovery pipe for connecting the outlet pipe of the three-way valve and the suction pipe of the compressor is provided, the refrigerant in the condenser during the cooling operation can be introduced into the dry operation cycle, and It is possible to prevent the refrigerant from remaining in the container. As a result, there is no need to increase the refrigerant charge amount, and a large capacity refrigeration system can be used.

【0013】[0013]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1に本発明の冷凍装置の冷媒回路を示
す。この装置は、圧縮機1、凝縮器2、受液器3、膨張
弁4、蒸発器5を配管接続すると共に、前記蒸発器5に
並設して再熱器6を設け、更に、前記圧縮機1の吐出側
に三方弁7を設け、この三方弁7から前記再熱器6を介
して受液器3に至る再熱回路8を設けて構成されてい
る。また、9は前記三方弁7と凝縮器2の間の配管から
分岐され電磁弁10、圧力調整弁11を介して圧縮機1
の吸入配管に接続された冷媒回収回路である。12は、
前記三方弁7の出口側の再熱回路8から分岐し電磁弁1
3を介して前記圧力調整弁10手前の冷媒回収回路9に
接続されたバイパス回路である。14は前記膨張弁4の
入口側に設けた電磁弁、15,16は逆止弁である。2
0,21は送風機である。26は三方弁7のパイロット
配管である。
FIG. 1 shows a refrigerant circuit of the refrigerating apparatus of the present invention. In this device, a compressor 1, a condenser 2, a liquid receiver 3, an expansion valve 4, and an evaporator 5 are connected by piping, and a reheater 6 is provided in parallel with the evaporator 5, and further, the compression is performed. A three-way valve 7 is provided on the discharge side of the machine 1, and a reheating circuit 8 from the three-way valve 7 to the liquid receiver 3 via the reheater 6 is provided. Further, 9 is branched from a pipe between the three-way valve 7 and the condenser 2 and is connected to the compressor 1 via a solenoid valve 10 and a pressure adjusting valve 11.
Is a refrigerant recovery circuit connected to the suction pipe of the. 12 is
The solenoid valve 1 is branched from the reheat circuit 8 on the outlet side of the three-way valve 7.
3 is a bypass circuit connected to the refrigerant recovery circuit 9 in front of the pressure regulating valve 10 via the bypass circuit 3. Reference numeral 14 is a solenoid valve provided on the inlet side of the expansion valve 4, and reference numerals 15 and 16 are check valves. Two
0 and 21 are blowers. Reference numeral 26 is a pilot pipe for the three-way valve 7.

【0015】また、図1において、破線内は室外ユニッ
ト内、二点鎖線内は乾燥庫内を示し、17は温度センサ
ー、18は湿度センサー、19は庫内の温度及び湿度を
制御する制御装置を示す。この制御装置19によって乾
燥庫内は収納物に応じて適正な温度、湿度に乾燥冷却さ
れる。
Further, in FIG. 1, the inside of the broken line shows the inside of the outdoor unit, the inside of the chain double-dashed line shows the inside of the drying cabinet, 17 is a temperature sensor, 18 is a humidity sensor, and 19 is a controller for controlling the temperature and humidity in the cabinet. Indicates. The inside of the drying cabinet is dried and cooled to an appropriate temperature and humidity according to the stored items by the control device 19.

【0016】このように構成された冷凍装置において、
冷却運転時には図2中太線で示す如く冷媒が循環する。
即ち、制御装置19にて三方弁7はOFF、電磁弁14
は開、電磁弁13は閉、電磁弁10は閉となるよう制御
され、圧縮機1から吐出された冷媒は、凝縮器2、受液
器3、膨張弁4、蒸発器5を順次流れて圧縮機1へ帰還
するサイクルを構成する。この結果、乾燥庫内は制御装
置19にて設定された温度に冷却される。
In the refrigerating apparatus constructed as above,
During the cooling operation, the refrigerant circulates as shown by the thick line in FIG.
That is, the control device 19 turns off the three-way valve 7 and turns off the solenoid valve 14.
Is controlled so that the solenoid valve 13 is closed, the solenoid valve 13 is closed, and the solenoid valve 10 is closed. The refrigerant discharged from the compressor 1 sequentially flows through the condenser 2, the liquid receiver 3, the expansion valve 4, and the evaporator 5. A cycle for returning to the compressor 1 is configured. As a result, the inside of the drying chamber is cooled to the temperature set by the controller 19.

【0017】次に、冷却運転から乾燥運転への切り替え
時は、図3中太線で示す如く冷媒が循環する。即ち、制
御装置19にて三方弁7はON、電磁弁14は開、電磁
弁13は閉、電磁弁10は開となるよう制御され、圧縮
機1から吐出された冷媒は、三方弁7を介して再熱回路
8へ流入し再熱器6、受液器3、膨張弁4、蒸発器5を
順次流れて圧縮機1へ帰還するサイクルを構成する。ま
た、電磁弁10が開となるため、冷媒回収回路12によ
り、冷却運転中に凝縮器2に残留していた冷媒を圧力を
調整しつつ少量づつ圧縮機1の吸入側に戻し、乾燥運転
での冷媒不足を解消するようにしている。ここで、前記
電磁弁10は一定時間だけ開状態を維持して残留冷媒の
全てが回収できるようにしている。そして、再熱器6と
蒸発器5との双方に冷媒が流通され、送風機20にて再
熱器6と蒸発機との双方が通風されて乾燥庫内は制御装
置19にて設定された温度及び湿度になるよう冷却乾燥
される。
Next, when switching from the cooling operation to the drying operation, the refrigerant circulates as indicated by the thick line in FIG. That is, the control device 19 controls the three-way valve 7 to be ON, the solenoid valve 14 to be opened, the solenoid valve 13 to be closed, and the solenoid valve 10 to be opened, so that the refrigerant discharged from the compressor 1 is controlled by the three-way valve 7. The reheat circuit 6, the liquid receiver 3, the expansion valve 4, and the evaporator 5 sequentially flow into the reheat circuit 8 to return to the compressor 1. Further, since the solenoid valve 10 is opened, the refrigerant recovery circuit 12 returns the refrigerant remaining in the condenser 2 during the cooling operation to the suction side of the compressor 1 little by little while adjusting the pressure, and the drying operation is performed. The shortage of refrigerant is solved. Here, the solenoid valve 10 is kept open for a fixed time so that all of the residual refrigerant can be collected. Then, the refrigerant is circulated through both the reheater 6 and the evaporator 5, both the reheater 6 and the evaporator are ventilated by the blower 20, and the temperature inside the drying chamber is set by the controller 19. And dried to humidity.

【0018】次に、乾燥運転時は、図4中太線で示す如
く冷媒が循環する。即ち、制御装置19にて三方弁7は
ON、電磁弁14は開、電磁弁13は閉、電磁弁10は
閉となるよう制御され、圧縮機1から吐出された冷媒
は、三方弁7を介して再熱回路8へ流入し再熱器6、受
液器3、膨張弁4、蒸発器5を順次流れて圧縮機1へ帰
還するサイクルを構成する。そして、再熱器6と蒸発器
5との双方に冷媒が流通され、送風機20にて再熱器6
と蒸発機との双方が通風されて乾燥庫内は制御装置19
にて設定された温度及び湿度になるよう冷却乾燥され
る。
Next, during the drying operation, the refrigerant circulates as indicated by the thick line in FIG. That is, the control device 19 controls the three-way valve 7 to be ON, the solenoid valve 14 to be open, the solenoid valve 13 to be closed, and the solenoid valve 10 to be closed, so that the refrigerant discharged from the compressor 1 is controlled by the three-way valve 7. The reheat circuit 6, the liquid receiver 3, the expansion valve 4, and the evaporator 5 sequentially flow into the reheat circuit 8 to return to the compressor 1. Then, the refrigerant is circulated through both the reheater 6 and the evaporator 5, and the blower 20 causes the reheater 6 to flow.
Both the air conditioner and the evaporator are ventilated so that the controller 19
It is cooled and dried so that the temperature and humidity set in step 1 are reached.

【0019】次に、乾燥運転から冷却運転への切り替え
時は、図5中太線で示す如く冷媒が循環する。即ち、制
御装置19にて三方弁7はOFF、電磁弁14は開、電
磁弁13は開、電磁弁10は閉となるよう制御され、圧
縮機1から吐出された冷媒は凝縮器2、受液器3、膨張
弁4、蒸発器5を順次流れて圧縮機1へ帰還する冷却サ
イクルを構成する。この際、電磁弁13が開となるた
め、バイパス回路12により、乾燥運転中に再熱器6に
残留していた冷媒を圧力を調整しつつ少量づつ圧縮機1
の吸入側に戻し、乾燥運転での冷媒不足を解消するよう
にしている。ここで、前記電磁弁13は一定時間だけ開
状態を維持して残留冷媒の全てが回収できるようにして
いる。そして、所定時間後に電磁弁13は閉となり、通
常の冷却運転のみとなる。
Next, when switching from the drying operation to the cooling operation, the refrigerant circulates as shown by the thick line in FIG. That is, the control device 19 controls the three-way valve 7 to be OFF, the solenoid valve 14 to be open, the solenoid valve 13 to be open, and the solenoid valve 10 to be closed, so that the refrigerant discharged from the compressor 1 is received by the condenser 2 and the receiver. A cooling cycle in which the liquid 3, the expansion valve 4, and the evaporator 5 sequentially flow and are returned to the compressor 1 is configured. At this time, since the solenoid valve 13 is opened, the bypass circuit 12 gradually adjusts the pressure of the refrigerant remaining in the reheater 6 during the drying operation while gradually compressing the refrigerant.
It is returned to the intake side to eliminate the shortage of refrigerant in the dry operation. Here, the solenoid valve 13 is kept open for a certain period of time so that all the residual refrigerant can be recovered. Then, the solenoid valve 13 is closed after a predetermined time, and only the normal cooling operation is performed.

【0020】以上の三方弁7及び電磁弁14,13,1
0の切り替えは、温度センサー17及び湿度センサー1
8からの信号を入力している制御装置19により自動的
に行われている。
The above three-way valve 7 and solenoid valves 14, 13, 1
To switch 0, the temperature sensor 17 and the humidity sensor 1
It is automatically performed by the control device 19 which is inputting the signal from 8.

【0021】このように制御された冷凍装置において、
乾燥運転時には三方弁7を切替えて圧縮機1から吐出さ
れた高温の冷媒を再熱器6に直に流入させ、この後、受
液器3、蒸発器5の順で流す構成としたので、乾燥運転
時には圧縮機1から吐出された高温冷媒を直接に再熱器
6に流入させることができ、乾燥能力を向上することが
できる。特に、乾燥運転時に凝縮器2を通過しない構成
であるため、外気温の低い場合でも乾燥能力が低下する
ようなことはない。
In the refrigerating apparatus thus controlled,
During the drying operation, the three-way valve 7 is switched to cause the high-temperature refrigerant discharged from the compressor 1 to directly flow into the reheater 6, and then the liquid receiver 3 and the evaporator 5 are flowed in this order. During the drying operation, the high temperature refrigerant discharged from the compressor 1 can directly flow into the reheater 6, and the drying capacity can be improved. In particular, since the condenser 2 does not pass through during the drying operation, the drying capacity does not decrease even when the outside air temperature is low.

【0022】また、三方弁7の出口配管と圧縮機1の吸
入配管とを接続する冷媒回収配管8を設けているため、
冷却運転時に凝縮器2にあった冷媒を乾燥運転サイクル
に導入することができ、凝縮器2内の冷媒の残留を防ぐ
ことができる。この結果、冷媒チャージ量を増加する必
要はなくなり、大容量の冷凍装置にも対応できる。
Further, since the refrigerant recovery pipe 8 for connecting the outlet pipe of the three-way valve 7 and the suction pipe of the compressor 1 is provided,
The refrigerant in the condenser 2 can be introduced into the drying operation cycle during the cooling operation, and the refrigerant in the condenser 2 can be prevented from remaining. As a result, there is no need to increase the refrigerant charge amount, and a large capacity refrigeration system can be used.

【0023】更に、三方弁7の出口側の再熱回路8から
分岐し電磁弁13を介して前記圧力調整弁10手前の冷
媒回収回路9に接続されるバイパス回路を設けているの
で、乾燥運転時に再熱器2にあった冷媒を冷却運転サイ
クルに導入することができ、再熱器6内の冷媒の残留を
防ぐことができる。この結果、冷媒チャージ量を増加す
る必要はなくなり、大容量の冷凍装置にも対応できる。
Further, since a bypass circuit is provided which branches from the reheat circuit 8 on the outlet side of the three-way valve 7 and is connected to the refrigerant recovery circuit 9 before the pressure regulating valve 10 via the solenoid valve 13, the dry operation is performed. At some times, the refrigerant present in the reheater 2 can be introduced into the cooling operation cycle, and the refrigerant remaining in the reheater 6 can be prevented from remaining. As a result, there is no need to increase the refrigerant charge amount, and a large capacity refrigeration system can be used.

【0024】また、上記のような冷媒回収は、凝縮器2
及び再熱器6の入口側から行うようにしているため、圧
縮機1に液冷媒が戻って液圧縮を起こすようなことはな
い。しかも、斯る冷媒回収運転は冷却或るいは乾燥運転
を継続しながら行えるため、省エネを促進できる。
The above-described refrigerant recovery is performed by the condenser 2
Moreover, since it is performed from the inlet side of the reheater 6, the liquid refrigerant does not return to the compressor 1 to cause liquid compression. Moreover, since such a refrigerant recovery operation can be performed while continuing the cooling or drying operation, energy saving can be promoted.

【0025】また、図6は他の実施例を示し、再熱回路
8における三方弁7と冷媒回収回路12の分岐点との間
に逆止弁25を設けたものであり、冷凍装置の停止時に
再熱器6からの冷媒の逆流を防止できるようにしてい
る。即ち、冷凍装置の停止時には、再熱器6の冷媒が圧
力差により三方弁7から三方弁7のパイロット配管26
を通って圧縮機1の吸入側にリークすることとなる。こ
の結果、圧縮機1の内部圧力は再熱器6内の圧力と同圧
になるまでリークが継続し、圧縮機1内に多量の冷媒が
寝込み、フォーミングや液圧縮の原因となる。そこで、
前記逆止弁25を設けることにより、冷凍装置の停止時
に再熱回路8、三方弁7、パイロット配管26を介して
圧縮機1の吸入側に冷媒がリークするのを防ぎ、フォー
ミングや液圧縮を防止するこができる。これにより、ポ
ンプダウン運転停止時における圧縮機1のON−OF回
数を低減できると共に、冷凍装置の長期間の停止が可能
となる。
FIG. 6 shows another embodiment, in which a check valve 25 is provided between the three-way valve 7 in the reheat circuit 8 and the branch point of the refrigerant recovery circuit 12 to stop the refrigeration system. At times, it is possible to prevent the backflow of the refrigerant from the reheater 6. That is, when the refrigeration system is stopped, the refrigerant in the reheater 6 is compressed by the pressure difference between the three-way valve 7 and the pilot pipe 26 of the three-way valve 7.
And leaks to the suction side of the compressor 1. As a result, leakage continues until the internal pressure of the compressor 1 becomes the same as the internal pressure of the reheater 6, and a large amount of refrigerant is trapped in the compressor 1 and causes forming and liquid compression. Therefore,
By providing the check valve 25, it is possible to prevent the refrigerant from leaking to the suction side of the compressor 1 through the reheat circuit 8, the three-way valve 7, and the pilot pipe 26 when the refrigeration system is stopped, and to prevent forming and liquid compression. It can be prevented. As a result, the number of ON-OFs of the compressor 1 when the pump down operation is stopped can be reduced, and the refrigeration system can be stopped for a long period of time.

【0026】尚、冷却運転時における再熱器6への冷媒
の流入は三方弁16が、乾燥運転時における凝縮器2へ
の冷媒の流入は三方弁15が各々防止している。
The three-way valve 16 prevents the refrigerant from flowing into the reheater 6 during the cooling operation, and the three-way valve 15 prevents the refrigerant from flowing into the condenser 2 during the drying operation.

【0027】更に、図7も他の実施例を示し、冷却運転
から乾燥運転を経て再び冷却運転する場合に、圧縮機
1、凝縮器2のファン21、三方弁7、各電磁弁14,
13,10を図7の如くON−OFF制御するよう構成
したものである。即ち、図3に示した冷却運転から乾燥
運転に切り替った際の冷媒回収運転時には、図1中のフ
ァン制御装置28の制御により、ファン21の回転数制
御を解除し、ファン21を全速で運転するようにしたも
のである。この結果、冷媒回収時における凝縮器2内の
急激な圧力低下を防止できる。即ち、冷却運転から乾燥
運転に切り替えた際の冷媒回収時には、凝縮器2内で冷
媒の沸騰蒸発が発生しや易く、凝縮器2のファン制御装
置28用のサーミスタ(温度検出用)取り付け部の温度
が低下することとなるため、ファン21の回転数が下が
ってしまい、凝縮器2内の圧力が急激に低下するという
問題を生ずる。この問題は、冷媒回収時間が長くなった
り、未回収冷媒が増加するといった弊害を及ぼす。そこ
で、本実施例では、冷却運転から乾燥運転に切り替った
際の冷媒回収運転時には、ファン21の回転数制御を解
除し、ファン21を全速で運転するようにして、凝縮器
2内の急激な圧力低下を防ぎ、定常的な冷媒回収を可能
とし、また、圧力調整弁11によって冷媒回収回路12
の圧力の安定化を図り、更に、未回収冷媒の低減により
冷媒チャージ量を減少させることができる。
Further, FIG. 7 also shows another embodiment, in which the compressor 1, the fan 21 of the condenser 2, the three-way valve 7, each solenoid valve 14, when the cooling operation is performed again through the drying operation, the cooling operation is performed again.
The components 13 and 10 are configured to be ON-OFF controlled as shown in FIG. That is, during the refrigerant recovery operation when the cooling operation shown in FIG. 3 is switched to the drying operation, the rotation speed control of the fan 21 is released by the control of the fan control device 28 in FIG. It was designed to drive. As a result, it is possible to prevent a sudden pressure drop in the condenser 2 during the recovery of the refrigerant. That is, at the time of refrigerant recovery when switching from the cooling operation to the drying operation, boiling evaporation of the refrigerant is likely to occur in the condenser 2 and the thermistor (for temperature detection) mounting portion for the fan control device 28 of the condenser 2 is installed. Since the temperature is reduced, the rotation speed of the fan 21 is reduced, which causes a problem that the pressure inside the condenser 2 is rapidly reduced. This problem has an adverse effect such that the refrigerant recovery time becomes long and the amount of uncollected refrigerant increases. Therefore, in the present embodiment, during the refrigerant recovery operation at the time of switching from the cooling operation to the drying operation, the rotation speed control of the fan 21 is released and the fan 21 is operated at the full speed so that the inside of the condenser 2 is rapidly operated. Pressure drop is prevented, steady refrigerant recovery is enabled, and the pressure control valve 11 allows the refrigerant recovery circuit 12 to operate.
It is possible to stabilize the pressure of and to reduce the amount of refrigerant charge by reducing the amount of uncollected refrigerant.

【0028】[0028]

【発明の効果】以上のように本発明によれば、乾燥運転
時には圧縮機から吐出された高温冷媒を直接に再熱器に
流入させることができ、乾燥能力を向上することができ
る。特に、乾燥運転時に凝縮器を通過しない構成である
ため、外気温の低い場合でも乾燥能力が低下するような
ことはない。
As described above, according to the present invention, the high-temperature refrigerant discharged from the compressor can directly flow into the reheater during the drying operation, and the drying capacity can be improved. In particular, since the condenser does not pass through during the drying operation, the drying capacity does not decrease even when the outside air temperature is low.

【0029】また、三方弁の出口配管と圧縮機の吸入配
管とを接続する冷媒回収配管を設けているため、冷却運
転時に凝縮器にあった冷媒を乾燥運転サイクルに導入す
ることができ、凝縮器内の冷媒の残留を防ぐことができ
る。この結果、冷媒チャージ量を増加する必要はなくな
り、大容量の冷凍装置にも対応できる。
Further, since the refrigerant recovery pipe for connecting the outlet pipe of the three-way valve and the suction pipe of the compressor is provided, the refrigerant in the condenser can be introduced into the drying operation cycle during the cooling operation, and It is possible to prevent the refrigerant from remaining in the container. As a result, there is no need to increase the refrigerant charge amount, and a large capacity refrigeration system can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing a refrigerating apparatus of the present invention.

【図2】冷却運転時の冷媒循環を示す冷媒回路図であ
る。
FIG. 2 is a refrigerant circuit diagram showing refrigerant circulation during a cooling operation.

【図3】冷却運転から乾燥運転への切替時の冷媒循環を
示す冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram showing refrigerant circulation at the time of switching from the cooling operation to the drying operation.

【図4】乾燥運転時の冷媒循環を示す冷媒回路図であ
る。
FIG. 4 is a refrigerant circuit diagram showing refrigerant circulation during a drying operation.

【図5】乾燥運転から冷却運転への切替時の冷媒循環を
示す冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram showing refrigerant circulation at the time of switching from the drying operation to the cooling operation.

【図6】他の実施例の冷凍装置を示す冷媒回路図であ
る。
FIG. 6 is a refrigerant circuit diagram showing a refrigeration system of another embodiment.

【図7】他の実施例の冷凍装置の制御を示す説明ずであ
る。
FIG. 7 is an explanatory view showing the control of the refrigeration system of another embodiment.

【図8】従来例の冷凍装置を示す冷媒回路図である。FIG. 8 is a refrigerant circuit diagram showing a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 受液器 4 膨張弁 5 蒸発器 6 再熱器 7 三方弁 8 再熱回路 9 冷媒回収回路 12 バイパス回路 1 Compressor 2 Condenser 3 Liquid receiver 4 Expansion valve 5 Evaporator 6 Reheater 7 Three-way valve 8 Reheat circuit 9 Refrigerant recovery circuit 12 Bypass circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、受液器、減圧装置、蒸
発器を配管接続すると共に、前記蒸発器に並設して再熱
器を設け、乾燥運転時には前記再熱器と蒸発器の双方に
冷媒を流して庫内を乾燥するようにした冷凍装置におい
て、前記圧縮機の吐出配管に三方弁を設け、乾燥運転時
には三方弁を切替えて圧縮機から吐出された冷媒を再熱
器、受液器、蒸発器の順で流す構成としたことを特徴と
する冷凍装置。
1. A compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and a reheater is provided in parallel with the evaporator, and the reheater and the evaporator are provided during a drying operation. In a refrigerating apparatus in which a refrigerant is allowed to flow in both sides to dry the inside of the refrigerator, a three-way valve is provided in the discharge pipe of the compressor, and the three-way valve is switched during the drying operation to reheat the refrigerant discharged from the compressor. A refrigerating device characterized in that the flow is performed in the order of the liquid receiver, the evaporator, and the evaporator.
【請求項2】 圧縮機、凝縮器、受液器、減圧装置、蒸
発器を配管接続すると共に、前記蒸発器に並設して再熱
器を設け、乾燥運転時には前記再熱器と蒸発器の双方に
冷媒を流して庫内を乾燥するようにした冷凍装置におい
て、前記圧縮機の吐出配管に三方弁を設けると共に、こ
の三方弁の出口配管と圧縮機の吸入配管とを接続する冷
媒回収配管を設け、乾燥運転時には三方弁を切替えて圧
縮機から吐出された冷媒を再熱器、受液器、蒸発器の順
で流すと共に、冷媒回収配管を介して凝縮器内に残留し
た冷媒を回収する構成としたことを特徴とする冷凍装
置。
2. A compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and a reheater is provided in parallel with the evaporator, and the reheater and the evaporator are provided during a drying operation. In a refrigerating device in which a refrigerant is allowed to flow in both sides to dry the inside of the refrigerator, a three-way valve is provided in the discharge pipe of the compressor, and a refrigerant recovery that connects the outlet pipe of the three-way valve and the suction pipe of the compressor A pipe is provided to switch the three-way valve during the drying operation to allow the refrigerant discharged from the compressor to flow in the order of the reheater, the liquid receiver, and the evaporator, and the refrigerant remaining in the condenser through the refrigerant recovery pipe. A refrigerating apparatus having a structure for collecting.
JP11743892A 1992-05-11 1992-05-11 Freezing equipment Pending JPH05308943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11743892A JPH05308943A (en) 1992-05-11 1992-05-11 Freezing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11743892A JPH05308943A (en) 1992-05-11 1992-05-11 Freezing equipment

Publications (1)

Publication Number Publication Date
JPH05308943A true JPH05308943A (en) 1993-11-22

Family

ID=14711656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11743892A Pending JPH05308943A (en) 1992-05-11 1992-05-11 Freezing equipment

Country Status (1)

Country Link
JP (1) JPH05308943A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151467A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Cold air dryer
JPH11142017A (en) * 1997-11-13 1999-05-28 Mitsubishi Electric Corp Air conditioner
JPWO2019038797A1 (en) * 2017-08-21 2020-03-26 三菱電機株式会社 Air conditioner and expansion valve unit
KR102177470B1 (en) * 2020-05-06 2020-11-11 이건수 Multifunctional freezer
CN115978879A (en) * 2023-03-21 2023-04-18 昆明理工大学 High-efficient roast room-freezer coupled system
CN116007306A (en) * 2022-03-29 2023-04-25 云南师范大学 High and cold region heat pump drying system with solar energy and rotating wheel dehumidification grading energy supplementing function

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151467A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Cold air dryer
JPH11142017A (en) * 1997-11-13 1999-05-28 Mitsubishi Electric Corp Air conditioner
JPWO2019038797A1 (en) * 2017-08-21 2020-03-26 三菱電機株式会社 Air conditioner and expansion valve unit
KR102177470B1 (en) * 2020-05-06 2020-11-11 이건수 Multifunctional freezer
CN116007306A (en) * 2022-03-29 2023-04-25 云南师范大学 High and cold region heat pump drying system with solar energy and rotating wheel dehumidification grading energy supplementing function
CN116007306B (en) * 2022-03-29 2023-09-19 云南师范大学 High and cold region heat pump drying system with solar energy and rotating wheel dehumidification grading energy supplementing function
CN115978879A (en) * 2023-03-21 2023-04-18 昆明理工大学 High-efficient roast room-freezer coupled system
CN115978879B (en) * 2023-03-21 2023-06-13 昆明理工大学 Efficient curing barn-freezer coupling system

Similar Documents

Publication Publication Date Title
KR100888384B1 (en) System and method for controlling an economizer circuit
KR19990066854A (en) Control method of air conditioner and its control device
JPH11304329A (en) Cooling operation controller of refrigerator
JP3576040B2 (en) Cooling systems and refrigerators
JPH05308943A (en) Freezing equipment
JP2835780B2 (en) Thermal shock test equipment
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JP3182206B2 (en) Refrigeration equipment
JP3594570B2 (en) Two-stage compression type compressor and refrigeration system using the same
JP3348465B2 (en) Binary refrigeration equipment
JP3021987B2 (en) Refrigeration equipment
JP4248726B2 (en) Hot gas defrosting type refrigerator-freezer
JPH09210515A (en) Refrigerating device
JPH07305903A (en) Controller for freezer
JPH05312440A (en) Freezer
JPH09318229A (en) Refrigerating device
JP2003139459A (en) Refrigerator
JPH1151503A (en) Cooling apparatus
JPH06241583A (en) Freezer device
JPH08313121A (en) Refrigerating device
JPH07127935A (en) Cascade freezing device
JPH08193757A (en) Freezer device
JP2686128B2 (en) Refrigeration equipment
JP2927230B2 (en) Binary refrigeration equipment
JPH03156251A (en) Liquid injection control device