WO2018173854A1 - Cooling system, cooling method, and program - Google Patents

Cooling system, cooling method, and program Download PDF

Info

Publication number
WO2018173854A1
WO2018173854A1 PCT/JP2018/009717 JP2018009717W WO2018173854A1 WO 2018173854 A1 WO2018173854 A1 WO 2018173854A1 JP 2018009717 W JP2018009717 W JP 2018009717W WO 2018173854 A1 WO2018173854 A1 WO 2018173854A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
flow path
cooling system
temperature
Prior art date
Application number
PCT/JP2018/009717
Other languages
French (fr)
Japanese (ja)
Inventor
寿人 佐久間
貴文 棗田
吉川 実
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018173854A1 publication Critical patent/WO2018173854A1/en

Links

Images

Definitions

  • the present invention relates to a cooling system, a cooling method, and a program.
  • Patent Document 1 discloses a refrigerant circuit having a configuration for preventing wet compression of a compressor.
  • a bypass circuit is provided in which a part of the refrigerant flowing through the condenser is flowed out of the condenser and then returned to the condenser.
  • the bypass circuit is provided with a receiver, and the receiver is provided with a refrigerant passage from the expansion valve to the evaporator.
  • the receiver temperature is brought close to the target receiver temperature by adjusting the amount of refrigerant flowing from the condenser to the receiver by means of an adjusting valve.
  • the refrigerant from the expansion valve to the evaporator is heated by the adjustment by the adjustment valve.
  • the object of the present invention is to provide a cooling system, a cooling method, and a program capable of solving the above-described problems.
  • the cooling system includes an evaporator that evaporates the refrigerant, a compressor that compresses the refrigerant evaporated in the evaporator, and a condenser that condenses the refrigerant compressed by the compressor.
  • An expansion valve that is provided in a flow path from the condensing unit to the evaporation unit to depressurize the refrigerant, a refrigerant that flows through the flow channel from the evaporation unit to the compressor, and from the compressor to the condensing unit
  • a heat exchanger that exchanges heat with the refrigerant flowing through the flow path.
  • the cooling method includes: a refrigerant flowing through a flow path from an evaporation unit that evaporates the refrigerant to a compressor that compresses the refrigerant evaporated in the evaporation unit; and the compressor to the compressor Heat exchange between the refrigerant flowing through the flow path to the condensing unit for condensing the refrigerant compressed in step (b).
  • the program causes the computer to transmit a refrigerant flowing in a flow path from an evaporation unit that evaporates the refrigerant to a compressor that compresses the refrigerant evaporated in the evaporation unit, and the compressor from the compressor. It is a program for controlling heat exchange between refrigerants flowing through a flow path to a condensing unit for condensing refrigerant compressed by a compressor.
  • the possibility of liquid compression can be further reduced.
  • FIG. 1 is a schematic block diagram illustrating a first example of a device configuration of a cooling system according to an embodiment of the present invention.
  • the cooling system 1 includes an evaporator 101, a compressor 102, a condenser 103, an expansion valve 104, a heat exchanger 301, a bypass valve 302, a temperature sensor 303, and a pressure sensor 304. And a controller 305.
  • the cooling system 1 is a system that supplies cold heat.
  • the application of the cooling system 1 is not limited to a specific application.
  • the cooling system 1 may be used for cooling the computer by installing the cooling system 1 in the data center.
  • the cooling system 1 may be installed in a living environment such as a home or a workplace, and cool air may be supplied to enhance the comfort of the living environment.
  • the cooling system 1 operates throughout the year, such as when the cooling system 1 is installed in a data center.
  • the condensing unit 103 is configured as an outdoor unit, the temperature of the refrigerant flowing through the condensing unit 103 may be low in winter.
  • the cooling system 1 can reduce the possibility that liquid compression occurs even in such a case.
  • the cooling system 1 can reduce the possibility of liquid compression as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
  • the cooling system 1 may be configured as a system dedicated to cooling, or may be configured as a system capable of switching between cooling and heating.
  • the evaporating unit 101 is provided in the cold supply target space by being configured as an indoor unit, for example, and evaporates liquid phase refrigerant flowing into the evaporating unit 101 itself.
  • the evaporating refrigerant exchanges heat with the ambient air to absorb the heat of vaporization, thereby cooling the ambient air.
  • the evaporation unit 101 supplies cold air to the outside of the indoor unit by blowing the ambient air to the outside of the evaporation unit 101.
  • the compressor 102 compresses the gas-phase refrigerant evaporated in the evaporation unit 101.
  • the refrigerant is compressed by the compressor 102 to become a relatively high-temperature and high-pressure gas-phase refrigerant.
  • the condensing unit 103 is configured as an outdoor unit, for example, and condenses the gas-phase refrigerant compressed by the compressor 102.
  • the condensing refrigerant exchanges heat with the surrounding air and releases condensation heat.
  • the expansion valve 104 is provided in the refrigerant flow path from the condensing unit 103 to the evaporation unit 101, and depressurizes the refrigerant flowing through the expansion valve 104 itself.
  • a compression refrigeration cycle is executed in a refrigerant circuit combining the evaporator 101, the compressor 102, the condenser 103, and the expansion valve 104.
  • the heat exchanger 301 exchanges heat between the refrigerant flowing through the refrigerant flow path from the evaporation unit 101 to the compressor 102 and the refrigerant flowing through the refrigerant flow path from the compressor 102 to the condensing unit 103. Since the refrigerant is compressed by the compressor 102 and rises in temperature, the refrigerant flowing out from the compressor 102 has a higher temperature than the refrigerant flowing into the compressor 102 and the refrigerant flowing out from the compressor 102. Therefore, in the heat exchange in the heat exchanger 301, the refrigerant flowing through the refrigerant flow path from the evaporation unit 101 to the compressor 102 (refrigerant flowing into the compressor 102) is heated. Since the refrigerant flowing into the compressor 102 is heated, the possibility that the refrigerant is condensed can be reduced, and the possibility that liquid compression occurs can be reduced.
  • the heat exchanger 301 performs heat exchange using the refrigerant that has flowed out of the compressor 102 and before flowing into the condensing unit 103, so that it is not affected by the temperature drop of the refrigerant in the condensing unit 103. Heat exchange can be performed.
  • the cooling system 1 can reduce the possibility of liquid compression even when the temperature of the refrigerant flowing through the condensing unit 103 is low. As described above, in this respect, the cooling system 1 can reduce the possibility of liquid compression occurring as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
  • a shell and tube heat exchanger or a fin and tube heat exchanger may be used as the heat exchanger 301.
  • the bypass valve 302 is provided in a bypass channel that bypasses the heat exchanger 301, and adjusts the amount of refrigerant flowing through the bypass channel.
  • the bypass valve 302 is configured using a flow rate adjustment valve.
  • the bypass flow path that bypasses the heat exchanger 301 is provided in at least one of the flow path from the evaporation unit 101 to the compressor 102 and the flow path from the compressor 102 to the condensation unit 103.
  • bypass path is provided in the flow path from the evaporator 101 to the compressor 102 as an example.
  • the bypass flow path may be provided in both the flow path from the evaporation unit 101 to the compressor 102 and the flow path from the compressor 102 to the condensing unit 103.
  • a bypass valve 302 may be provided in each of the two bypass flow paths.
  • the bypass valve 302 adjusts the flow rate of the refrigerant gas flowing through the heat exchanger 301 by changing the opening degree of the bypass valve 302 itself according to the control of the controller 305. By adjusting the refrigerant gas flow rate, the bypass valve 302 adjusts the heat exchange amount in the heat exchanger 301.
  • the temperature sensor 303 is provided on at least one of the inlet side (suction side) and the outlet side (discharge side) of the compressor 102 and measures the temperature of the refrigerant.
  • the pressure sensor 304 is provided on at least one of the inlet side and the outlet side of the compressor and measures the pressure of the refrigerant.
  • a case where the temperature sensor 303 and the pressure sensor 304 are provided on the inlet side of the compressor 102 will be described as an example.
  • the case where the temperature sensor 303 and the pressure sensor 304 are provided on the outlet side of the compressor 102 will be described later.
  • either one or both of the temperature sensor 303 and the pressure sensor 304 may be provided on both the inlet side and the outlet side of the compressor 102.
  • one of the temperature sensor 303 and the compressor 102 may be provided on the inlet side of the compressor 102, and the other may be provided on the outlet side of the compressor 102.
  • the controller 305 controls the amount of heat exchange in the heat exchanger 301 based on the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303. Specifically, the controller 305 controls the amount of heat exchange in the heat exchanger 301 by controlling the opening degree of the bypass valve 302 based on the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303. . More specifically, the controller 305 calculates the degree of superheat of the refrigerant from the pressure measurement value and the temperature measurement value. The degree of superheat here is a temperature rise from the saturation temperature. Therefore, the degree of superheat is obtained by subtracting the saturation temperature from the target temperature.
  • the controller 305 increases the opening degree of the bypass valve 302 and increases the amount of refrigerant flowing through the bypass valve 302, thereby reducing the heat exchange amount.
  • the controller 305 increases the heat exchange amount by reducing the amount of refrigerant flowing through the bypass valve 302 by reducing the opening degree of the bypass valve 302.
  • the controller 305 suppresses the change in the heat exchange amount by maintaining the opening degree of the bypass valve 302 and maintaining the amount of refrigerant flowing through the bypass valve 302.
  • the controller 305 avoids liquid compression by keeping the degree of superheat of the refrigerant gas sucked into the compressor 102 within a predetermined range.
  • the lower limit value of the superheat degree in the predetermined range is provided to avoid liquid compression by the compressor 102.
  • This lower limit is set to a degree of superheat at which the refrigerant is considered to contain no liquid refrigerant.
  • the controller 305 may set the lower limit value of the superheat degree to a value equal to or higher than the value obtained by adding 3 ° C. to the saturated steam temperature.
  • the upper limit value of the superheat degree in the predetermined range is that the refrigerant flowing into the compressor 102 is overheated, the efficiency of the cooling system 1 is lowered, and the temperature of the compressor 102 or the refrigerant temperature reaches the usable temperature upper limit. In order to prevent the cooling system 1 from stopping.
  • the controller 305 may set the upper limit value of the superheat degree to 10 ° C.
  • the cooling system 1 includes a heat exchanger 301 between the inlet side and the outlet side of the compressor 102.
  • the heat exchanger 301 causes heat exchange between the refrigerant flowing into the compressor 102 and the refrigerant flowing out of the compressor 102, thereby increasing the temperature of the refrigerant flowing into the compressor 102 and avoiding liquid compression. .
  • the refrigerant is overheated only by heat exchange with the heat exchanger 301.
  • the temperature of the refrigerant flowing into the compressor 102 increases due to heat exchange of the refrigerant in the heat exchanger 301
  • the temperature of the refrigerant flowing out of the compressor also increases.
  • the temperature difference between the refrigerant that has flowed out of the evaporator 101 and the refrigerant that has flowed out of the compressor 102 which has a substantially constant temperature
  • the amount of heat exchange in the heat exchanger 301 increases.
  • the temperature of the refrigerant flowing into the compressor further increases, and the temperature of the refrigerant flowing out from the compressor further increases. This further increases the amount of heat exchange in the heat exchanger 301.
  • the degree of superheat continues to increase, which can result in increased compressor work, refrigerant breakdown, or compressor failure.
  • the bypass valve 302 adjusts the opening degree of the bypass valve 302 according to the control of the controller 305 to keep the degree of superheat within an appropriate range.
  • the controller 305 calculates the degree of superheat of the refrigerant from the temperature measurement value of the temperature sensor 303 and the pressure measurement value of the pressure sensor 304, and adjusts the opening degree of the bypass valve 302 according to the value.
  • FIG. 2 is a diagram illustrating an example of a processing procedure in which the controller 305 controls the opening degree of the bypass valve 302.
  • the controller 305 acquires the compressor inlet temperature measurement value T by the temperature sensor 303 and the compressor inlet pressure measurement value P by the pressure sensor 304.
  • the measured value T of the compressor inlet temperature indicates a measured value of the refrigerant temperature at the inlet of the compressor 102.
  • the measured value P of the compressor inlet pressure indicates a measured value of the refrigerant pressure at the inlet of the compressor 102.
  • step S2 the controller 305 acquires the saturated vapor temperature of the refrigerant at the compressor inlet pressure measurement value P.
  • the relationship between the pressure and the saturated steam temperature is known for each refrigerant, and the controller 305 obtains the saturated steam temperature by applying the compressor inlet pressure measurement value P to this relationship.
  • the method by which the controller 305 acquires the relationship between the pressure and the saturated steam temperature is not limited to a specific method.
  • the controller 305 may access a database that stores the relationship between pressure and saturated steam temperature in a tabular format. This database may be provided inside the controller 305, or may be configured as a device different from the controller 305. Alternatively, the controller 305 may store in advance a logical expression or an approximate expression indicating the relationship between the pressure and the saturated steam temperature.
  • step S3 the controller 305 calculates the degree of superheat by subtracting the saturated steam temperature from the compressor inlet pressure measurement value P.
  • step S4 the controller 305 compares the degree of superheat calculated in step S3 with a predetermined range. For example, the controller 305 compares the degree of superheat calculated in step S3 with a range of 3 ° C. to 10 ° C. If it is determined that the degree of superheat is greater than the predetermined range (step S4: greater than the range), the process proceeds to step S5. When it is determined that the degree of superheat is within a predetermined range (step S4: within range), the controller 305 returns to step S1. In this case, the controller 305 does not change the opening degree of the bypass valve 302. That is, the controller 305 maintains the opening degree of the bypass valve 302. When it is determined that the degree of superheat is smaller than the predetermined range (step S4: smaller than the range), the process proceeds to step S6.
  • step S5 the controller 305 increases the opening degree of the bypass valve 302.
  • the controller 305 may increase the opening degree of the bypass valve 302 by a predetermined opening degree change amount every time step S5 is executed.
  • the controller 305 calculates the opening increase amount of the bypass valve 302 based on the difference between the degree of superheat calculated in step S3 and a predetermined range value (for example, a predetermined lower limit value). You may make it do.
  • a predetermined range value for example, a predetermined lower limit value.
  • the amount of refrigerant flowing into 102 decreases. As a result, the amount of heat exchange in the heat exchanger 301 is reduced, and the temperature of the refrigerant flowing into the compressor 102 is reduced as compared to before the opening degree of the bypass valve 302 is increased.
  • step S6 the controller 305 decreases the opening degree of the bypass valve 302.
  • the controller 305 may decrease the opening degree of the bypass valve 302 by a predetermined opening degree change amount every time step S5 is executed.
  • the controller 305 calculates a decrease in the opening degree of the bypass valve 302 based on the difference between the degree of superheat calculated in step S3 and a value in a predetermined range (for example, an upper limit value in the predetermined range). You may make it do.
  • the controller 305 decreases the opening degree of the bypass valve 302
  • the ratio of the refrigerant flowing through the bypass flow path out of the refrigerant flowing out from the evaporation unit 101 is reduced, and the compressor is transferred from the evaporation unit 101 via the heat exchanger 301.
  • the amount of refrigerant flowing into 102 increases.
  • the amount of heat exchange in the heat exchanger 301 increases, and the temperature of the refrigerant flowing into the compressor 102 rises compared to before the opening degree of the bypass valve 302 is increased.
  • the heat exchanger 301 causes heat exchange between the refrigerant flowing through the flow path from the evaporation unit 101 to the compressor 102 and the refrigerant flowing through the flow path from the compressor 102 to the condensing unit 103. .
  • coolant which flows in into the compressor 102 can be raised, and possibility that liquid compression will arise can be reduced.
  • the heat exchanger 301 performs heat exchange using the refrigerant that has flowed out of the compressor 102 and before flowing into the condensing unit 103 without being affected by the temperature drop of the refrigerant in the condensing unit 103. Heat exchange can be performed.
  • the cooling system 1 can further reduce the possibility that liquid compression occurs as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
  • the controller 305 controls the heat exchange amount in the heat exchanger based on the pressure measurement value and the temperature measurement value on at least one of the inlet side and the outlet side of the compressor 102.
  • the controller 305 compares the degree of superheat of the refrigerant calculated from the pressure measurement value by the pressure sensor 304 and the temperature measurement value by the temperature sensor 303 with a predetermined range. When the superheat degree is larger than the predetermined range, the controller 305 decreases the heat exchange amount in the heat exchanger 301. When the degree of superheat is smaller than the predetermined range, the controller 305 increases the amount of heat exchange in the heat exchanger 301. When the degree of superheat is within a predetermined range, the controller 305 suppresses a change in the heat exchange amount. Thereby, the controller 305 can reduce the possibility of liquid compression by a simple process of comparing the degree of superheat and a predetermined range, and the temperature of the refrigerant flowing into the compressor 102 becomes too high. You can avoid that.
  • the bypass valve 302 is a bypass channel that bypasses the heat exchanger 301 for at least one of the channel from the evaporator 101 to the compressor 102 and the channel from the compressor 102 to the condenser 103. Provided.
  • the bypass valve 302 adjusts the amount of refrigerant flowing through the bypass flow path. Thereby, in the cooling system 1, the heat exchange amount in the heat exchanger 301 can be controlled with a simple configuration in which the bypass path and the bypass valve 302 are provided in the refrigerant flow path.
  • the controller 305 controls the bypass valve 302 based on the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303.
  • the cooling system 1 can control the amount of heat exchange in the heat exchanger 301 with a simple configuration in which the pressure sensor 304 and the temperature sensor 303 are provided in addition to the bypass path and bypass valve 302 described above.
  • the controller 305 calculates the degree of superheat of the refrigerant from the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303.
  • the controller 305 increases the amount of refrigerant flowing through the bypass valve 302.
  • the controller 305 decreases the amount of refrigerant flowing through the bypass valve 302.
  • the controller 305 maintains the amount of refrigerant flowing through the bypass valve 302.
  • FIG. 3 is a schematic block diagram illustrating a second example of the device configuration of the cooling system 1. 3 differs from the case of FIG. 1 in that the temperature sensor 303 and the pressure sensor 304 are provided on the outlet side of the compressor 102. The rest is the same as in the case of FIG.
  • FIG. 4 is a schematic block diagram illustrating a third example of the device configuration of the cooling system 1.
  • the bypass flow path and the bypass valve 302 are provided in the flow path from the evaporation unit 101 to the compressor 102.
  • the bypass flow path and the bypass valve 302 are provided in the flow path from the compressor 102 to the condensing unit 103.
  • the rest is the same as in the case of FIG.
  • FIG. 5 is a schematic block diagram illustrating a third example of the device configuration of the cooling system 1.
  • the temperature sensor 303 and the pressure sensor 304 are provided on the outlet side of the compressor 102.
  • the bypass flow path and the bypass valve 302 are provided in the flow path from the compressor 102 to the condensing unit 103. The rest is the same as in the case of FIG.
  • the control of the controller 305 in the configuration shown in FIGS. 3, 4, and 5 is the same as that in the configuration shown in FIG.
  • the pressure sensor 304 and the temperature sensor 303 are provided on the outlet side of the compressor 102 as in the configuration illustrated in FIG. 3 and the configuration illustrated in FIG. 5, the refrigerant is prevented from being liquefied in the compressor 102.
  • the compressor can be used even if no liquid phase refrigerant is contained when sucked into the compressor 102.
  • the refrigerant pressure increases at 102, a part of the refrigerant may be liquefied.
  • liquid compression can be avoided by setting the degree of superheat on the outlet side of the compressor 102 within a certain range.
  • the bypass path and bypass valve 302 are provided in the flow path (high-pressure side flow path) from the compressor 102 to the condenser 103 as in the configuration shown in FIG. 4 and the configuration shown in FIG.
  • the pressure loss in the cooling system 1 is relatively large, the pressure loss in the entire cooling system 1 can be relatively small.
  • the heat exchanger generally has a pressure loss.
  • the pressure loss is smaller when the refrigerant passes through the bypass path than when the refrigerant passes through the heat exchanger 301. Therefore, in the configuration shown in FIG. 1 and the configuration shown in FIG.
  • a bypass path and a bypass valve 302 are provided in the flow path (low pressure side flow path) from the evaporation unit 101 to the compressor 102.
  • the heat exchanger 301 is a shell-and-tube type heat exchanger or the like
  • the pressure loss in the heat exchanger 301 is extremely small, or when the bypass valve 302 is relatively small, or when passing through the bypass valve 302 Is considered to be larger than the pressure loss when passing through the heat exchanger 301.
  • the pressure loss in the entire cooling system 1 can be made relatively small by providing the bypass path and the bypass valve 302 in the high-pressure side flow path having a small influence on the performance of the pressure loss.
  • FIG. 6 is a schematic block diagram illustrating an example of a device configuration of a cooling system that performs heat exchange between the flow path from the evaporation section to the compressor and the flow path from the condensation section to the expansion valve.
  • a cooling system 900 illustrated in FIG. 6 includes an evaporation unit 901, a compressor 902, a condensing unit 903, an expansion valve 904, and a heat exchanger 911.
  • the evaporation unit 901 evaporates the refrigerant by performing heat exchange between the liquid-phase refrigerant flowing into the evaporation unit 901 and the ambient air.
  • the compressor 902 compresses the gas-phase refrigerant evaporated in the evaporation unit 901.
  • the condensing unit 903 condenses the refrigerant by causing heat exchange between the gas-phase refrigerant that has become high temperature and pressure due to compression and the ambient air.
  • the expansion valve 904 depressurizes the liquid-phase refrigerant condensed in the condensing unit 903. When the refrigerant is depressurized by the expansion valve 904, the evaporating unit 901 easily evaporates.
  • the heat exchanger 911 is provided for the purpose of reducing the possibility of liquid compression by heating the refrigerant flowing into the compressor 902.
  • the heat exchanger 911 exchanges heat between the gas-phase refrigerant flowing from the evaporation unit 901 to the compressor 902 and the liquid-phase refrigerant flowing from the condensing unit 903 to the expansion valve 904.
  • the evaporation unit 901 is configured as an indoor unit to lower the room temperature of the server room
  • the condensing unit 903 is configured as an outdoor unit.
  • the introduction of outside air is limited in order to prevent dust, not only in summer when the outside air temperature is high and cooling is required, but also in winter when the outside air temperature is low. For this reason, it is conceivable to operate the cooling system 900 throughout the year.
  • the temperature of the refrigerant greatly decreases in the condensing unit 903.
  • the temperature of the refrigerant flowing into the compressor 902 is not sufficiently increased by heat exchange in the heat exchanger 911, and liquid compression may occur.
  • the performance of the condensing unit 903 is lowered by reducing the number of rotations of the fan of the outdoor unit or by shutting off a part of the heat exchanger in the outdoor unit. It is conceivable to raise the temperature of the refrigerant liquid that comes out.
  • the performance of the condenser 903 is not fully utilized, and the cooling capacity of the cooling system 900 is limited.
  • the heat exchanger 301 of the cooling system 1 includes a refrigerant that flows from the evaporator 101 to the compressor 102, and a refrigerant that flows from the compressor 102 to the condenser 103. Heat exchange between the two.
  • the refrigerant before flowing into the condensing unit 103 By causing the refrigerant before flowing into the condensing unit 103 to perform heat exchange, it is not affected by the temperature drop in the condensing unit 103.
  • the temperature of the refrigerant flowing into the compressor 102 can be effectively increased, and the possibility of liquid compression occurring can be reduced.
  • FIG. 7 is a schematic block diagram illustrating a configuration example of the controller 305.
  • the controller 305 includes a CPU (Central Processing Unit) 311, a storage device 312, and an interface 313.
  • the operation of the controller 305 is performed by the CPU 311 reading a program from the storage device 312 and executing it.
  • the interface 313 performs input / output such as communication with other devices.
  • the controller 305 may have a configuration other than a configuration using a computer, such as a configuration using dedicated hardware.
  • FIG. 8 is a diagram showing an example of the minimum configuration of the cooling system according to the present invention.
  • a cooling system 10 illustrated in FIG. 8 includes an evaporation unit 11, a compressor 12, a condensing unit 13, an expansion valve 14, and a heat exchanger 15. With this configuration, the evaporating unit 11 evaporates the refrigerant.
  • the compressor 12 compresses the refrigerant evaporated in the evaporation unit 11.
  • the condensing unit 13 condenses the refrigerant compressed by the compressor.
  • the expansion valve 14 is provided in the flow path from the condensation unit 13 to the evaporation unit 11 to depressurize the refrigerant.
  • the heat exchanger 15 exchanges heat between the refrigerant flowing through the flow path from the evaporator 11 to the compressor 12 and the refrigerant flowing through the flow path from the compressor 12 to the condenser 13.
  • coolant which flows in into the compressor 12 can be raised, and possibility that liquid compression will arise can be reduced.
  • the heat exchanger 15 performs heat exchange using the refrigerant that has flowed out of the compressor 12 and before flowing into the condensing unit 13, so that it is not affected by the temperature drop of the refrigerant in the condensing unit 13. Heat exchange can be performed.
  • the cooling system 10 can further reduce the possibility that liquid compression occurs as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
  • a program for realizing all or part of the functions of the controller 305 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Processing may be performed.
  • the “computer system” here includes an OS (Operating System) and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read only memory), a CD-ROM (Compact Disc Read only memory), or a hard disk built in the computer system. This means a storage device such as
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

Abstract

[Problem] To reduce the possibility of liquid compression occurring in a cooling system. [Solution] A cooling system comprises: an evaporation unit that evaporates refrigerant; a compressor that compresses the refrigerant evaporated with the evaporation unit; a condensation unit that condenses the refrigerant compressed by the compressor; an expansion valve that is provided in the channel from the condensation unit to the evaporation unit and that reduces the pressure of the refrigerant; and a heat exchanger that performs heat exchange between the refrigerant flowing from the evaporation unit to the compressor and the refrigerant flowing in the channel from the compressor to the condensation unit.

Description

冷却システム、冷却方法及びプログラムCooling system, cooling method and program
 本発明は、冷却システム、冷却方法及びプログラムに関する。 The present invention relates to a cooling system, a cooling method, and a program.
 冷却設備の圧縮機に液相の冷媒が混入する液圧縮ないし湿り圧縮を回避するための技術が提案されている。例えば、特許文献1には、圧縮機の湿り圧縮を防止するための構成を備える冷媒回路が示されている。この冷媒回路では、凝縮器を流れる冷媒の一部を凝縮器から外へ流した後に凝縮器へ戻すバイパス回路が設けられている。このバイパス回路にはレシーバが設けられ、レシーバには膨張弁から蒸発器への冷媒の通路が配設されている。
 この冷媒回路では、圧縮機の湿り圧縮を防止するために、凝縮器からレシーバに流入する冷媒量を調整弁によって調整することで、レシーバ温度を目標レシーバ温度に近づけている。この調整弁による調整によって膨張弁から蒸発器への冷媒が加熱される。
A technique for avoiding liquid compression or wet compression in which a liquid-phase refrigerant is mixed in a compressor of a cooling facility has been proposed. For example, Patent Document 1 discloses a refrigerant circuit having a configuration for preventing wet compression of a compressor. In this refrigerant circuit, a bypass circuit is provided in which a part of the refrigerant flowing through the condenser is flowed out of the condenser and then returned to the condenser. The bypass circuit is provided with a receiver, and the receiver is provided with a refrigerant passage from the expansion valve to the evaporator.
In this refrigerant circuit, in order to prevent wet compression of the compressor, the receiver temperature is brought close to the target receiver temperature by adjusting the amount of refrigerant flowing from the condenser to the receiver by means of an adjusting valve. The refrigerant from the expansion valve to the evaporator is heated by the adjustment by the adjustment valve.
特許第3956674号公報Japanese Patent No. 3956754
 特許文献1に記載の冷媒回路では、凝縮器からレシーバへ流れる冷媒の温度が低い場合、レシーバの温度を目標レシーバ温度に近づけることができない。このため、膨張弁から蒸発器へ流れる冷媒を十分に加熱することができず、液圧縮が発生する可能性がある。例えば、凝縮器が室外機として構成されており、かつ、外気温度が低い場合、及び、凝縮器が大型であるなど凝縮器の冷却能力が高い場合、凝縮器からレシーバへ流れる冷媒の温度が低くなって液圧縮が生じる可能性がある。 In the refrigerant circuit described in Patent Document 1, when the temperature of the refrigerant flowing from the condenser to the receiver is low, the temperature of the receiver cannot be brought close to the target receiver temperature. For this reason, the refrigerant flowing from the expansion valve to the evaporator cannot be sufficiently heated, and liquid compression may occur. For example, when the condenser is configured as an outdoor unit and the outside air temperature is low, and when the condenser has a large cooling capacity such as a large condenser, the temperature of the refrigerant flowing from the condenser to the receiver is low. This may cause liquid compression.
 本発明は、上述の課題を解決することのできる冷却システム、冷却方法及びプログラムを提供することを目的としている。 The object of the present invention is to provide a cooling system, a cooling method, and a program capable of solving the above-described problems.
 本発明の第1の態様によれば、冷却システムは、冷媒を蒸発させる蒸発部と、前記蒸発部において蒸発した冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒を凝縮させる凝縮部と、前記凝縮部から前記蒸発部への流路に設けられて冷媒を減圧する膨張弁と、前記蒸発部から前記圧縮機への流路を流れる冷媒と、前記圧縮機から前記凝縮部への流路を流れる冷媒との間で熱交換を行わせる熱交換器と、を備える。 According to the first aspect of the present invention, the cooling system includes an evaporator that evaporates the refrigerant, a compressor that compresses the refrigerant evaporated in the evaporator, and a condenser that condenses the refrigerant compressed by the compressor. An expansion valve that is provided in a flow path from the condensing unit to the evaporation unit to depressurize the refrigerant, a refrigerant that flows through the flow channel from the evaporation unit to the compressor, and from the compressor to the condensing unit A heat exchanger that exchanges heat with the refrigerant flowing through the flow path.
 本発明の第2の態様によれば、冷却方法は、冷媒を蒸発させる蒸発部から前記蒸発部において蒸発した冷媒を圧縮する圧縮機への流路を流れる冷媒と、前記圧縮機から前記圧縮機で圧縮された冷媒を凝縮させる凝縮部への流路を流れる冷媒の間で熱交換を行わせる、ことを含む。 According to the second aspect of the present invention, the cooling method includes: a refrigerant flowing through a flow path from an evaporation unit that evaporates the refrigerant to a compressor that compresses the refrigerant evaporated in the evaporation unit; and the compressor to the compressor Heat exchange between the refrigerant flowing through the flow path to the condensing unit for condensing the refrigerant compressed in step (b).
 本発明の第3の態様によれば、プログラムは、コンピュータに、冷媒を蒸発させる蒸発部から前記蒸発部において蒸発した冷媒を圧縮する圧縮機への流路を流れる冷媒と、前記圧縮機から前記圧縮機で圧縮された冷媒を凝縮させる凝縮部への流路を流れる冷媒の間での熱交換を制御させるためのプログラムである。 According to the third aspect of the present invention, the program causes the computer to transmit a refrigerant flowing in a flow path from an evaporation unit that evaporates the refrigerant to a compressor that compresses the refrigerant evaporated in the evaporation unit, and the compressor from the compressor. It is a program for controlling heat exchange between refrigerants flowing through a flow path to a condensing unit for condensing refrigerant compressed by a compressor.
 この発明によれば、液圧縮が生じる可能性をより低減させることができる。 According to the present invention, the possibility of liquid compression can be further reduced.
本発明の実施形態に係る冷却システムの機器構成の第一例を示す概略ブロック図である。It is a schematic block diagram which shows the 1st example of the apparatus structure of the cooling system which concerns on embodiment of this invention. 本発明の実施形態に係るコントローラがバイパスバルブの開度を制御する処理手順の例を示す図である。It is a figure which shows the example of the process sequence which the controller which concerns on embodiment of this invention controls the opening degree of a bypass valve. 本発明の実施形態に係る冷却システムの機器構成の第二例を示す概略ブロック図である。It is a schematic block diagram which shows the 2nd example of the apparatus structure of the cooling system which concerns on embodiment of this invention. 本発明の実施形態に係る冷却システムの機器構成の第三例を示す概略ブロック図である。It is a schematic block diagram which shows the 3rd example of the apparatus structure of the cooling system which concerns on embodiment of this invention. 本発明の実施形態に係る冷却システムの機器構成の第三例を示す概略ブロック図である。It is a schematic block diagram which shows the 3rd example of the apparatus structure of the cooling system which concerns on embodiment of this invention. 蒸発部から圧縮機への流路と、凝縮部から膨張弁への流路との間で熱交換を行う冷却システムの機器構成の例を示す概略ブロック図である。It is a schematic block diagram which shows the example of the apparatus structure of the cooling system which performs heat exchange between the flow path from an evaporation part to a compressor, and the flow path from a condensation part to an expansion valve. 本発明の実施形態に係るコントローラの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the controller which concerns on embodiment of this invention. 本発明に係る冷却システムの最小構成の例を示す図である。It is a figure which shows the example of the minimum structure of the cooling system which concerns on this invention.
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の実施形態に係る冷却システムの機器構成の第一例を示す概略ブロック図である。図1の例では、冷却システム1は、蒸発部101と、圧縮機102と、凝縮部103と、膨張弁104と、熱交換器301と、バイパスバルブ302と、温度センサ303と、圧力センサ304と、コントローラ305とを備える。
Hereinafter, although embodiment of this invention is described, the following embodiment does not limit the invention concerning a claim. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
FIG. 1 is a schematic block diagram illustrating a first example of a device configuration of a cooling system according to an embodiment of the present invention. In the example of FIG. 1, the cooling system 1 includes an evaporator 101, a compressor 102, a condenser 103, an expansion valve 104, a heat exchanger 301, a bypass valve 302, a temperature sensor 303, and a pressure sensor 304. And a controller 305.
 冷却システム1は、冷熱を供給するシステムである。冷却システム1の用途は特定の用途に限定されない。例えば、冷却システム1がデータセンタに設置されてコンピュータを冷却する用途にもちいられるなど、機器の冷却を行うようにしてもよい。或いは、冷却システム1が家庭又は職場などの居住環境に設置されて、居住環境の快適性を高めるために冷気を供給するようにしてもよい。 The cooling system 1 is a system that supplies cold heat. The application of the cooling system 1 is not limited to a specific application. For example, the cooling system 1 may be used for cooling the computer by installing the cooling system 1 in the data center. Alternatively, the cooling system 1 may be installed in a living environment such as a home or a workplace, and cool air may be supplied to enhance the comfort of the living environment.
 特に、冷却システム1がデータセンタに設置された場合など、冷却システム1が通年稼働する場合が考えられる。この場合、凝縮部103が室外機として構成されていると、冬季には凝縮部103を流れる冷媒の温度が低くなることが考えられる。冷却システム1では、このような場合でも液圧縮が生じる可能性を低減させることができる。この点で冷却システム1は、凝縮器を流れる冷媒を用いて液圧縮を防止する場合よりも、液圧縮が生じる可能性を低減させることができる。
 冷却システム1は、冷房専用のシステムとして構成されていてもよいし、冷暖房を切り替え可能なシステムとして構成されていてもよい。
In particular, there may be a case where the cooling system 1 operates throughout the year, such as when the cooling system 1 is installed in a data center. In this case, if the condensing unit 103 is configured as an outdoor unit, the temperature of the refrigerant flowing through the condensing unit 103 may be low in winter. The cooling system 1 can reduce the possibility that liquid compression occurs even in such a case. In this respect, the cooling system 1 can reduce the possibility of liquid compression as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
The cooling system 1 may be configured as a system dedicated to cooling, or may be configured as a system capable of switching between cooling and heating.
 蒸発部101は、例えば室内機として構成されるなどにより冷熱供給対象空間に設けられ、蒸発部101自らに流入する液相の冷媒を蒸発させる。蒸発する冷媒が周囲空気と熱交換を行って気化熱を吸収することで、周囲空気が冷却される。蒸発部101は、この周囲空気を蒸発部101の外部へ送風することで、室内機の外部に冷熱を供給する。 The evaporating unit 101 is provided in the cold supply target space by being configured as an indoor unit, for example, and evaporates liquid phase refrigerant flowing into the evaporating unit 101 itself. The evaporating refrigerant exchanges heat with the ambient air to absorb the heat of vaporization, thereby cooling the ambient air. The evaporation unit 101 supplies cold air to the outside of the indoor unit by blowing the ambient air to the outside of the evaporation unit 101.
 圧縮機102は、蒸発部101において蒸発した気相の冷媒を圧縮する。冷媒は、圧縮機102で圧縮されることで比較的高温高圧の気相の冷媒となる。
 凝縮部103は、例えば室外機として構成され、圧縮機102で圧縮された気相の冷媒を凝縮させる。凝縮する冷媒は周囲空気と熱交換を行って凝縮熱を放出する。
 膨張弁104は、凝縮部103から蒸発部101への冷媒流路に設けられ、膨張弁104自らを流れる冷媒を減圧する。膨張弁104が冷媒を減圧することで、冷媒が蒸発部101で蒸発し易くなる。
 蒸発部101、圧縮機102、凝縮部103及び膨張弁104を組み合わせた冷媒循環路にて圧縮冷凍サイクルを実行する。
The compressor 102 compresses the gas-phase refrigerant evaporated in the evaporation unit 101. The refrigerant is compressed by the compressor 102 to become a relatively high-temperature and high-pressure gas-phase refrigerant.
The condensing unit 103 is configured as an outdoor unit, for example, and condenses the gas-phase refrigerant compressed by the compressor 102. The condensing refrigerant exchanges heat with the surrounding air and releases condensation heat.
The expansion valve 104 is provided in the refrigerant flow path from the condensing unit 103 to the evaporation unit 101, and depressurizes the refrigerant flowing through the expansion valve 104 itself. When the expansion valve 104 depressurizes the refrigerant, the refrigerant easily evaporates in the evaporation unit 101.
A compression refrigeration cycle is executed in a refrigerant circuit combining the evaporator 101, the compressor 102, the condenser 103, and the expansion valve 104.
 熱交換器301は、蒸発部101から圧縮機102への冷媒流路を流れる冷媒と、圧縮機102から凝縮部103への冷媒流路を流れる冷媒との間で熱交換を行わせる。
 冷媒が圧縮機102で圧縮されて温度上昇することから、圧縮機102へ流入する冷媒と圧縮機102から流出する冷媒とでは、圧縮機102から流出する冷媒の方が温度が高い。従って、熱交換器301における熱交換では、蒸発部101から圧縮機102への冷媒流路を流れる冷媒(圧縮機102へ流入する冷媒)が加熱される。圧縮機102へ流入する冷媒が加熱されることで、この冷媒が凝縮する可能性を低減させることができ、液圧縮が生じる可能性を低減させることができる。
The heat exchanger 301 exchanges heat between the refrigerant flowing through the refrigerant flow path from the evaporation unit 101 to the compressor 102 and the refrigerant flowing through the refrigerant flow path from the compressor 102 to the condensing unit 103.
Since the refrigerant is compressed by the compressor 102 and rises in temperature, the refrigerant flowing out from the compressor 102 has a higher temperature than the refrigerant flowing into the compressor 102 and the refrigerant flowing out from the compressor 102. Therefore, in the heat exchange in the heat exchanger 301, the refrigerant flowing through the refrigerant flow path from the evaporation unit 101 to the compressor 102 (refrigerant flowing into the compressor 102) is heated. Since the refrigerant flowing into the compressor 102 is heated, the possibility that the refrigerant is condensed can be reduced, and the possibility that liquid compression occurs can be reduced.
 また、熱交換器301が、圧縮機102から流出した後凝縮部103へ流入する前の冷媒を用いて熱交換を行わせることで、凝縮部103での冷媒の温度低下の影響を受けずに熱交換を行わせることができる。この点で、冷却システム1では、凝縮部103を流れる冷媒の温度が低くなる場合でも、液圧縮が生じる可能性を低減させることができる。上記のように、この点で冷却システム1は、凝縮器を流れる冷媒を用いて液圧縮を防止する場合よりも、液圧縮が生じる可能性を低減させることができる。
 熱交換器301での冷媒の圧力損失を小さくするために、熱交換器301としてシェルアンドチューブ熱交換器、又は、フィンアンドチューブ熱交換器を用いるようにしてもよい。
In addition, the heat exchanger 301 performs heat exchange using the refrigerant that has flowed out of the compressor 102 and before flowing into the condensing unit 103, so that it is not affected by the temperature drop of the refrigerant in the condensing unit 103. Heat exchange can be performed. In this regard, the cooling system 1 can reduce the possibility of liquid compression even when the temperature of the refrigerant flowing through the condensing unit 103 is low. As described above, in this respect, the cooling system 1 can reduce the possibility of liquid compression occurring as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
In order to reduce the pressure loss of the refrigerant in the heat exchanger 301, a shell and tube heat exchanger or a fin and tube heat exchanger may be used as the heat exchanger 301.
 バイパスバルブ302は、熱交換器301をバイパスするバイパス流路に設けられ、バイパス流路を流れる冷媒の量を調整する。バイパスバルブ302は、流量調整弁を用いて構成される。熱交換器301をバイパスするバイパス流路は、蒸発部101から圧縮機102への流路、及び、圧縮機102から凝縮部103への流路のうち少なくとも何れか一方に設けられる。 The bypass valve 302 is provided in a bypass channel that bypasses the heat exchanger 301, and adjusts the amount of refrigerant flowing through the bypass channel. The bypass valve 302 is configured using a flow rate adjustment valve. The bypass flow path that bypasses the heat exchanger 301 is provided in at least one of the flow path from the evaporation unit 101 to the compressor 102 and the flow path from the compressor 102 to the condensation unit 103.
 第一実施形態では、バイパス経路が蒸発部101から圧縮機102への流路に設けられている場合を例に説明する。バイパス経路が圧縮機102から凝縮部103への流路に設けられている場合については後述する。さらに、バイパス流路が、蒸発部101から圧縮機102への流路、及び、圧縮機102から凝縮部103への流路の両方に設けられていてもよい。この場合、2つのバイパス流路それぞれにバイパスバルブ302が設けられていてもよい。
 バイパスバルブ302は、コントローラ305の制御に従ってバイパスバルブ302自らの開度を変えることで、熱交換器301に流れる冷媒ガスの流量を調整する。この冷媒ガス流量の調整によってバイパスバルブ302は、熱交換器301での熱交換量を調整する。
In the first embodiment, a case where the bypass path is provided in the flow path from the evaporator 101 to the compressor 102 will be described as an example. The case where the bypass path is provided in the flow path from the compressor 102 to the condensing unit 103 will be described later. Furthermore, the bypass flow path may be provided in both the flow path from the evaporation unit 101 to the compressor 102 and the flow path from the compressor 102 to the condensing unit 103. In this case, a bypass valve 302 may be provided in each of the two bypass flow paths.
The bypass valve 302 adjusts the flow rate of the refrigerant gas flowing through the heat exchanger 301 by changing the opening degree of the bypass valve 302 itself according to the control of the controller 305. By adjusting the refrigerant gas flow rate, the bypass valve 302 adjusts the heat exchange amount in the heat exchanger 301.
 温度センサ303は、圧縮機102の入口側(吸引側)及び出口側(吐出側)のうち少なくとも何れか一方に設けられて冷媒の温度を測定する。圧力センサ304は、前記圧縮機の入口側及び出口側のうち少なくとも何れか一方に設けられて冷媒の圧力を測定する。
 第一実施形態では温度センサ303及び圧力センサ304が圧縮機102の入口側に設けられている場合を例に説明する。温度センサ303及び圧力センサ304が圧縮機102の出口側に設けられている場合については後述する。さらに、温度センサ303及び圧力センサ304のうち何れか一方又は両方が、圧縮機102の入口側及び出口側の両方に設けられていてもよい。また、温度センサ303及び圧縮機102のうち何れか一方が圧縮機102の入口側に設けられ、他方が圧縮機102の出口側に設けられていてもよい。
The temperature sensor 303 is provided on at least one of the inlet side (suction side) and the outlet side (discharge side) of the compressor 102 and measures the temperature of the refrigerant. The pressure sensor 304 is provided on at least one of the inlet side and the outlet side of the compressor and measures the pressure of the refrigerant.
In the first embodiment, a case where the temperature sensor 303 and the pressure sensor 304 are provided on the inlet side of the compressor 102 will be described as an example. The case where the temperature sensor 303 and the pressure sensor 304 are provided on the outlet side of the compressor 102 will be described later. Further, either one or both of the temperature sensor 303 and the pressure sensor 304 may be provided on both the inlet side and the outlet side of the compressor 102. Further, one of the temperature sensor 303 and the compressor 102 may be provided on the inlet side of the compressor 102, and the other may be provided on the outlet side of the compressor 102.
 コントローラ305は、圧力センサ304の圧力測定値と温度センサ303の温度測定値とに基づいて、熱交換器301における熱交換量を制御する。具体的には、コントローラ305は、圧力センサ304の圧力測定値及び温度センサ303の温度測定値に基づいてバイパスバルブ302の開度を制御することで、熱交換器301における熱交換量を制御する。
 さらに具体的には、コントローラ305は、圧力測定値及び温度測定値から冷媒の過熱度を算出する。ここでいう過熱度は、飽和温度からの温度上昇である。従って、過熱度は、対象の温度から飽和温度を減算して得られる。
 冷媒の過熱度が所定範囲より大きい場合、コントローラ305は、バイパスバルブ302の開度を大きくしてバイパスバルブ302を流れる冷媒の量を増加させることで熱交換量を減少させる。
 冷媒の過熱度が所定範囲より小さい場合、コントローラ305は、バイパスバルブ302の開度を小さくしてバイパスバルブ302を流れる冷媒の量を減少させることで熱交換量を増加させる。
 冷媒の過熱度が所定範囲内である場合、コントローラ305は、バイパスバルブ302の開度を維持させてバイパスバルブ302を流れる冷媒の量を維持させることで熱交換量の変化を抑制する。
The controller 305 controls the amount of heat exchange in the heat exchanger 301 based on the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303. Specifically, the controller 305 controls the amount of heat exchange in the heat exchanger 301 by controlling the opening degree of the bypass valve 302 based on the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303. .
More specifically, the controller 305 calculates the degree of superheat of the refrigerant from the pressure measurement value and the temperature measurement value. The degree of superheat here is a temperature rise from the saturation temperature. Therefore, the degree of superheat is obtained by subtracting the saturation temperature from the target temperature.
When the superheat degree of the refrigerant is larger than the predetermined range, the controller 305 increases the opening degree of the bypass valve 302 and increases the amount of refrigerant flowing through the bypass valve 302, thereby reducing the heat exchange amount.
When the degree of superheat of the refrigerant is smaller than the predetermined range, the controller 305 increases the heat exchange amount by reducing the amount of refrigerant flowing through the bypass valve 302 by reducing the opening degree of the bypass valve 302.
When the superheat degree of the refrigerant is within a predetermined range, the controller 305 suppresses the change in the heat exchange amount by maintaining the opening degree of the bypass valve 302 and maintaining the amount of refrigerant flowing through the bypass valve 302.
 このようにコントローラ305が、圧縮機102に吸引される冷媒ガスの過熱度を所定範囲内に保つことで液圧縮を回避する。
 所定範囲における過熱度の下限値は、圧縮機102による液圧縮を回避するために設けられる。この下限値は、冷媒が液冷媒を含まなくなると考えられる過熱度に設定される。
例えば、コントローラ305が、過熱度の下限値を飽和蒸気温度に3℃加えた値以上の値に設定するようにしてもよい。
In this way, the controller 305 avoids liquid compression by keeping the degree of superheat of the refrigerant gas sucked into the compressor 102 within a predetermined range.
The lower limit value of the superheat degree in the predetermined range is provided to avoid liquid compression by the compressor 102. This lower limit is set to a degree of superheat at which the refrigerant is considered to contain no liquid refrigerant.
For example, the controller 305 may set the lower limit value of the superheat degree to a value equal to or higher than the value obtained by adding 3 ° C. to the saturated steam temperature.
 所定範囲における過熱度の上限値は、圧縮機102へ流入する冷媒が過熱され過ぎることで冷却システム1の効率が低下すること、及び、圧縮機102の温度又は冷媒温度が利用可能温度上限に達して冷却システム1が停止することを防止するために設けられる。一般に過熱度が大きい程冷媒の断熱圧縮に必要な仕事が増えるため、加熱が大きい程圧縮機の仕事が増え、効率低下を引き起こす。
 例えば、コントローラ305が、過熱度の上限値を10℃に設定するようにしてもよい。
The upper limit value of the superheat degree in the predetermined range is that the refrigerant flowing into the compressor 102 is overheated, the efficiency of the cooling system 1 is lowered, and the temperature of the compressor 102 or the refrigerant temperature reaches the usable temperature upper limit. In order to prevent the cooling system 1 from stopping. Generally, the greater the degree of superheat, the greater the work required for adiabatic compression of the refrigerant. Therefore, the greater the heating, the greater the work of the compressor, causing a reduction in efficiency.
For example, the controller 305 may set the upper limit value of the superheat degree to 10 ° C.
 蒸発部101から圧縮機102へ流入した冷媒は、圧縮機102で圧縮されることで温度上昇する。このため、圧縮機102へ流入する冷媒の温度をTinとし、圧縮機102から流出する冷媒温度をToutとすると、Tin<Toutとなる。そこで冷却システム1は、圧縮機102の入口側と出口側の間に熱交換器301を備える。熱交換器301が、圧縮機102に流入する冷媒と圧縮機102から流出する冷媒との間で熱交換を行わせることで、圧縮機102に流入する冷媒の温度を上げ、液圧縮を回避する。 The refrigerant that has flowed into the compressor 102 from the evaporation unit 101 rises in temperature by being compressed by the compressor 102. For this reason, if the temperature of the refrigerant flowing into the compressor 102 is Tin and the temperature of the refrigerant flowing out of the compressor 102 is Tout, Tin <Tout. Therefore, the cooling system 1 includes a heat exchanger 301 between the inlet side and the outlet side of the compressor 102. The heat exchanger 301 causes heat exchange between the refrigerant flowing into the compressor 102 and the refrigerant flowing out of the compressor 102, thereby increasing the temperature of the refrigerant flowing into the compressor 102 and avoiding liquid compression. .
 但し、熱交換器301で冷媒が熱交換するのみでは過熱され過ぎる可能性がある。熱交換器301で冷媒が熱交換することで圧縮機102に流入する冷媒の温度が上がると、圧縮機から流出する冷媒の温度も上昇する。その結果、ほぼ一定の温度である蒸発部101から流出した冷媒と圧縮機102から流出した冷媒との温度差が増加し、熱交換器301での熱交換量が増加する。すると、圧縮機に流入する冷媒の温度がさらに上昇し、圧縮機から流出する冷媒の温度もさらに上昇する。これによって熱交換器301における熱交換量が更に増加する。その結果、過熱度が上昇し続け、圧縮機仕事の増加、冷媒の分解、又は、圧縮機の故障が生じる可能性がある。 However, there is a possibility that the refrigerant is overheated only by heat exchange with the heat exchanger 301. When the temperature of the refrigerant flowing into the compressor 102 increases due to heat exchange of the refrigerant in the heat exchanger 301, the temperature of the refrigerant flowing out of the compressor also increases. As a result, the temperature difference between the refrigerant that has flowed out of the evaporator 101 and the refrigerant that has flowed out of the compressor 102, which has a substantially constant temperature, increases, and the amount of heat exchange in the heat exchanger 301 increases. Then, the temperature of the refrigerant flowing into the compressor further increases, and the temperature of the refrigerant flowing out from the compressor further increases. This further increases the amount of heat exchange in the heat exchanger 301. As a result, the degree of superheat continues to increase, which can result in increased compressor work, refrigerant breakdown, or compressor failure.
 そこで、バイパスバルブ302がコントローラ305の制御に従ってバイパスバルブ302自らの開度を調整することで過熱度を適正な範囲内に保つ。コントローラ305は、温度センサ303の温度測定値及び圧力センサ304の圧力測定値から冷媒の過熱度を算出し、その値に応じてバイパスバルブ302の開度を調整する。 Therefore, the bypass valve 302 adjusts the opening degree of the bypass valve 302 according to the control of the controller 305 to keep the degree of superheat within an appropriate range. The controller 305 calculates the degree of superheat of the refrigerant from the temperature measurement value of the temperature sensor 303 and the pressure measurement value of the pressure sensor 304, and adjusts the opening degree of the bypass valve 302 according to the value.
 コントローラ305が行う制御について、図2を参照して説明する。
 図2は、コントローラ305がバイパスバルブ302の開度を制御する処理手順の例を示す図である。ステップS1では、コントローラ305は、温度センサ303によるコンプレッサ入口温度測定値Tと、圧力センサ304によるコンプレッサ入口圧力測定値Pとを取得する。コンプレッサ入口温度測定値Tは、圧縮機102の入口における冷媒の温度の測定値を示す。コンプレッサ入口圧力測定値Pは、圧縮機102の入口における冷媒の圧力の測定値を示す。
Control performed by the controller 305 will be described with reference to FIG.
FIG. 2 is a diagram illustrating an example of a processing procedure in which the controller 305 controls the opening degree of the bypass valve 302. In step S <b> 1, the controller 305 acquires the compressor inlet temperature measurement value T by the temperature sensor 303 and the compressor inlet pressure measurement value P by the pressure sensor 304. The measured value T of the compressor inlet temperature indicates a measured value of the refrigerant temperature at the inlet of the compressor 102. The measured value P of the compressor inlet pressure indicates a measured value of the refrigerant pressure at the inlet of the compressor 102.
 ステップS2では、コントローラ305は、コンプレッサ入口圧力測定値Pにおける冷媒の飽和蒸気温度を取得する。圧力と飽和蒸気温度の関係は冷媒毎に既知であり、コントローラ305は、この関係にコンプレッサ入口圧力測定値Pを適用することで飽和蒸気温度を取得する。
 コントローラ305が、圧力と飽和蒸気温度の関係を取得する方法は、特定の方法に限定されない。例えば、コントローラ305が、圧力と飽和蒸気温度の関係を表形式で記憶するデータベースにアクセスするようにしてもよい。このデータベースは、コントローラ305の内部に設けられていてもよいし、コントローラ305とは別の装置として構成されていてもよい。あるいは、コントローラ305が、圧力と飽和蒸気温度の関係を示す論理式又は近似式を予め記憶しておくようにしてもよい。
In step S2, the controller 305 acquires the saturated vapor temperature of the refrigerant at the compressor inlet pressure measurement value P. The relationship between the pressure and the saturated steam temperature is known for each refrigerant, and the controller 305 obtains the saturated steam temperature by applying the compressor inlet pressure measurement value P to this relationship.
The method by which the controller 305 acquires the relationship between the pressure and the saturated steam temperature is not limited to a specific method. For example, the controller 305 may access a database that stores the relationship between pressure and saturated steam temperature in a tabular format. This database may be provided inside the controller 305, or may be configured as a device different from the controller 305. Alternatively, the controller 305 may store in advance a logical expression or an approximate expression indicating the relationship between the pressure and the saturated steam temperature.
 ステップS3では、コントローラ305は、コンプレッサ入口圧力測定値Pから飽和蒸気温度を減算して過熱度を算出する。
 ステップS4では、コントローラ305は、ステップS3で算出した過熱度と予め規定された範囲とを比較する。例えば、コントローラ305は、ステップS3で算出した過熱度と3℃以上10℃以下の範囲とを比較する。
 過熱度が予め定められた範囲より大きいと判定した場合(ステップS4:範囲より大)、ステップS5へ進む。過熱度が予め定められた範囲内であると判定した場合(ステップS4:範囲内)、コントローラ305は、ステップS1へ戻る。この場合、コントローラ305は、バイパスバルブ302の開度を変化させない。すなわち、コントローラ305はバイパスバルブ302の開度を維持させる。過熱度が予め定められた範囲より小さいと判定した場合(ステップS4:範囲より小)、ステップS6へ進む。
In step S3, the controller 305 calculates the degree of superheat by subtracting the saturated steam temperature from the compressor inlet pressure measurement value P.
In step S4, the controller 305 compares the degree of superheat calculated in step S3 with a predetermined range. For example, the controller 305 compares the degree of superheat calculated in step S3 with a range of 3 ° C. to 10 ° C.
If it is determined that the degree of superheat is greater than the predetermined range (step S4: greater than the range), the process proceeds to step S5. When it is determined that the degree of superheat is within a predetermined range (step S4: within range), the controller 305 returns to step S1. In this case, the controller 305 does not change the opening degree of the bypass valve 302. That is, the controller 305 maintains the opening degree of the bypass valve 302. When it is determined that the degree of superheat is smaller than the predetermined range (step S4: smaller than the range), the process proceeds to step S6.
 ステップS5ではコントローラ305は、バイパスバルブ302の開度を増加させる。
例えばコントローラ305が、ステップS5を実行する毎にバイパスバルブ302の開度を予め定められた開度変化量だけ増加させるようにしてもよい。あるいは、コントローラ305が、ステップS3で算出した過熱度と予め定められた範囲の値(例えば、予め定められた範囲の下限値)との差に基づいて、バイパスバルブ302の開度増加分を算出するようにしてもよい。
 コントローラ305がバイパスバルブ302の開度を増加させることで、蒸発部101から流出した冷媒のうちバイパス流路を流れる冷媒の割合が増加し、蒸発部101から熱交換器301を経由して圧縮機102に流入する冷媒の量が減少する。これによって熱交換器301での熱交換量が減少し、圧縮機102に流入する冷媒の温度が、バイパスバルブ302の開度を増加させる前との比較で低下する。
In step S5, the controller 305 increases the opening degree of the bypass valve 302.
For example, the controller 305 may increase the opening degree of the bypass valve 302 by a predetermined opening degree change amount every time step S5 is executed. Alternatively, the controller 305 calculates the opening increase amount of the bypass valve 302 based on the difference between the degree of superheat calculated in step S3 and a predetermined range value (for example, a predetermined lower limit value). You may make it do.
When the controller 305 increases the opening degree of the bypass valve 302, the ratio of the refrigerant flowing through the bypass flow passage out of the refrigerant flowing out from the evaporation unit 101 increases, and the compressor is transferred from the evaporation unit 101 via the heat exchanger 301. The amount of refrigerant flowing into 102 decreases. As a result, the amount of heat exchange in the heat exchanger 301 is reduced, and the temperature of the refrigerant flowing into the compressor 102 is reduced as compared to before the opening degree of the bypass valve 302 is increased.
 ステップS6ではコントローラ305は、バイパスバルブ302の開度を減少させる。
例えばコントローラ305が、ステップS5を実行する毎にバイパスバルブ302の開度を予め定められた開度変化量だけ減少させるようにしてもよい。あるいは、コントローラ305が、ステップS3で算出した過熱度と予め定められた範囲の値(例えば、予め定められた範囲の上限値)との差に基づいて、バイパスバルブ302の開度減少分を算出するようにしてもよい。
 コントローラ305がバイパスバルブ302の開度を減少させることで、蒸発部101から流出した冷媒のうちバイパス流路を流れる冷媒の割合が減少し、蒸発部101から熱交換器301を経由して圧縮機102に流入する冷媒の量が増加する。これにより、熱交換器301での熱交換量が増加し、圧縮機102に流入する冷媒の温度が、バイパスバルブ302の開度を増加させる前との比較で上昇する。
In step S6, the controller 305 decreases the opening degree of the bypass valve 302.
For example, the controller 305 may decrease the opening degree of the bypass valve 302 by a predetermined opening degree change amount every time step S5 is executed. Alternatively, the controller 305 calculates a decrease in the opening degree of the bypass valve 302 based on the difference between the degree of superheat calculated in step S3 and a value in a predetermined range (for example, an upper limit value in the predetermined range). You may make it do.
When the controller 305 decreases the opening degree of the bypass valve 302, the ratio of the refrigerant flowing through the bypass flow path out of the refrigerant flowing out from the evaporation unit 101 is reduced, and the compressor is transferred from the evaporation unit 101 via the heat exchanger 301. The amount of refrigerant flowing into 102 increases. As a result, the amount of heat exchange in the heat exchanger 301 increases, and the temperature of the refrigerant flowing into the compressor 102 rises compared to before the opening degree of the bypass valve 302 is increased.
 以上のように、熱交換器301は、蒸発部101から圧縮機102への流路を流れる冷媒と、圧縮機102から凝縮部103への流路を流れる冷媒との間で熱交換を行わせる。
 これにより、圧縮機102へ流入する冷媒の温度を上昇させることができ、液圧縮が生じる可能性を低減させることができる。
 特に、熱交換器301が、圧縮機102から流出した後凝縮部103へ流入する前の冷媒を用いて熱交換を行わせることで、凝縮部103での冷媒の温度低下の影響を受けずに熱交換を行わせることができる。この点で、冷却システム1は、凝縮器を流れる冷媒を用いて液圧縮を防止する場合と比較して、液圧縮が生じる可能性をより低減させることができる。
As described above, the heat exchanger 301 causes heat exchange between the refrigerant flowing through the flow path from the evaporation unit 101 to the compressor 102 and the refrigerant flowing through the flow path from the compressor 102 to the condensing unit 103. .
Thereby, the temperature of the refrigerant | coolant which flows in into the compressor 102 can be raised, and possibility that liquid compression will arise can be reduced.
In particular, the heat exchanger 301 performs heat exchange using the refrigerant that has flowed out of the compressor 102 and before flowing into the condensing unit 103 without being affected by the temperature drop of the refrigerant in the condensing unit 103. Heat exchange can be performed. In this respect, the cooling system 1 can further reduce the possibility that liquid compression occurs as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
 また、コントローラ305は、圧縮機102の入口側及び出口側のうち少なくとも何れか一方における圧力測定値及び温度測定値に基づいて、熱交換器における熱交換量を制御する。
 これにより、冷却システム1では、液圧縮が生じる可能性を低減させることができ、かつ、圧縮機102に流入する冷媒の温度が高くなりすぎることを回避できる。圧縮機102に流入する冷媒の温度が高くなりすぎることを回避できることで、冷却システム1の効率の低下を回避することができ、また、冷媒温度上昇で冷却システム1が停止する可能性を低減させることができる。さらには、冷媒温度上昇で冷却システム1が故障する可能性を低減させることができる。
The controller 305 controls the heat exchange amount in the heat exchanger based on the pressure measurement value and the temperature measurement value on at least one of the inlet side and the outlet side of the compressor 102.
Thereby, in the cooling system 1, possibility that liquid compression will arise can be reduced and it can avoid that the temperature of the refrigerant | coolant which flows in into the compressor 102 becomes high too much. By avoiding the temperature of the refrigerant flowing into the compressor 102 from becoming too high, a decrease in the efficiency of the cooling system 1 can be avoided, and the possibility that the cooling system 1 stops due to an increase in the refrigerant temperature is reduced. be able to. Furthermore, it is possible to reduce the possibility that the cooling system 1 breaks down due to a rise in the refrigerant temperature.
 また、コントローラ305は、圧力センサ304による圧力測定値及び温度センサ303による温度測定値から算出される冷媒の過熱度と所定範囲とを比較する。過熱度が所定範囲より大きい場合、コントローラ305は、熱交換器301における熱交換量を減少させる。過熱度が所定範囲より小さい場合、コントローラ305は、熱交換器301における熱交換量を増加させる。過熱度が所定範囲内である場合、コントローラ305は、熱交換量の変化を抑制する。
 これにより、コントローラ305は、過熱度と所定範囲とを比較するといった簡単な処理で、液圧縮が生じる可能性を低減させることができ、かつ、圧縮機102に流入する冷媒の温度が高くなりすぎることを回避できる。
In addition, the controller 305 compares the degree of superheat of the refrigerant calculated from the pressure measurement value by the pressure sensor 304 and the temperature measurement value by the temperature sensor 303 with a predetermined range. When the superheat degree is larger than the predetermined range, the controller 305 decreases the heat exchange amount in the heat exchanger 301. When the degree of superheat is smaller than the predetermined range, the controller 305 increases the amount of heat exchange in the heat exchanger 301. When the degree of superheat is within a predetermined range, the controller 305 suppresses a change in the heat exchange amount.
Thereby, the controller 305 can reduce the possibility of liquid compression by a simple process of comparing the degree of superheat and a predetermined range, and the temperature of the refrigerant flowing into the compressor 102 becomes too high. You can avoid that.
 また、バイパスバルブ302は、蒸発部101から圧縮機102への流路、及び、圧縮機102から凝縮部103への流路のうち少なくとも何れか一方について熱交換器301をバイパスするバイパス流路に設けられる。バイパスバルブ302は、このバイパス流路を流れる冷媒の量を調整する。
 これにより、冷却システム1では、冷媒の流路にバイパス経路及びバイパスバルブ302を設けるといった簡単な構成で、熱交換器301における熱交換量を制御することができる。
The bypass valve 302 is a bypass channel that bypasses the heat exchanger 301 for at least one of the channel from the evaporator 101 to the compressor 102 and the channel from the compressor 102 to the condenser 103. Provided. The bypass valve 302 adjusts the amount of refrigerant flowing through the bypass flow path.
Thereby, in the cooling system 1, the heat exchange amount in the heat exchanger 301 can be controlled with a simple configuration in which the bypass path and the bypass valve 302 are provided in the refrigerant flow path.
 また、コントローラ305は、圧力センサ304の圧力測定値及び温度センサ303の温度測定値に基づいて、バイパスバルブ302を制御する。
 これにより、冷却システム1では、上記のバイパス経路及びバイパスバルブ302に加えて圧力センサ304及び温度センサ303を備えるといった簡単な構成で、熱交換器301における熱交換量を制御することができる。
The controller 305 controls the bypass valve 302 based on the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303.
As a result, the cooling system 1 can control the amount of heat exchange in the heat exchanger 301 with a simple configuration in which the pressure sensor 304 and the temperature sensor 303 are provided in addition to the bypass path and bypass valve 302 described above.
 また、コントローラ305は、圧力センサ304の圧力測定値及び温度センサ303の温度測定値から冷媒の過熱度を算出する。過熱度が所定範囲より大きい場合、コントローラ305は、バイパスバルブ302を流れる冷媒の量を増加させる。過熱度が所定範囲より小さい場合、コントローラ305は、バイパスバルブ302を流れる冷媒の量を減少させる。過熱度が所定範囲内である場合、コントローラ305は、バイパスバルブ302を流れる冷媒の量を維持させる。
 これにより、コントローラ305は、過熱度と所定範囲とを比較し、比較結果に基づいてバイパスバルブ302の開度を制御するといった簡単な処理で、熱交換器301における熱交換量を制御することができる。
Further, the controller 305 calculates the degree of superheat of the refrigerant from the pressure measurement value of the pressure sensor 304 and the temperature measurement value of the temperature sensor 303. When the degree of superheat is larger than the predetermined range, the controller 305 increases the amount of refrigerant flowing through the bypass valve 302. When the degree of superheat is smaller than the predetermined range, the controller 305 decreases the amount of refrigerant flowing through the bypass valve 302. When the degree of superheat is within a predetermined range, the controller 305 maintains the amount of refrigerant flowing through the bypass valve 302.
Thereby, the controller 305 can control the heat exchange amount in the heat exchanger 301 by a simple process of comparing the degree of superheat with a predetermined range and controlling the opening degree of the bypass valve 302 based on the comparison result. it can.
 図3~図5を参照して、冷却システム1の構成のバリエーションについて説明する。
 図3は、冷却システム1の機器構成の第二例を示す概略ブロック図である。図3の例では、温度センサ303及び圧力センサ304が圧縮機102の出口側に設けられている点が図1の場合と異なる。それ以外は、図1の場合と同様である。
 図4は、冷却システム1の機器構成の第三例を示す概略ブロック図である。図1の例では、バイパス流路およびバイパスバルブ302が蒸発部101から圧縮機102への流路に設けられていた。これに対し図4の例では、バイパス流路およびバイパスバルブ302が圧縮機102から凝縮部103への流路に設けられている。それ以外は、図1の場合と同様である。
Variations in the configuration of the cooling system 1 will be described with reference to FIGS.
FIG. 3 is a schematic block diagram illustrating a second example of the device configuration of the cooling system 1. 3 differs from the case of FIG. 1 in that the temperature sensor 303 and the pressure sensor 304 are provided on the outlet side of the compressor 102. The rest is the same as in the case of FIG.
FIG. 4 is a schematic block diagram illustrating a third example of the device configuration of the cooling system 1. In the example of FIG. 1, the bypass flow path and the bypass valve 302 are provided in the flow path from the evaporation unit 101 to the compressor 102. On the other hand, in the example of FIG. 4, the bypass flow path and the bypass valve 302 are provided in the flow path from the compressor 102 to the condensing unit 103. The rest is the same as in the case of FIG.
 図5は、冷却システム1の機器構成の第三例を示す概略ブロック図である。図5の例では、図3の場合と同様、温度センサ303及び圧力センサ304が圧縮機102の出口側に設けられている。また、図5の例では、図4の場合と同様、バイパス流路およびバイパスバルブ302が圧縮機102から凝縮部103への流路に設けられている。それ以外は、図1の場合と同様である。
 図3、図4、図5に示す構成におけるコントローラ305の制御は、いずれも図1に示す構成の場合と同様である。
FIG. 5 is a schematic block diagram illustrating a third example of the device configuration of the cooling system 1. In the example of FIG. 5, as in the case of FIG. 3, the temperature sensor 303 and the pressure sensor 304 are provided on the outlet side of the compressor 102. In the example of FIG. 5, as in the case of FIG. 4, the bypass flow path and the bypass valve 302 are provided in the flow path from the compressor 102 to the condensing unit 103. The rest is the same as in the case of FIG.
The control of the controller 305 in the configuration shown in FIGS. 3, 4, and 5 is the same as that in the configuration shown in FIG.
 図3に示す構成、及び、図5に示す構成のように圧力センサ304及び温度センサ303が圧縮機102の出口側に設けられていることで、冷媒が圧縮機102内で液化することを回避できる可能性が高くなる。ここで、冷媒のモリエル線図上での飽和蒸気圧線の傾きが等エントロピー線の傾きより小さい場合、圧縮機102に吸引される際に液相の冷媒が含まれていなくても、圧縮機102で冷媒の圧力が上がるに従って冷媒の一部が液化することがある。これに対し、圧縮機102の出口側での過熱度を一定範囲内にすることで、液圧縮を回避できる。 Since the pressure sensor 304 and the temperature sensor 303 are provided on the outlet side of the compressor 102 as in the configuration illustrated in FIG. 3 and the configuration illustrated in FIG. 5, the refrigerant is prevented from being liquefied in the compressor 102. The possibility of being able to be increased. Here, when the slope of the saturated vapor pressure line on the Mollier diagram of the refrigerant is smaller than the slope of the isentropic line, the compressor can be used even if no liquid phase refrigerant is contained when sucked into the compressor 102. As the refrigerant pressure increases at 102, a part of the refrigerant may be liquefied. On the other hand, liquid compression can be avoided by setting the degree of superheat on the outlet side of the compressor 102 within a certain range.
 図4に示す構成、及び、図5に示す構成のようにバイパス経路及びバイパスバルブ302が圧縮機102から凝縮部103への流路(高圧側流路)に設けられていることで、バイパス経路における圧力損失が比較的大きい場合に、冷却システム1全体での圧力損失を比較的小さくすることができる。
 ここで、一般に熱交換器には圧力損失がある。冷却システム1の場合も冷媒が熱交換器301を経由する場合よりもバイパス経路を経由する場合のほうが、通常は圧力損失が小さいと考えられる。そこで、図1に示す構成、及び、図3に示す構成では、蒸発部101から圧縮機102への流路(低圧側流路)にバイパス経路及びバイパスバルブ302を設けている。
 一方、熱交換器301がシェルアンドチューブ型熱交換器である場合など、熱交換器301での圧力損失がきわめて小さい場合、及び、バイパスバルブ302が比較的小さい場合など、バイパスバルブ302を通る場合の圧力損失が、熱交換器301を経由する場合の圧力損失よりも大きくなる場合が考えられる。この場合、圧力損失の性能への影響が小さい高圧側流路にバイパス経路及びバイパスバルブ302を設けることで、冷却システム1全体での圧力損失を比較的小さくすることができる。
The bypass path and bypass valve 302 are provided in the flow path (high-pressure side flow path) from the compressor 102 to the condenser 103 as in the configuration shown in FIG. 4 and the configuration shown in FIG. When the pressure loss in the cooling system 1 is relatively large, the pressure loss in the entire cooling system 1 can be relatively small.
Here, the heat exchanger generally has a pressure loss. In the case of the cooling system 1 as well, it is generally considered that the pressure loss is smaller when the refrigerant passes through the bypass path than when the refrigerant passes through the heat exchanger 301. Therefore, in the configuration shown in FIG. 1 and the configuration shown in FIG. 3, a bypass path and a bypass valve 302 are provided in the flow path (low pressure side flow path) from the evaporation unit 101 to the compressor 102.
On the other hand, when the heat exchanger 301 is a shell-and-tube type heat exchanger or the like, when the pressure loss in the heat exchanger 301 is extremely small, or when the bypass valve 302 is relatively small, or when passing through the bypass valve 302 Is considered to be larger than the pressure loss when passing through the heat exchanger 301. In this case, the pressure loss in the entire cooling system 1 can be made relatively small by providing the bypass path and the bypass valve 302 in the high-pressure side flow path having a small influence on the performance of the pressure loss.
 ここで、図6に示す構成との比較にて、冷却システム1の構成による効果についてさらに説明する。
 図6は、蒸発部から圧縮機への流路と、凝縮部から膨張弁への流路との間で熱交換を行う冷却システムの機器構成の例を示す概略ブロック図である。図6に示す冷却システム900は、蒸発部901と、圧縮機902と、凝縮部903と、膨張弁904と、熱交換器911とを備える。
Here, the effects of the configuration of the cooling system 1 will be further described in comparison with the configuration shown in FIG.
FIG. 6 is a schematic block diagram illustrating an example of a device configuration of a cooling system that performs heat exchange between the flow path from the evaporation section to the compressor and the flow path from the condensation section to the expansion valve. A cooling system 900 illustrated in FIG. 6 includes an evaporation unit 901, a compressor 902, a condensing unit 903, an expansion valve 904, and a heat exchanger 911.
 図6に示す構成で、蒸発部901は、蒸発部901へ流入する液相の冷媒と周囲空気との間で熱交換を行わせて冷媒を蒸発させる。圧縮機902は、蒸発部901で蒸発した気相の冷媒を圧縮する。凝縮部903は、圧縮によって高温高圧になった気相の冷媒と周囲空気との間で熱交換を行わせて冷媒を凝縮させる。膨張弁904は、凝縮部903で凝縮された液相の冷媒を減圧させる。冷媒が膨張弁904で減圧することで、蒸発部901で蒸発し易くなる。 6, the evaporation unit 901 evaporates the refrigerant by performing heat exchange between the liquid-phase refrigerant flowing into the evaporation unit 901 and the ambient air. The compressor 902 compresses the gas-phase refrigerant evaporated in the evaporation unit 901. The condensing unit 903 condenses the refrigerant by causing heat exchange between the gas-phase refrigerant that has become high temperature and pressure due to compression and the ambient air. The expansion valve 904 depressurizes the liquid-phase refrigerant condensed in the condensing unit 903. When the refrigerant is depressurized by the expansion valve 904, the evaporating unit 901 easily evaporates.
 熱交換器911は、圧縮機902へ流入する冷媒を加熱して液圧縮が生じる可能性を低減させる目的で設けられている。熱交換器911は、蒸発部901から圧縮機902へ流れる気相の冷媒と、凝縮部903から膨張弁904へ流れる液相の冷媒との間で熱交換を行わせる。 The heat exchanger 911 is provided for the purpose of reducing the possibility of liquid compression by heating the refrigerant flowing into the compressor 902. The heat exchanger 911 exchanges heat between the gas-phase refrigerant flowing from the evaporation unit 901 to the compressor 902 and the liquid-phase refrigerant flowing from the condensing unit 903 to the expansion valve 904.
 データセンタにおけるサーバの冷却用に冷却システム900を用いる場合、蒸発部901は室内機として構成されてサーバルームの室温を低下させ、凝縮部903は室外機として構成される。データセンタでは、外気温が高く冷房が必要な夏季はもとより、外気温が低い冬季においても防塵のため外気導入には制約がある。このため、年間を通じて冷却システム900を運転させることが考えられる。 When the cooling system 900 is used for cooling the server in the data center, the evaporation unit 901 is configured as an indoor unit to lower the room temperature of the server room, and the condensing unit 903 is configured as an outdoor unit. In data centers, the introduction of outside air is limited in order to prevent dust, not only in summer when the outside air temperature is high and cooling is required, but also in winter when the outside air temperature is low. For this reason, it is conceivable to operate the cooling system 900 throughout the year.
 冬季など外気温が低い場合、凝縮部903で冷媒の温度が大きく低下することが考えられる。この場合、圧縮機902へ流入する冷媒の温度が熱交換器911における熱交換で十分に上昇せず、液圧縮が生じる可能性がある。凝縮部903の熱交換性能が高い場合も、圧縮機902へ流入する冷媒の温度が熱交換器911における熱交換で十分に上昇せず、液圧縮が生じる可能性がある。
 この場合、液圧縮を回避する方法として、室外機のファンの回転数を落とす、或いは、室外機における熱交換器の一部を遮断するなどして凝縮部903の性能を低下させ、凝縮部から出てくる冷媒液の温度を上げることが考えられる。しかしながらその場合、凝縮部903の性能を活かし切れておらず、冷却システム900冷却能力が制限される。
When the outside air temperature is low, such as in winter, it is conceivable that the temperature of the refrigerant greatly decreases in the condensing unit 903. In this case, the temperature of the refrigerant flowing into the compressor 902 is not sufficiently increased by heat exchange in the heat exchanger 911, and liquid compression may occur. Even when the heat exchange performance of the condensing unit 903 is high, the temperature of the refrigerant flowing into the compressor 902 does not sufficiently increase due to the heat exchange in the heat exchanger 911, and liquid compression may occur.
In this case, as a method of avoiding liquid compression, the performance of the condensing unit 903 is lowered by reducing the number of rotations of the fan of the outdoor unit or by shutting off a part of the heat exchanger in the outdoor unit. It is conceivable to raise the temperature of the refrigerant liquid that comes out. However, in that case, the performance of the condenser 903 is not fully utilized, and the cooling capacity of the cooling system 900 is limited.
 これに対し、図1、3、4、5のいずれの構成でも冷却システム1の熱交換器301は、蒸発部101から圧縮機102へ流れる冷媒と、圧縮機102から凝縮部103へ流れる冷媒との間で熱交換を行わせる。凝縮部103へ流入する前の冷媒に熱交換を行わせることで、凝縮部103での温度低下の影響を受けない。この点で、冷却システム1では圧縮機102へ流入する冷媒の温度を効果的に高めることができ、液圧縮が生じる可能性を低減させることができる。 In contrast, in any of the configurations of FIGS. 1, 3, 4, and 5, the heat exchanger 301 of the cooling system 1 includes a refrigerant that flows from the evaporator 101 to the compressor 102, and a refrigerant that flows from the compressor 102 to the condenser 103. Heat exchange between the two. By causing the refrigerant before flowing into the condensing unit 103 to perform heat exchange, it is not affected by the temperature drop in the condensing unit 103. In this regard, in the cooling system 1, the temperature of the refrigerant flowing into the compressor 102 can be effectively increased, and the possibility of liquid compression occurring can be reduced.
 次に、図7を参照して、コントローラ305の構成例について説明する。コントローラ305は、マイコン(Micro Computer)などコンピュータを用いて構成されていてもよい。
 図7は、コントローラ305の構成例を示す概略ブロック図である。図7の例で、コントローラ305は、CPU(Central Processing Unit、中央処理装置)311と、記憶装置312と、インタフェース313とを備える。コントローラ305の動作は、CPU311が記憶装置312からプログラムを読み出して実行することで行われる。インタフェース313は、他の装置との通信などの入出力を行う。
 但し、コントローラ305が専用のハードウェアを用いて構成されるなど、コンピュータを用いた構成以外の構成となっていてもよい。
Next, a configuration example of the controller 305 will be described with reference to FIG. The controller 305 may be configured using a computer such as a microcomputer.
FIG. 7 is a schematic block diagram illustrating a configuration example of the controller 305. In the example of FIG. 7, the controller 305 includes a CPU (Central Processing Unit) 311, a storage device 312, and an interface 313. The operation of the controller 305 is performed by the CPU 311 reading a program from the storage device 312 and executing it. The interface 313 performs input / output such as communication with other devices.
However, the controller 305 may have a configuration other than a configuration using a computer, such as a configuration using dedicated hardware.
 次に、図8を参照して本発明の最小構成について説明する。
 図8は、本発明に係る冷却システムの最小構成の例を示す図である。図8に示す冷却システム10は、蒸発部11と圧縮機12と、凝縮部13と、膨張弁14と、熱交換器15とを備える。
 かかる構成にて、蒸発部11は冷媒を蒸発させる。圧縮機12は、蒸発部11において蒸発した冷媒を圧縮する。凝縮部13は、圧縮機で圧縮された冷媒を凝縮させる。膨張弁14は、凝縮部13から蒸発部11への流路に設けられて冷媒を減圧する。熱交換器15は、蒸発部11から圧縮機12への流路を流れる冷媒と、圧縮機12から凝縮部13への流路を流れる冷媒との間で熱交換を行わせる。
 これにより、冷却システム10では、圧縮機12へ流入する冷媒の温度を上昇させることができ、液圧縮が生じる可能性を低減させることができる。
 特に、熱交換器15が、圧縮機12から流出した後凝縮部13へ流入する前の冷媒を用いて熱交換を行わせることで、凝縮部13での冷媒の温度低下の影響を受けずに熱交換を行わせることができる。この点で、冷却システム10は、凝縮器を流れる冷媒を用いて液圧縮を防止する場合と比較して、液圧縮が生じる可能性をより低減させることができる。
Next, the minimum configuration of the present invention will be described with reference to FIG.
FIG. 8 is a diagram showing an example of the minimum configuration of the cooling system according to the present invention. A cooling system 10 illustrated in FIG. 8 includes an evaporation unit 11, a compressor 12, a condensing unit 13, an expansion valve 14, and a heat exchanger 15.
With this configuration, the evaporating unit 11 evaporates the refrigerant. The compressor 12 compresses the refrigerant evaporated in the evaporation unit 11. The condensing unit 13 condenses the refrigerant compressed by the compressor. The expansion valve 14 is provided in the flow path from the condensation unit 13 to the evaporation unit 11 to depressurize the refrigerant. The heat exchanger 15 exchanges heat between the refrigerant flowing through the flow path from the evaporator 11 to the compressor 12 and the refrigerant flowing through the flow path from the compressor 12 to the condenser 13.
Thereby, in the cooling system 10, the temperature of the refrigerant | coolant which flows in into the compressor 12 can be raised, and possibility that liquid compression will arise can be reduced.
In particular, the heat exchanger 15 performs heat exchange using the refrigerant that has flowed out of the compressor 12 and before flowing into the condensing unit 13, so that it is not affected by the temperature drop of the refrigerant in the condensing unit 13. Heat exchange can be performed. In this regard, the cooling system 10 can further reduce the possibility that liquid compression occurs as compared with the case where liquid compression is prevented using the refrigerant flowing through the condenser.
 なお、コントローラ305の機能の全部または一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することで各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating system)や周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read only memory)、CD-ROM(Compact Disc Read only memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
It should be noted that a program for realizing all or part of the functions of the controller 305 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Processing may be performed. The “computer system” here includes an OS (Operating System) and hardware such as peripheral devices.
The “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read only memory), a CD-ROM (Compact Disc Read only memory), or a hard disk built in the computer system. This means a storage device such as The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。
 この出願は、2017年3月22日に出願された日本出願特願2017-056146を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The present invention has been described above based on the embodiment. The embodiment is an exemplification, and various modifications, increases / decreases, and combinations may be added to the above-described embodiments without departing from the gist of the present invention. It will be understood by those skilled in the art that modifications to which these changes, increases / decreases, and combinations are also within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2017-056146 for which it applied on March 22, 2017, and takes in those the indications of all here.
 1、10 冷却システム
 11、101 蒸発部
 12、102 圧縮機
 13、103 凝縮部
 14、104 膨張弁
 15、301 熱交換器
 302 バイパスバルブ
 303 温度センサ
 304 圧力センサ
 305 コントローラ
DESCRIPTION OF SYMBOLS 1,10 Cooling system 11,101 Evaporating part 12,102 Compressor 13,103 Condensing part 14,104 Expansion valve 15,301 Heat exchanger 302 Bypass valve 303 Temperature sensor 304 Pressure sensor 305 Controller

Claims (8)

  1.  冷媒を蒸発させる蒸発部と、
     前記蒸発部において蒸発した冷媒を圧縮する圧縮機と、
     前記圧縮機で圧縮された冷媒を凝縮させる凝縮部と、
     前記凝縮部から前記蒸発部への流路に設けられて冷媒を減圧する膨張弁と、
     前記蒸発部から前記圧縮機への流路を流れる冷媒と、前記圧縮機から前記凝縮部への流路を流れる冷媒との間で熱交換を行わせる熱交換器と、
     を備える冷却システム。
    An evaporation section for evaporating the refrigerant;
    A compressor for compressing the refrigerant evaporated in the evaporation section;
    A condensing unit for condensing the refrigerant compressed by the compressor;
    An expansion valve provided in a flow path from the condensing unit to the evaporation unit to depressurize the refrigerant;
    A heat exchanger that exchanges heat between the refrigerant flowing through the flow path from the evaporator to the compressor and the refrigerant flowing through the flow path from the compressor to the condenser;
    With cooling system.
  2.  前記圧縮機の入口側及び出口側のうち少なくとも何れか一方に設けられた圧力センサ及び温度センサと、
     前記圧力センサの圧力測定値と前記温度センサの温度測定値とに基づいて、前記熱交換器における熱交換量を制御するコントローラと、
     を備える請求項1に記載の冷却システム。
    A pressure sensor and a temperature sensor provided on at least one of the inlet side and the outlet side of the compressor;
    A controller for controlling a heat exchange amount in the heat exchanger based on a pressure measurement value of the pressure sensor and a temperature measurement value of the temperature sensor;
    The cooling system according to claim 1.
  3.  前記コントローラは、前記圧力測定値及び前記温度測定値から算出される冷媒の過熱度が所定範囲より大きい場合には前記熱交換量を減少させ、前記冷媒の過熱度が前記所定範囲より小さい場合には前記熱交換量を増加させ、前記冷媒の過熱度が前記所定範囲内である場合には前記熱交換量の変化を抑制する、
     請求項2に記載の冷却システム。
    The controller reduces the heat exchange amount when the degree of superheat of the refrigerant calculated from the pressure measurement value and the temperature measurement value is larger than a predetermined range, and when the degree of superheat of the refrigerant is smaller than the predetermined range. Increases the heat exchange amount, and suppresses a change in the heat exchange amount when the superheat degree of the refrigerant is within the predetermined range,
    The cooling system according to claim 2.
  4.  前記蒸発部から前記圧縮機への流路、及び、前記圧縮機から前記凝縮部への流路のうち少なくとも何れか一方について前記熱交換器をバイパスするバイパス流路に設けられて前記バイパス流路を流れる冷媒の量を調整する流量調整弁を備える、
     請求項3に記載の冷却システム。
    The bypass flow path is provided in a bypass flow path that bypasses the heat exchanger with respect to at least one of the flow path from the evaporation section to the compressor and the flow path from the compressor to the condensation section. A flow rate adjusting valve for adjusting the amount of refrigerant flowing through the
    The cooling system according to claim 3.
  5.  前記コントローラは、前記圧力測定値及び前記温度測定値に基づいて、前記流量調整弁を制御する、
     請求項4に記載の冷却システム。
    The controller controls the flow regulating valve based on the pressure measurement value and the temperature measurement value;
    The cooling system according to claim 4.
  6.  前記コントローラは、前記圧力測定値及び前記温度測定値から算出される冷媒の過熱度が所定範囲より大きい場合には前記流量調整弁を流れる冷媒の量を増加させ、前記過熱度が前記所定範囲より小さい場合には前記流量調整弁を流れる冷媒の量を減少させ、前記過熱度が前記所定範囲内である場合には前記流量調整弁を流れる冷媒の量を維持させる、
     請求項5に記載の冷却システム。
    The controller increases the amount of refrigerant flowing through the flow rate adjustment valve when the superheat degree of the refrigerant calculated from the pressure measurement value and the temperature measurement value is larger than a predetermined range, and the superheat degree is less than the predetermined range. Reducing the amount of refrigerant flowing through the flow rate adjustment valve when small, and maintaining the amount of refrigerant flowing through the flow rate adjustment valve when the superheat is within the predetermined range;
    The cooling system according to claim 5.
  7.  冷媒を蒸発させる蒸発部から前記蒸発部において蒸発した冷媒を圧縮する圧縮機への流路を流れる冷媒と、前記圧縮機から前記圧縮機で圧縮された冷媒を凝縮させる凝縮部への流路を流れる冷媒の間で熱交換を行わせる、ことを含む冷却方法。 A refrigerant flowing through a flow path from an evaporation section that evaporates the refrigerant to a compressor that compresses the refrigerant evaporated in the evaporation section, and a flow path from the compressor to a condensation section that condenses the refrigerant compressed by the compressor A cooling method including causing heat exchange between flowing refrigerants.
  8.  コンピュータに、
     冷媒を蒸発させる蒸発部から前記蒸発部において蒸発した冷媒を圧縮する圧縮機への流路を流れる冷媒と、前記圧縮機から前記圧縮機で圧縮された冷媒を凝縮させる凝縮部への流路を流れる冷媒の間での熱交換を制御させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    On the computer,
    A refrigerant flowing through a flow path from an evaporation section that evaporates the refrigerant to a compressor that compresses the refrigerant evaporated in the evaporation section, and a flow path from the compressor to a condensation section that condenses the refrigerant compressed by the compressor A computer-readable recording medium recording a program for controlling heat exchange between flowing refrigerants.
PCT/JP2018/009717 2017-03-22 2018-03-13 Cooling system, cooling method, and program WO2018173854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056146A JP2020106151A (en) 2017-03-22 2017-03-22 Cooling system, cooling method, and program
JP2017-056146 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173854A1 true WO2018173854A1 (en) 2018-09-27

Family

ID=63585357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009717 WO2018173854A1 (en) 2017-03-22 2018-03-13 Cooling system, cooling method, and program

Country Status (2)

Country Link
JP (1) JP2020106151A (en)
WO (1) WO2018173854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248706A1 (en) * 2022-06-20 2023-12-28 サンデン株式会社 Vehicle air conditioning device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381459U (en) * 1976-12-09 1978-07-06
JPS53110545U (en) * 1977-02-14 1978-09-04
JPS6066068A (en) * 1983-09-20 1985-04-16 三洋電機株式会社 Refrigerator
JPH0763427A (en) * 1993-08-30 1995-03-10 Kobe Steel Ltd Refrigerating plant
JPH09166363A (en) * 1995-12-15 1997-06-24 Showa Alum Corp Freezing cycle apparatus
JPH1047794A (en) * 1996-07-31 1998-02-20 Mitsubishi Heavy Ind Ltd Freezer
JP2001001754A (en) * 1999-06-24 2001-01-09 Japan Climate Systems Corp Air conditioner for vehicle
JP2001066001A (en) * 1999-08-27 2001-03-16 Kurita Kogyo:Kk Exhaust heat-utilized cooling/heating system
EP1850075A1 (en) * 2006-04-25 2007-10-31 Valeo Systèmes Thermiques Air-conditioning circuit with supercritical cycle
JP2008267653A (en) * 2007-04-18 2008-11-06 Daikin Ind Ltd Refrigerating device
US20140033563A1 (en) * 2011-02-18 2014-02-06 Electrolux Home Products Corporation N.V. Heat pump laundry dryer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381459U (en) * 1976-12-09 1978-07-06
JPS53110545U (en) * 1977-02-14 1978-09-04
JPS6066068A (en) * 1983-09-20 1985-04-16 三洋電機株式会社 Refrigerator
JPH0763427A (en) * 1993-08-30 1995-03-10 Kobe Steel Ltd Refrigerating plant
JPH09166363A (en) * 1995-12-15 1997-06-24 Showa Alum Corp Freezing cycle apparatus
JPH1047794A (en) * 1996-07-31 1998-02-20 Mitsubishi Heavy Ind Ltd Freezer
JP2001001754A (en) * 1999-06-24 2001-01-09 Japan Climate Systems Corp Air conditioner for vehicle
JP2001066001A (en) * 1999-08-27 2001-03-16 Kurita Kogyo:Kk Exhaust heat-utilized cooling/heating system
EP1850075A1 (en) * 2006-04-25 2007-10-31 Valeo Systèmes Thermiques Air-conditioning circuit with supercritical cycle
JP2008267653A (en) * 2007-04-18 2008-11-06 Daikin Ind Ltd Refrigerating device
US20140033563A1 (en) * 2011-02-18 2014-02-06 Electrolux Home Products Corporation N.V. Heat pump laundry dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248706A1 (en) * 2022-06-20 2023-12-28 サンデン株式会社 Vehicle air conditioning device

Also Published As

Publication number Publication date
JP2020106151A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US8459051B2 (en) Air conditioner and method of controlling the same
US10527330B2 (en) Refrigeration cycle device
CN109373497B (en) Refrigerant quantity adjusting method, device and system of temperature adjusting equipment and air conditioner
JP2013178058A (en) Air conditioner
JP2006283989A (en) Cooling/heating system
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
CN111486574B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
KR102372489B1 (en) Air conditioning device using vapor injection cycle and method for controlling thereof
KR20100123729A (en) Refrigeration device
JPWO2017017767A1 (en) Air conditioner
JP2005076933A (en) Refrigeration cycle system
CN107238161B (en) Multi-split system and mode switching control method thereof
JP6598882B2 (en) Refrigeration cycle equipment
JP6548890B2 (en) Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
WO2018173854A1 (en) Cooling system, cooling method, and program
CN111503854A (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP2008096072A (en) Refrigerating cycle device
JP7224503B2 (en) refrigeration cycle equipment
JP2013002749A (en) Air conditioning device
JP2017020687A (en) Refrigeration cycle apparatus
JP4176677B2 (en) Air conditioner
JP6350577B2 (en) Air conditioner
WO2024040915A1 (en) Air conditioner
JP7241866B2 (en) refrigeration cycle equipment
JP2014102036A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP