JP2001001754A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle

Info

Publication number
JP2001001754A
JP2001001754A JP11178104A JP17810499A JP2001001754A JP 2001001754 A JP2001001754 A JP 2001001754A JP 11178104 A JP11178104 A JP 11178104A JP 17810499 A JP17810499 A JP 17810499A JP 2001001754 A JP2001001754 A JP 2001001754A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
air conditioner
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11178104A
Other languages
Japanese (ja)
Other versions
JP4346157B2 (en
Inventor
Tomonori Zenbou
友紀 前坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP17810499A priority Critical patent/JP4346157B2/en
Publication of JP2001001754A publication Critical patent/JP2001001754A/en
Application granted granted Critical
Publication of JP4346157B2 publication Critical patent/JP4346157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent reverse heat exchange in an internal heat exchanger and secure desired cooling ability of an evaporator by connecting a bypass passage bypassing the internal heat exchanger and providing the bypass passage with flow rate adjustment means to increase an opening according to lowering degree of cooling ability of the evaporator. SOLUTION: In this air conditioner, refrigerant delivered by a compressor 1 is circulated through a gas cooler 2, internal heat exchanger 3, throttle portion 4 and evaporator 5. Bypass pipes 6 are connected with the internal heat exchanger 3 in parallel and a flow rate adjustment valve 7 is provided therein. The bypass pipes 6 are composed of an inner pipe for high-pressure refrigerant and an outer pipe for low-pressure refrigerant. Heat exchange is performed while the refrigerant is passing through the both passages. According to lowering degree of pressure detected by a first pressure sensor 9, an opening of the flow rate adjustment valve 7 is gradually increased. Accordingly, reverse heat exchange between refrigerants in the internal heat exchanger 3 is prevented, and cooling ability of the evaporator 5 can be delivered appropriately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用空調装置、
特に、冷媒に二酸化炭素を用いる蒸気圧縮タイプに適し
た車両用空調装置に関するものである。
The present invention relates to a vehicle air conditioner,
In particular, the present invention relates to a vehicle air conditioner suitable for a vapor compression type using carbon dioxide as a refrigerant.

【0002】[0002]

【従来の技術】従来、冷媒に二酸化炭素を用いる蒸気圧
縮式のサイクル装置が公知である(例えば、特表平3─
503206号公報参照)。このサイクル装置では、コ
ンプレッサから吐出された冷媒(二酸化炭素)をガスク
ーラ、絞り弁およびエバポレータを介して循環させてい
る。ガスクーラの下流側配管とエバポレータの下流側配
管との間には内部熱交換器が設けられている。そして、
この内部熱交換器により、ガスクーラの出口側の高圧冷
媒から、エバポレータの入口側の低圧冷媒に放熱させて
ガスクーラでの放熱を補完し、エバポレータに於ける吸
熱効率を向上させている。
2. Description of the Related Art Heretofore, a vapor compression type cycle device using carbon dioxide as a refrigerant has been known (for example, Japanese Patent Application Laid-Open No. Heisei 3 (1993) -1990).
503206). In this cycle device, the refrigerant (carbon dioxide) discharged from the compressor is circulated through a gas cooler, a throttle valve, and an evaporator. An internal heat exchanger is provided between the downstream pipe of the gas cooler and the downstream pipe of the evaporator. And
With this internal heat exchanger, heat is radiated from the high-pressure refrigerant at the outlet side of the gas cooler to the low-pressure refrigerant at the inlet side of the evaporator to supplement the heat radiation in the gas cooler, thereby improving the heat absorption efficiency in the evaporator.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記サイク
ル装置は、冬期等でも窓ガラスの曇りを除去するために
駆動されることがある。この場合、車室外温度が低いた
め、ガスクーラの出口側の冷媒温度が低くなり、場合に
よっては、高圧冷媒の温度が低圧冷媒の温度よりも低下
することがある。このため、内部熱交換器で低圧冷媒か
ら高圧冷媒に放熱される逆熱交換が発生し、エバポレー
タの冷房性能を低下させることがある。また、内部熱交
換器は、冷媒を完全に気相化させることを目的の一つと
しているにも拘わらず、前記逆熱交換によりその目的を
達成できないことも想定される。この結果、コンプレッ
サに液相が流入し、液圧縮による損傷がもたらされる恐
れもある。
Incidentally, the cycle device is sometimes driven even in winter or the like in order to remove the fogging of the window glass. In this case, since the temperature outside the vehicle compartment is low, the temperature of the refrigerant at the outlet side of the gas cooler decreases, and in some cases, the temperature of the high-pressure refrigerant may be lower than the temperature of the low-pressure refrigerant. For this reason, reverse heat exchange in which heat is radiated from the low-pressure refrigerant to the high-pressure refrigerant in the internal heat exchanger may occur, and the cooling performance of the evaporator may be reduced. Further, it is assumed that the purpose of the internal heat exchanger cannot be achieved by the reverse heat exchange, although one of the objects is to completely vaporize the refrigerant. As a result, the liquid phase may flow into the compressor, causing damage due to liquid compression.

【0004】また、前記サイクル装置の駆動直後等、一
時的にエバポレータに供給される冷媒量が減少すること
がある。この場合、エバポレータの出口側の冷媒温度が
大きく上昇し、低圧冷媒の温度が高圧冷媒の温度よりも
上昇することがある。このため、低圧冷媒から高圧冷媒
に放熱される逆熱交換が発生し、前記同様の問題が発生
する。
In some cases, such as immediately after the operation of the cycle device, the amount of refrigerant supplied to the evaporator temporarily decreases. In this case, the temperature of the refrigerant at the outlet side of the evaporator may rise significantly, and the temperature of the low-pressure refrigerant may rise above the temperature of the high-pressure refrigerant. For this reason, reverse heat exchange in which heat is radiated from the low-pressure refrigerant to the high-pressure refrigerant occurs, and the same problem as described above occurs.

【0005】そこで、本発明は、内部熱交換器での逆熱
交換を防止し、エバポレータに所望の冷房能力を得ると
共に、コンプレッサでの液圧縮による損傷をも防止する
ことができる車両用空調装置を提供することを課題とす
る。
Accordingly, the present invention provides a vehicle air conditioner which can prevent reverse heat exchange in an internal heat exchanger, obtain a desired cooling capacity for an evaporator, and also prevent damage due to liquid compression in a compressor. The task is to provide

【0006】[0006]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、車両用空調装置を、冷媒を臨
界圧力を超える圧力まで圧縮するコンプレッサと、該コ
ンプレッサで圧縮された冷媒を冷却するガスクーラと、
該ガスクーラで冷却された冷媒と前記コンプレッサに吸
入される冷媒とを熱交換する内部熱交換器と、該内部熱
交換器で冷却した冷媒を減圧する減圧手段と、該減圧手
段で減圧した冷媒を蒸発させるエバポレータとを備え、
前記内部熱交換器を迂回するバイパス流路を接続すると
共に、該バイパス流路に、前記エバポレータの冷房性能
の低下度合いに応じて開度を大きくする流量調整手段を
設けた構成としたものである。
According to the present invention, there is provided a vehicle air conditioner comprising: a compressor for compressing a refrigerant to a pressure exceeding a critical pressure; and a compressor for compressing the refrigerant by the compressor. A gas cooler to cool,
An internal heat exchanger that exchanges heat between the refrigerant cooled by the gas cooler and the refrigerant drawn into the compressor; a decompression unit that decompresses the refrigerant cooled by the internal heat exchanger; Evaporator to evaporate,
A bypass flow path bypassing the internal heat exchanger is connected, and the bypass flow path is provided with flow rate adjusting means for increasing an opening degree in accordance with a degree of decrease in cooling performance of the evaporator. .

【0007】この構成により、エバポレータの冷房性能
が低下してくれば、流量調整手段の開度を大きくし、内
部熱交換器に於ける逆熱交換を防止することができる。
[0007] With this configuration, if the cooling performance of the evaporator decreases, the opening of the flow rate adjusting means can be increased to prevent reverse heat exchange in the internal heat exchanger.

【0008】前記バイパス流路は、内部熱交換器のみな
らず、減圧手段をも迂回するように設けるようにしても
よい。
The bypass passage may be provided so as to bypass not only the internal heat exchanger but also the decompression means.

【0009】前記流量調整手段の開度は、ガスクーラの
出口側の冷媒圧力、ガスクーラの出口側とエバポレータ
の出口側に於ける冷媒圧力差、ガスクーラの出口側の冷
媒温度、ガスクーラの出口側とエバポレータの出口側の
冷媒温度差、外気温度検出手段での検出温度に応じて調
整すればよい。
The opening degree of the flow rate adjusting means is determined by the refrigerant pressure on the outlet side of the gas cooler, the refrigerant pressure difference between the outlet side of the gas cooler and the outlet side of the evaporator, the refrigerant temperature on the outlet side of the gas cooler, the outlet side of the gas cooler and the evaporator. May be adjusted according to the difference between the refrigerant temperatures at the outlet side and the temperature detected by the outside air temperature detecting means.

【0010】また、前記ガスクーラで冷却した冷媒を、
臨界圧力以下に減圧する減圧手段をさらに備えると、内
部熱交換器を耐圧構造とする必要がなくなる点で好まし
い。
The refrigerant cooled by the gas cooler is
It is preferable to further provide a pressure reducing means for reducing the pressure below the critical pressure, since it is not necessary to make the internal heat exchanger a pressure-resistant structure.

【0011】以上の構成により、冷媒に二酸化炭素を利
用しても、適切な流動状態を得ることができる。
With the above configuration, an appropriate fluidized state can be obtained even if carbon dioxide is used as the refrigerant.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る実施形態を添
付図面に従って説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図1は、本実施形態に係る車両用空調装置
の概略図である。この車両用空調装置は、コンプレッサ
1から吐出させた冷媒を、ガスクーラ2、内部熱交換器
3、絞り部4、エバポレータ5、および内部熱交換器3
を介してコンプレッサ1に戻して循環させるようになっ
ている。内部熱交換器3にはバイパス管6が並列接続さ
れ、そこには流量調整弁7が設けられている。ガスクー
ラ2と内部熱交換器3を接続する第一配管8の途中に
は、第一圧力センサ9が設けられている。また、内部熱
交換器3とエバポレータ5とを接続する第二配管10の
途中には温度センサ11と第二圧力センサ12とが設け
られている。前記各センサ9,11,12での検出信号
は制御装置13に入力され、制御装置13はこれら検出
信号に基づいて絞り部4及び流量調整弁7の開度を調整
する。
FIG. 1 is a schematic diagram of a vehicle air conditioner according to this embodiment. This vehicle air conditioner uses a gas cooler 2, an internal heat exchanger 3, a throttle unit 4, an evaporator 5, and an internal heat exchanger 3 to discharge refrigerant discharged from a compressor 1.
And is circulated back to the compressor 1 via the. A bypass pipe 6 is connected in parallel to the internal heat exchanger 3, and a flow regulating valve 7 is provided therein. A first pressure sensor 9 is provided in the middle of the first pipe 8 connecting the gas cooler 2 and the internal heat exchanger 3. A temperature sensor 11 and a second pressure sensor 12 are provided in the middle of the second pipe 10 connecting the internal heat exchanger 3 and the evaporator 5. The detection signals from the sensors 9, 11, and 12 are input to a control device 13, and the control device 13 adjusts the openings of the throttle unit 4 and the flow control valve 7 based on the detection signals.

【0014】前記コンプレッサ1は、冷媒である二酸化
炭素を、臨界圧力を超える圧力に圧縮して高温状態で吐
出する。
The compressor 1 compresses carbon dioxide as a refrigerant to a pressure exceeding a critical pressure and discharges the carbon dioxide at a high temperature.

【0015】前記ガスクーラ2およびエバポレータ5
は、波型に形成したフィンと扁平チューブとを交互に積
層し、2つのヘッダ間に一体化した従来周知の構造であ
る。冷媒は、ヘッダと扁平チューブの内部を蛇行しなが
ら流動し、フィンを介して外部を通過する空気と熱交換
される。
The gas cooler 2 and the evaporator 5
Is a well-known structure in which corrugated fins and flat tubes are alternately laminated and integrated between two headers. The refrigerant flows while meandering inside the header and the flat tube, and exchanges heat with the air passing outside through the fins.

【0016】前記内部熱交換器3は、図2に示すよう
に、ガスクーラ2からの高圧冷媒が通過する内管14
と、その周囲にエバポレータ5からの低圧冷媒が通過す
る外側流路15を形成する外管16とからなる二重管構
造である。そして、冷媒は、両流路を通過する際に熱交
換される。
As shown in FIG. 2, the internal heat exchanger 3 has an inner pipe 14 through which high-pressure refrigerant from the gas cooler 2 passes.
And an outer pipe 16 around which an outer flow path 15 through which the low-pressure refrigerant from the evaporator 5 passes is formed. The refrigerant exchanges heat when passing through both flow paths.

【0017】前記絞り部4は、図3に示すように、直交
する流路に形成された弁口17を、ステッピングモータ
18の駆動で弁体19を上下動させることにより開度を
調整する構成である。
As shown in FIG. 3, the throttle section 4 adjusts an opening degree by moving a valve body 19 up and down by driving a stepping motor 18 through a valve port 17 formed in an orthogonal flow path. It is.

【0018】前記エバポレータ5と絞り部4は車室内側
に配設され、他は車室外側(エンジンルーム)に配設さ
れている。
The evaporator 5 and the throttle unit 4 are disposed inside the vehicle compartment, and the others are disposed outside the vehicle compartment (engine room).

【0019】次に、前記車両用空調装置の動作を説明す
る。
Next, the operation of the vehicle air conditioner will be described.

【0020】図4のモリエル線図に示すように、コンプ
レッサ1を駆動すると、冷媒は、臨界圧力を超える圧力
とされ、高温状態となる(A)。そして、ガスクーラ2
に流入し、そこで冷却される。このとき、冷媒圧力は、
臨界圧力を超える値に維持されたままとなる(B)。
As shown in the Mollier diagram of FIG. 4, when the compressor 1 is driven, the pressure of the refrigerant exceeds the critical pressure, and the refrigerant enters a high temperature state (A). And gas cooler 2
And is cooled there. At this time, the refrigerant pressure is
The value remains above the critical pressure (B).

【0021】そして、内部熱交換器3の内管14を通過
し、外側流路15を通過する冷媒(後述する。)に放熱
することにより、冷却されて液相状態となる(C)。こ
の場合、第一圧力センサ9での検出温度に基づいてバイ
パス流路6に於ける流量調整弁7の開度を調整する。
Then, the refrigerant passes through the inner pipe 14 of the internal heat exchanger 3 and radiates heat to the refrigerant (described later) passing through the outer flow path 15 to be cooled to a liquid phase (C). In this case, the opening of the flow control valve 7 in the bypass passage 6 is adjusted based on the temperature detected by the first pressure sensor 9.

【0022】例えば、冬期等、外気温度が非常に低いと
きにフロントガラスの曇りを除去するためにエバポレー
タ5による除湿を開始した場合、ガスクーラ2での放熱
が過剰となり、第一圧力センサ9での検出圧力、すなわ
ち内部熱交換器3の内管14内を通過する冷媒圧力が必
要以上に低下する。冷媒圧力の低下は、エバポレータ5
での冷房性能の低下をもたらす。また、内部熱交換器3
に於ける熱の移動方向を逆転させる。この結果、冷媒が
完全に気相状態とならずにコンプレッサ1に流入し、コ
ンプレッサ1は液圧縮により損傷する恐れが生ずる。そ
こで、前記第一圧力センサ9での検出圧力の低下度合い
に応じて流量調整弁7の開度を徐々に大きくする。これ
により、内部熱交換器3での冷媒間の熱交換(逆熱交
換)が阻止される。したがって、エバポレータ5の冷房
性能が低下しないばかりか、冷媒が液相状態でコンプレ
ッサ1に流入し、液圧縮により損傷することもない。
For example, when the dehumidification by the evaporator 5 is started to remove the fogging of the windshield when the outside air temperature is very low, for example, in winter, the heat radiation in the gas cooler 2 becomes excessive and the first pressure sensor 9 The detected pressure, that is, the pressure of the refrigerant passing through the inner pipe 14 of the internal heat exchanger 3 is reduced more than necessary. The decrease in the refrigerant pressure is caused by the evaporator 5
In cooling performance In addition, the internal heat exchanger 3
Reverses the direction of heat transfer in As a result, the refrigerant flows into the compressor 1 without completely entering the gaseous state, and the compressor 1 may be damaged by liquid compression. Therefore, the opening of the flow control valve 7 is gradually increased in accordance with the degree of decrease in the pressure detected by the first pressure sensor 9. Thereby, heat exchange (reverse heat exchange) between the refrigerants in the internal heat exchanger 3 is prevented. Therefore, not only does the cooling performance of the evaporator 5 not decrease, but also the refrigerant does not flow into the compressor 1 in a liquid state and is not damaged by liquid compression.

【0023】内部熱交換器3を通過あるいはバイパス流
路6を迂回した冷媒は、続いて、エバポレータ5に流入
する前に、絞り部4を通過することにより、再び減圧さ
れて気液2相状態となる(D)。この場合、絞り部4の
開度は次のようにして調整する。
The refrigerant that has passed through the internal heat exchanger 3 or bypassed the bypass flow path 6 subsequently passes through the throttle 4 before flowing into the evaporator 5, and is thus depressurized again to be in a gas-liquid two-phase state. (D). In this case, the opening of the throttle unit 4 is adjusted as follows.

【0024】すなわち、図5のフローチャートに示すよ
うに、まず、温度センサ11で検出される内部熱交換器
3を通過した後の冷媒温度を読み込む(ステップS
1)。また、第二圧力センサ11で検出される内部熱交
換器3を通過した後の冷媒圧力を読み込む(ステップS
2)。そして、読み込んだ冷媒圧力から得られる冷媒の
飽和温度に基づいて、コンプレッサ1に吸入される冷媒
のスーパーヒート(過熱度)を算出する(ステップS
3)。
That is, as shown in the flowchart of FIG. 5, first, the temperature of the refrigerant after passing through the internal heat exchanger 3 detected by the temperature sensor 11 is read (Step S).
1). Further, the pressure of the refrigerant after passing through the internal heat exchanger 3 detected by the second pressure sensor 11 is read (Step S).
2). Then, based on the refrigerant saturation temperature obtained from the read refrigerant pressure, superheat (degree of superheat) of the refrigerant drawn into the compressor 1 is calculated (step S).
3).

【0025】[0025]

【数1】SH=TS−T00=f(PS) SH:スーパーヒート(過熱度) TS:コンプレッサ吸入冷媒温度 PS:コンプレッサ吸入冷媒圧力 T0:冷媒飽和温度[Number 1] SH = T S -T 0 T 0 = f (P S) SH: superheat (degree of superheat) T S: compressor suction refrigerant temperature P S: compressor suction refrigerant pressure T 0: refrigerant saturation temperature

【0026】算出されたスーパーヒート(過熱度)が5
(℃)以下であれば、絞り部4の開度を小さくし(ステ
ップS4)、15(℃)を超えていれば、大きくする
(ステップS5)。
The calculated superheat (degree of superheat) is 5
If it is equal to or less than (° C.), the opening degree of the throttle unit 4 is reduced (step S4), and if it exceeds 15 (° C.), it is increased (step S5).

【0027】冷媒は、ガスクーラ2のみならず、内部熱
交換器3を通過することにより十分に冷却されて液相状
態となっているので、絞り部4を通過する際、大きな音
を発生させることがない。したがって、絞り部4をエバ
ポレータ5の近傍、すなわち車室内側に配設することが
可能となっている。このため、エバポレータ5内に、熱
損失や圧力損失の少ない車室内空気との熱交換に適した
冷媒を流入させることができる。
The refrigerant is sufficiently cooled by passing not only the gas cooler 2 but also the internal heat exchanger 3 to be in a liquid phase, so that when the refrigerant passes through the throttle unit 4, a loud noise is generated. There is no. Therefore, it is possible to dispose the throttle unit 4 in the vicinity of the evaporator 5, that is, on the vehicle interior side. For this reason, the refrigerant | coolant suitable for heat exchange with the vehicle interior air with little heat loss and pressure loss can be made to flow into the evaporator 5.

【0028】その後、冷媒は、エバポレータ5で車室内
の空気から吸熱して液相を蒸発させる(E)。そして、
内部熱交換器3の外側流路15を通過する。このとき、
前述のように、第一圧力センサ9での検出値に基づいて
流量調整弁7の開度が調整されると共に、温度センサ1
1および第二圧力センサ11での検出値に基づいて絞り
部4の開度が調整されているので、残る液相を全て蒸発
させて5〜15(℃)のスーパーヒート状態でコンプレ
ッサ1に吸入させることができる(F)。したがって、
コンプレッサ1に冷媒が液相で流入することがなくな
り、損傷を確実に防止可能となる。
Thereafter, the refrigerant absorbs heat from the air in the passenger compartment by the evaporator 5 to evaporate the liquid phase (E). And
It passes through the outer channel 15 of the internal heat exchanger 3. At this time,
As described above, the opening of the flow control valve 7 is adjusted based on the value detected by the first pressure sensor 9 and the temperature sensor 1
Since the opening of the throttle portion 4 is adjusted based on the detection values of the first and second pressure sensors 11, all the remaining liquid phase is evaporated and sucked into the compressor 1 in a superheat state of 5 to 15 (° C.). (F). Therefore,
The refrigerant does not flow into the compressor 1 in the liquid phase, and damage can be reliably prevented.

【0029】なお、前記実施形態では、バイパス管6で
冷媒が内部熱交換器3のみを迂回して流動するようにし
たが、絞り部4をも迂回して流動するようにしてもよ
い。内部熱交換器3での逆熱交換を防止できれば、絞り
部4を迂回するか否かは問題とならないからである。
In the above-described embodiment, the refrigerant flows in the bypass pipe 6 bypassing only the internal heat exchanger 3, but may also bypass the throttle section 4. This is because if reverse heat exchange in the internal heat exchanger 3 can be prevented, it does not matter whether or not the bypass section 4 is bypassed.

【0030】また、前記実施形態では、第一圧力センサ
11での検出圧力に基づいて流量調整弁7の開度を調整
するようにしたが、ガスクーラ2の出口側とエバポレー
タ5の出口側に於ける冷媒圧力差、ガスクーラ2の出口
側の冷媒温度、ガスクーラ2の出口側とエバポレータ5
の出口側に於ける冷媒温度差、外気温度を検出する外気
センサ(ガスクーラ2又はその近傍に配設される)での
検出温度に基づいて調整するようにしてもよい。
In the above-described embodiment, the opening of the flow control valve 7 is adjusted based on the pressure detected by the first pressure sensor 11, but the opening of the gas cooler 2 and the outlet of the evaporator 5 are adjusted at the outlet. Pressure difference, the refrigerant temperature at the outlet side of the gas cooler 2, the outlet side of the gas cooler 2 and the evaporator 5.
The temperature may be adjusted based on the difference between the refrigerant temperature at the outlet side and the temperature detected by an outside air sensor (disposed at or near the gas cooler 2) for detecting the outside air temperature.

【0031】すなわち、内部熱交換器3での逆熱交換の
検出は、ガスクーラ2の出口側とエバポレータ5の出口
側に於ける冷媒圧力差が小さくなったときや、ガスクー
ラ2の出口側とエバポレータ5の出口側の冷媒温度が逆
転したときにも可能だからである。また、外気温度が低
くなったとき、ガスクーラ2での放熱が過剰となり、結
果的に、ガスクーラ2の出口側に於ける冷媒圧力の低下
等、前記同様の現象が発生することを予測できるからで
ある。
That is, the detection of reverse heat exchange in the internal heat exchanger 3 is performed when the refrigerant pressure difference between the outlet side of the gas cooler 2 and the outlet side of the evaporator 5 becomes small, or when the outlet side of the gas cooler 2 is connected to the evaporator. This is also possible when the temperature of the refrigerant at the outlet side of No. 5 is reversed. Further, when the outside air temperature is lowered, it is possible to predict that the heat radiation in the gas cooler 2 becomes excessive, and as a result, the same phenomenon as described above such as a decrease in the refrigerant pressure at the outlet side of the gas cooler 2 can be predicted. is there.

【0032】さらに、前記内部熱交換器3の入口側に絞
り部(追加絞り部:図示せず)を設けることにより、内
部熱交換器3に流入する冷媒を臨界圧力以下に減圧する
ようにしてもよい。この場合、前記第一圧力センサ9の
近傍に温度センサ(追加温度センサ:図示せず)を設
け、制御装置13により追加絞り部の開度を次のように
調整すればよい。
Further, by providing a throttle portion (additional throttle portion: not shown) on the inlet side of the internal heat exchanger 3, the refrigerant flowing into the internal heat exchanger 3 is reduced in pressure below the critical pressure. Is also good. In this case, a temperature sensor (an additional temperature sensor: not shown) may be provided near the first pressure sensor 9 and the control device 13 may adjust the opening degree of the additional throttle unit as follows.

【0033】すなわち、図6のフローチャートに示すよ
うに、まず、追加温度センサで検出されるガスクーラ2
を通過した後の冷媒温度を読み込む(ステップS1
1)。そして、この検出温度に基づき、図7のグラフに
従って追加絞り部の入口側の目標圧力を決定する(ステ
ップS12)。また、第一圧力センサ9で検出されるガ
スクーラ2を通過した後の冷媒圧力を読み込み(ステッ
プS13)、前記目標圧力と比較する(ステップS1
4)。検出圧力が目標圧力未満であれば、追加絞り部の
開度を小さくする(ステップS15)。これにより、内
部熱交換器3に流入する冷媒量の不足を防止し、その後
の適切な流動状態を得ることが可能となる。一方、検出
圧力が目標圧力以上であれば、逆に追加絞り部の開度を
大きくする(ステップS16)。これにより、冷媒圧力
を臨界圧力以下とすることができる。なお、追加絞り部
の開度は、目標圧力に上限値と下限値を設け、上限値
(例えば、目標圧力+1MPa)を超えれば小さくし、
下限値(例えば、目標圧力−1MPa)よりも小さくな
れば大きくする。
That is, as shown in the flowchart of FIG. 6, first, the gas cooler 2 detected by the additional temperature sensor is used.
The temperature of the refrigerant after passing through is read (step S1).
1). Then, based on the detected temperature, the target pressure on the inlet side of the additional throttle portion is determined according to the graph of FIG. 7 (step S12). Further, the refrigerant pressure after passing through the gas cooler 2 detected by the first pressure sensor 9 is read (Step S13) and compared with the target pressure (Step S1).
4). If the detected pressure is lower than the target pressure, the opening degree of the additional throttle section is reduced (step S15). Thereby, shortage of the amount of refrigerant flowing into the internal heat exchanger 3 can be prevented, and an appropriate flow state can be obtained thereafter. On the other hand, if the detected pressure is equal to or higher than the target pressure, the degree of opening of the additional throttle portion is increased (step S16). As a result, the refrigerant pressure can be made equal to or lower than the critical pressure. Note that the opening degree of the additional throttle section is set to an upper limit value and a lower limit value for the target pressure, and is reduced if the target pressure exceeds an upper limit value (for example, target pressure +1 MPa).
If it is smaller than the lower limit (for example, target pressure-1 MPa), it is increased.

【0034】このように、ガスクーラ2を通過した後の
冷媒温度および冷媒圧力に基づいて追加絞り部の開度を
調整すれば、その後の冷媒の流動に支障を来すことなく
冷媒圧力を臨界圧力以下に抑えることができる。したが
って、内部熱交換器3(ここでは、内管14)に耐圧構
造を採用する必要がなくなる。この結果、内部熱交換器
3を小型で安価に製作することが可能となる。特に、内
管14を薄くすることにより、各流路の冷媒間での熱交
換効率を高めることができる。
As described above, if the opening degree of the additional throttle portion is adjusted based on the refrigerant temperature and the refrigerant pressure after passing through the gas cooler 2, the refrigerant pressure can be reduced to the critical pressure without hindering the flow of the refrigerant thereafter. It can be suppressed to the following. Therefore, it is not necessary to employ a pressure-resistant structure for the internal heat exchanger 3 (here, the inner tube 14). As a result, it is possible to manufacture the internal heat exchanger 3 in a small size and at low cost. In particular, by making the inner pipe 14 thin, the heat exchange efficiency between the refrigerants in each flow path can be increased.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
に係る車両用空調装置によれば、流量調整手段を備えた
バイパス流路を設けるようにしたので、内部熱交換器で
の逆熱交換を防止することにより、エバポレータの冷房
能力を適切に発揮させることが可能となる。
As is apparent from the above description, according to the vehicle air conditioner of the present invention, since the bypass flow path provided with the flow rate adjusting means is provided, the reverse heat in the internal heat exchanger is provided. By preventing the replacement, the cooling capacity of the evaporator can be appropriately exhibited.

【0036】また、ガスクーラで冷却した冷媒を、臨界
圧力以下に減圧する減圧手段を備えるようにしたので、
内部熱交換器に耐圧構造が不要となり簡単かつ安価に製
作できる。
[0036] Further, a pressure reducing means for reducing the pressure of the refrigerant cooled by the gas cooler to below the critical pressure is provided.
The internal heat exchanger does not require a pressure-resistant structure, and can be manufactured easily and inexpensively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態に係る車両用空調装置の概略図で
ある。
FIG. 1 is a schematic diagram of a vehicle air conditioner according to an embodiment.

【図2】 図1の内部熱交換器を示す断面図である。FIG. 2 is a sectional view showing the internal heat exchanger of FIG.

【図3】 図1の絞り部を示す断面図である。FIG. 3 is a cross-sectional view illustrating a throttle unit of FIG. 1;

【図4】 図1の各構成部品に於ける冷媒のエンタルピ
と圧力の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the enthalpy and the pressure of the refrigerant in each component in FIG.

【図5】 絞り部の開度制御を示すフローチャートであ
る。
FIG. 5 is a flowchart illustrating opening degree control of a throttle unit.

【図6】 追加絞り部の開度制御を示すフローチャート
である。
FIG. 6 is a flowchart illustrating opening degree control of an additional throttle unit.

【図7】 冷媒温度と目標圧力の関係を示すグラフであ
る。
FIG. 7 is a graph showing a relationship between a refrigerant temperature and a target pressure.

【符号の説明】[Explanation of symbols]

1…コンプレッサ 2…ガスクーラ 3…内部熱交換器 4…絞り部 5…エバポレータ 6…バイパス流路 7…流量調整弁 11…第二圧力センサ 12…温度センサ 13…制御装置 DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Gas cooler 3 ... Internal heat exchanger 4 ... Throttle part 5 ... Evaporator 6 ... Bypass flow path 7 ... Flow regulating valve 11 ... Second pressure sensor 12 ... Temperature sensor 13 ... Control device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を臨界圧力を超える圧力まで圧縮す
るコンプレッサと、 該コンプレッサで圧縮された冷媒を冷却するガスクーラ
と、 該ガスクーラで冷却された冷媒と前記コンプレッサに吸
入される冷媒とを熱交換する内部熱交換器と、 該内部熱交換器で冷却した冷媒を減圧する減圧手段と、 該減圧手段で減圧した冷媒を蒸発させるエバポレータと
を備え、 前記内部熱交換器を迂回するバイパス流路を接続すると
共に、該バイパス流路に流量調整手段を設けたことを特
徴とする車両用空調装置。
A compressor for compressing the refrigerant to a pressure exceeding a critical pressure; a gas cooler for cooling the refrigerant compressed by the compressor; and a heat exchange between the refrigerant cooled by the gas cooler and the refrigerant sucked into the compressor. An internal heat exchanger, a decompression unit for decompressing the refrigerant cooled by the internal heat exchanger, and an evaporator for evaporating the refrigerant decompressed by the decompression unit, wherein a bypass flow path bypassing the internal heat exchanger is provided. An air conditioner for a vehicle, wherein the air conditioner is connected and a flow rate adjusting means is provided in the bypass flow path.
【請求項2】 前記バイパス流路は、内部熱交換器のみ
ならず、減圧手段をも迂回するように設けたことを特徴
とする請求項1に記載の車両用空調装置。
2. The vehicle air conditioner according to claim 1, wherein the bypass flow path is provided so as to bypass not only an internal heat exchanger but also a decompression means.
【請求項3】 前記流量調整手段は、ガスクーラの出口
側の冷媒圧力に応じて開度を調整することを特徴とする
請求項1又は2に記載の車両用空調装置。
3. The air conditioner for a vehicle according to claim 1, wherein the flow rate adjusting means adjusts an opening degree in accordance with a refrigerant pressure at an outlet side of the gas cooler.
【請求項4】 前記流量調整手段は、ガスクーラの出口
側とエバポレータの出口側に於ける冷媒圧力差に応じて
開度を調整することを特徴とする請求項1又は2に記載
の車両用空調装置。
4. The air conditioner for a vehicle according to claim 1, wherein said flow rate adjusting means adjusts an opening degree according to a refrigerant pressure difference between an outlet side of a gas cooler and an outlet side of an evaporator. apparatus.
【請求項5】 前記流量調整手段は、ガスクーラの出口
側に於ける冷媒温度に応じて開度を調整することを特徴
とする請求項1又は2に記載の車両用空調装置。
5. The air conditioner for a vehicle according to claim 1, wherein the flow rate adjusting means adjusts an opening degree in accordance with a refrigerant temperature at an outlet side of the gas cooler.
【請求項6】 前記流量調整手段は、ガスクーラの出口
側とエバポレータの出口側に於ける冷媒温度差に応じて
開度を調整することを特徴とする請求項1又は2に記載
の車両用空調装置。
6. The air conditioner for a vehicle according to claim 1, wherein said flow rate adjusting means adjusts an opening degree according to a difference in refrigerant temperature between an outlet side of a gas cooler and an outlet side of an evaporator. apparatus.
【請求項7】 外気温度を検出する外気温度検出手段を
備え、前記流量調整手段は、前記車外温度検出手段での
検出温度に応じて開度を大きくすることを特徴とする請
求項1又は2に記載の車両用空調装置。
7. An outside air temperature detecting means for detecting an outside air temperature, wherein said flow rate adjusting means increases an opening degree according to a temperature detected by said outside air temperature detecting means. A vehicle air conditioner according to claim 1.
【請求項8】 前記ガスクーラで冷却した冷媒を、臨界
圧力以下に減圧する減圧手段をさらに備えたことを特徴
とする請求項1ないし7のいずれか1項に記載の車両用
空調装置。
8. The vehicle air conditioner according to claim 1, further comprising a pressure reducing means for reducing the pressure of the refrigerant cooled by the gas cooler to a critical pressure or lower.
【請求項9】 前記冷媒は二酸化炭素であることを特徴
とする請求項1ないし8のいずれか1項に記載の車両用
空調装置。
9. The vehicle air conditioner according to claim 1, wherein the refrigerant is carbon dioxide.
JP17810499A 1999-06-24 1999-06-24 Air conditioner for vehicles Expired - Fee Related JP4346157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17810499A JP4346157B2 (en) 1999-06-24 1999-06-24 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17810499A JP4346157B2 (en) 1999-06-24 1999-06-24 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2001001754A true JP2001001754A (en) 2001-01-09
JP4346157B2 JP4346157B2 (en) 2009-10-21

Family

ID=16042727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17810499A Expired - Fee Related JP4346157B2 (en) 1999-06-24 1999-06-24 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4346157B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054249A (en) * 2001-08-10 2003-02-26 Japan Climate Systems Corp Vehicular air conditioner
JP2004519382A (en) * 2001-05-16 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Air conditioner equipment
JP2008196791A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump heating system
JP2009030840A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Refrigerating device
WO2009096442A1 (en) * 2008-01-30 2009-08-06 Calsonic Kansei Corporation Supercritical refrigeration cycle
JPWO2014068967A1 (en) * 2012-10-31 2016-09-08 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP2017088137A (en) * 2015-11-17 2017-05-25 株式会社ヴァレオジャパン Refrigeration cycle of vehicular air conditioner and vehicle mounted with the same
WO2017183588A1 (en) * 2016-04-19 2017-10-26 株式会社ヴァレオジャパン Vehicle air-conditioning device and vehicle provided with same
WO2018173854A1 (en) * 2017-03-22 2018-09-27 日本電気株式会社 Cooling system, cooling method, and program
CN109945326A (en) * 2019-04-16 2019-06-28 珠海格力电器股份有限公司 Outdoor unit, heat-exchange system, the control method of heat-exchange system and air-conditioning
JP2020118308A (en) * 2019-01-18 2020-08-06 株式会社富士通ゼネラル Heat pump type water heater and control device
CN113645809A (en) * 2021-08-13 2021-11-12 深圳麦克维尔空调有限公司 Cooling device, air conditioning system and control method of cooling device
EP3711984A4 (en) * 2018-09-25 2021-12-29 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
CN114166537A (en) * 2021-11-09 2022-03-11 Omexell(济南)传热技术有限公司 Heat exchanger unit and detection method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519382A (en) * 2001-05-16 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Air conditioner equipment
JP2003054249A (en) * 2001-08-10 2003-02-26 Japan Climate Systems Corp Vehicular air conditioner
JP2008196791A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat pump heating system
JP2009030840A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Refrigerating device
WO2009096442A1 (en) * 2008-01-30 2009-08-06 Calsonic Kansei Corporation Supercritical refrigeration cycle
JPWO2014068967A1 (en) * 2012-10-31 2016-09-08 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN107848375A (en) * 2015-11-17 2018-03-27 法雷奥日本株式会社 The kind of refrigeration cycle of air conditioner for vehicles and the vehicle for carrying it
JP2017088137A (en) * 2015-11-17 2017-05-25 株式会社ヴァレオジャパン Refrigeration cycle of vehicular air conditioner and vehicle mounted with the same
WO2017086343A1 (en) * 2015-11-17 2017-05-26 株式会社ヴァレオジャパン Refrigeration cycle for vehicular air-conditioning device, and vehicle equipped therewith
WO2017183588A1 (en) * 2016-04-19 2017-10-26 株式会社ヴァレオジャパン Vehicle air-conditioning device and vehicle provided with same
WO2018173854A1 (en) * 2017-03-22 2018-09-27 日本電気株式会社 Cooling system, cooling method, and program
EP3711984A4 (en) * 2018-09-25 2021-12-29 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
JP2020118308A (en) * 2019-01-18 2020-08-06 株式会社富士通ゼネラル Heat pump type water heater and control device
JP7293661B2 (en) 2019-01-18 2023-06-20 株式会社富士通ゼネラル Heat pump water heater and controller
CN109945326A (en) * 2019-04-16 2019-06-28 珠海格力电器股份有限公司 Outdoor unit, heat-exchange system, the control method of heat-exchange system and air-conditioning
CN113645809A (en) * 2021-08-13 2021-11-12 深圳麦克维尔空调有限公司 Cooling device, air conditioning system and control method of cooling device
CN113645809B (en) * 2021-08-13 2024-03-12 深圳麦克维尔空调有限公司 Cooling device, air conditioning system, and control method for cooling device
CN114166537A (en) * 2021-11-09 2022-03-11 Omexell(济南)传热技术有限公司 Heat exchanger unit and detection method thereof

Also Published As

Publication number Publication date
JP4346157B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US6755046B2 (en) Vehicle air conditioner with heat pump refrigerant cycle
US6966197B2 (en) Air conditioner with dehumidifying and heating operation
JP4463466B2 (en) Ejector cycle
JP4639541B2 (en) Cycle using ejector
US7461517B2 (en) Refrigerant cycle unit
JP3365273B2 (en) Refrigeration cycle
US6931880B2 (en) Method and arrangement for defrosting a vapor compression system
WO2019244766A1 (en) Refrigeration cycle device
JP2002130849A (en) Cooling cycle and its control method
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
JP4346157B2 (en) Air conditioner for vehicles
WO2019235413A1 (en) Refrigeration cycle device
JP2007051833A (en) Ejector type refrigeration cycle
US6880362B2 (en) Refrigerating cycle apparatus
JP2020122621A (en) Refrigeration cycle device
JP2012207890A (en) Vehicle refrigeration cycle system
JP4952830B2 (en) Ejector refrigeration cycle
JP2000283577A (en) Refrigeration cycle for refrigerating plant
JP4661710B2 (en) Vapor compression refrigeration cycle
JP4930214B2 (en) Refrigeration cycle equipment
JP4631721B2 (en) Vapor compression refrigeration cycle
JP4323619B2 (en) Air conditioner for vehicles
JP2019219122A (en) Refrigeration cycle device
JP2010127498A (en) Refrigerating cycle device
JP2020085382A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees