JPH1151503A - Cooling apparatus - Google Patents

Cooling apparatus

Info

Publication number
JPH1151503A
JPH1151503A JP22087697A JP22087697A JPH1151503A JP H1151503 A JPH1151503 A JP H1151503A JP 22087697 A JP22087697 A JP 22087697A JP 22087697 A JP22087697 A JP 22087697A JP H1151503 A JPH1151503 A JP H1151503A
Authority
JP
Japan
Prior art keywords
water
air
refrigerant
cooling
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22087697A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Nakamura
光良 中村
Minoru Okajima
稔 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22087697A priority Critical patent/JPH1151503A/en
Publication of JPH1151503A publication Critical patent/JPH1151503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an excess state of a refrigerant in a refrigerant circuit and realize stable cooling operation even in the case of any mode in a cooling apparatus which has both of an air-cooling condenser and a water-cooling condenser, and in which an air/water-cooling mode and water-cooling mode are selectively made possible. SOLUTION: This cooling apparatus 1 has a compressor 2, a condensing unit C, an expansion valve 10 and a cooler 11, which are connected to one another with pipings successively in the form of a ring. The condensing unit C is composed of an air-cooling condenser 3, which is air-cooled by a blower 4, and a water-cooling condenser 5, which is water-cooled by circulating water, and an air/water-cooling mode operating the blower 4 and a water-cooling mode stopping the operation of the blower 4 are selectively made practicable. The cooling apparatus includes a receiver tank 7 positioned between the condensing unit C and the expansion valve 10 and connected to both of them by pipings, a bypass piping 14 arranged in parallel with the receiver tank 7, and a three-way valve 6 for controlling whether a refrigerant discharged from the condensing unit C is caused to flow into the receiver tank 7 or to flow through the bypass piping 14. With the aid of this three-way valve 6, the refrigerant is caused to flow through the bypass piping 14 in the air/water-cooling mode, and it is caused to flow into the receiver tank 7 in the water-cooling mode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は製氷機や冷却貯蔵庫
などに用いられる冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device used for an ice machine, a cooling storage, or the like.

【0002】[0002]

【従来の技術】従来より例えば製氷機に採用される冷却
装置は、圧縮機、凝縮器、減圧装置及び冷却器等を配管
により順次環状に接続して冷媒回路を形成すると共に、
この冷媒回路内には所定量の冷媒が封入されて構成され
ている。そして、圧縮機が運転されると、冷媒は圧縮さ
れて高温高圧のガス状態となり、凝縮器に流入する。凝
縮器において冷媒は放熱し、凝縮液化した後、減圧装置
にて減圧され、冷却器に供給される。冷却器内において
は減圧された後の液冷媒が蒸発し、そのときに周囲から
吸熱することにより冷却作用を発揮するものである。
2. Description of the Related Art Conventionally, for example, a cooling device employed in an ice making machine includes a compressor, a condenser, a decompression device, a cooler, and the like, which are sequentially connected in a ring form by piping to form a refrigerant circuit.
A predetermined amount of refrigerant is sealed in the refrigerant circuit. Then, when the compressor is operated, the refrigerant is compressed into a high-temperature and high-pressure gas state and flows into the condenser. The refrigerant radiates heat in the condenser and is condensed and liquefied. In the cooler, the liquid refrigerant after being decompressed evaporates, and at that time, absorbs heat from the surroundings to exert a cooling effect.

【0003】例えば、実開平5−19878号公報(F
25C5/18)に示す如き製氷機では、空冷のみで冷
媒の放熱を行う凝縮器が設置されていた。この空冷のみ
で冷媒を放熱させる凝縮器からは、熱風が生じるため、
製氷機外に熱い空気が排出され、製氷機周辺が熱くな
り、厨房などの作業環境が悪化する問題が生じていた。
For example, Japanese Utility Model Laid-Open No. 5-19878 (F
In an ice making machine as shown in FIG. 25C5 / 18), a condenser for releasing heat of the refrigerant only by air cooling is installed. Since hot air is generated from the condenser that releases the refrigerant only by this air cooling,
Hot air is discharged outside the ice maker, and the area around the ice maker becomes hot, causing a problem that the working environment such as a kitchen deteriorates.

【0004】そのため、図3に示す如く、空冷で冷媒の
放熱を行う凝縮器(以下、空冷式凝縮器と称す)と水冷
で冷媒の放熱を行う凝縮器(以下、水冷式凝縮器と称
す)を併せ持つ冷却装置が考えられている。即ち、係る
冷却装置100は、圧縮機2、空冷式凝縮器3、水冷式
凝縮器5、ドライヤ9、膨張弁10、冷却器11などを
配管により順次環状に接続して冷媒回路を形成すると共
に、この冷媒回路内には所定量の冷媒を封入して冷凍サ
イクルが構成されている。尚、この場合、圧縮機2から
吐出された冷媒は最初空冷式凝縮器3に出た後、再び圧
縮機2に戻り、再度空冷式凝縮器3に吐出されて後段の
回路に流れる。
Therefore, as shown in FIG. 3, a condenser that radiates the refrigerant by air cooling (hereinafter referred to as an air-cooled condenser) and a condenser that radiates the refrigerant by water cooling (hereinafter referred to as a water-cooled condenser). A cooling device having both of them has been considered. That is, the cooling device 100 forms a refrigerant circuit by sequentially connecting the compressor 2, the air-cooled condenser 3, the water-cooled condenser 5, the dryer 9, the expansion valve 10, the cooler 11, and the like in a ring shape by piping. A refrigeration cycle is configured by filling a predetermined amount of refrigerant in the refrigerant circuit. In this case, the refrigerant discharged from the compressor 2 first flows out to the air-cooled condenser 3 and then returns to the compressor 2 again, is discharged to the air-cooled condenser 3 again, and flows to the subsequent circuit.

【0005】このような構成で、氷を多く使用する繁忙
期には、冷却装置100は空・水冷モードとなる。この
空・水冷モードでは送風機4が運転されると共に、水冷
式凝縮器5には冷却水が循環される。そして、圧縮機2
が運転されると、冷媒は圧縮されて高温高圧のガス状態
となり、空冷式凝縮器3に流入する。空冷式凝縮器3に
おいては送風機4により空冷され、冷媒は放熱し、一端
圧縮機2に戻って圧縮機2の温度を下げた後、再び空冷
式凝縮器3に吐出される。そして、同様に空冷された
後、さらに水冷式凝縮器5に流入して循環水により冷却
されて放熱する。これらにて凝縮液化した液冷媒は、膨
張弁10にて減圧され、冷却器11に供給される。そし
て、この冷却器11内において液冷媒は蒸発し、そのと
きに周囲から吸熱することにより冷却作用を発揮するも
のである。
[0005] With such a configuration, during a busy season when a lot of ice is used, the cooling device 100 is in the air / water cooling mode. In the air / water cooling mode, the blower 4 is operated, and the cooling water is circulated through the water-cooled condenser 5. And the compressor 2
Is operated, the refrigerant is compressed into a high-temperature and high-pressure gas state, and flows into the air-cooled condenser 3. In the air-cooled condenser 3, the air is cooled by the blower 4, the refrigerant radiates heat, returns to the compressor 2 once, lowers the temperature of the compressor 2, and is discharged to the air-cooled condenser 3 again. After being similarly cooled by air, it further flows into the water-cooled condenser 5 and is cooled by the circulating water to radiate heat. The liquid refrigerant condensed and liquefied by these is decompressed by the expansion valve 10 and supplied to the cooler 11. Then, the liquid refrigerant evaporates in the cooler 11 and at that time absorbs heat from the surroundings to exert a cooling function.

【0006】また、係る繁忙期以外の期間、冷却装置1
00を水冷モードとする。この水冷モードでは水冷式凝
縮器5に冷却水が循環されるものの、送風機4は停止さ
れる。従って、上記の如き冷媒循環において、圧縮機2
から吐出された冷媒は空冷式凝縮器3を通過した後、専
ら水冷式凝縮器5にて放熱し、凝縮されるようになる。
即ち、空冷式凝縮器3からの熱風が停止することによ
り、前述の如き作業環境の悪化は改善される。
In addition, during periods other than the busy season, the cooling device 1
00 is a water cooling mode. In this water-cooling mode, the cooling water is circulated through the water-cooled condenser 5, but the blower 4 is stopped. Therefore, in the refrigerant circulation as described above, the compressor 2
After passing through the air-cooled condenser 3, the refrigerant discharged from is discharged by the water-cooled condenser 5 exclusively and condensed.
That is, by stopping the hot air from the air-cooled condenser 3, the deterioration of the working environment as described above is improved.

【0007】[0007]

【発明が解決しようとする課題】ところで、係る冷却装
置100では空冷式凝縮器3と水冷式凝縮器5が併用さ
れるため、冷媒の封入量もそれに見合った量に設定され
る。従って、水冷モードとなり、水冷式凝縮器5だけで
冷媒を凝縮させるようになると、空冷式凝縮器3は冷媒
が通過するだけとなるので、冷媒回路中に冷媒が過剰に
存在する状態になり、運転状態が不安定となり、最悪の
場合には圧縮機2に液戻りが発生する危険性がある。ま
た、水冷式凝縮器5における消費水量も多くなる。
In the cooling device 100, since the air-cooled condenser 3 and the water-cooled condenser 5 are used in combination, the amount of the charged refrigerant is set to an appropriate amount. Accordingly, when the mode is set to the water-cooled mode, and the refrigerant is condensed only by the water-cooled condenser 5, the air-cooled condenser 3 only allows the refrigerant to pass therethrough, so that the refrigerant is excessively present in the refrigerant circuit, The operating state becomes unstable, and in the worst case, there is a risk that the liquid returns to the compressor 2. In addition, the amount of water consumed in the water-cooled condenser 5 increases.

【0008】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、空冷式凝縮器と水冷式凝
縮器を備え、空・水冷モードと水冷モードとを選択的に
実行可能とされた冷却装置において、冷媒回路中の冷媒
過剰状態の解消を図り、何れのモードにおいても安定し
た冷却運転を実現することを目的とする。
The present invention has been made to solve the above-mentioned conventional technical problem, and comprises an air-cooled condenser and a water-cooled condenser, and selectively executes an air / water-cooled mode and a water-cooled mode. An object of the present invention is to eliminate a state of excess refrigerant in a refrigerant circuit and realize a stable cooling operation in any mode in a cooling device made possible.

【0009】[0009]

【課題を解決するための手段】本発明の冷却装置は、圧
縮機、凝縮装置、減圧装置及び冷却器を順次環状に配管
接続すると共に、凝縮装置を、送風機にて空冷される空
冷式凝縮器と、循環水にて冷却される水冷式凝縮器とか
ら構成し、前記送風機を運転する空・水冷モードと、前
記送風機を停止する水冷モードとを選択的に実行可能と
されたものであって、凝縮装置と減圧装置の間に配管接
続されたレシーバータンクと、このレシーバータンクに
並列接続されたバイパス配管と、凝縮装置から出た冷媒
をレシーバータンクに流すが、バイパス配管に流すかを
制御する弁装置とを備え、この弁装置により、前記空・
水冷モードでは冷媒を前記バイパス配管に流すと共に、
前記水冷モードでは冷媒を前記レシーバータンクに流す
ものである。
According to the cooling apparatus of the present invention, a compressor, a condenser, a pressure reducing apparatus, and a cooler are sequentially connected in an annular pipe, and the condenser is air-cooled by a blower. And a water-cooled condenser cooled by circulating water, wherein an air / water cooling mode for operating the blower and a water cooling mode for stopping the blower can be selectively executed. A receiver tank connected to a pipe between the condenser and the decompression device, a bypass pipe connected in parallel to the receiver tank, and a controller that controls whether refrigerant flowing from the condenser flows to the receiver tank but flows to the bypass pipe. And a valve device.
In the water cooling mode, the refrigerant flows through the bypass pipe,
In the water cooling mode, the refrigerant flows into the receiver tank.

【0010】本発明によれば、圧縮機、凝縮装置、減圧
装置及び冷却器を順次環状に配管接続すると共に、凝縮
装置を、送風機にて空冷される空冷式凝縮器と、循環水
にて冷却される水冷式凝縮器とから構成し、送風機を運
転する空・水冷モードと、送風機を停止する水冷モード
とを選択的に実行可能とされた冷却装置において、凝縮
装置と減圧装置の間にレシーバータンクを配管接続し、
このレシーバータンクにはバイパス配管を並列接続する
と共に、凝縮装置から出た冷媒をレシーバータンクに流
すが、バイパス配管に流すかを制御する弁装置を設け、
この弁装置により、空・水冷モードでは冷媒をバイパス
配管に流し、水冷モードでは冷媒をレシーバータンクに
流すように構成したので、空・水冷モードでは規定量の
冷媒を循環させつつ、水冷モードに切り替わった際には
レシーバータンクに冷媒を蓄え、その際に発生する冷媒
過剰状態を解消することができるようになる。
According to the present invention, a compressor, a condenser, a decompression device, and a cooler are sequentially connected in an annular pipe, and the condenser is cooled by an air-cooled condenser that is air-cooled by a blower, and cooled by circulating water. And a water-cooled condenser that is selectively operated in an air / water cooling mode for operating the blower and a water-cooling mode for stopping the blower. Connect the tank with piping,
In this receiver tank, a bypass pipe is connected in parallel, and the refrigerant flowing from the condensing device flows to the receiver tank, but a valve device is provided to control whether to flow to the bypass pipe,
With this valve device, in the air / water cooling mode, the refrigerant flows to the bypass pipe, and in the water cooling mode, the refrigerant flows to the receiver tank.Therefore, the air / water cooling mode switches to the water cooling mode while circulating a specified amount of the refrigerant. In this case, the refrigerant is stored in the receiver tank, and the excess refrigerant state generated at that time can be eliminated.

【0011】これにより、空・水冷モードと水冷モード
の何れにおいても安定した冷却運転を実現することがで
きるようになると共に、水冷式凝縮器における消費水量
の削減も図れるものである。
Thus, a stable cooling operation can be realized in both the air / water cooling mode and the water cooling mode, and the amount of water consumption in the water-cooled condenser can be reduced.

【0012】請求項2の発明の冷却装置は、請求項1の
発明に加えて、レシーバータンクの出口に減圧装置方向
を順方向とする逆止弁を設けると共に、バイパス配管は
前記レシーバータンクと逆止弁に対して並列に接続され
ているものである。
According to a second aspect of the present invention, in addition to the first aspect of the present invention, a check valve is provided at an outlet of the receiver tank so that a direction of the pressure reducing device is set to a forward direction, and a bypass pipe is provided opposite to the receiver tank. It is connected in parallel to the stop valve.

【0013】請求項2の発明によれば、請求項1の発明
に加えてレシーバータンクの出口に減圧装置方向を順方
向とする逆止弁を設けると共に、バイパス配管はレシー
バータンクと逆止弁に対して並列に接続したので、水冷
モードにおいてバイパス配管の出口からレシーバータン
クに逆流する冷媒を確実に阻止することができるように
なる。
According to the second aspect of the present invention, in addition to the first aspect of the present invention, a check valve is provided at the outlet of the receiver tank so that the direction of the pressure reducing device is forward, and the bypass pipe is provided between the receiver tank and the check valve. On the other hand, since they are connected in parallel, it is possible to reliably prevent the refrigerant flowing backward from the outlet of the bypass pipe to the receiver tank in the water cooling mode.

【0014】これにより、空・水冷モードにおける冷却
運転をより一層安定化させることができるようになるも
のである。
Thus, the cooling operation in the air / water cooling mode can be further stabilized.

【0015】[0015]

【発明の実施の形態】次に、図面に基づき本発明の実施
形態を詳述する。図1は本発明の実施例の冷却装置1の
冷媒回路図である。尚、この図において図3と同一符号
で示すものは同一とする。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a cooling device 1 according to an embodiment of the present invention. In this figure, the components denoted by the same reference numerals as those in FIG. 3 are the same.

【0016】実施例の冷却装置1は、例えば自動製氷機
に採用されるものであり、圧縮機2と、凝縮装置Cを構
成する空冷式凝縮器3及び水冷式凝縮器5と、三方弁6
と、レシーバータンク7と、逆止弁8と、ドライヤ9
と、減圧装置としての膨張弁10と、冷却器11とを配
管12により順次環状に接続して冷媒回路が形成される
と共に、回路内には所定量の冷媒が封入されている。ま
た、空冷式凝縮器3の近傍には、送風機4が設置されて
おり、水冷式凝縮器5には、冷却水が循環される構造と
されている。また、逆止弁8は膨張弁10側を順方向と
されている。
The cooling device 1 of the embodiment is, for example, employed in an automatic ice maker, and includes a compressor 2, an air-cooled condenser 3 and a water-cooled condenser 5 constituting a condenser C, and a three-way valve 6
, Receiver tank 7, check valve 8, dryer 9
An expansion valve 10 as a pressure reducing device and a cooler 11 are sequentially connected in a ring shape by a pipe 12 to form a refrigerant circuit, and a predetermined amount of refrigerant is sealed in the circuit. A blower 4 is installed near the air-cooled condenser 3, and the water-cooled condenser 5 has a structure in which cooling water is circulated. The check valve 8 is directed forward on the expansion valve 10 side.

【0017】尚、この場合、圧縮機2から吐出された冷
媒は最初空冷式凝縮器3に出た後、再び圧縮機2に戻
り、再度空冷式凝縮器3に吐出されて後段の回路に流れ
る。また、レシーバータンク7は三方弁6の一方の出口
に接続され、三方弁6の他方の出口にはバイパス配管1
4が接続されている。そして、このバイパス配管14
は、レシーバータンク7と逆止弁8の直列回路に並列に
接続されている。三方弁6は冷媒をレシーバータンク7
側に流すかバイパス配管14側に流すかを制御する弁装
置である。そして、冷却器11により製氷機の製氷部を
冷却し、自動製氷を行うものである。
In this case, the refrigerant discharged from the compressor 2 first flows out to the air-cooled condenser 3 and then returns to the compressor 2 again, is discharged to the air-cooled condenser 3 again, and flows to the subsequent circuit. . The receiver tank 7 is connected to one outlet of the three-way valve 6, and the other outlet of the three-way valve 6 is connected to a bypass pipe 1.
4 are connected. And this bypass pipe 14
Are connected in parallel to a series circuit of the receiver tank 7 and the check valve 8. The three-way valve 6 supplies the refrigerant to the receiver tank 7
This is a valve device that controls whether to flow to the side or to the bypass pipe 14 side. Then, the ice making section of the ice making machine is cooled by the cooler 11 to perform automatic ice making.

【0018】以上の構成により、動作を説明する。冷却
装置1は空・水冷モードと水冷モードとを選択的に実行
可能とされている。そして、例えば氷を多く使用する製
氷機の繁忙期には冷却装置1は空・水冷モードとされ
る。
The operation of the above configuration will be described. The cooling device 1 can selectively execute an air / water cooling mode and a water cooling mode. Then, for example, during the busy season of an ice maker that uses a lot of ice, the cooling device 1 is set to the air / water cooling mode.

【0019】この空・水冷モードでは前記送風機4が運
転されると共に、水冷式凝縮器5に冷却水が循環され
る。また、三方弁6はバイパス配管14側に連通するよ
う流路を切り換えている(図1)。そして、圧縮機2が
運転されると、圧縮吐出された高温高圧のガス冷媒は、
空冷式凝縮器3に流入する。そして、空冷された後一旦
圧縮機2に戻り、圧縮機2を冷却しつつ、再び吐出され
て空冷式凝縮器3に入る。そこで高温冷媒は送風機4の
送風により空冷され、次に、水冷式凝縮器5に流入し
て、そこに循環する冷却水により冷却され、放熱して凝
縮液化する。
In the air / water cooling mode, the blower 4 is operated and cooling water is circulated through the water-cooled condenser 5. The three-way valve 6 switches the flow path so as to communicate with the bypass pipe 14 (FIG. 1). When the compressor 2 is operated, the compressed and discharged high-temperature and high-pressure gas refrigerant is
It flows into the air-cooled condenser 3. Then, after being cooled by air, the compressor 2 is once returned to the compressor 2, and is discharged again into the air-cooled condenser 3 while cooling the compressor 2. Then, the high-temperature refrigerant is air-cooled by the air blower 4 and then flows into the water-cooled condenser 5 where it is cooled by the cooling water circulating there, and radiates heat to condense and liquefy.

【0020】このとき、三方弁6は前述の如くバイパス
配管14側に連通しており、空冷式凝縮器3、水冷式凝
縮器5にて凝縮された液冷媒は、三方弁6を経て、バイ
パス配管14を通過し、ドライヤ9にて水分を除去され
る。尚、逆止弁8はレシーバータンク7から膨張弁10
方向を順方向とされているので、バイパス配管14から
出た冷媒がレシーバータンク7に逆流することは無い。
At this time, the three-way valve 6 communicates with the bypass pipe 14 as described above, and the liquid refrigerant condensed in the air-cooled condenser 3 and the water-cooled condenser 5 passes through the three-way valve 6 and bypasses. After passing through the pipe 14, moisture is removed by the dryer 9. The check valve 8 is connected to the receiver tank 7 by the expansion valve 10.
Since the direction is set to the forward direction, the refrigerant flowing out of the bypass pipe 14 does not flow backward to the receiver tank 7.

【0021】液冷媒はその後膨張弁10で減圧された
後、冷却器11に流入して蒸発する。このとき生ずる吸
熱作用により冷却器11の温度は低下し、製氷機の製氷
部にて氷を生成する。そして、冷却器11を出た低温ガ
ス冷媒は配管12を通って圧縮機2に帰還する。
After the pressure of the liquid refrigerant is reduced by the expansion valve 10, the liquid refrigerant flows into the cooler 11 and evaporates. At this time, the temperature of the cooler 11 decreases due to the heat absorbing action, and ice is generated in the ice making section of the ice making machine. Then, the low-temperature gas refrigerant that has exited the cooler 11 returns to the compressor 2 through the pipe 12.

【0022】次に、上記繁忙期以外の時間帯では冷却装
置1は水冷モードとされる。この水冷モードでは送風機
4は停止されるが、冷却水は循環される。また、三方弁
6はレシーバータンク7に連通するよう流路を切り換え
る(図2)。そして、圧縮機2が運転されると、圧縮吐
出された高温高圧のガス冷媒は、前述の順序で空冷式凝
縮器3内を通過した後、水冷式凝縮器5に流入して、循
環水により冷却され、放熱して凝縮液化する。このモー
ドでは、三方弁6はレシーバータンク7側に連通してお
り、水冷式凝縮器5にて冷却された液冷媒は、三方弁6
を経て、レシーバータンク7に流入する。そして、レシ
ーバータンク7に一旦貯留され、液冷媒のみが流出して
逆止弁8を通過する。
Next, in a time zone other than the busy season, the cooling device 1 is set to the water cooling mode. In this water cooling mode, the blower 4 is stopped, but the cooling water is circulated. Further, the three-way valve 6 switches the flow path so as to communicate with the receiver tank 7 (FIG. 2). When the compressor 2 is operated, the compressed and discharged high-temperature and high-pressure gas refrigerant passes through the air-cooled condenser 3 in the above-described order, flows into the water-cooled condenser 5, and is circulated by the circulating water. It is cooled, radiates heat and condenses and liquefies. In this mode, the three-way valve 6 communicates with the receiver tank 7 side, and the liquid refrigerant cooled by the water-cooled condenser 5 is supplied to the three-way valve 6.
, And flows into the receiver tank 7. Then, the liquid refrigerant is temporarily stored in the receiver tank 7, and only the liquid refrigerant flows out and passes through the check valve 8.

【0023】次に、逆止弁8を通過した液冷媒は、ドラ
イヤ9を経て膨張弁10で減圧された後、冷却器11に
流入して蒸発する。そして、同様に製氷部を冷却した
後、冷却器11を出た低温ガス冷媒は配管12を通って
圧縮機2に帰還する。このような水冷モードでは空冷式
凝縮器3からの熱風が厨房に吹き出されないので、作業
環境の改善が図れる。
Next, the liquid refrigerant that has passed through the check valve 8 is depressurized by the expansion valve 10 via the dryer 9, and then flows into the cooler 11 to evaporate. Then, after cooling the ice making section in the same manner, the low-temperature gas refrigerant that has exited the cooler 11 returns to the compressor 2 through the pipe 12. In such a water cooling mode, the hot air from the air-cooled condenser 3 is not blown out to the kitchen, so that the working environment can be improved.

【0024】このように、冷却装置1の空・水冷モード
では冷媒をバイパス配管14に流し、水冷モードでは冷
媒をレシーバータンク7に流すように構成しているの
で、空・水冷モードでは規定量の冷媒を循環させつつ、
水冷モードに切り替わった際にはレシーバータンク7に
冷媒を蓄え、その際に発生する冷媒過剰状態を解消する
ことができるようになる。
As described above, in the air / water cooling mode of the cooling device 1, the refrigerant flows through the bypass pipe 14, and in the water cooling mode, the refrigerant flows into the receiver tank 7. While circulating the refrigerant,
When the mode is switched to the water cooling mode, the refrigerant is stored in the receiver tank 7, and the excess refrigerant state generated at that time can be eliminated.

【0025】これにより、空・水冷モードと水冷モード
の何れにおいても安定した冷却運転を実現することがで
きるようになる。また、水冷モードにおいて冷却すべき
冷媒量も減るので、消費水量も削減される。
Thus, a stable cooling operation can be realized in both the air / water cooling mode and the water cooling mode. In addition, since the amount of refrigerant to be cooled in the water cooling mode is also reduced, the amount of consumed water is also reduced.

【0026】尚、実施例では製氷機に本発明の冷却装置
を適用したが、それに限らず、冷蔵庫、冷凍庫やショー
ケースなどの冷却装置にも本発明は有効である。
In the embodiment, the cooling device of the present invention is applied to an ice making machine. However, the present invention is not limited to this, and the present invention is also effective for a cooling device such as a refrigerator, a freezer, and a showcase.

【0027】[0027]

【発明の効果】以上詳述した如く本発明によれば、圧縮
機、凝縮装置、減圧装置及び冷却器を順次環状に配管接
続すると共に、凝縮装置を、送風機にて空冷される空冷
式凝縮器と、循環水にて冷却される水冷式凝縮器とから
構成し、送風機を運転する空・水冷モードと、送風機を
停止する水冷モードとを選択的に実行可能とされた冷却
装置において、凝縮装置と減圧装置の間にレシーバータ
ンクを配管接続し、このレシーバータンクにはバイパス
配管を並列接続すると共に、凝縮装置から出た冷媒をレ
シーバータンクに流すが、バイパス配管に流すかを制御
する弁装置を設け、この弁装置により、空・水冷モード
では冷媒をバイパス配管に流し、水冷モードでは冷媒を
レシーバータンクに流すように構成したので、空・水冷
モードでは規定量の冷媒を循環させつつ、水冷モードに
切り替わった際にはレシーバータンクに冷媒を蓄え、そ
の際に発生する冷媒過剰状態を解消することができるよ
うになる。
As described in detail above, according to the present invention, an air-cooled condenser in which a compressor, a condenser, a decompression device, and a cooler are sequentially connected in a circular pipe, and the condenser is air-cooled by a blower. And a water-cooled condenser cooled by circulating water, wherein the air-water-cooling mode for operating the blower and the water-cooling mode for stopping the blower are selectively executable. The receiver tank is connected to the pipe between the pump and the decompression device, and a bypass pipe is connected in parallel to the receiver tank, and a valve device that controls whether the refrigerant discharged from the condenser flows to the receiver tank but flows to the bypass pipe. This valve device allows the refrigerant to flow to the bypass pipe in the air / water cooling mode and the refrigerant to flow to the receiver tank in the water cooling mode. While circulating the refrigerant, stored coolant to the receiver tank when switched to the water-cooling mode, it is possible to eliminate the refrigerant excess state generated at that time.

【0028】これにより、空・水冷モードと水冷モード
の何れにおいても安定した冷却運転を実現することがで
きるようになると共に、水冷式凝縮器における消費水量
の削減も図れるものである。
Thus, a stable cooling operation can be realized in both the air / water cooling mode and the water cooling mode, and the amount of water consumed in the water-cooled condenser can be reduced.

【0029】請求項2の発明によれば、上記に加えてレ
シーバータンクの出口に減圧装置方向を順方向とする逆
止弁を設けると共に、バイパス配管はレシーバータンク
と逆止弁に対して並列に接続したので、水冷モードにお
いてバイパス配管の出口からレシーバータンクに逆流す
る冷媒を確実に阻止することができるようになる。
According to the second aspect of the present invention, in addition to the above, a check valve is provided at the outlet of the receiver tank so that the direction of the pressure reducing device is forward, and the bypass pipe is provided in parallel with the receiver tank and the check valve. Since the connection is made, it is possible to reliably prevent the refrigerant flowing backward from the outlet of the bypass pipe to the receiver tank in the water cooling mode.

【0030】これにより、空・水冷モードにおける冷却
運転をより一層安定化させることができるようになる。
従って、機器の信頼性の向上を図ることができるように
なるものである。
Thus, the cooling operation in the air / water cooling mode can be further stabilized.
Therefore, the reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空・水冷モードにおける本発明の冷却装置の冷
媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a cooling device of the present invention in an air / water cooling mode.

【図2】水冷モードにおける本発明の冷却装置の冷媒回
路図である。
FIG. 2 is a refrigerant circuit diagram of the cooling device of the present invention in a water cooling mode.

【図3】従来の冷却装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 冷却装置 2 圧縮機 3 空冷式凝縮器 4 送風機 5 水冷式凝縮器 6 三方弁 7 レシーバータンク 8 逆止弁 9 ドライヤ 10 膨張弁 11 冷却器 12 配管 14 バイパス配管 C 凝縮装置 DESCRIPTION OF SYMBOLS 1 Cooling apparatus 2 Compressor 3 Air-cooled condenser 4 Blower 5 Water-cooled condenser 6 Three-way valve 7 Receiver tank 8 Check valve 9 Dryer 10 Expansion valve 11 Cooler 12 Pipe 14 Bypass pipe C Condenser

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮装置、減圧装置及び冷却器
を順次環状に配管接続すると共に、前記凝縮装置を、送
風機にて空冷される空冷式凝縮器と、循環水にて冷却さ
れる水冷式凝縮器とから構成し、前記送風機を運転する
空・水冷モードと、前記送風機を停止する水冷モードと
を選択的に実行可能とされた冷却装置において、 前記凝縮装置と減圧装置の間に配管接続されたレシーバ
ータンクと、このレシーバータンクに並列接続されたバ
イパス配管と、前記凝縮装置から出た冷媒を前記レシー
バータンクに流すが、バイパス配管に流すかを制御する
弁装置とを備え、この弁装置により、前記空・水冷モー
ドでは冷媒を前記バイパス配管に流すと共に、前記水冷
モードでは冷媒を前記レシーバータンクに流すことを特
徴とする冷却装置。
1. A compressor, a condenser, a decompression device, and a cooler are sequentially connected in a ring shape to a pipe, and the condenser is air-cooled by an air blower, and water-cooled by circulating water. An air / water cooling mode for operating the blower and a water cooling mode for stopping the blower that can be selectively executed, and a piping is provided between the condensation device and the decompression device. A connected receiver tank, a bypass pipe connected in parallel to the receiver tank, and a valve device that controls whether refrigerant flowing from the condensing device flows to the receiver tank, but is controlled to flow to the bypass pipe. A cooling device, wherein in the air / water cooling mode, a refrigerant flows through the bypass pipe, and in the water cooling mode, a refrigerant flows through the receiver tank.
【請求項2】 レシーバータンクの出口には減圧装置方
向を順方向とする逆止弁を設けると共に、バイパス配管
は前記レシーバータンクと逆止弁に対して並列に接続さ
れていることを特徴とする請求項1の冷却装置。
2. The method according to claim 1, wherein a check valve is provided at an outlet of the receiver tank, the forward direction of which is the direction of the pressure reducing device, and a bypass pipe is connected in parallel to the receiver tank and the check valve. The cooling device according to claim 1.
JP22087697A 1997-08-01 1997-08-01 Cooling apparatus Pending JPH1151503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22087697A JPH1151503A (en) 1997-08-01 1997-08-01 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22087697A JPH1151503A (en) 1997-08-01 1997-08-01 Cooling apparatus

Publications (1)

Publication Number Publication Date
JPH1151503A true JPH1151503A (en) 1999-02-26

Family

ID=16757930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22087697A Pending JPH1151503A (en) 1997-08-01 1997-08-01 Cooling apparatus

Country Status (1)

Country Link
JP (1) JPH1151503A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487599B1 (en) 1996-10-24 2002-11-26 Tumbleweed Communications Corp. Electronic document delivery system in which notification of said electronic document is sent a recipient thereof
KR101424182B1 (en) * 2012-09-19 2014-07-31 박민규 Rapid ultra-low power cold air conditioning
WO2016192293A1 (en) * 2015-06-04 2016-12-08 特灵空调系统(中国)有限公司 Water cooling machine capable of simultaneously outputting water at different temperatures
WO2016204392A1 (en) * 2015-06-15 2016-12-22 한온시스템 주식회사 Refrigeration cycle of a vehicle air conditioner
US11262114B2 (en) * 2016-04-11 2022-03-01 Begafrost S.R.L. System for deicing an external evaporator for heat pump systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487599B1 (en) 1996-10-24 2002-11-26 Tumbleweed Communications Corp. Electronic document delivery system in which notification of said electronic document is sent a recipient thereof
US6529956B1 (en) 1996-10-24 2003-03-04 Tumbleweed Communications Corp. Private, trackable URLs for directed document delivery
KR101424182B1 (en) * 2012-09-19 2014-07-31 박민규 Rapid ultra-low power cold air conditioning
WO2016192293A1 (en) * 2015-06-04 2016-12-08 特灵空调系统(中国)有限公司 Water cooling machine capable of simultaneously outputting water at different temperatures
WO2016204392A1 (en) * 2015-06-15 2016-12-22 한온시스템 주식회사 Refrigeration cycle of a vehicle air conditioner
KR20160147352A (en) * 2015-06-15 2016-12-23 한온시스템 주식회사 Refrigerant cycle of air conditioner for vehicles
US11262114B2 (en) * 2016-04-11 2022-03-01 Begafrost S.R.L. System for deicing an external evaporator for heat pump systems

Similar Documents

Publication Publication Date Title
JP2001221556A (en) Refrigerator
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
JP5404761B2 (en) Refrigeration equipment
JP4178646B2 (en) refrigerator
JP3967033B2 (en) Air conditioner and control method thereof
JPH10267503A (en) Method for circulating refrigerant for defrosting, and refrigerator using the method
JP2004028563A (en) Operation control method for cooling system provided with two evaporators
JPH1151503A (en) Cooling apparatus
JP2000180026A (en) Refrigerating unit for refrigerator
JP2010121846A (en) Vapor compression type refrigerating cycle
JP2018096632A (en) Refrigerant circuit system, control device and control method
JPH09210515A (en) Refrigerating device
JP2003004346A (en) Cooling equipment
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JPH05308943A (en) Freezing equipment
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3291314B2 (en) Refrigeration equipment
JPH04251170A (en) Refrigerating device and operation method thereof in cogeneration system
JPH10311614A (en) Heat storage type cooling device
JPH1047794A (en) Freezer
JP3871206B2 (en) Refrigeration system combining absorption and compression
JPH0233108Y2 (en)
JP3710093B2 (en) Defrost method and system
JPH0829011A (en) Heat pump system