JPH1047794A - Freezer - Google Patents

Freezer

Info

Publication number
JPH1047794A
JPH1047794A JP8201933A JP20193396A JPH1047794A JP H1047794 A JPH1047794 A JP H1047794A JP 8201933 A JP8201933 A JP 8201933A JP 20193396 A JP20193396 A JP 20193396A JP H1047794 A JPH1047794 A JP H1047794A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
heat exchanger
liquid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8201933A
Other languages
Japanese (ja)
Inventor
Yasuji Shimizu
保治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8201933A priority Critical patent/JPH1047794A/en
Publication of JPH1047794A publication Critical patent/JPH1047794A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler

Abstract

PROBLEM TO BE SOLVED: To prevent operation of a freezer from being interrupted under high fresh air temperature by providing means for changing over the flow of a liquid refrigerant to a gas/liquid heat exchanger and a bypass circuit on an inlet side of the liquid refrigerant of the gas/liquid heat exchanger, and controlling the changeover means such that discharge gas temperature from a compressor falls within a predetermined range. SOLUTION: Once discharge gas temperature from a compressor 3 exceeds an allowed value, a controller 17 that has received an output from a discharge gas temperature sensor 13 changes over an outlet of a three-way valve 14 from a gas/liquid heat exchanger 8 side to a bypass pipe 15 side. Thereupon, a fluid refrigerant from a condenser 4 bypasses the gas/liquid heat exchanger 8 and is fed to an expansion valve 9 after passage through the bypass pipe 15 where it undergoes heat insulation expansion. In the cource of its flowing through art evaporator 10 it heat exchanges and is evaporated with circulation air in a refrigerator into a gas refrigerant which in turn enters the gas/liquid heat exchanger 8. Since the liquid refrigerant is unlikely to flow through the gas/liquid heat exchanger 8, the gas refrigerant is prevented from heat exchanging with the liquid refrigerant, and hence it is returned to the compressor 3 without increasing the degree of overheating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は陸上輸送等に用いら
れる冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system used for land transportation and the like.

【0002】[0002]

【従来の技術】陸上輸送用冷凍装置(以下冷凍装置と略
す)は主にトラックに設置し、冷却運転,加熱運転等を
することによって、トラックに搭載された冷凍庫の庫内
温度を任意温度に維持するものである。従来の冷凍装置
の一例を図3,図4及び図5に示す。図3は一般的な陸
上輸送用冷凍装置の全体装備図、図4は従来の冷凍装置
の全体構成を示す系統図、図5は冷媒モリエール線図上
の冷凍サイクル図である。
2. Description of the Related Art A refrigeration unit for land transportation (hereinafter, abbreviated as a refrigeration unit) is mainly installed on a truck, and performs a cooling operation, a heating operation, and the like, so that a temperature inside a freezer mounted on the truck is adjusted to an arbitrary temperature. To maintain. One example of a conventional refrigeration system is shown in FIGS. 3 is an overall equipment diagram of a general refrigeration unit for land transportation, FIG. 4 is a system diagram showing an overall configuration of a conventional refrigeration system, and FIG. 5 is a refrigeration cycle diagram on a refrigerant Mollier diagram.

【0003】図3において、本冷凍装置は、冷凍庫10
0の外下部に架設されたコンデンシングユニット1と冷
凍庫100内に設置されたエバポレータユニット2を備
え、これらは高圧冷媒配管30及び低圧冷媒配管40に
よって接続されている。
[0003] In FIG.
The condensing unit 1 is installed on the outer lower part of the refrigerator 0 and the evaporator unit 2 is installed in the freezer 100. These are connected by a high-pressure refrigerant pipe 30 and a low-pressure refrigerant pipe 40.

【0004】図4において、図示していないエンジン等
の動力によってコンデンシングユニット1のコンプレッ
サ3が駆動されると、コンプレッサ3で圧縮された高圧
・高温のガス冷媒は、コンデンサ4に送られ、ここでコ
ンデンサファン5によって導入された外気50によって
冷却され、凝縮液化する。この液冷媒はレシーバ6、ド
ライヤ7を経て、コンデンシングユニット1とエバポレ
ータユニット2を接続する高圧冷媒配管30によってエ
バポレータユニット2に配設された気液熱交換器8に送
られ、ここで上記液冷媒は、エバポレータ10から送ら
れて来た低圧・低温のガス冷媒と、相互に熱交換し、液
冷媒は更に過冷却される。気液熱交換器8を出た上記過
冷却液冷媒は、膨張弁9で断熱膨張した後、エバポレー
タ10に入り、エバポレータ10内の配管を流過する過
程で、エバポレータ11によって送り込まれた冷凍庫1
00内の循環空気と熱交換し、この空気は冷却され、エ
バポレータファン11によって、冷却風60となって冷
凍庫100内に吹き出される。エバポレータ10内で冷
凍庫100内の循環空気と熱交換した冷媒は、蒸発気化
して、気液熱交換器8に送られ、前述のように液冷媒と
熱交換して加熱され、過熱度が増大した過熱ガス冷媒と
なってエバポレータユニット2とコンデンシングユニッ
ト1を接続する低圧冷媒配管40を経て、アキュムレー
タ12に送られ、ここからコンプレッサ3に戻る。
In FIG. 4, when the compressor 3 of the condensing unit 1 is driven by the power of an engine or the like (not shown), the high-pressure and high-temperature gas refrigerant compressed by the compressor 3 is sent to a condenser 4, where , And is cooled by the outside air 50 introduced by the condenser fan 5 and condensed and liquefied. The liquid refrigerant passes through a receiver 6 and a dryer 7 and is sent to a gas-liquid heat exchanger 8 disposed in the evaporator unit 2 by a high-pressure refrigerant pipe 30 connecting the condensing unit 1 and the evaporator unit 2, where the liquid The refrigerant exchanges heat with the low-pressure, low-temperature gas refrigerant sent from the evaporator 10, and the liquid refrigerant is further supercooled. The supercooled liquid refrigerant that has exited the gas-liquid heat exchanger 8 is adiabatically expanded by the expansion valve 9, enters the evaporator 10, and flows through a pipe in the evaporator 10, and is sent by the evaporator 11 to the freezer 1.
The air exchanges heat with the circulating air in the cooling water 100, and is cooled by the evaporator fan 11 to be blown into the freezer 100 as cooling air 60. The refrigerant that has exchanged heat with the circulating air in the freezer 100 in the evaporator 10 evaporates and is sent to the gas-liquid heat exchanger 8, where it is heated by exchanging heat with the liquid refrigerant as described above, and the degree of superheat increases. The superheated gas refrigerant is sent to the accumulator 12 via the low-pressure refrigerant pipe 40 connecting the evaporator unit 2 and the condensing unit 1, and returns to the compressor 3 therefrom.

【0005】図5は、冷媒モリエール線図上の上記冷凍
装置の冷凍サイクルを示したものである。本図中に実線
で示すA−B−C−Dのサイクルは、気液熱交換器8を
配設していない場合、点線で示すA’−B’−C’−
D’のサイクルは気液熱交換器8を配設した場合であ
る。図5上で、C及びC’は、膨張弁9の入口の冷媒状
態であり、気液熱交換器8により、液冷媒の過冷却度が
増加(C〜C’の範囲で示す)することを示し、これに
より、エバポレータ10は、D〜D’の範囲で示すエン
タルピの増加相当分の冷凍能力増加が得られることを示
している。一方、A及びA’は、コンプレッサ3の入口
の冷媒状態を示し、気液熱交換器8により、コンプレッ
サ3の入口のガス冷媒が加熱され、A〜A’の範囲で示
すコンプレッサ3の吸入ガスの過熱度の増大があり、こ
の結果、コンプレッサ3の吐出ガス温度は、B〜B’の
範囲で示すだけの温度上昇が伴うこととなる。
FIG. 5 shows a refrigeration cycle of the refrigeration apparatus on a refrigerant Mollier chart. The cycle of ABCD shown by the solid line in this figure is A'-B'-C'- shown by the dotted line when the gas-liquid heat exchanger 8 is not provided.
The cycle of D 'is a case where the gas-liquid heat exchanger 8 is provided. In FIG. 5, C and C ′ are refrigerant states at the inlet of the expansion valve 9, and the degree of supercooling of the liquid refrigerant is increased by the gas-liquid heat exchanger 8 (shown in the range of C to C ′). This indicates that the evaporator 10 can obtain an increase in the refrigerating capacity corresponding to the increase in the enthalpy indicated by the range from D to D '. On the other hand, A and A 'indicate the state of the refrigerant at the inlet of the compressor 3, and the gas refrigerant at the inlet of the compressor 3 is heated by the gas-liquid heat exchanger 8, and the suction gas of the compressor 3 shown in the range of A to A' As a result, the temperature of the discharge gas of the compressor 3 is increased by the amount shown in the range of B to B ′.

【0006】[0006]

【発明が解決しようとする課題】従来の冷凍装置におい
ては、冷凍能力増強のため、コンデンサ4と膨張弁9と
の間の膨張弁9の入口に近い位置に気液熱交換器8を装
備している。エバポレータ10から出てコンプレッサ3
に戻る吸入ガス冷媒は、気液熱交換器8にて、高圧高温
の液冷媒と熱交換して吸熱し、過熱度が増加した状態で
コンプレッサで圧縮される。この結果、吸入ガス過熱度
の増大に伴って、コンプレッサ吐出ガスの温度が上昇し
て、高外気温雰囲気の下でこの冷凍装置が運転される場
合、コンプレッサの吐出ガス温度が冷凍装置の許容上限
を超え、保護装置が作動し、冷凍装置が停止する頻度が
高くなるという問題があった。
In the conventional refrigeration system, a gas-liquid heat exchanger 8 is provided between the condenser 4 and the expansion valve 9 at a position close to the inlet of the expansion valve 9 to enhance the refrigeration capacity. ing. Compressor 3 coming out of evaporator 10
In the gas-liquid heat exchanger 8, the suction gas refrigerant exchanges heat with the high-pressure and high-temperature liquid refrigerant, absorbs heat, and is compressed by the compressor in a state where the degree of superheat is increased. As a result, the temperature of the compressor discharge gas increases with an increase in the degree of superheat of the intake gas, and when the refrigeration system is operated in an atmosphere of a high outside air temperature, the discharge gas temperature of the compressor becomes the allowable upper limit of the refrigeration system. And the frequency of stoppage of the refrigeration system becomes high.

【0007】本発明は上記従来技術の欠点を解消し、圧
縮機の吐出ガス温度が所定範囲内に収まるようにして、
高外気温雰囲気下での運転の時に生じる冷凍装置の保護
装置による運転停止を防止し、冷凍装置の運転許容限界
の引き上げを可能にしようとするものである。
The present invention solves the above-mentioned drawbacks of the prior art, so that the discharge gas temperature of the compressor falls within a predetermined range.
An object of the present invention is to prevent the operation of the refrigeration system from being stopped by the protection device during operation in a high ambient temperature atmosphere, and to increase the allowable operating limit of the refrigeration system.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、圧縮機、凝縮器、断熱膨張手段、蒸
発器により冷凍サイクルを形成し、同冷凍サイクルの液
ライン配管中に前記断熱膨張手段入口側の液冷媒と前記
蒸発器出口側のガス冷媒とを熱交換する気液熱交換器を
設けた冷凍装置において、次の特徴を有する冷凍装置に
関するものである。 (1) 前記気液熱交換器の液冷媒入口側に液冷媒の流
れを前記気液熱交換器と同気液熱交換器に並列に接続さ
れたバイパス回路とに切換え制御する切換え手段を設け
ると共に、前記圧縮機からの吐出ガス温度が所定範囲内
に収まるよう前記切換え手段を制御するコントローラを
設けた。 (2) 前記(1)項に記載の冷凍装置において、切換
え手段を三方弁とした。 (3) 前記(1)項又は前記(2)項に記載の冷凍装
置において、コントローラが圧縮機からの吐出ガス温度
を検出する温度センサを備え、同温度センサの検出値に
応じて切換え手段を制御する。 (4) 前記(1)項又は前記(2)項に記載の冷凍装
置において、コントローラが圧縮機の吸入ガス冷媒の過
熱度センサを備え、同過熱度センサの検出値に応じて切
換え手段を制御する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and comprises a refrigeration cycle formed by a compressor, a condenser, an adiabatic expansion means, and an evaporator. A refrigeration apparatus provided with a gas-liquid heat exchanger for exchanging heat between the liquid refrigerant on the inlet side of the adiabatic expansion means and the gas refrigerant on the outlet side of the evaporator, relates to a refrigeration apparatus having the following characteristics. (1) On the liquid refrigerant inlet side of the gas-liquid heat exchanger, there is provided switching means for switching and controlling the flow of the liquid refrigerant between the gas-liquid heat exchanger and a bypass circuit connected in parallel to the gas-liquid heat exchanger. In addition, a controller is provided for controlling the switching means so that the temperature of the gas discharged from the compressor falls within a predetermined range. (2) In the refrigerating apparatus according to the above (1), the switching means is a three-way valve. (3) In the refrigerating apparatus according to the above mode (1) or (2), the controller includes a temperature sensor for detecting a temperature of the gas discharged from the compressor, and the switching unit switches according to a value detected by the temperature sensor. Control. (4) In the refrigeration apparatus according to the above mode (1) or (2), the controller includes a superheat degree sensor for the suction gas refrigerant of the compressor, and controls the switching unit in accordance with a detection value of the superheat degree sensor. I do.

【0009】[0009]

【発明の実施の形態】図1は本発明の実施の第1形態に
係る冷凍装置の全体の構成を示す冷媒配管系統図であ
る。図において、14は、コンデンサ4の出口から高圧
冷媒配管30を経て気液熱交換器8に至る配管の気液熱
交換器8の入口に近い位置に配設された三方弁である。
その第1の出口は、気液熱交換器8の液冷媒入口と接続
し、第2の出口はバイパス管15に接続され、同バイパ
ス管15は気液熱交換器8をバイパスし、膨張弁9に接
続されている。16は気液熱交換器8の液冷媒出口側に
設けられた逆止弁である。13はコンプレッサ3の出口
配管に装着されている吐出ガス温度センサである。17
は、温度演算手段18と三方弁出口切換え決定手段19
から構成されているコントローラである。吐出ガス温度
センサ13の出力は、温度演算手段18に入力され、同
温度演算手段18の出力により三方弁出口切換え決定手
段19が出力指令し、三方弁14に装備した出口切換え
駆動手段により、前記指令に対応した側に三方弁14の
出口をセットする。上記以外の部分の構成は従来技術と
同じである。
FIG. 1 is a refrigerant piping system diagram showing an entire configuration of a refrigeration apparatus according to a first embodiment of the present invention. In the figure, reference numeral 14 denotes a three-way valve disposed at a position near an inlet of the gas-liquid heat exchanger 8 in a pipe extending from the outlet of the condenser 4 to the gas-liquid heat exchanger 8 via the high-pressure refrigerant pipe 30.
The first outlet is connected to a liquid refrigerant inlet of the gas-liquid heat exchanger 8, the second outlet is connected to a bypass pipe 15, which bypasses the gas-liquid heat exchanger 8, and has an expansion valve. 9 is connected. Reference numeral 16 denotes a check valve provided on the liquid refrigerant outlet side of the gas-liquid heat exchanger 8. Reference numeral 13 denotes a discharge gas temperature sensor attached to an outlet pipe of the compressor 3. 17
Is a temperature calculating means 18 and a three-way valve outlet switching determining means 19
Is a controller composed of The output of the discharge gas temperature sensor 13 is input to the temperature calculating means 18, and the output of the temperature calculating means 18 instructs the output from the three-way valve outlet switching determination means 19. The outlet of the three-way valve 14 is set on the side corresponding to the command. The configuration of other parts is the same as that of the related art.

【0010】いまコンプレッサ3の吐出ガス温度が予め
設定した許容値を超えると、吐出ガス温度センサ13の
出力を受けたコントローラ17は、三方弁14に出力指
令して、三方弁14の出口は、気液熱交換器8側からバ
イパス管15側に切換えられる。この結果コンデンサ4
からの液冷媒は、気液熱交換器8をバイパスし、バイパ
ス管15を経由して膨張弁9に送られ断熱膨張し、エバ
ポレータ10を流過する過程で、冷凍庫100内の循環
空気と熱交換、蒸発気化し、ガス冷媒となって気液熱交
換器8に入る。気液熱交換器8には、液冷媒が流れてい
ないので、このガス冷媒は液冷媒との熱交換はなく、し
たがって過熱度が増加することなくコンプレッサ3に戻
る。
When the discharge gas temperature of the compressor 3 exceeds a preset allowable value, the controller 17 receiving the output of the discharge gas temperature sensor 13 issues an output command to the three-way valve 14, and the outlet of the three-way valve 14 The gas-liquid heat exchanger 8 is switched to the bypass pipe 15. As a result, capacitor 4
From the air-liquid heat exchanger 8, is sent to the expansion valve 9 via the bypass pipe 15, adiabatically expanded, and flows through the evaporator 10. The gas is exchanged, evaporated and vaporized, and enters the gas-liquid heat exchanger 8 as a gas refrigerant. Since no liquid refrigerant flows through the gas-liquid heat exchanger 8, this gas refrigerant does not exchange heat with the liquid refrigerant, and therefore returns to the compressor 3 without increasing the degree of superheat.

【0011】本実施形態においては、吐出ガス温度セン
サ13の検出による吐出ガス温度が許容値を超える条件
では、コントローラ17によって、気液熱交換器8の液
冷媒入口側に配設した三方弁14を作動させ、液冷媒が
気液熱交換器8をバイパスする回路15に切換えること
によって、コンプレッサ3の吸入ガス過熱度の上昇が抑
えられ、吐出ガス温度を低下させるので、冷凍装置の保
護装置による運転停止を防止でき、これにより、冷凍装
置の運転許容限界(例えば外気温度の上限値)を引き上
げることが可能となる。
In this embodiment, when the discharge gas temperature detected by the discharge gas temperature sensor 13 exceeds the allowable value, the controller 17 controls the three-way valve 14 disposed on the liquid refrigerant inlet side of the gas-liquid heat exchanger 8. And the liquid refrigerant is switched to the circuit 15 that bypasses the gas-liquid heat exchanger 8, thereby suppressing an increase in the degree of superheat of the suction gas of the compressor 3 and lowering the discharge gas temperature. It is possible to prevent the operation from being stopped, thereby increasing the allowable operation limit of the refrigeration apparatus (for example, the upper limit of the outside air temperature).

【0012】図2は本発明の実施の第2形態に係る冷凍
装置の全体の構成を示す冷媒配管系統図である。図にお
いて20は気液熱交換器8のガス冷媒側の出口配管に装
着されている吸入ガス冷媒過熱度センサ、21は、ガス
冷媒過熱度演算手段22と三方弁切換え弁開度決定手段
23から構成されるコントローラである。吸入ガス冷媒
過熱度センサ20の出力は、ガス冷媒過熱度演算手段2
2に入力され、この演算出力が三方弁切換え弁開度決定
手段23に入力されると、同入力値に対応した出口切換
え弁開度を演算設定し、三方弁14に出力指令する。こ
の指令値にもとづき、三方弁14の出口切換え弁は、三
方弁14に装備された出口切換え弁駆動手段によって、
気液熱交換器8側の出口開度及びバイパス管15側出口
開度を同時に連続的に設定制御する。本実施形態は、第
1実施形態における吐出ガス温度センサ13とコントロ
ーラ17の代わりに、吸入ガス冷媒過熱度センサ20と
コントローラ21を設けたもので、上記以外の部分の構
成は第1実施形態と同じである。
FIG. 2 is a refrigerant piping system diagram showing the entire configuration of a refrigeration apparatus according to a second embodiment of the present invention. In the figure, reference numeral 20 denotes a suction gas refrigerant superheat degree sensor mounted on an outlet pipe on the gas refrigerant side of the gas-liquid heat exchanger 8, and 21 denotes a gas refrigerant superheat degree calculation means 22 and a three-way valve switching valve opening degree determination means 23. The controller to be configured. The output of the suction gas refrigerant superheat degree sensor 20 is output from the gas refrigerant superheat degree
When the calculated output is input to the three-way valve switching valve opening determining means 23, the outlet switching valve opening corresponding to the input value is calculated and set, and an output command is issued to the three-way valve 14. On the basis of this command value, the outlet switching valve of the three-way valve 14 is driven by the outlet switching valve driving means mounted on the three-way valve 14.
The outlet opening on the gas-liquid heat exchanger 8 side and the outlet opening on the bypass pipe 15 side are simultaneously and continuously set and controlled. In this embodiment, a suction gas refrigerant superheat degree sensor 20 and a controller 21 are provided instead of the discharge gas temperature sensor 13 and the controller 17 in the first embodiment. Is the same.

【0013】いま、吸入ガス冷媒過熱度が上昇すると、
吸入ガス冷媒過熱度センサ20の出力に対応して三方弁
切換え弁開度決定手段23により三方弁14の出口切換
え開度を演算し、三方弁14に出力指令して気液熱交換
器8側に接続した三方弁14の第1の出口側開度を減
少、バイパス管15側に接続した三方弁14の第2の出
口側開度を拡げる方向に設定制御する。この結果、気液
熱交換器8を通過する液冷媒の流量は減少し、これをバ
イパスする液冷媒の流量が増加するので、ガス冷媒の気
液熱交換器8における熱交換量は減少し、同ガス冷媒の
過熱度の上昇が抑えられてコンプレッサ3に戻る。
Now, when the degree of superheat of the suction gas refrigerant increases,
The outlet switching opening of the three-way valve 14 is calculated by the three-way valve switching valve opening determining means 23 in accordance with the output of the suction gas refrigerant superheat degree sensor 20, and an output command is issued to the three-way valve 14 to output the gas-liquid heat exchanger 8 side. The first outlet opening of the three-way valve 14 connected to the bypass pipe 15 is reduced, and the second outlet opening of the three-way valve 14 connected to the bypass pipe 15 side is set and controlled to increase. As a result, the flow rate of the liquid refrigerant passing through the gas-liquid heat exchanger 8 decreases and the flow rate of the liquid refrigerant bypassing the gas refrigerant increases, so that the amount of heat exchange of the gas refrigerant in the gas-liquid heat exchanger 8 decreases, An increase in the degree of superheat of the gas refrigerant is suppressed, and the gas refrigerant returns to the compressor 3.

【0014】本実施形態においては、外気温度が高い条
件下では吸入ガス冷媒過熱度センサ20の出力によっ
て、コントローラ21が三方弁出口切換え弁を制御し、
液冷媒の気液熱交換器8への流量及びこれをバイパスす
る流量が連続的に制御されるので、ガス冷媒の気液熱交
換器8での熱交換量が制御されコンプレッサ3の吐出ガ
ス温度の上昇を抑え、気液熱交換器8による冷凍能力の
増加効果を保持しながら冷凍装置の運転許容限界を引き
上げることが可能となる。
In the present embodiment, under conditions where the outside air temperature is high, the controller 21 controls the three-way valve outlet switching valve by the output of the suction gas refrigerant superheat degree sensor 20,
Since the flow rate of the liquid refrigerant to the gas-liquid heat exchanger 8 and the flow rate bypassing the same are continuously controlled, the heat exchange amount of the gas refrigerant in the gas-liquid heat exchanger 8 is controlled, and the discharge gas temperature of the compressor 3 is controlled. , It is possible to raise the allowable operating limit of the refrigerating apparatus while maintaining the effect of increasing the refrigerating capacity by the gas-liquid heat exchanger 8.

【0015】[0015]

【発明の効果】本発明の冷凍装置においては、気液熱交
換器の液冷媒入口側に液冷媒の流れを気液熱交換器と同
気液熱交換器に並列に接続されたバイパス回路とに切換
え制御する切換え手段を設けると共に、圧縮機からの吐
出ガス温度が所定範囲内に収まるよう前記切換え手段を
制御するコントローラを設け、また、前記切換え手段を
三方弁とし、また、前記コントローラが前記圧縮機から
の吐出ガス温度を検出する温度センサを備えて同温度セ
ンサの検出値に応じて前記切換え手段を制御するように
し、あるいは、前記コントローラが前記圧縮機の吸入ガ
ス冷媒の過熱度センサを備えて同過熱度センサの検出値
に応じて前記切換え手段を制御するようにしているの
で、高外気温雰囲気下での運転の時に生じる冷凍装置の
保護装置による運転停止を防止し、冷凍装置の運転許容
限界を引き上げることができる。
According to the refrigerating apparatus of the present invention, the flow of the liquid refrigerant is supplied to the liquid refrigerant inlet side of the gas-liquid heat exchanger by a gas-liquid heat exchanger and a bypass circuit connected in parallel to the gas-liquid heat exchanger. In addition to providing switching means for switching control, a controller for controlling the switching means so that the temperature of the discharge gas from the compressor falls within a predetermined range is provided, and the switching means is a three-way valve, and the controller is A temperature sensor for detecting the temperature of the gas discharged from the compressor is provided, and the switching means is controlled in accordance with a value detected by the temperature sensor, or the controller sets a superheat degree sensor for the suction gas refrigerant of the compressor. Since the switching means is controlled in accordance with the detection value of the superheat degree sensor, the operation by the protection device of the refrigerating apparatus which occurs at the time of operation under a high outside air temperature atmosphere is provided. Preventing stop can raise the operation allowable limits of the refrigeration system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係る冷凍装置の全体
構成を示す冷媒配管系統図。
FIG. 1 is a refrigerant piping system diagram showing an entire configuration of a refrigeration apparatus according to a first embodiment of the present invention.

【図2】本発明の実施の第2形態に係る冷凍装置の全体
構成を示す冷媒配管系統図。
FIG. 2 is a refrigerant piping system diagram showing an entire configuration of a refrigeration apparatus according to a second embodiment of the present invention.

【図3】一般的な冷凍装置の車両における装備図。FIG. 3 is an equipment diagram of a general refrigeration apparatus in a vehicle.

【図4】従来の冷凍装置の全体構成を示す系統図。FIG. 4 is a system diagram showing an overall configuration of a conventional refrigeration apparatus.

【図5】同冷凍装置の冷媒モリエール線図上の冷凍サイ
クル図。
FIG. 5 is a refrigeration cycle diagram on a refrigerant Mollier chart of the refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 コンデンシングユニット 2 エバポレータユニット 3 コンプレッサ 4 コンデンサ 5 コンデンサファン 8 気液熱交換器 9 膨張弁 10 エバポレータ 11 エバポレータファン 13 吐出ガス温度センサ 14 三方弁 15 バイパス管 16 逆止弁 17 コントローラ 18 温度演算手段 19 三方弁出口切換え決定手段 20 吸入ガス冷媒過熱度センサ 21 コントローラ 22 ガス冷媒過熱度演算手段 23 三方弁切換え弁開度決定手段 30 高圧冷媒配管 40 低圧冷媒配管 50 外気 60 冷却風 100 冷凍庫 DESCRIPTION OF SYMBOLS 1 Condensing unit 2 Evaporator unit 3 Compressor 4 Condenser 5 Condenser fan 8 Gas-liquid heat exchanger 9 Expansion valve 10 Evaporator 11 Evaporator fan 13 Discharge gas temperature sensor 14 Three-way valve 15 Bypass pipe 16 Check valve 17 Controller 18 Temperature calculation means 19 Three-way valve outlet switching determination means 20 Intake gas refrigerant superheat degree sensor 21 Controller 22 Gas refrigerant superheat degree calculation means 23 Three-way valve switching valve opening degree determination means 30 High pressure refrigerant pipe 40 Low pressure refrigerant pipe 50 Outside air 60 Cooling air 100 Freezer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、断熱膨張手段、蒸発器
により冷凍サイクルを形成し、同冷凍サイクルの液ライ
ン配管中に前記断熱膨張手段入口側の液冷媒と前記蒸発
器出口側のガス冷媒とを熱交換する気液熱交換器を設け
た冷凍装置において、前記気液熱交換器の液冷媒入口側
に液冷媒の流れを前記気液熱交換器と同気液熱交換器に
並列に接続されたバイパス回路とに切換え制御する切換
え手段を設けると共に、前記圧縮機からの吐出ガス温度
が所定範囲内に収まるよう前記切換え手段を制御するコ
ントローラを設けたことを特徴とする冷凍装置。
A refrigeration cycle is formed by a compressor, a condenser, adiabatic expansion means, and an evaporator, and a liquid refrigerant on an inlet side of the adiabatic expansion means and a gas on an outlet side of the evaporator are provided in a liquid line pipe of the refrigeration cycle. In a refrigerating apparatus provided with a gas-liquid heat exchanger that exchanges heat with a refrigerant, a flow of a liquid refrigerant is arranged in parallel with the gas-liquid heat exchanger and the gas-liquid heat exchanger on the liquid refrigerant inlet side of the gas-liquid heat exchanger. A refrigerating apparatus, further comprising switching means for switching control with a bypass circuit connected to the compressor, and a controller for controlling the switching means so that the temperature of gas discharged from the compressor falls within a predetermined range.
【請求項2】 前記切換え手段を三方弁としたことを特
徴とする請求項1に記載の冷凍装置。
2. The refrigeration apparatus according to claim 1, wherein said switching means is a three-way valve.
【請求項3】 前記コントローラが前記圧縮機からの吐
出ガス温度を検出する温度センサを備え、同温度センサ
の検出値に応じて前記切換え手段を制御することを特徴
とする請求項1又は請求項2に記載の冷凍装置。
3. The controller according to claim 1, wherein the controller includes a temperature sensor for detecting a temperature of a gas discharged from the compressor, and controls the switching means in accordance with a value detected by the temperature sensor. 3. The refrigeration apparatus according to 2.
【請求項4】 前記コントローラが前記圧縮機の吸入ガ
ス冷媒の過熱度センサを備え、同過熱度センサの検出値
に応じて前記切換え手段を制御することを特徴とする請
求項1又は請求項2に記載の冷凍装置。
4. The controller according to claim 1, wherein the controller has a superheat degree sensor for the suction gas refrigerant of the compressor, and controls the switching means according to a detection value of the superheat degree sensor. A refrigeration apparatus according to claim 1.
JP8201933A 1996-07-31 1996-07-31 Freezer Withdrawn JPH1047794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201933A JPH1047794A (en) 1996-07-31 1996-07-31 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201933A JPH1047794A (en) 1996-07-31 1996-07-31 Freezer

Publications (1)

Publication Number Publication Date
JPH1047794A true JPH1047794A (en) 1998-02-20

Family

ID=16449200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201933A Withdrawn JPH1047794A (en) 1996-07-31 1996-07-31 Freezer

Country Status (1)

Country Link
JP (1) JPH1047794A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024182A2 (en) * 2004-09-03 2006-03-09 Felix Kalberer Method and system for controlling a carnot-cycle process
WO2007110991A1 (en) * 2006-03-27 2007-10-04 Mayekawa Mfg. Co., Ltd. Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
WO2018173854A1 (en) * 2017-03-22 2018-09-27 日本電気株式会社 Cooling system, cooling method, and program
EP3444541A1 (en) * 2017-08-16 2019-02-20 Heatcraft Refrigeration Products LLC Superheat control scheme

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024182A2 (en) * 2004-09-03 2006-03-09 Felix Kalberer Method and system for controlling a carnot-cycle process
WO2006024182A3 (en) * 2004-09-03 2006-06-29 Felix Kalberer Method and system for controlling a carnot-cycle process
WO2007110991A1 (en) * 2006-03-27 2007-10-04 Mayekawa Mfg. Co., Ltd. Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
JP2009529123A (en) * 2006-03-27 2009-08-13 株式会社前川製作所 Vapor compression refrigeration cycle, control method thereof, and refrigeration apparatus using the same
US8141381B2 (en) 2006-03-27 2012-03-27 Mayekawa Mfg. Co., Ltd. Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
WO2018173854A1 (en) * 2017-03-22 2018-09-27 日本電気株式会社 Cooling system, cooling method, and program
EP3444541A1 (en) * 2017-08-16 2019-02-20 Heatcraft Refrigeration Products LLC Superheat control scheme
US10712052B2 (en) 2017-08-16 2020-07-14 Heatcraft Refrigeration Products Llc Cooling system with improved compressor stability

Similar Documents

Publication Publication Date Title
EP2261570B1 (en) Refrigerating apparatus
US7360372B2 (en) Refrigeration system
US6698217B2 (en) Freezing device
US5729985A (en) Air conditioning apparatus and method for air conditioning
JP2008520943A (en) Heat pump system with auxiliary water heating
JP2008520945A (en) Refrigerant system with water heating
JPH0799297B2 (en) Air conditioner
WO2008032645A1 (en) Refrigeration device
JPH08189713A (en) Binary refrigerating device
JP4317793B2 (en) Cooling system
JP3956674B2 (en) Refrigerant circuit
US5499508A (en) Air conditioner
US11187447B2 (en) Refrigeration cycle apparatus
JP2002228282A (en) Refrigerating device
CN113883579B (en) Water system air conditioner
JPH1047794A (en) Freezer
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP3411676B2 (en) Cold heat transfer equipment
JPH05264108A (en) Refrigeration device
JP3871207B2 (en) Refrigeration system combining absorption and compression
CN111919073A (en) Refrigerating device
JP7168894B2 (en) Heat source unit and refrigerator
JP2002031417A (en) Refrigerating apparatus
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
KR200304217Y1 (en) Heat pump type air conditioning apparatus with a medium heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007