WO2023248706A1 - Vehicle air conditioning device - Google Patents

Vehicle air conditioning device Download PDF

Info

Publication number
WO2023248706A1
WO2023248706A1 PCT/JP2023/019679 JP2023019679W WO2023248706A1 WO 2023248706 A1 WO2023248706 A1 WO 2023248706A1 JP 2023019679 W JP2023019679 W JP 2023019679W WO 2023248706 A1 WO2023248706 A1 WO 2023248706A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
compressor
heat exchanger
temperature
Prior art date
Application number
PCT/JP2023/019679
Other languages
French (fr)
Japanese (ja)
Inventor
宣伯 清水
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023248706A1 publication Critical patent/WO2023248706A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

[Problem] To prevent liquid condensation in a compressor while maintaining heating capacity even when the outside air temperature is particularly low. [Solution] Provided is a vehicle air conditioning device comprising a refrigerant circuit in which a compressor, a condenser, an expansion unit, an evaporator, and a gas-liquid separation unit are connected in this order by refrigerant piping and a refrigerant is made to circulate, wherein the refrigerant circuit comprises: a first bypass path that causes refrigerant discharged from the compressor to flow into the inlet side of the gas-liquid separation unit; and an internal heat exchanger that causes heat exchange between refrigerant flowing toward the compressor from the gas-liquid separation unit and refrigerant flowing out from the condenser.

Description

車両用空調装置Vehicle air conditioner
 本発明は、車両用の空調装置に関する。 The present invention relates to an air conditioner for a vehicle.
 車両用空調装置として、ヒートポンプ式の冷媒回路を用いたものが知られている。このような車両用空調装置は、圧縮機、放熱用の凝縮器、膨張機構、吸熱用の蒸発器を有する冷媒回路を備え、凝縮器又は蒸発器にておいて冷媒と直接的に又は他の熱媒体を介して間接的に熱交換することにより温調された空気を車室内に送風する。 As a vehicle air conditioner, one using a heat pump type refrigerant circuit is known. Such a vehicle air conditioner is equipped with a refrigerant circuit that includes a compressor, a condenser for heat radiation, an expansion mechanism, and an evaporator for heat absorption. Temperature-controlled air is blown into the vehicle interior by indirectly exchanging heat via a heat medium.
 ヒートポンプ式の冷媒回路において、外気が極低温(例えば、-10℃)である場合に、圧縮機に吸入される冷媒密度が低くなるため、暖房能力が不十分となる。このため、例えば、電気ヒータなどの補助熱源を用いて暖房能力を補っている。
 一方、補助熱源を設けずに暖房能力を確保するために、圧縮機から吐出した高温高圧のガス冷媒を、熱交換器を通過させずに圧縮機の吸入側に戻すことにより、外気温度に依存せずに冷媒の吸入密度を上昇させるものがある(例えば、特許文献1)。
In a heat pump type refrigerant circuit, when the outside air is at an extremely low temperature (for example, −10° C.), the density of the refrigerant sucked into the compressor becomes low, resulting in insufficient heating capacity. For this reason, for example, auxiliary heat sources such as electric heaters are used to supplement heating capacity.
On the other hand, in order to ensure heating capacity without installing an auxiliary heat source, the high-temperature, high-pressure gas refrigerant discharged from the compressor is returned to the suction side of the compressor without passing through a heat exchanger, making it dependent on the outside temperature. There are some methods that increase the suction density of refrigerant without increasing the refrigerant intake density (for example, Patent Document 1).
特開平5-223357号公報Japanese Patent Application Publication No. 5-223357
 前述した従来技術のように、圧縮機から吐出した高温高圧のガス冷媒を圧縮機の吸入側に戻す場合、圧縮機の吸入乾き度を調整することが難しい。このため、圧縮機が液圧縮を起こさないようにするための保護対策が求められている。 As in the prior art described above, when the high-temperature, high-pressure gas refrigerant discharged from the compressor is returned to the suction side of the compressor, it is difficult to adjust the suction dryness of the compressor. Therefore, protective measures are required to prevent the compressor from causing liquid compression.
 本発明は、このような問題に対処することを課題としている。すなわち、ヒートポンプ式冷媒回路を備えた車両用空調装置において、外気温度が特に低い場合においても暖房能力を確保しつつ、圧縮機における液圧縮を予防すること、などが本発明の課題である。 The present invention aims to address such problems. That is, an object of the present invention is to prevent liquid compression in a compressor while ensuring heating capacity even when the outside air temperature is particularly low in a vehicle air conditioner equipped with a heat pump type refrigerant circuit.
 このような課題を解決するために、本発明の一態様は、以下の構成を具備する。
 すなわち、本発明の一態様に係る車両用空調装置は、圧縮機、凝縮器、膨張部、蒸発器、及び、気液分離部を冷媒配管により順に接続し、冷媒を循環させる冷媒回路を備えた車両用空調装置であって、前記冷媒回路は、前記圧縮機から吐出した冷媒を、前記気液分離部の入口側に流入させる第1バイパス流路と、前記気液分離部から前記圧縮機へ向かう冷媒と、前記凝縮器から流出した冷媒とを熱交換させる内部熱交換器と、を備える。
In order to solve such problems, one embodiment of the present invention includes the following configuration.
That is, a vehicle air conditioner according to one aspect of the present invention includes a refrigerant circuit that sequentially connects a compressor, a condenser, an expansion section, an evaporator, and a gas-liquid separation section through refrigerant piping and circulates refrigerant. In the vehicle air conditioner, the refrigerant circuit includes a first bypass flow path through which refrigerant discharged from the compressor flows into an inlet side of the gas-liquid separation section, and a flow path from the gas-liquid separation section to the compressor. It includes an internal heat exchanger that exchanges heat between the refrigerant flowing toward the condenser and the refrigerant flowing out from the condenser.
 このような特徴を備えた本発明の車両用空調装置によると、外気温度が特に低い場合においても暖房能力を確保しつつ、圧縮機における液圧縮を予防することができる。 According to the vehicle air conditioner of the present invention having such features, it is possible to prevent liquid compression in the compressor while ensuring heating capacity even when the outside air temperature is particularly low.
本発明の実施形態に係る車両用空調装置に適用される冷媒回路の概略構成を示す説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of a refrigerant circuit applied to a vehicle air conditioner according to an embodiment of the present invention. 本発明の実施形態に係る車両用空調装置に適用される冷媒回路において、暖房運転時の冷媒の流れを示す説明図である。FIG. 2 is an explanatory diagram showing the flow of refrigerant during heating operation in the refrigerant circuit applied to the vehicle air conditioner according to the embodiment of the present invention. 本発明の実施形態に係る車両用空調装置に適用される冷媒回路において、外気が極低温である場合の暖房運転時の冷媒の流れを示す説明図である。FIG. 2 is an explanatory diagram showing the flow of refrigerant during heating operation when the outside air is at an extremely low temperature in a refrigerant circuit applied to a vehicle air conditioner according to an embodiment of the present invention. 本発明の実施形態に係る車両用空調装置に適用される冷媒回路において、冷房運転時の冷媒の流れを示す説明図である。FIG. 2 is an explanatory diagram showing the flow of refrigerant during cooling operation in a refrigerant circuit applied to a vehicle air conditioner according to an embodiment of the present invention. 本発明の実施例1に係る車両用空調装置の概略構成を示す説明図である。1 is an explanatory diagram showing a schematic configuration of a vehicle air conditioner according to Example 1 of the present invention. 本発明の実施例1に係る車両用空調装置において、外気が極低温である場合の暖房運転時の冷媒の流れを示す説明図である。FIG. 2 is an explanatory diagram showing the flow of refrigerant during heating operation when the outside air is at an extremely low temperature in the vehicle air conditioner according to Example 1 of the present invention. 本発明の実施例2に係る車両用空調装置の概略構成を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic configuration of a vehicle air conditioner according to a second embodiment of the present invention. 本発明の実施例2に係る車両用空調装置において、外気が極低温である場合の暖房運転時の冷媒の流れを示す説明図である。FIG. 7 is an explanatory diagram showing the flow of refrigerant during heating operation when the outside air is at an extremely low temperature in the vehicle air conditioner according to Example 2 of the present invention.
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals in different figures indicate parts with the same function, and redundant explanation in each figure will be omitted as appropriate.
 図1に示すように、本発明の実施形態に係る車両用空調装置に適用される冷媒回路Rは、圧縮機11、凝縮器12、膨張弁13、蒸発器14、アキュームレータ15、及び内部熱交換器16、が冷媒配管120Aから120Hによって接続されて構成され、冷媒を循環させる。 As shown in FIG. 1, the refrigerant circuit R applied to the vehicle air conditioner according to the embodiment of the present invention includes a compressor 11, a condenser 12, an expansion valve 13, an evaporator 14, an accumulator 15, and an internal heat exchanger. The refrigerant pipes 16 are connected by refrigerant pipes 120A to 120H to circulate the refrigerant.
 圧縮機11の冷媒出口と、凝縮器12の冷媒入口とは冷媒配管120Aによって接続され、凝縮器12の冷媒出口と内部熱交換器16の高圧側流路16Aの冷媒入口とは冷媒配管120Bによって接続されている。内部熱交換器16の高圧側流路16Aの冷媒出口と蒸発器14の冷媒入口とは冷媒配管120Cにより接続されている。膨張弁13は、冷媒配管120Cに設けられている。蒸発器14の冷媒出口とアキュームレータ15の冷媒入口とは冷媒配管120Dにより接続され、アキュームレータ15と内部熱交換器16の低圧側流路16Bの冷媒入口とは冷媒配管120Eにより接続されている。内部熱交換器16の低圧側流路16Bの冷媒出口と圧縮機11の冷媒入口とは冷媒配管120Fにより接続されている。 The refrigerant outlet of the compressor 11 and the refrigerant inlet of the condenser 12 are connected by a refrigerant pipe 120A, and the refrigerant outlet of the condenser 12 and the refrigerant inlet of the high pressure side flow path 16A of the internal heat exchanger 16 are connected by a refrigerant pipe 120B. It is connected. The refrigerant outlet of the high pressure side flow path 16A of the internal heat exchanger 16 and the refrigerant inlet of the evaporator 14 are connected by a refrigerant pipe 120C. The expansion valve 13 is provided in the refrigerant pipe 120C. The refrigerant outlet of the evaporator 14 and the refrigerant inlet of the accumulator 15 are connected by a refrigerant pipe 120D, and the accumulator 15 and the refrigerant inlet of the low pressure side flow path 16B of the internal heat exchanger 16 are connected by a refrigerant pipe 120E. The refrigerant outlet of the low pressure side flow path 16B of the internal heat exchanger 16 and the refrigerant inlet of the compressor 11 are connected by a refrigerant pipe 120F.
 圧縮機11と凝縮器12とを接続する冷媒配管120Aには、圧縮機11の冷媒出口に設けられた分岐部121において分岐しており、分岐部121には冷媒配管120Gの一端が接続されている。冷媒配管120Gの他端は、冷媒配管120Dのアキュームレータ15の上流側に設けられた合流部122に接続されている。冷媒配管120Gには、電子膨張弁18が設けられ、電子膨張弁18を開状態とすることにより、圧縮機11から吐出した冷媒をアキュームレータ15の入口側に導く第1バイパス流路を構成することができる。 The refrigerant pipe 120A connecting the compressor 11 and the condenser 12 branches at a branch part 121 provided at the refrigerant outlet of the compressor 11, and one end of the refrigerant pipe 120G is connected to the branch part 121. There is. The other end of the refrigerant pipe 120G is connected to a confluence section 122 provided on the upstream side of the accumulator 15 of the refrigerant pipe 120D. The refrigerant pipe 120G is provided with an electronic expansion valve 18, and by opening the electronic expansion valve 18, a first bypass flow path is configured to guide the refrigerant discharged from the compressor 11 to the inlet side of the accumulator 15. Can be done.
 凝縮器12と内部熱交換器16の高圧側流路16Aとを接続する冷媒配管120Bは、分岐部123において分岐しており、分岐部123には冷媒配管120Hの一端が接続されている。冷媒配管120Hの他端は、冷媒配管120Cの膨張弁13の上流側に設けられた合流部124に接続されている。冷媒配管120Hには、流量調整部19が設けられ、流量調整部19を開状態とすることにより、凝縮器12から流出した冷媒を内部熱交換器16の高圧側流路16Aを迂回させて膨張弁13に導く第2バイパス流路を構成することができる。 The refrigerant pipe 120B that connects the condenser 12 and the high-pressure side flow path 16A of the internal heat exchanger 16 branches at a branch part 123, and one end of the refrigerant pipe 120H is connected to the branch part 123. The other end of the refrigerant pipe 120H is connected to a confluence section 124 provided on the upstream side of the expansion valve 13 of the refrigerant pipe 120C. The refrigerant pipe 120H is provided with a flow rate adjustment section 19, and by opening the flow rate adjustment section 19, the refrigerant flowing out from the condenser 12 is expanded by bypassing the high pressure side flow path 16A of the internal heat exchanger 16. A second bypass flow path leading to the valve 13 can be configured.
 このように構成された冷媒回路Rでは、冷媒回路Rが適用される車両用空調装置における空調目的に応じて、不図示の制御部によって膨張弁13、電子膨張弁18、流量調整部19の開度を制御すると共に、圧縮機11の回転数を制御して冷媒を循環させる。 In the refrigerant circuit R configured as described above, the opening of the expansion valve 13, the electronic expansion valve 18, and the flow rate adjustment unit 19 is controlled by a control unit (not shown) according to the purpose of air conditioning in the vehicle air conditioner to which the refrigerant circuit R is applied. At the same time, the rotation speed of the compressor 11 is controlled to circulate the refrigerant.
 制御部は、特に、流量調整部19について、圧縮機11から吐出された冷媒の状態(圧力、温度、乾き度や過熱度)または、アキュームレータ15の出口の冷媒の状態(圧力、温度、乾き度や過熱度)に基づいて全閉から全開の間で適宜その開度を調整するように制御する。 In particular, with respect to the flow rate adjustment unit 19, the control unit controls the state of the refrigerant discharged from the compressor 11 (pressure, temperature, degree of dryness and degree of superheating) or the state of the refrigerant at the outlet of the accumulator 15 (pressure, temperature, degree of dryness). The opening degree is appropriately adjusted between fully closed and fully open based on the temperature and degree of superheating.
 例えば、制御部により、圧縮機11の出口の冷媒の状態(圧力、温度等)、すなわち、圧縮機11から吐出された冷媒の状態から過熱度を推定し、推定した過熱度に基づいて流量調整部19の開度を調整・制御することで、第2バイパス流路を通過する冷媒の流量が調整される。 For example, the control unit estimates the degree of superheat from the state (pressure, temperature, etc.) of the refrigerant at the outlet of the compressor 11, that is, the state of the refrigerant discharged from the compressor 11, and adjusts the flow rate based on the estimated degree of superheat. By adjusting and controlling the opening degree of the portion 19, the flow rate of the refrigerant passing through the second bypass flow path is adjusted.
 過熱度が、予め定めた閾値より大きい場合には液圧縮が生じにくいものの、閾値以下の場合には、液圧縮が生じる虞が高いと推定される。このため、過熱度が閾値よりも大きくなるように、流量調整部19により第2バイパス流路を通過する冷媒の流量を調整することで、内部熱交換器16の高圧側流路16Aを通過する冷媒の流量を調整する。これにより、内部熱交換器16における熱交換量を制御することができる。 If the degree of superheat is greater than a predetermined threshold value, liquid compression is unlikely to occur, but if it is less than the threshold value, it is estimated that there is a high possibility that liquid compression will occur. Therefore, by adjusting the flow rate of the refrigerant passing through the second bypass flow path by the flow rate adjustment unit 19 so that the degree of superheat becomes larger than the threshold value, the refrigerant passes through the high pressure side flow path 16A of the internal heat exchanger 16. Adjust the refrigerant flow rate. Thereby, the amount of heat exchanged in the internal heat exchanger 16 can be controlled.
 また、圧縮機11の吐出側の冷媒の状態と、圧縮機11の吸入側、すなわち、アキュームレータ15の出口の冷媒の状態(圧力、温度等)とから、正常時の圧縮機11の吸入乾き度(例えば0.95)と圧縮機11の断熱圧縮効率が決まるので、正常時の圧縮機11の吐出温度を求めることができる。これにより、圧縮機11が正常に作動しているかどうか、すなわち、液圧縮の発生の有無を判断することができる。 Also, from the state of the refrigerant on the discharge side of the compressor 11 and the state (pressure, temperature, etc.) of the refrigerant on the suction side of the compressor 11, that is, the outlet of the accumulator 15, the suction dryness of the compressor 11 under normal conditions can be determined. Since the adiabatic compression efficiency of the compressor 11 is determined as (for example, 0.95), the discharge temperature of the compressor 11 during normal operation can be determined. This makes it possible to determine whether the compressor 11 is operating normally, that is, whether liquid compression is occurring.
 したがって、制御部により、圧縮機11から吐出された冷媒の状態とアキュームレータ15の出口の冷媒の状態から圧縮機11の吸入乾き度を推定し、推定される吸入乾き度に基づいて第2バイパス流路を通過する冷媒の流量を調整することで、内部熱交換器16の高圧側流路16Aを通過する冷媒の流量を調整する。これにより、内部熱交換器16における熱交換量を制御することができる。 Therefore, the control unit estimates the suction dryness of the compressor 11 from the state of the refrigerant discharged from the compressor 11 and the state of the refrigerant at the outlet of the accumulator 15, and based on the estimated suction dryness, the second bypass flow By adjusting the flow rate of the refrigerant passing through the channel, the flow rate of the refrigerant passing through the high pressure side flow channel 16A of the internal heat exchanger 16 is adjusted. Thereby, the amount of heat exchanged in the internal heat exchanger 16 can be controlled.
 なお、図2から図4において、高圧の冷媒が通過する冷媒配管を実線で、低圧の冷媒が通過する冷媒配管を一点鎖線で、冷媒が通過しない冷媒配管を破線で示している。 In addition, in FIGS. 2 to 4, refrigerant piping through which high-pressure refrigerant passes is shown by a solid line, refrigerant piping through which low-pressure refrigerant passes by a dashed line, and refrigerant piping through which refrigerant does not pass is shown by a broken line.
(暖房運転時の冷媒の流れ)
 例えば、車両用空調装置の起動直後に暖房運転を行う場合には、冷媒回路Rにおいて、次のように冷媒を循環させる。
 図2に示すように、冷媒回路Rでは、第1バイパス流路(冷媒配管120G)を用いずに、すなわち、電子膨張弁18を全閉状態とし、かつ、流量調整部19を全開状態として第2バイパス流路(冷媒配管120H)を用いる。圧縮機11から吐出された高圧のガス冷媒は、凝縮器12において凝縮器12と一体的に設けられた高温熱交換器21を通過する熱媒体と熱交換することにより放熱して液化凝縮し、高圧の液冷媒となる。凝縮器12から流出した高圧液冷媒は、膨張弁13によって減圧されて膨張し、低圧冷媒となり、蒸発器14に流入する。
(Flow of refrigerant during heating operation)
For example, when heating operation is performed immediately after starting the vehicle air conditioner, the refrigerant is circulated in the refrigerant circuit R as follows.
As shown in FIG. 2, in the refrigerant circuit R, the first bypass flow path (refrigerant pipe 120G) is not used, that is, the electronic expansion valve 18 is in a fully closed state, and the flow rate adjustment section 19 is in a fully open state. 2 bypass flow path (refrigerant pipe 120H) is used. The high-pressure gas refrigerant discharged from the compressor 11 radiates heat and liquefies and condenses by exchanging heat with a heat medium passing through a high-temperature heat exchanger 21 provided integrally with the condenser 12 in the condenser 12, It becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 12 is depressurized and expanded by the expansion valve 13, becomes a low-pressure refrigerant, and flows into the evaporator 14.
 蒸発器14に流入した低圧冷媒は、蒸発器14と一体的に設けられた低温熱交換器31を通過する熱媒体と熱交換することにより蒸発し、ガス冷媒となって蒸発器14を流出し、アキュームレータ15を介して内部熱交換器16の低圧側流路16Bに流れる。このとき、流量調整部19が全開状態であることから、凝縮器12を通過した高圧の冷媒は内部熱交換器16の高圧側流路16Aに流れない。このため、アキュームレータ15を出た冷媒は、内部熱交換器16の低圧側流路16Bにおいて熱交換することなく通過し、圧縮機11へ戻る。 The low-pressure refrigerant that has flowed into the evaporator 14 evaporates by exchanging heat with the heat medium passing through the low-temperature heat exchanger 31 that is provided integrally with the evaporator 14, and flows out of the evaporator 14 as a gas refrigerant. , flows through the accumulator 15 to the low pressure side flow path 16B of the internal heat exchanger 16. At this time, since the flow rate adjustment unit 19 is fully open, the high-pressure refrigerant that has passed through the condenser 12 does not flow into the high-pressure side flow path 16A of the internal heat exchanger 16. Therefore, the refrigerant that has exited the accumulator 15 passes through the low-pressure side flow path 16B of the internal heat exchanger 16 without undergoing heat exchange, and returns to the compressor 11.
(外気が極低温である場合の暖房運転時の冷媒の流れ)
 一方、例えば、外気が極低温である場合の暖房運転では、冷媒回路Rにおいて、次のように冷媒を循環させる。
 図3に示すように、冷媒回路Rでは、電子膨張弁18を開状態として第1バイパス流路(冷媒配管120G)を用い、かつ、流量調整部19を全閉状態として第2バイパス流路(冷媒配管120H)を用いず、内部熱交換器16において高圧冷媒と低圧冷媒との熱交換を行わせる。なお、流量調整部19は、上述のように、圧縮機11の出口又はアキュームレータ15の出口の冷媒の状態に基づいて開度が調整されるので、必ずしも全閉状態とは限らない。
(Refrigerant flow during heating operation when the outside air is extremely low temperature)
On the other hand, for example, in heating operation when the outside air is extremely low temperature, the refrigerant is circulated in the refrigerant circuit R as follows.
As shown in FIG. 3, in the refrigerant circuit R, the electronic expansion valve 18 is opened to use the first bypass flow path (refrigerant pipe 120G), and the flow rate adjustment section 19 is fully closed to use the second bypass flow path (refrigerant pipe 120G). Heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is performed in the internal heat exchanger 16 without using the refrigerant pipe 120H). Note that, as described above, the opening degree of the flow rate adjustment section 19 is adjusted based on the state of the refrigerant at the outlet of the compressor 11 or the outlet of the accumulator 15, so the flow rate adjustment section 19 is not necessarily in a fully closed state.
 これにより、圧縮機11から吐出された高圧のガス冷媒は、一部が凝縮器12において凝縮器12と一体的に設けられた高温熱交換器21を通過する熱媒体と熱交換することにより放熱して液化凝縮し、高圧の液冷媒となる。凝縮器12から流出した高圧液冷媒は、内部熱交換器16の高圧側流路16Aを通過し、低圧側流路16Bを通過する低圧側冷媒と熱交換を行う。 As a result, a part of the high-pressure gas refrigerant discharged from the compressor 11 radiates heat by exchanging heat with the heat medium passing through the high-temperature heat exchanger 21 provided integrally with the condenser 12 in the condenser 12. It liquefies and condenses to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 12 passes through the high-pressure side flow path 16A of the internal heat exchanger 16, and exchanges heat with the low-pressure side refrigerant passing through the low-pressure side flow path 16B.
 内部熱交換器16の高圧側流路16Aを流出した冷媒は、膨張弁13によって減圧されて膨張し、低圧冷媒となり、蒸発器14に流入する。蒸発器14を流出した低圧冷媒は、蒸発器14と一体的に設けられた低温熱交換器31を通過する熱媒体と熱交換せずに蒸発器14を流出し、第1バイパス流路から合流部122に流入した冷媒と共にアキュームレータ15に流入する。 The refrigerant that has flowed out of the high-pressure side flow path 16A of the internal heat exchanger 16 is depressurized and expanded by the expansion valve 13, becomes a low-pressure refrigerant, and flows into the evaporator 14. The low-pressure refrigerant that has flown out of the evaporator 14 flows out of the evaporator 14 without exchanging heat with the heat medium that passes through the low-temperature heat exchanger 31 that is provided integrally with the evaporator 14, and merges from the first bypass flow path. The refrigerant flows into the accumulator 15 together with the refrigerant that has flowed into the section 122.
 また、圧縮機11から吐出された高圧のガス冷媒の残りは、第1バイパス流路を流れて電子膨張弁18において減圧され、合流部122において蒸発器14を出た冷媒と合流してアキュームレータ15に流入する。アキュームレータ15で気液分離された低圧冷媒は内部熱交換器16の低圧側流路16Bを通過して高圧側流路16Aを通過する高圧冷媒と熱交換を行い、圧縮機11へ戻る。 In addition, the remainder of the high-pressure gas refrigerant discharged from the compressor 11 flows through the first bypass flow path, is depressurized at the electronic expansion valve 18, and joins with the refrigerant that has exited the evaporator 14 at the confluence section 122 to form the accumulator 15. flows into. The low-pressure refrigerant separated into gas and liquid by the accumulator 15 passes through the low-pressure side passage 16B of the internal heat exchanger 16, exchanges heat with the high-pressure refrigerant passing through the high-pressure side passage 16A, and returns to the compressor 11.
(冷房運転時の冷媒の流れ)
 また、例えば、冷房運転を行う場合は、冷媒回路Rにおいて、次のように冷媒を循環させる。
 図4に示すように、冷媒回路Rでは、電子膨張弁18を全閉状態として第1バイパス流路(冷媒配管120G)を用いず、流量調整部19を全閉状態として第2バイパス流路(冷媒配管120H)を用いず、内部熱交換器16において高圧冷媒と低圧冷媒との熱交換を行わせる。
(Flow of refrigerant during cooling operation)
For example, when performing cooling operation, the refrigerant is circulated in the refrigerant circuit R as follows.
As shown in FIG. 4, in the refrigerant circuit R, the electronic expansion valve 18 is fully closed and the first bypass flow path (refrigerant pipe 120G) is not used, and the flow rate adjustment section 19 is fully closed and the second bypass flow path (refrigerant pipe 120G) is not used. Heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is performed in the internal heat exchanger 16 without using the refrigerant pipe 120H).
 これにより、圧縮機11から吐出された高圧のガス冷媒は、凝縮器12において凝縮器12と一体的に設けられた高温熱交換器21を通過する熱媒体と熱交換することにより放熱して液化凝縮し、高圧の液冷媒となる。凝縮器12から流出した高圧液冷媒は、内部熱交換器16の高圧側流路16Aを通過し、低圧側流路16Bを通過する低圧側冷媒と熱交換を行う。 As a result, the high-pressure gas refrigerant discharged from the compressor 11 radiates heat and liquefies by exchanging heat with the heat medium passing through the high-temperature heat exchanger 21 provided integrally with the condenser 12 in the condenser 12. It condenses and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 12 passes through the high-pressure side flow path 16A of the internal heat exchanger 16, and exchanges heat with the low-pressure side refrigerant passing through the low-pressure side flow path 16B.
 内部熱交換器16の高圧側流路16Aを流出した冷媒は、膨張弁13によって減圧されて膨張し、低圧冷媒となり、蒸発器14に流入する。蒸発器14を流出した低圧冷媒は、蒸発器14と一体的に設けられた低温熱交換器31を通過する熱媒体と熱交換することにより蒸発し、ガス冷媒となって蒸発器14を流出しアキュームレータ15に流入する。アキュームレータ15で気液分離された低圧冷媒は内部熱交換器16の低圧側流路16Bを通過して高圧側流路16Aを通過する高圧冷媒と熱交換を行い、圧縮機11へ戻る。 The refrigerant that has flowed out of the high-pressure side flow path 16A of the internal heat exchanger 16 is depressurized and expanded by the expansion valve 13, becomes a low-pressure refrigerant, and flows into the evaporator 14. The low-pressure refrigerant that has flown out of the evaporator 14 evaporates by exchanging heat with the heat medium that passes through the low-temperature heat exchanger 31 that is provided integrally with the evaporator 14, and flows out of the evaporator 14 as a gas refrigerant. It flows into the accumulator 15. The low-pressure refrigerant separated into gas and liquid by the accumulator 15 passes through the low-pressure side passage 16B of the internal heat exchanger 16, exchanges heat with the high-pressure refrigerant passing through the high-pressure side passage 16A, and returns to the compressor 11.
 このように構成した冷媒回路によれば、外気が極低温である場合の暖房運転時は、第1バイパス流路を用いて、圧縮機11から吐出した高温高圧の冷媒を他の熱交換器を通過させずにアキュームレータ15の上流側に戻すことで、圧縮機11に吸入される冷媒の密度を高くすることができる。このため、外気に依存せずに凝縮器12の加熱能力を確保することができ、暖房能力を確保することができる。 According to the refrigerant circuit configured in this way, during heating operation when the outside air is extremely low temperature, the first bypass flow path is used to transfer the high temperature and high pressure refrigerant discharged from the compressor 11 to the other heat exchanger. By returning the refrigerant to the upstream side of the accumulator 15 without passing it through, the density of the refrigerant sucked into the compressor 11 can be increased. Therefore, the heating capacity of the condenser 12 can be ensured without depending on outside air, and the heating capacity can be ensured.
 また、アキュームレータ15を流出した冷媒を内部熱交換器16の低圧側流路16Bに流すことで、冷媒の状態を安定させて、圧縮機11における液圧縮を防止することができる。
 つまり、第2バイパス流路を使用し、内部熱交換器16において低温側流路16Bを通る冷媒体に熱交換を行わせない場合には、内部熱交換器16の低圧側流路16Bを液冷媒とガス冷媒の混合室とすることができるため、冷媒の状態を安定させることができ、圧縮機11における液圧縮を抑制することができる。
 一方、高圧側流路16Aに冷媒を流し、低圧側流路16Bを流れる冷媒と熱交換させる場合には、熱交換により冷媒の状態を更に安定させ、より液圧縮を防止することができる。
Further, by flowing the refrigerant that has flowed out of the accumulator 15 into the low-pressure side channel 16B of the internal heat exchanger 16, the state of the refrigerant can be stabilized and liquid compression in the compressor 11 can be prevented.
In other words, when the second bypass flow path is used and the internal heat exchanger 16 does not perform heat exchange with the refrigerant passing through the low-temperature side flow path 16B, the low-pressure side flow path 16B of the internal heat exchanger 16 is Since the chamber can be a mixture of refrigerant and gas refrigerant, the state of the refrigerant can be stabilized and liquid compression in the compressor 11 can be suppressed.
On the other hand, when the refrigerant flows through the high-pressure side flow path 16A and exchanges heat with the refrigerant flowing through the low-pressure side flow path 16B, the state of the refrigerant can be further stabilized by heat exchange, and liquid compression can be further prevented.
 なお、圧縮機11の吐出温度に基づいて液圧縮の兆候を監視し、液圧縮の兆候が見られる場合には、内部熱交換器16の高圧側流路16Aへの冷媒流入量が大きくなるように流量調整部19を制御し、液圧縮の兆候が見られない場合には、内部熱交換器16の高圧側流路16Aへの冷媒流入量が小さくなるように流量調整部19を制御することで第2バイパス流路及び内部熱交換器16の高圧側流路16Aに流れる冷媒の流量を調整する。これにより、空調効率を低下させずに、より確実に圧縮機11における液圧縮を防止することができる。 Note that signs of liquid compression are monitored based on the discharge temperature of the compressor 11, and if signs of liquid compression are observed, the amount of refrigerant flowing into the high-pressure side flow path 16A of the internal heat exchanger 16 is increased. control the flow rate adjustment unit 19 so that the amount of refrigerant flowing into the high-pressure side flow path 16A of the internal heat exchanger 16 becomes small when there is no sign of liquid compression. The flow rate of the refrigerant flowing into the second bypass flow path and the high pressure side flow path 16A of the internal heat exchanger 16 is adjusted. Thereby, liquid compression in the compressor 11 can be more reliably prevented without reducing air conditioning efficiency.
 図2から図4に示す例では、流量調整部19を全閉又は全開とした場合について説明したが、流量調整部19は、空調効率を改善するために適宜調整することができる。
 例えば、内部熱交換器16の高圧側流路16Aに流れる冷媒流量が少ない場合には、圧縮機11における冷媒の吸入密度が大きくなり、圧縮機11の吐出温度が低くなり、膨張弁13の入口温度が高くなる。一方、内部熱交換器16の高圧側流路16Aに流れる冷媒流量が多い場合には、圧縮機11における冷媒の吸入密度が小さくなり、圧縮機11の吐出温度が高くなり、膨張弁13の入口温度が低くなる。
In the examples shown in FIGS. 2 to 4, a case has been described in which the flow rate adjustment section 19 is fully closed or fully opened, but the flow rate adjustment section 19 can be adjusted as appropriate to improve air conditioning efficiency.
For example, when the flow rate of refrigerant flowing into the high-pressure side passage 16A of the internal heat exchanger 16 is small, the suction density of the refrigerant in the compressor 11 becomes large, the discharge temperature of the compressor 11 becomes low, and the inlet of the expansion valve 13 The temperature increases. On the other hand, when the flow rate of refrigerant flowing into the high pressure side flow path 16A of the internal heat exchanger 16 is large, the suction density of the refrigerant in the compressor 11 becomes small, the discharge temperature of the compressor 11 becomes high, and the inlet of the expansion valve 13 temperature becomes lower.
 暖房運転の場合には、暖房能力及び空調効率を向上させる場合に、圧縮機11における冷媒の吸入密度又は圧縮機11における冷媒の吐出温度のどちらがより大きく寄与するかを判定し、流量調整部19を制御する。 In the case of heating operation, when improving the heating capacity and air conditioning efficiency, it is determined which of the refrigerant suction density in the compressor 11 or the refrigerant discharge temperature in the compressor 11 makes a larger contribution, and the flow rate adjustment unit 19 control.
 さらに、冷房運転の場合には、冷房能力及び空調効率を向上させる場合に、圧縮機11における冷媒の吸入密度又は膨張弁13の入口温度のどちらがより大きく寄与するかを判定し、流量調整部19を制御する。 Furthermore, in the case of cooling operation, when improving the cooling capacity and air conditioning efficiency, it is determined which of the refrigerant suction density in the compressor 11 or the inlet temperature of the expansion valve 13 contributes more, and the flow rate adjustment unit 19 control.
 上記した冷媒回路Rを車両用空調装置に適用する場合、例えば、冷媒回路の冷媒と車室内に供給する空気とを直接的に熱交換させるように構成したり(実施例1)、冷媒回路の冷媒と、他の熱媒体とを熱交換させた後に、熱媒体と車室内に供給する空気とを熱交換させるように構成したり(実施例2)することができる。 When applying the refrigerant circuit R described above to a vehicle air conditioner, for example, the refrigerant circuit R may be configured to directly exchange heat between the refrigerant and the air supplied into the vehicle interior (Example 1), or After the refrigerant and another heat medium undergo heat exchange, the heat medium and the air supplied into the vehicle interior may be configured to exchange heat (Example 2).
(実施例1)
 図5に示すように、車両用空調装置101は、冷媒回路の冷媒と車室内に供給する空気とを直接的に熱交換させるように構成され、熱源となる冷媒回路R1と、冷媒との熱交換によって温調された空気を車室内に供給する空調ユニット80とを備えている。
(Example 1)
As shown in FIG. 5, the vehicle air conditioner 101 is configured to directly exchange heat between the refrigerant in the refrigerant circuit and the air supplied into the vehicle interior. The air conditioning unit 80 supplies temperature-controlled air into the vehicle interior through exchange.
 図5の例では、冷媒回路R1の凝縮器12及び蒸発器14が空調ユニット80の空気流通路84内に配置されている。凝縮器12は、凝縮器12と一体的に設けられた空気熱交換器を含み、圧縮機11から吐出された高温高圧の冷媒を放熱させて車室内に供給する空気を加熱する室内熱交換器4となる。蒸発器14は、蒸発器14と一体的に設けられた空気熱交換器を含み、冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却する吸熱器9となる。 In the example of FIG. 5, the condenser 12 and evaporator 14 of the refrigerant circuit R1 are arranged within the air flow passage 84 of the air conditioning unit 80. The condenser 12 includes an air heat exchanger provided integrally with the condenser 12, and is an indoor heat exchanger that radiates heat from the high-temperature, high-pressure refrigerant discharged from the compressor 11 to heat the air supplied into the vehicle interior. It becomes 4. The evaporator 14 includes an air heat exchanger provided integrally with the evaporator 14, and serves as a heat absorber 9 that cools the air supplied into the vehicle interior by causing the refrigerant to absorb heat from inside and outside the vehicle interior during cooling and dehumidification. .
 また、図5の冷媒回路R1には、暖房時に冷媒を減圧膨張させる室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒回路R1の冷媒と他の熱媒体との熱交換を行う冷媒熱媒体熱交換器64と、冷媒熱媒体熱交換器64に流入する冷媒を減圧させる膨張弁72とが設けられている。 In addition, the refrigerant circuit R1 in FIG. 5 includes an outdoor expansion valve 6 that depressurizes and expands the refrigerant during heating, and functions as a radiator that radiates heat from the refrigerant during cooling, and as an evaporator that absorbs heat from the refrigerant during heating. An outdoor heat exchanger 7 for exchanging heat with outside air, a refrigerant heat medium heat exchanger 64 for exchanging heat between the refrigerant in the refrigerant circuit R1 and another heat medium, and a refrigerant heat medium heat exchanger An expansion valve 72 is provided to reduce the pressure of the refrigerant flowing into the refrigerant 64 .
 このように構成された車両用空調装置101において、第1バイパス流路を用いて低外気温時の暖房運転を行う場合、不図示の制御部により、室外膨張弁6、膨張弁13及び電磁弁23を閉状態とし、電磁弁22及び膨張弁72を開状態とし、電子膨張弁18を開状態とする。これにより、第1バイパス流路が構成され、図6に示すように冷媒が循環する。なお、このとき室内送風機87を運転して吸込口83から空気を導入し、室内送風機87から吹き出された空気が室内熱交換器4に通風される割合をエアミックスダンパ89によって調整する状態とする。 In the vehicle air conditioner 101 configured in this way, when performing heating operation at low outside temperatures using the first bypass flow path, a control unit (not shown) controls the outdoor expansion valve 6, the expansion valve 13, and the solenoid valve. 23 is closed, the electromagnetic valve 22 and expansion valve 72 are opened, and the electronic expansion valve 18 is opened. As a result, a first bypass flow path is formed, and the refrigerant circulates as shown in FIG. At this time, the indoor blower 87 is operated to introduce air from the suction port 83, and the air mix damper 89 adjusts the ratio of the air blown out from the indoor blower 87 to the indoor heat exchanger 4. .
 図6に示すように、圧縮機11から吐出された冷媒の一部は、室内熱交換器4に流入する。室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路84内の空気と熱交換することで、空気流通路84内の空気が冷媒によって加熱され、加熱された空気が吹出口から車室内へ吹き出されて暖房が行われる。室内熱交換器4で熱交換した冷媒は空気に熱を奪われて冷却され、凝縮する。 As shown in FIG. 6, a portion of the refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 4. The high-temperature, high-pressure gas refrigerant that has flowed into the indoor heat exchanger 4 exchanges heat with the air in the air flow passage 84, so that the air in the air flow passage 84 is heated by the refrigerant, and the heated air is discharged from the outlet. The air is blown into the passenger compartment to heat the vehicle. The refrigerant that has undergone heat exchange in the indoor heat exchanger 4 loses heat to the air, is cooled, and condenses.
 凝縮した冷媒は室内熱交換器4を出た後、一部が内部熱交換器16の高圧側流路16A、残りが第2バイパス流路に流れる。高圧側流路16Aを通過する冷媒は、低圧側流路16Bを通過する冷媒と熱交換を行い、合流部124に向かう。第2バイパス流路に流れ、流量調整部19を経た冷媒と、内部熱交換器16の高圧側流路16Aに流れた冷媒は、合流部124において合流し、膨張弁72を経て冷媒熱媒体熱交換器64を通過する。冷媒は、膨張弁72において膨張して低温低圧となり、冷媒熱媒体熱交換器64において熱媒体との熱交換を行わずに通過し、アキュームレータ15に流入する。 After the condensed refrigerant leaves the indoor heat exchanger 4, part of it flows into the high-pressure side flow path 16A of the internal heat exchanger 16, and the rest flows into the second bypass flow path. The refrigerant passing through the high-pressure side flow path 16A exchanges heat with the refrigerant passing through the low-pressure side flow path 16B, and heads toward the merging portion 124. The refrigerant that has flowed into the second bypass flow path and passed through the flow rate adjustment section 19 and the refrigerant that has flowed into the high-pressure side flow path 16A of the internal heat exchanger 16 join together at the confluence section 124 and pass through the expansion valve 72 to generate heat from the refrigerant heat medium. It passes through an exchanger 64. The refrigerant expands in the expansion valve 72 to become low temperature and low pressure, passes through the refrigerant heat medium heat exchanger 64 without exchanging heat with the heat medium, and flows into the accumulator 15.
 一方、圧縮機11から吐出した高温高圧のガス冷媒は、第1バイパス流路を流れ、電子膨張弁18で膨張されて再びアキュームレータ15に流入する。すなわち、アキュームレータ15には、室内熱交換器4、内部熱交換器の高圧側流路16A及び膨張弁72を経て液化した冷媒と、圧縮機11で圧縮された後に電子膨張弁18で膨張された冷媒とが流入することとなる。アキュームレータ15に流入した冷媒は、気液分離された後、内部熱交換器16の低圧側流路16Bを通過する過程でガス冷媒として圧縮機11に吸い込まれる循環を繰り返す。 On the other hand, the high-temperature, high-pressure gas refrigerant discharged from the compressor 11 flows through the first bypass flow path, is expanded by the electronic expansion valve 18, and flows into the accumulator 15 again. That is, the accumulator 15 contains refrigerant that has been liquefied through the indoor heat exchanger 4, the high-pressure side channel 16A of the internal heat exchanger, and the expansion valve 72, and the refrigerant that has been compressed by the compressor 11 and then expanded by the electronic expansion valve 18. The refrigerant will flow in. The refrigerant that has flowed into the accumulator 15 is separated into gas and liquid, and then is sucked into the compressor 11 as a gas refrigerant while passing through the low-pressure side passage 16B of the internal heat exchanger 16 and repeats the circulation.
(実施例2)
 図7に示すように、車両用空調装置102は、冷媒回路の冷媒と、他の熱媒体とを熱交換させた後に、熱媒体と車室内に供給する空気とを熱交換させるように構成され、熱源となる冷媒回路R2と、冷媒との熱交換によって温度管理された熱媒体を循環させる熱媒体回路10と、熱媒体回路10を循環する熱媒体によって温度調節された空気を車室内に供給する空調ユニット80と、を備えている。
(Example 2)
As shown in FIG. 7, the vehicle air conditioner 102 is configured to exchange heat between the refrigerant in the refrigerant circuit and another heat medium, and then exchange heat between the heat medium and air supplied into the vehicle interior. , a refrigerant circuit R2 serving as a heat source, a heat medium circuit 10 that circulates a heat medium whose temperature is controlled by heat exchange with the refrigerant, and air whose temperature is controlled by the heat medium circulating in the heat medium circuit 10 is supplied into the vehicle interior. An air conditioning unit 80 is provided.
 熱媒体回路10は、高温熱媒体流路20、低温熱媒体流路30、温調対象熱媒体流路40、タンク50、第1流路切替部V1、第2流路切替部V2、及び第3流路切替部V3を含んで構成されている。 The heat medium circuit 10 includes a high temperature heat medium flow path 20, a low temperature heat medium flow path 30, a temperature control target heat medium flow path 40, a tank 50, a first flow path switching section V1, a second flow path switching section V2, and a second flow path switching section V2. It is configured to include a three-channel switching section V3.
 高温熱媒体流路20は、冷媒回路R2における凝縮器12と一体になって、熱媒体-冷媒の熱交換を行う冷媒熱媒体熱交換器である高温熱交換器21を備えている。高温熱媒体流路20では、第1ポンプP1によって圧送された熱媒体が、高温熱交換器21を通過する間に冷媒回路R2における凝縮器12での冷媒の放熱で高温になって循環する。 The high temperature heat medium flow path 20 includes a high temperature heat exchanger 21 which is a refrigerant heat medium heat exchanger that is integrated with the condenser 12 in the refrigerant circuit R2 and performs heat exchange between the heat medium and the refrigerant. In the high-temperature heat medium flow path 20, the heat medium pumped by the first pump P1 becomes high in temperature due to heat radiation of the refrigerant in the condenser 12 in the refrigerant circuit R2 while passing through the high-temperature heat exchanger 21, and circulates.
 低温熱媒体流路30は、冷媒回路R2における蒸発器14と一体になって、熱媒体-冷媒の熱交換を行う低温熱交換器31を備えており、第2ポンプP2によって圧送された熱媒体が、低温熱交換器31を通過する間に冷媒回路R2における蒸発器14での冷媒の吸熱で低温になって循環する。 The low-temperature heat medium flow path 30 includes a low-temperature heat exchanger 31 that is integrated with the evaporator 14 in the refrigerant circuit R2 and performs heat exchange between the heat medium and the refrigerant. However, while passing through the low-temperature heat exchanger 31, the temperature becomes low due to heat absorption by the refrigerant in the evaporator 14 in the refrigerant circuit R2, and the refrigerant circulates.
 温調対象熱媒体流路40は、電動車両におけるバッテリの温調を行うバッテリ用熱交換器41と、走行用モータの温調を行うモータ用熱交換器42と、インバータの温調を行うインバータ用熱交換器43と、パワーコントロールユニットの温調を行うPCU用熱交換器44と、室外熱交換器45とを備えている。温調対象熱媒体流路40において熱媒体は第3ポンプP3によって圧送される。 The temperature-controlled heat medium flow path 40 includes a battery heat exchanger 41 that controls the temperature of the battery in an electric vehicle, a motor heat exchanger 42 that controls the temperature of the driving motor, and an inverter that controls the temperature of the inverter. A PCU heat exchanger 44 for controlling the temperature of the power control unit, and an outdoor heat exchanger 45 are provided. In the temperature-controlled heat medium flow path 40, the heat medium is pumped by the third pump P3.
 タンク50は、高温熱媒体流路20に接続される流入口52と、温調対象熱媒体流路40に接続される流入口54と、低温熱媒体流路30に接続される流出口53とを備えている。
 高温熱媒体流路20には、第1ポンプP1の熱媒体上流側に流入口52に接続される接続部28が設けられている。温調対象熱媒体流路40には、各温調対象用熱交換器の熱媒体下流側に流入口54に接続される接続部48が設けられている。低温熱媒体流路30には、第2ポンプP2の熱媒体上流側に流出口53に接続される接続部38が設けられている。
The tank 50 has an inlet 52 connected to the high temperature heat medium flow path 20, an inlet 54 connected to the temperature controlled heat medium flow path 40, and an outlet 53 connected to the low temperature heat medium flow path 30. It is equipped with
The high temperature heat medium flow path 20 is provided with a connection portion 28 connected to the inlet 52 on the heat medium upstream side of the first pump P1. The temperature-controlled heat medium flow path 40 is provided with a connecting portion 48 connected to the inlet 54 on the downstream side of the heat medium of each temperature-controlled heat exchanger. The low-temperature heat medium flow path 30 is provided with a connection portion 38 connected to the outlet 53 on the heat medium upstream side of the second pump P2.
 すなわち、タンク50は、図7に示すように、流入口52によって高温熱媒体流路20における第1ポンプP1の上流側と接続され、流入口54によって温調対象熱媒体流路40におけるモータ用熱交換器42の熱媒体下流側と接続され、流出口53によって低温熱媒体流路30における第2ポンプP2の熱媒体上流側に接続される。 That is, as shown in FIG. 7, the tank 50 is connected to the upstream side of the first pump P1 in the high-temperature heat medium flow path 20 through an inlet 52, and is connected to the upstream side of the first pump P1 in the temperature-controlled heat medium flow path 40 through an inflow port 54. It is connected to the heat medium downstream side of the heat exchanger 42 and connected to the heat medium upstream side of the second pump P2 in the low temperature heat medium flow path 30 through the outlet 53.
 また、接続部28からタンク50の流入口52に至る経路にリリーフ弁57が設けられている。これにより、高温熱媒体流路20を循環する熱媒体の温度の上昇により熱媒体が膨張し、高温熱媒体流路20の回路容量に対して熱媒体量が大きくなった場合に、リリーフ弁57が開状態となり、高温熱媒体流路20から熱媒体が流入口52を介してタンク50に流入する。 Additionally, a relief valve 57 is provided in a path from the connection portion 28 to the inlet 52 of the tank 50. As a result, when the heat medium expands due to an increase in the temperature of the heat medium circulating in the high temperature heat medium flow path 20 and the amount of heat medium becomes large with respect to the circuit capacity of the high temperature heat medium flow path 20, the relief valve 57 is in an open state, and the heat medium flows from the high temperature heat medium flow path 20 into the tank 50 via the inlet 52.
 同様に、接続部48からタンク50の流入口54に至る経路にリリーフ弁58が設けられている。これにより、温調対象熱媒体流路40を循環する熱媒体の温度の上昇により熱媒体が膨張し、温調対象熱媒体流路40の回路容量に対して熱媒体量が大きくなった場合に、リリーフ弁58が開状態となり、温調対象熱媒体流路40から熱媒体が流入口54を介してタンク50に流入する。 Similarly, a relief valve 58 is provided in a path from the connection portion 48 to the inlet 54 of the tank 50. As a result, when the heat medium expands due to an increase in the temperature of the heat medium circulating in the heat medium flow path 40 to be temperature controlled, and the amount of heat medium becomes large with respect to the circuit capacity of the heat medium flow path 40 to be temperature controlled. , the relief valve 58 is opened, and the heat medium flows from the temperature-controlled heat medium flow path 40 into the tank 50 via the inlet 54.
 一方、低温熱媒体流路30を循環する熱媒体の温度が低下して熱媒体が収縮すると、タンク50に貯留した熱媒体が流出口53から流出し、接続部38を介して低温熱媒体流路30に流入する。 On the other hand, when the temperature of the heat medium circulating in the low temperature heat medium flow path 30 decreases and the heat medium contracts, the heat medium stored in the tank 50 flows out from the outlet 53 and the low temperature heat medium flows through the connection part 38. Flows into channel 30.
 なお、熱媒体回路10を循環する熱媒体としては、添加剤が入っていない水或いは不凍性剤や防腐剤等の添加剤が混合された水、更には油等の液熱媒体などを採用することができる。 In addition, as the heat medium circulating in the heat medium circuit 10, water without additives, water mixed with additives such as antifreeze agents and preservatives, or liquid heat medium such as oil may be used. can do.
 空調ユニット80は、空気(外気又は内気)を導入する吸込口83と、吸込口83から吸い込まれた空気が通過する空気流通路84と、空気流通路84内に設けられ熱媒体回路10を循環する熱媒体が流れる第1熱交換器81及び第2熱交換器82とを備えている。 The air conditioning unit 80 includes an inlet 83 that introduces air (outside air or indoor air), an air flow passage 84 through which the air sucked from the inlet 83 passes, and an air flow passage 84 that is provided in the air flow passage 84 and circulates through the heat medium circuit 10. A first heat exchanger 81 and a second heat exchanger 82 are provided, through which a heat medium flows.
 空調ユニット80では、吸込口83から空気流通路84に導入された空気を第1熱交換器81及び第2熱交換器82に通風させ、第1熱交換器81及び第2熱交換器82において熱媒体と熱交換することで温調された空気を車室内に送風する。 In the air conditioning unit 80, the air introduced into the air flow path 84 from the suction port 83 is ventilated through the first heat exchanger 81 and the second heat exchanger 82, and the air is passed through the first heat exchanger 81 and the second heat exchanger 82. Temperature-controlled air is blown into the vehicle interior by exchanging heat with the heat medium.
 このように構成された車両用空調装置102では、不図示の制御部によって、流量調整部19及び電子膨張弁18の開度を調整することで第1バイパス流路及び第2バイパス流路への冷媒の流量を制御する。また、熱媒体回路10において、第1流路切替部V1、第2流路切替部V2及び第3流路切替部V3を制御することにより、熱媒体回路10の高温熱媒体流路20、低温熱媒体流路30及び温調対象熱媒体流路40の接続状態を適宜切替えることができる。 In the vehicle air conditioner 102 configured as described above, the control unit (not shown) adjusts the opening degrees of the flow rate adjustment unit 19 and the electronic expansion valve 18 to control the flow to the first bypass flow path and the second bypass flow path. Control the flow rate of refrigerant. In addition, in the heat medium circuit 10, by controlling the first flow path switching section V1, the second flow path switching section V2, and the third flow path switching section V3, the high temperature heat medium flow path 20 of the heat medium circuit 10, the low temperature The connection state of the heat medium flow path 30 and the temperature-controlled heat medium flow path 40 can be changed as appropriate.
 以下、このように構成された車両用空調装置102では、不図示の制御部により、圧縮機11の回転数等を適宜制御しながら、凝縮器12の放熱と蒸発器14の吸熱を利用して車室内に供給される空気を目標温度に調整し、車室内の空調を行う。特に、低外気温時の暖房運転を行う場合、冷媒回路R2において、電子膨張弁18を開状態として第1バイパス流路を形成し、流量調整部19を閉状態として第2バイパス流路を閉塞する。冷媒回路R2において、冷媒は、図3の冷媒回路Rと同様に循環する。 Hereinafter, in the vehicle air conditioner 102 configured as described above, the rotation speed of the compressor 11 and the like are appropriately controlled by a control unit (not shown), while utilizing the heat radiation of the condenser 12 and the heat absorption of the evaporator 14. It adjusts the air supplied to the vehicle interior to a target temperature and air-conditions the vehicle interior. In particular, when performing heating operation at low outside temperatures, in the refrigerant circuit R2, the electronic expansion valve 18 is opened to form a first bypass flow path, and the flow rate adjustment section 19 is closed to close the second bypass flow path. do. In the refrigerant circuit R2, the refrigerant circulates in the same manner as in the refrigerant circuit R of FIG.
 すなわち、冷媒回路R2においても、電子膨張弁18を全開状態として第1バイパス流路を用い、かつ、流量調整部19を全閉状態として第2バイパス流路を用いず、内部熱交換器16において高圧冷媒と低圧冷媒との熱交換を行わせる。 That is, in the refrigerant circuit R2, the electronic expansion valve 18 is fully open and the first bypass flow path is used, and the flow rate adjustment section 19 is fully closed and the second bypass flow path is not used, and the internal heat exchanger 16 is Heat exchange is performed between the high pressure refrigerant and the low pressure refrigerant.
 これにより、圧縮機11から吐出された高圧のガス冷媒は、一部が凝縮器12において凝縮器12と一体的に設けられた高温熱交換器21を通過する熱媒体と熱交換することにより放熱して液化凝縮し、高圧の液冷媒となる。凝縮器12から流出した高圧液冷媒は、内部熱交換器16の高圧側流路16Aを通過し、低圧側流路16Bを通過する低圧側冷媒と熱交換を行う。 As a result, a part of the high-pressure gas refrigerant discharged from the compressor 11 radiates heat by exchanging heat with the heat medium passing through the high-temperature heat exchanger 21 provided integrally with the condenser 12 in the condenser 12. It liquefies and condenses to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 12 passes through the high-pressure side flow path 16A of the internal heat exchanger 16, and exchanges heat with the low-pressure side refrigerant passing through the low-pressure side flow path 16B.
 内部熱交換器16の高圧側流路16Aを流出した冷媒は、膨張弁13によって減圧されて膨張し、低圧冷媒となり、蒸発器14に流入する。蒸発器14を流出した低圧冷媒は、蒸発器14と一体的に設けられた低温熱交換器31を通過する熱媒体と熱交換せずに蒸発器14を流出し、第1バイパス流路から合流部122に流入した冷媒と共にアキュームレータ15に流入する。 The refrigerant that has flowed out of the high-pressure side flow path 16A of the internal heat exchanger 16 is depressurized and expanded by the expansion valve 13, becomes a low-pressure refrigerant, and flows into the evaporator 14. The low-pressure refrigerant that has flown out of the evaporator 14 flows out of the evaporator 14 without exchanging heat with the heat medium that passes through the low-temperature heat exchanger 31 that is provided integrally with the evaporator 14, and merges from the first bypass flow path. The refrigerant flows into the accumulator 15 together with the refrigerant that has flowed into the section 122.
 また、圧縮機11から吐出された高圧のガス冷媒の残りは、第1バイパス流路を流れて電子膨張弁18において減圧され、合流部122において蒸発器14を出た冷媒と合流してアキュームレータ15に流入する。アキュームレータ15で気液分離された低圧冷媒は内部熱交換器16の低圧側流路16Bを通過して高圧側流路16Aを通過する高圧冷媒と熱交換を行い、圧縮機11へ戻る。 In addition, the remainder of the high-pressure gas refrigerant discharged from the compressor 11 flows through the first bypass flow path, is depressurized at the electronic expansion valve 18, and joins with the refrigerant that has exited the evaporator 14 at the confluence section 122 to form the accumulator 15. flows into. The low-pressure refrigerant separated into gas and liquid by the accumulator 15 passes through the low-pressure side passage 16B of the internal heat exchanger 16, exchanges heat with the high-pressure refrigerant passing through the high-pressure side passage 16A, and returns to the compressor 11.
 一方、熱媒体回路10では、熱媒体は以下のように循環する(図8)。 On the other hand, in the heat medium circuit 10, the heat medium circulates as follows (FIG. 8).
 図8では、熱媒体の流れについて、高温の熱媒体が循環する配管を黒色の実線で示し、高温と低温との中間の温度帯の熱媒体が循環する配管を二点鎖線で示し、熱媒体が循環しない配管を破線で示している。
 制御部は、第1流路切替部V1、第2流路切替部V2及び第3流路切替部V3を制御して、熱媒体回路10において以下のように熱媒体を循環させる。
In Fig. 8, regarding the flow of the heat medium, the piping in which the high temperature heat medium circulates is shown as a solid black line, the piping in which the heat medium in the intermediate temperature range between high and low temperatures circulates is shown as a two-dot chain line, and the heat medium The broken lines indicate piping in which water does not circulate.
The control section controls the first flow path switching section V1, the second flow path switching section V2, and the third flow path switching section V3 to circulate the heat medium in the heat medium circuit 10 as follows.
 高温熱交換器21を通過して加熱された熱媒体を高温熱媒体流路20に循環させる。すなわち、高温熱交換器21を通過して加熱された熱媒体は、第1流路切替部V1を経由して第2熱交換器82流入し、空調ユニット80を通過する空気と熱交換した後に、第1流路切替部V1を経由して第1熱交換器81に流入し、空調ユニット80を通過する空気と熱交換する。第1熱交換器81を出た熱媒体は、第1流路切替部V1及び第3流路切替部V3を経由して第1ポンプP1により高温熱交換器21に戻る循環を繰り返す。これにより、車室内を暖房することができる。 The heat medium passed through the high temperature heat exchanger 21 and heated is circulated to the high temperature heat medium flow path 20. That is, the heat medium heated by passing through the high-temperature heat exchanger 21 flows into the second heat exchanger 82 via the first flow path switching section V1, and after exchanging heat with the air passing through the air conditioning unit 80. , flows into the first heat exchanger 81 via the first flow path switching section V1, and exchanges heat with the air passing through the air conditioning unit 80. The heat medium that has exited the first heat exchanger 81 is repeatedly circulated back to the high temperature heat exchanger 21 by the first pump P1 via the first flow path switching section V1 and the third flow path switching section V3. Thereby, the vehicle interior can be heated.
 温調対象熱媒体流路40では、バッテリ用熱交換器41が第2流路切替部V2を介してモータ用熱交換器42、インバータ用熱交換器43及びPCU用熱交換器44と接続され、バッテリ用熱交換器41、モータ用熱交換器42、インバータ用熱交換器43及びPCU用熱交換器44を熱媒体が第3ポンプP3により圧送されて循環することにより、各車載機器の温度調整を行う。 In the temperature-controlled heat medium flow path 40, the battery heat exchanger 41 is connected to the motor heat exchanger 42, the inverter heat exchanger 43, and the PCU heat exchanger 44 via the second flow path switching section V2. , the temperature of each on-vehicle device is adjusted by circulating the heat medium through the battery heat exchanger 41, motor heat exchanger 42, inverter heat exchanger 43, and PCU heat exchanger 44 while being pumped by the third pump P3. Make adjustments.
 また、上述のように、制御部では、第2熱交換器82に流した熱媒体を第1熱交換器81にも流すように第1流路切替部V1を切替えるよう制御する。すなわち、空調ユニット80に含まれる複数の第1熱交換器81及び第2熱交換器82の双方に、加熱又は冷却された熱媒体を流すように第1流路切替部V1を切替えることができるため、暖房モード実行時又は冷房モード実行時の空調能力を向上させることができる。 Furthermore, as described above, the control unit controls the first flow path switching unit V1 to be switched so that the heat medium that has flowed through the second heat exchanger 82 also flows through the first heat exchanger 81. That is, the first flow path switching unit V1 can be switched so that the heated or cooled heat medium flows through both of the plurality of first heat exchangers 81 and second heat exchangers 82 included in the air conditioning unit 80. Therefore, it is possible to improve the air conditioning capacity when executing the heating mode or the cooling mode.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれら実施の形態又は実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態等は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments or examples, and the design may be modified within the scope of the gist of the present invention. Even if there are changes, they are included in the present invention. In addition, the above-described embodiments can be combined by using each other's technologies unless there is a particular contradiction or problem in their purpose, structure, etc.
4:室内熱交換器、6:室外膨張弁、7:室外熱交換器、9:吸熱器
10:熱媒体回路、11:圧縮機、12:凝縮器、13:膨張弁、14:蒸発器、15:アキュームレータ、16:内部熱交換器、16A:高圧側流路、16B:低圧側流路
18:電子膨張弁、19:流量調整部、20:高温熱媒体流路、21:高温熱交換器
22,23:電磁弁、30:低温熱媒体流路、31:低温熱交換器
40:温調対象熱媒体流路、64:冷媒熱媒体熱交換器、72:膨張弁、80:空調ユニット
101、102:車両用空調装置
R:冷媒回路、R1:冷媒回路、R2:冷媒回路
4: indoor heat exchanger, 6: outdoor expansion valve, 7: outdoor heat exchanger, 9: heat absorber 10: heat medium circuit, 11: compressor, 12: condenser, 13: expansion valve, 14: evaporator, 15: Accumulator, 16: Internal heat exchanger, 16A: High pressure side flow path, 16B: Low pressure side flow path 18: Electronic expansion valve, 19: Flow rate adjustment section, 20: High temperature heat medium flow path, 21: High temperature heat exchanger 22, 23: Solenoid valve, 30: Low temperature heat medium flow path, 31: Low temperature heat exchanger 40: Temperature control target heat medium flow path, 64: Refrigerant heat medium heat exchanger, 72: Expansion valve, 80: Air conditioning unit 101 , 102: Vehicle air conditioner R: Refrigerant circuit, R1: Refrigerant circuit, R2: Refrigerant circuit

Claims (6)

  1.  圧縮機、凝縮器、膨張部、蒸発器、及び、気液分離部を冷媒配管により順に接続し、冷媒を循環させる冷媒回路を備えた車両用空調装置であって、
     前記冷媒回路は、
     前記圧縮機から吐出した冷媒を、前記気液分離部の入口側に流入させる第1バイパス流路と、
     前記気液分離部から前記圧縮機へ流れる冷媒と、前記凝縮器から流出した冷媒とを熱交換させる内部熱交換器と、を備えた、車両用空調装置。
    A vehicle air conditioner comprising a refrigerant circuit that sequentially connects a compressor, a condenser, an expansion section, an evaporator, and a gas-liquid separation section through refrigerant piping and circulates the refrigerant,
    The refrigerant circuit is
    a first bypass flow path that causes the refrigerant discharged from the compressor to flow into the inlet side of the gas-liquid separation section;
    An air conditioner for a vehicle, comprising: an internal heat exchanger that exchanges heat between a refrigerant flowing from the gas-liquid separation section to the compressor and a refrigerant flowing out from the condenser.
  2.  前記凝縮器から流出した冷媒を、前記内部熱交換器を迂回して、前記蒸発器に流入させる第2バイパス流路と、を備えた請求項1記載の車両用空調装置。 The vehicle air conditioner according to claim 1, further comprising a second bypass passage that causes the refrigerant flowing out of the condenser to flow into the evaporator, bypassing the internal heat exchanger.
  3.  前記第2バイパス流路は、前記第2バイパス流路を通過する冷媒の流量を調整する流量調整部を有する、請求項2記載の車両用空調装置。 The vehicle air conditioner according to claim 2, wherein the second bypass flow path has a flow rate adjustment section that adjusts the flow rate of the refrigerant passing through the second bypass flow path.
  4.  前記流量調整部は、前記圧縮機から吐出された冷媒の圧力及び温度から推定される過熱度に基づいて前記第2バイパス流路を通過する冷媒の流量を調整する、請求項3記載の車両用空調装置。 The vehicle according to claim 3, wherein the flow rate adjustment unit adjusts the flow rate of the refrigerant passing through the second bypass flow path based on the degree of superheating estimated from the pressure and temperature of the refrigerant discharged from the compressor. Air conditioner.
  5.  前記流量調整部は、過熱度が閾値以下の場合に、前記第2バイパス流路に流入させる冷媒の流量を減少させる、請求項4記載の車両用空調装置。 The vehicle air conditioner according to claim 4, wherein the flow rate adjustment unit reduces the flow rate of the refrigerant flowing into the second bypass flow path when the degree of superheat is less than or equal to a threshold value.
  6.  前記流量調整部は、前記圧縮機から吐出された冷媒の温度から推定される吸入乾き度に基づいて前記第2バイパス流路を通過する冷媒の流量を調整する、請求項3記載の車両用空調装置。 The vehicle air conditioner according to claim 3, wherein the flow rate adjustment unit adjusts the flow rate of the refrigerant passing through the second bypass flow path based on the suction dryness estimated from the temperature of the refrigerant discharged from the compressor. Device.
PCT/JP2023/019679 2022-06-20 2023-05-26 Vehicle air conditioning device WO2023248706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098672A JP2024000108A (en) 2022-06-20 2022-06-20 Air conditioning vehicle
JP2022-098672 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023248706A1 true WO2023248706A1 (en) 2023-12-28

Family

ID=89379795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019679 WO2023248706A1 (en) 2022-06-20 2023-05-26 Vehicle air conditioning device

Country Status (2)

Country Link
JP (1) JP2024000108A (en)
WO (1) WO2023248706A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145453A (en) * 1983-02-08 1984-08-20 三菱電機株式会社 Preventive device for compression of liquid of refrigerationcycle
JPH01102254A (en) * 1987-10-14 1989-04-19 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat pump
WO2004030957A1 (en) * 2002-09-27 2004-04-15 Daimler Chrysler Ag Thermal regulation device for a motor vehicle
JP2006242402A (en) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd Refrigerant cycle device
JP2008261557A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Heat pump water heater
WO2016117128A1 (en) * 2015-01-23 2016-07-28 三菱電機株式会社 Air conditioning device
JP2017030724A (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system
WO2018173854A1 (en) * 2017-03-22 2018-09-27 日本電気株式会社 Cooling system, cooling method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145453A (en) * 1983-02-08 1984-08-20 三菱電機株式会社 Preventive device for compression of liquid of refrigerationcycle
JPH01102254A (en) * 1987-10-14 1989-04-19 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat pump
WO2004030957A1 (en) * 2002-09-27 2004-04-15 Daimler Chrysler Ag Thermal regulation device for a motor vehicle
JP2006242402A (en) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd Refrigerant cycle device
JP2008261557A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Heat pump water heater
WO2016117128A1 (en) * 2015-01-23 2016-07-28 三菱電機株式会社 Air conditioning device
JP2017030724A (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system
WO2018173854A1 (en) * 2017-03-22 2018-09-27 日本電気株式会社 Cooling system, cooling method, and program

Also Published As

Publication number Publication date
JP2024000108A (en) 2024-01-05

Similar Documents

Publication Publication Date Title
CN112074425B (en) Thermal management system for vehicle
KR101656583B1 (en) Air conditioning system for a motor vehicle
WO2019150830A1 (en) Vehicle air-conditioning device
KR101313593B1 (en) Heat pump system for vehicle
JP2007278624A (en) Heat pump cycle
WO2018230241A1 (en) Air-conditioning device for vehicles
US10611212B2 (en) Air conditioner for vehicle
CN113474190A (en) Thermal management system
WO2022252653A1 (en) Thermal management system and electric vehicle having same
JP7185412B2 (en) Vehicle air conditioner
JP3986422B2 (en) Air conditioner for vehicles
WO2014136446A1 (en) Air conditioning device for vehicles
WO2023248706A1 (en) Vehicle air conditioning device
CN112543855B (en) Combination valve and vehicle air conditioner using same
KR20190045854A (en) Climate control system for conditioning the air of a passenger compartment of a vehicle and method for operating the climate control system
WO2023228645A1 (en) Vehicle air-conditioning device
JP4067951B2 (en) Air conditioner for vehicles
CN219214654U (en) Electric automobile thermal management system and electric automobile
CN216139775U (en) Electric vehicle and heat pump system thereof
WO2023243367A1 (en) Vehicle air-conditioning device
WO2020246305A1 (en) Vehicle air conditioning device
WO2020246306A1 (en) Vehicle air conditioning device
WO2023203943A1 (en) Vehicular air conditioning device
WO2023248713A1 (en) Air conditioning device for vehicle
WO2023032826A1 (en) Heat pump air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826894

Country of ref document: EP

Kind code of ref document: A1