JP7185412B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP7185412B2
JP7185412B2 JP2018056100A JP2018056100A JP7185412B2 JP 7185412 B2 JP7185412 B2 JP 7185412B2 JP 2018056100 A JP2018056100 A JP 2018056100A JP 2018056100 A JP2018056100 A JP 2018056100A JP 7185412 B2 JP7185412 B2 JP 7185412B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
heat
branch
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056100A
Other languages
Japanese (ja)
Other versions
JP2019166962A (en
Inventor
徹也 石関
貴司 戸山
和樹 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2018056100A priority Critical patent/JP7185412B2/en
Priority to PCT/JP2019/005637 priority patent/WO2019181312A1/en
Priority to CN201980016607.XA priority patent/CN111770845A/en
Publication of JP2019166962A publication Critical patent/JP2019166962A/en
Application granted granted Critical
Publication of JP7185412B2 publication Critical patent/JP7185412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Description

本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にバッテリを備えた電気自動車やハイブリッド自動車に好適な車両用空気調和装置に関するものである。 TECHNICAL FIELD The present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for an electric vehicle or a hybrid vehicle equipped with a battery.

近年の環境問題の顕在化から、バッテリから供給される電力で走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置(冷凍サイクル装置)として、圧縮機と、凝縮部と、冷房用膨張弁と、室内蒸発器等から構成された冷媒回路を備え、バッテリから供給される電力で圧縮機を駆動するものが開発されている。 BACKGROUND ART Vehicles such as hybrid vehicles and electric vehicles, in which a motor for driving is driven by electric power supplied from a battery, have come into wide use due to the emergence of environmental problems in recent years. An air conditioner (refrigerating cycle device) that can be applied to such a vehicle includes a refrigerant circuit including a compressor, a condenser, an expansion valve for cooling, an indoor evaporator, and the like. It has been developed to drive the compressor with power supplied from the

また、バッテリは高温状態や極低温状態では充放電が困難となり、劣化も発生するため、電池冷却用蒸発器を設け、室内蒸発器への配管に設定した分岐部から分岐した二重管により電池用膨張弁で減圧した冷媒を電池冷却用蒸発器に流し、バッテリ(二次電池)を冷却するようにしていた(例えば、特許文献1参照)。更に、この特許文献1では、電池用膨張弁側の電磁弁が閉じたときに、高圧側となる二重管内に存在する冷媒の量を低減させて、必要冷媒量を低減させるために、電池用膨張弁を二重管への分岐部に近い側に配置していた。 In addition, since it is difficult to charge and discharge the battery in high temperature or extremely low temperature conditions, and deterioration also occurs, an evaporator for battery cooling is provided, and a double pipe branched from the branch set in the pipe to the indoor evaporator is used to cool the battery. The refrigerant pressure-reduced by the expansion valve is supplied to the battery-cooling evaporator to cool the battery (secondary battery) (see, for example, Patent Document 1). Furthermore, in this patent document 1, when the solenoid valve on the battery expansion valve side is closed, the amount of refrigerant present in the double pipe that is on the high pressure side is reduced, and in order to reduce the required amount of refrigerant, the battery The expansion valve was placed on the side near the bifurcation to the double pipe.

特許第5884725号公報Japanese Patent No. 5884725

しかしながら、冷媒は高圧側となる分岐部と冷房用膨張弁側の電磁弁との間にも溜まり込んでしまう。そして、冷媒には潤滑用のオイルが溶け込んでいる(相溶している)ので、冷媒回路内のオイルの循環率が低下してしまい、多量のオイルを封入しなければ圧縮機の信頼性を維持することができなくなると云う問題が生じる。これを図16を参照しながら説明する。図16は冷媒の圧力と温度に対するオイルの相溶曲線を示している。例えば、圧力が1MPaで、飽和温度が40℃のとき、冷媒の温度が40℃以上(過熱度がついたガス状態の冷媒)では、冷媒溶解量(冷媒へのオイルの溶解量)は50mas%以下であるのに対して、それより低い液冷媒の状態では、100mas%となっている。 However, the refrigerant also accumulates between the branch portion on the high pressure side and the solenoid valve on the cooling expansion valve side. In addition, since the refrigerant contains lubricating oil dissolved in it, the circulation rate of the oil in the refrigerant circuit decreases. A problem arises that it becomes impossible to maintain. This will be described with reference to FIG. FIG. 16 shows compatibility curves of oil with respect to refrigerant pressure and temperature. For example, when the pressure is 1 MPa and the saturation temperature is 40°C, if the refrigerant temperature is 40°C or higher (gas state refrigerant with a degree of superheat), the refrigerant dissolution amount (dissolution amount of oil in the refrigerant) is 50mas%. 100 mass% in the state of liquid refrigerant lower than that.

これは、ガス冷媒は密度が低く、同一容積内に滞留できる冷媒量が少ないため、相溶できるオイル量も少なくなるからである。即ち、低圧側の配管は外気によって温められ、ガス状態となるので、オイルを相溶できる量も少なくなる。一方、高圧側の冷媒は、外気によって冷やされ、液化するため、多くのオイルを相溶できるようになる。従って、上述した如く分岐部と冷房用膨張弁側の電磁弁との間の高圧側の容積が大きくなると、多量のオイルが滞留して、オイル循環率(OCR)が低下してしまうようになる。 This is because the gas refrigerant has a low density and the amount of refrigerant that can be retained in the same volume is small, so the amount of oil that can be compatible with each other is also small. That is, since the piping on the low-pressure side is heated by the outside air and becomes gaseous, the amount of oil that can be compatible with the oil is also reduced. On the other hand, the refrigerant on the high-pressure side is cooled by the outside air and liquefied, so that it becomes compatible with a large amount of oil. Therefore, as described above, when the volume on the high pressure side between the branching portion and the solenoid valve on the cooling expansion valve side increases, a large amount of oil is retained and the oil circulation rate (OCR) decreases. .

本発明は、係る従来の技術的課題を解決するために成されたものであり、バッテリ温調を行う際に、冷媒回路のオイル循環率の低下を防止し、圧縮機の信頼性の悪化を未然に回避することができる車両用空気調和装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve such conventional technical problems. An object of the present invention is to provide an air conditioner for a vehicle that can be avoided in advance.

本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室外に設けられた室外熱交換器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器に流入する冷媒を減圧するための室内膨張弁を有して構成され、所定量の冷媒とオイルが封入された冷媒回路と、制御装置を備え、車室内を空調するものであって、冷媒回路の高圧側に設定された分岐部と、この分岐部から吸熱器に至り、室内膨張弁が設けられた吸熱器入口側回路と、室外熱交換器の冷媒出口側から分岐部に至る冷媒配管と、この冷媒配管に設けられ、吸熱器入口側回路側が順方向とされた逆止弁と、室外熱交換器の冷媒入口側に設定されたもう一つの分岐部と、このもう一つの分岐部と前記分岐部を連通して、室外熱交換器及び逆止弁をバイパスするバイパス回路と、熱媒体を循環させて車両に搭載されたバッテリの温度を調整するためのバッテリ温度調整装置を備え、このバッテリ温度調整装置は、冷媒と熱媒体を熱交換させるための冷媒-熱媒体熱交換器と、分岐部から冷媒-熱媒体熱交換器に至る分岐回路と、この分岐回路に設けられ、冷媒-熱媒体熱交換器に流入する冷媒を減圧するための補助膨張弁を有し、制御装置は、室内膨張弁又は補助膨張弁を全閉とした運転を実行可能とされており、室内膨張弁は、吸熱器入口側回路のうち吸熱器よりも分岐部に近い側に配置され、補助膨張弁は、分岐回路のうち冷媒-熱媒体熱交換器よりも分岐部に近い側に配置されると共に、冷媒入口と第1及び第2の冷媒出口を有して前記もう一つの分岐部を構成するもう一つの分岐部材と、バイパス回路に設けられた除湿弁を備え、バイパス回路は前記もう一つの分岐部材の第2の冷媒出口に接続されて当該もう一つの分岐部材から立ち上がり、除湿弁は前記もう一つの分岐部材よりも高い位置に配置されることを特徴とする。 A vehicle air conditioner of the present invention includes a compressor that compresses a refrigerant, an outdoor heat exchanger provided outside the vehicle, a heat absorber that absorbs heat from the refrigerant and cools the air that is supplied to the vehicle, It is configured to have an indoor expansion valve for decompressing the refrigerant flowing into the heat absorber, is equipped with a refrigerant circuit in which a predetermined amount of refrigerant and oil are sealed, and a controller, and air-conditions the interior of the vehicle. , a branch portion set on the high-pressure side of the refrigerant circuit, a heat absorber from this branch portion, a heat absorber inlet side circuit provided with an indoor expansion valve, and a refrigerant outlet side of the outdoor heat exchanger to the branch portion. A refrigerant pipe, a check valve provided in this refrigerant pipe and having a forward direction on the heat absorber inlet circuit side, another branch set on the refrigerant inlet side of the outdoor heat exchanger, and this other A bypass circuit that communicates with the branched portion to bypass the outdoor heat exchanger and the check valve, and a battery temperature adjustment device that circulates the heat medium and adjusts the temperature of the battery mounted on the vehicle. The battery temperature adjustment device includes a refrigerant-heat medium heat exchanger for exchanging heat between a refrigerant and a heat medium, a branch circuit extending from a branch portion to the refrigerant-heat medium heat exchanger, and a branch circuit provided in the branch circuit. , has an auxiliary expansion valve for decompressing the refrigerant flowing into the refrigerant-heat medium heat exchanger, and the control device is capable of executing operation with the indoor expansion valve or the auxiliary expansion valve fully closed, The expansion valve is arranged closer to the branch than the heat absorber in the heat absorber inlet circuit, and the auxiliary expansion valve is arranged closer to the branch than the refrigerant-heat medium heat exchanger in the branch circuit. and another branch member having a refrigerant inlet and first and second refrigerant outlets to form the another branch, and a dehumidification valve provided in the bypass circuit, wherein the bypass circuit The dehumidifying valve is connected to the second refrigerant outlet of one branch member and rises from the other branch member, and is arranged at a position higher than the another branch member.

請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、補助膨張弁を全閉とし、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を分岐部から吸熱器入口側回路に流し、室内膨張弁にて減圧した後、吸熱器にて吸熱させる冷房運転を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 2, in the above invention, the control device fully closes the auxiliary expansion valve, causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger, and dissipates the radiated refrigerant. It is characterized in that cooling operation is performed by flowing the air from the branch to the heat absorber inlet side circuit, reducing the pressure by the indoor expansion valve, and then absorbing the heat by the heat absorber.

請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、室内膨張弁を全閉とし、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を分岐部から分岐回路に流し、補助膨張弁にて減圧した後、冷媒-熱媒体熱交換器にて吸熱させるバッテリ温調単独モードを実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 3, in each of the above inventions, the control device fully closes the indoor expansion valve, causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger, and heats the refrigerant discharged from the compressor. is flowed from the branch to the branch circuit, the pressure is reduced by the auxiliary expansion valve, and then the heat is absorbed by the refrigerant-heat medium heat exchanger.

請求項4の発明の車両用空気調和装置は、上記各発明において冷媒入口と第1及び第2の冷媒出口を有して分岐部を構成する分岐部材を備え、吸熱器入口側回路は分岐部材の第1の冷媒出口に接続されて当該分岐部材から立ち上がり、室内膨張弁は分岐部材よりも高い位置に配置されると共に、分岐回路は分岐部材の第2の冷媒出口に接続されて当該分岐部材から立ち上がり、補助膨張弁は分岐部材よりも高い位置に配置されることを特徴とする。 The vehicle air conditioner of the invention of claim 4 is provided with a branching member having a refrigerant inlet and first and second refrigerant outlets in each of the above inventions and constituting a branching part, and the heat absorber inlet side circuit is a branching member The indoor expansion valve is arranged at a position higher than the branch member, and the branch circuit is connected to the second refrigerant outlet of the branch member and rises from the branch member. and the auxiliary expansion valve is arranged at a position higher than the branch member.

請求項5の発明の車両用空気調和装置は、上記各発明において冷媒回路は、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、放熱器から出た冷媒を室外熱交換器に流すための室外熱交換器入口側回路と、この室外熱交換器入口側回路に設けられ、室外熱交換器に流入する冷媒を減圧するための室外膨張弁を有し、バイパス回路は、室外膨張弁の冷媒上流側に設定された前記もう一つの分岐部から分岐し、放熱器から出た冷媒を室内膨張弁に流すと共に、制御装置は、室外膨張弁又は除湿弁により流路を閉止した運転を実行可能とされており、室外膨張弁は、室外熱交換器入口側配管のうち室外熱交換器よりも、もう一つの分岐部に近い側に配置され、除湿弁は、バイパス回路のうち室内膨張弁よりも、もう一つの分岐部に近い側に配置されていることを特徴とする。 In the vehicle air conditioner of the invention of claim 5, in each of the above inventions, the refrigerant circuit comprises a radiator for radiating the refrigerant to heat the air supplied to the vehicle interior, and a radiator for heating the air supplied to the vehicle interior, An outdoor heat exchanger inlet side circuit for flowing to the exchanger, and an outdoor expansion valve provided in the outdoor heat exchanger inlet side circuit for decompressing the refrigerant flowing into the outdoor heat exchanger. , the refrigerant branched from the other branch set on the upstream side of the refrigerant of the outdoor expansion valve and flowed from the radiator to the indoor expansion valve, and the control device causes the flow path to be diverted by the outdoor expansion valve or the dehumidification valve Closed operation can be executed, the outdoor expansion valve is arranged closer to another branch than the outdoor heat exchanger in the outdoor heat exchanger inlet piping, and the dehumidification valve is a bypass circuit It is characterized in that it is arranged closer to the other branch than the indoor expansion valve.

請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、除湿弁を閉じ、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒をもう一つの分岐部から室外膨張弁に流し、この室外膨張弁にて減圧した後、室外熱交換器にて吸熱させる暖房運転を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 6, in the above invention, the control device closes the dehumidification valve, causes the refrigerant discharged from the compressor to dissipate heat in the radiator, and transfers the heat-dissipated refrigerant to another branch portion. It is characterized in that the air is flowed from the outside to the outdoor expansion valve, and after the pressure is reduced by the outdoor expansion valve, the heating operation is performed in which the heat is absorbed by the outdoor heat exchanger.

請求項7の発明の車両用空気調和装置は、請求項5又は請求項6の発明において制御装置は、室外膨張弁を全閉とし、除湿弁を開放して圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒をもう一つの分岐部からバイパス回路に流し、室内膨張弁にて減圧した後、吸熱器にて吸熱させる除湿運転を実行する。 In the vehicle air conditioner of the invention of claim 7, in the invention of claim 5 or 6, the control device fully closes the outdoor expansion valve and opens the dehumidification valve to dissipate heat from the refrigerant discharged from the compressor. After the heat is radiated by the device, the heat-dissipated refrigerant is made to flow from another branch to the bypass circuit, the pressure is reduced by the indoor expansion valve, and then the heat is absorbed by the heat absorber to perform the dehumidifying operation.

請求項8の発明の車両用空気調和装置は、請求項5乃至請求項7の発明において室外熱交換器入口側回路はもう一つの分岐部材の第1の冷媒出口に接続されて当該もう一つの分岐部材から立ち上がり、室外膨張弁はもう一つの分岐部材よりも高い位置に配置されることを特徴とする。 In the vehicle air conditioner of the invention of claim 8, in the invention of claims 5 to 7 , the outdoor heat exchanger inlet side circuit is connected to a first refrigerant outlet of another branch member, Rising from the branch member, the outdoor expansion valve is arranged at a position higher than another branch member.

本発明によれば、冷媒を圧縮する圧縮機と、車室外に設けられた室外熱交換器と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器に流入する冷媒を減圧するための室内膨張弁を有して構成され、所定量の冷媒とオイルが封入された冷媒回路と、制御装置を備え、車室内を空調する車両用空気調和装置であって、冷媒回路の高圧側に設定された分岐部と、この分岐部から吸熱器に至り、室内膨張弁が設けられた吸熱器入口側回路と、室外熱交換器の冷媒出口側から分岐部に至る冷媒配管と、この冷媒配管に設けられ、吸熱器入口側回路側が順方向とされた逆止弁と、室外熱交換器の冷媒入口側に設定されたもう一つの分岐部と、このもう一つの分岐部と前記分岐部を連通して、室外熱交換器及び逆止弁をバイパスするバイパス回路と、熱媒体を循環させて車両に搭載されたバッテリの温度を調整するためのバッテリ温度調整装置を備え、このバッテリ温度調整装置が、冷媒と熱媒体を熱交換させるための冷媒-熱媒体熱交換器と、分岐部から冷媒-熱媒体熱交換器に至る分岐回路と、この分岐回路に設けられ、冷媒-熱媒体熱交換器に流入する冷媒を減圧するための補助膨張弁を有し、制御装置が、室内膨張弁又は補助膨張弁を全閉とした運転を実行可能とされているものにおいて、室内膨張弁を、吸熱器入口側回路のうち吸熱器よりも分岐部に近い側に配置し、補助膨張弁を、分岐回路のうち冷媒-熱媒体熱交換器よりも分岐部に近い側に配置したので、分岐部と室内膨張弁との間の吸熱器入口側回路の容積と、分岐部と補助膨張弁との間の分岐回路の容積を縮小させることができるようになる。 According to the present invention, a compressor for compressing a refrigerant, an outdoor heat exchanger provided outside the vehicle, a heat absorber for absorbing heat from the refrigerant and cooling the air supplied to the vehicle, and the heat absorber A vehicular air conditioner for air conditioning a vehicle interior, comprising a refrigerant circuit having a refrigerant circuit in which a predetermined amount of refrigerant and oil are sealed, and a control device, which is configured to have an indoor expansion valve for decompressing an inflowing refrigerant. , a branch portion set on the high-pressure side of the refrigerant circuit, a heat absorber from this branch portion, a heat absorber inlet side circuit provided with an indoor expansion valve, and a refrigerant outlet side of the outdoor heat exchanger to the branch portion. A refrigerant pipe, a check valve provided in this refrigerant pipe and having a forward direction on the heat absorber inlet circuit side, another branch set on the refrigerant inlet side of the outdoor heat exchanger, and this other A bypass circuit that communicates with the branched portion to bypass the outdoor heat exchanger and the check valve, and a battery temperature adjustment device that circulates the heat medium and adjusts the temperature of the battery mounted on the vehicle. comprising a refrigerant-heat medium heat exchanger for exchanging heat between a refrigerant and a heat medium; a branch circuit extending from a branch portion to the refrigerant-heat medium heat exchanger; and a branch circuit provided in the branch circuit. , which has an auxiliary expansion valve for decompressing the refrigerant flowing into the refrigerant-heat medium heat exchanger, and the control device can execute the operation with the indoor expansion valve or the auxiliary expansion valve fully closed , the indoor expansion valve is arranged on the side of the heat absorber inlet side closer to the branch than the heat absorber, and the auxiliary expansion valve is arranged on the side of the branch circuit closer to the branch than the refrigerant-heat medium heat exchanger. Due to the arrangement, the volume of the heat absorber inlet side circuit between the branch and the indoor expansion valve and the volume of the branch circuit between the branch and the auxiliary expansion valve can be reduced.

これにより、バイパス回路に冷媒を流す場合に、分岐部から室外熱交換器の冷媒出口側の冷媒配管に逆流しようとする冷媒は逆止弁により阻止されるので、この冷媒配管にオイルが溜まり込んでオイルの循環量が低下してしまう不都合を防止することができるようになる。特に、冷媒入口と第1及び第2の冷媒出口を有したもう一つの分岐部材からもう一つの分岐部を構成し、バイパス回路には除湿弁を設け、バイパス回路をもう一つの分岐部材の第2の冷媒出口に接続して当該もう一つの分岐部材から立ち上がるようにし、除湿弁をもう一つの分岐部材よりも高い位置に配置するようにしたので、もう一つの分岐部材と除湿弁との間のバイパス回路に冷媒とオイルが溜まり難くなり、オイル循環率の低下をより一層効果的に解消することができるようになる。また、例えば請求項2の発明の如く制御装置が、補助膨張弁を全閉とし、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を分岐部から吸熱器入口側回路に流し、室内膨張弁にて減圧した後、吸熱器にて吸熱させる冷房運転を実行する場合に、分岐部と補助膨張弁との間の分岐回路内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、オイル循環率の低下を防止し、圧縮機の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 As a result, when the refrigerant flows through the bypass circuit, the check valve prevents the refrigerant from flowing back from the branch to the refrigerant pipe on the refrigerant outlet side of the outdoor heat exchanger. Therefore, it is possible to prevent the problem that the circulation amount of the oil is reduced. In particular, another branch member having a refrigerant inlet and first and second refrigerant outlets constitutes another branch, the bypass circuit is provided with a dehumidification valve, and the bypass circuit is connected to the second branch member of the other branch member. 2, and the dehumidification valve is arranged at a position higher than the other branch member. Refrigerant and oil are less likely to accumulate in the bypass circuit, and the drop in oil circulation rate can be more effectively resolved. Further, for example, as in the invention of claim 2, the control device fully closes the auxiliary expansion valve, causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger, and radiates the heat-dissipated refrigerant from the branch to the heat absorber inlet. When performing cooling operation in which the refrigerant is flowed to the side circuit, decompressed by the indoor expansion valve, and then absorbed by the heat absorber, the refrigerant remaining in the branch circuit between the branch and the auxiliary expansion valve is mixed with the refrigerant. It is possible to significantly reduce the amount of oil used, prevent a decrease in the oil circulation rate, improve the reliability of the compressor, and prevent an increase in the amount of refrigerant and oil required. become.

更に、例えば請求項3の発明の如く制御装置が、室内膨張弁を全閉とし、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を分岐部から分岐回路に流し、補助膨張弁にて減圧した後、冷媒-熱媒体熱交換器にて吸熱させるバッテリ温調単独モードを実行する場合にも、分岐部と室内膨張弁との間の吸熱器入口側回路内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、同様にオイル循環率の低下を防止し、圧縮機の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 Furthermore, for example, as in the invention of claim 3, the control device fully closes the indoor expansion valve, causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger, and transfers the radiated refrigerant from the branch to the branch circuit. In the heat absorber inlet side circuit between the branch part and the indoor expansion valve It is possible to significantly reduce the amount of refrigerant staying in and the oil dissolved in it, similarly prevent a decrease in the oil circulation rate, improve the reliability of the compressor, and increase the required amount of refrigerant and An increase in the required amount of oil can also be prevented.

特に、請求項4の発明の如く冷媒入口と第1及び第2の冷媒出口を有した分岐部材から分岐部を構成し、吸熱器入口側回路を分岐部材の第1の冷媒出口に接続して当該分岐部材から立ち上がるようにし、室内膨張弁を分岐部材よりも高い位置に配置すると共に、分岐回路を分岐部材の第2の冷媒出口に接続して当該分岐部材から立ち上がるようにし、補助膨張弁を分岐部材よりも高い位置に配置するようにすれば、分岐部材と室内膨張弁との間の吸熱器入口側回路、及び、分岐部材と補助膨張弁との間の分岐回路に冷媒とオイルが溜まり難くなり、オイル循環率の低下をより一層効果的に解消することができるようになる。 In particular, as in the invention of claim 4, the branching portion is configured from branching members having a refrigerant inlet and first and second refrigerant outlets, and the heat absorber inlet side circuit is connected to the first refrigerant outlet of the branching member. The indoor expansion valve is arranged at a position higher than the branch member, the branch circuit is connected to the second refrigerant outlet of the branch member so as to rise from the branch member, and the auxiliary expansion valve If it is arranged at a position higher than the branch member, the refrigerant and oil accumulate in the heat absorber inlet side circuit between the branch member and the indoor expansion valve and the branch circuit between the branch member and the auxiliary expansion valve. It becomes difficult, and it becomes possible to more effectively eliminate the decrease in the oil circulation rate.

また、請求項5の発明の如く冷媒回路が、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、放熱器から出た冷媒を室外熱交換器に流すための室外熱交換器入口側回路と、この室外熱交換器入口側回路に設けられ、室外熱交換器に流入する冷媒を減圧するための室外膨張弁を有し、バイパス回路は、室外膨張弁の冷媒上流側に設定された前記もう一つの分岐部から分岐し、放熱器から出た冷媒を室内膨張弁に流すと共に、制御装置が、室外膨張弁又は除湿弁により流路を閉止した運転を実行可能とされている場合に、室外膨張弁を、室外熱交換器入口側配管のうち室外熱交換器よりも、もう一つの分岐部に近い側に配置し、除湿弁を、バイパス回路のうち室内膨張弁よりも、もう一つの分岐部に近い側に配置することで、もう一つの分岐部と室外膨張弁との間の室外熱交換器入口側回路の容積と、もう一つの分岐部と除湿弁との間のバイパス回路の容積を縮小させることができるようになる。 Further, as in the invention of claim 5, the refrigerant circuit includes a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and an outdoor heat exchanger for flowing the refrigerant discharged from the radiator to the outdoor heat exchanger. An exchanger inlet side circuit and an outdoor expansion valve provided in the outdoor heat exchanger inlet side circuit for decompressing the refrigerant flowing into the outdoor heat exchanger, and the bypass circuit is upstream of the outdoor expansion valve. , the refrigerant discharged from the radiator is allowed to flow to the indoor expansion valve, and the control device can execute the operation with the flow path closed by the outdoor expansion valve or the dehumidification valve. , the outdoor expansion valve is arranged closer to another branch than the outdoor heat exchanger in the outdoor heat exchanger inlet piping, and the dehumidification valve is arranged in the bypass circuit from the indoor expansion valve. Also, by arranging it on the side close to another branch, the volume of the outdoor heat exchanger inlet side circuit between the other branch and the outdoor expansion valve, and the volume of the other branch and the dehumidification valve It becomes possible to reduce the volume of the bypass circuit between.

これにより、例えば請求項6の発明の如く制御装置が、除湿弁を閉じ、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒をもう一つの分岐部から室外膨張弁に流し、この室外膨張弁にて減圧した後、室外熱交換器にて吸熱させる暖房運転を実行する場合に、もう一つの分岐部と除湿弁との間のバイパス回路内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、オイル循環率の低下を防止し、圧縮機の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 As a result, for example, as in the invention of claim 6, the control device closes the dehumidification valve, radiates the heat of the refrigerant discharged from the compressor with the radiator, and transfers the heat-dissipated refrigerant from another branch to the outdoor expansion valve. After the pressure is reduced by the outdoor expansion valve, the refrigerant remaining in the bypass circuit between the other branch and the dehumidification valve and the Remarkably reducing the amount of melted oil prevents a drop in the oil circulation rate, improves the reliability of the compressor, and prevents an increase in the amount of refrigerant and oil required. become able to.

更に、例えば請求項7の発明の如く制御装置が、室外膨張弁を全閉とし、除湿弁を開放して圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒をもう一つの分岐部からバイパス回路に流し、室内膨張弁にて減圧した後、吸熱器にて吸熱させる除湿運転を実行する場合に、もう一つの分岐部と室外膨張弁との間の室外熱交換器入口側回路内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、同様にオイル循環率の低下を防止し、圧縮機の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 Furthermore, for example, as in the invention of claim 7, the control device fully closes the outdoor expansion valve, opens the dehumidification valve, radiates the heat of the refrigerant discharged from the compressor with a radiator, and heats the heat-dissipated refrigerant again. When performing dehumidifying operation in which the air flows from one branch to the bypass circuit, is decompressed by the indoor expansion valve, and then heat is absorbed by the heat absorber, the outdoor heat exchanger inlet between the other branch and the outdoor expansion valve Remarkably reducing the amount of refrigerant remaining in the side circuit and the amount of oil dissolved therein, likewise preventing a drop in the oil circulation rate and improving the reliability of the compressor, the necessary It becomes possible to prevent an increase in the amount of refrigerant and the amount of necessary oil.

特に、請求項8の発明の如く室外熱交換器入口側回路をもう一つの分岐部材の第1の冷媒出口に接続して当該もう一つの分岐部材から立ち上がるようにし、室外膨張弁をもう一つの分岐部材よりも高い位置に配置するようにすれば、もう一つの分岐部材と室外膨張弁との間の室外熱交換器入口側回路に冷媒とオイルが溜まり難くなり、オイル循環率の低下をより一層効果的に解消することができるようになる。 In particular, as in the invention of claim 8, the outdoor heat exchanger inlet side circuit is connected to the first refrigerant outlet of another branch member so that it rises from the other branch member, and the outdoor expansion valve is connected to the other branch member. If it is arranged at a position higher than the branch member, it becomes difficult for the refrigerant and oil to accumulate in the outdoor heat exchanger inlet side circuit between the other branch member and the outdoor expansion valve , further reducing the oil circulation rate. can be resolved more effectively.

本発明を適用した車両用空気調和装置の一実施例の構成図である。1 is a configuration diagram of an embodiment of a vehicle air conditioner to which the present invention is applied; FIG. 図1の車両用空気調和装置のコントローラ(制御装置)の制御ブロック図である。2 is a control block diagram of a controller (control device) of the vehicle air conditioner of FIG. 1. FIG. 図2のコントローラによる暖房運転を説明する図である。3 is a diagram for explaining heating operation by the controller in FIG. 2; FIG. 図2のコントローラによる除湿暖房運転を説明する図である。FIG. 3 is a diagram for explaining dehumidification and heating operation by the controller in FIG. 2; 図2のコントローラによる内部サイクル運転を説明する図である。3 is a diagram for explaining internal cycle operation by the controller of FIG. 2; FIG. 図2のコントローラによる除湿冷房運転/冷房運転を説明する図である。FIG. 3 is a diagram for explaining dehumidifying cooling operation/cooling operation by the controller in FIG. 2; 図2のコントローラによる暖房/バッテリ温調モードを説明する図である。FIG. 3 is a diagram illustrating a heating/battery temperature control mode by the controller of FIG. 2; 図2のコントローラによる除湿冷房/バッテリ温調モード(冷房/バッテリ温調モード)を説明する図である。FIG. 3 is a diagram for explaining a dehumidifying cooling/battery temperature control mode (cooling/battery temperature control mode) by the controller of FIG. 2; 図2のコントローラによる内部サイクル/バッテリ温調モードを説明する図である。3 is a diagram for explaining an internal cycle/battery temperature control mode by the controller of FIG. 2; FIG. 図2のコントローラによる除湿暖房/バッテリ温調モードを説明する図である。FIG. 3 is a diagram for explaining a dehumidification/heating/battery temperature control mode by the controller in FIG. 2; 図2のコントローラによるバッテリ温調単独モードを説明する図である。FIG. 3 is a diagram for explaining a battery temperature control single mode by the controller of FIG. 2; 図1の分岐部材B2と室内膨張弁及び補助膨張弁部分の平面図である。FIG. 2 is a plan view of a branch member B2, an indoor expansion valve, and an auxiliary expansion valve shown in FIG. 1; 図12の分岐部材B2と室内膨張弁及び補助膨張弁部分の正面図である。FIG. 13 is a front view of a branch member B2, an indoor expansion valve and an auxiliary expansion valve shown in FIG. 12; 図1の分岐部材B1と室外膨張弁及び電磁弁(除湿)部分の平面図である。It is a top view of branch member B1, an outdoor expansion valve, and an electromagnetic valve (dehumidification) part of FIG. 図14の分岐部材B1と室外膨張弁及び電磁弁(除湿)部分の正面図である。FIG. 15 is a front view of a branch member B1, an outdoor expansion valve, and an electromagnetic valve (dehumidification) portion of FIG. 14; 冷媒の圧力と温度に対するオイルの相溶曲線を示す図である。FIG. 2 is a diagram showing compatibility curves of oil with respect to pressure and temperature of refrigerant;

以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明の車両用空気調和装置1を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55(例えば、リチウム電池)が搭載され、急速充電器や家庭用商用電源(普通充電)等の外部電源からバッテリ55に充電された電力を走行用の電動モータ(図示せず)に供給することで駆動し、走行するものである。また、車両に搭載された本発明の車両用空気調和装置1も、バッテリ55から給電されて駆動されるものである。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 shows a block diagram of a vehicle air conditioner 1 of one embodiment to which the present invention is applied. A vehicle of an embodiment to which the vehicle air conditioner 1 of the present invention is applied is an electric vehicle (EV) that is not equipped with an engine (internal combustion engine), and is equipped with a battery 55 (for example, a lithium battery). An electric motor (not shown) for driving is driven by supplying electric power charged in the battery 55 from an external power supply such as a quick charger or a domestic commercial power supply (normal charging) to an electric motor (not shown) for driving. Further, the vehicle air conditioner 1 of the present invention mounted on the vehicle is also powered by the battery 55 and driven.

即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転や内部サイクル運転(除湿運転)、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。 That is, the vehicle air conditioner 1 performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle in which heating cannot be performed by engine waste heat, and furthermore, dehumidification heating operation, internal cycle operation (dehumidification operation), dehumidification Air conditioning in the passenger compartment is performed by selectively executing cooling operation and air conditioning operation.

尚、車両としては電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。 The vehicle is not limited to an electric vehicle, but the present invention is also effective for a so-called hybrid vehicle that shares an engine and an electric motor for running, and can also be applied to a normal vehicle that runs on an engine. needless to say.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 A vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses a refrigerant, and air in the vehicle interior. is provided in the air flow passage 3 of the HVAC unit 10 through which ventilation is circulated. An outdoor expansion valve 6 consisting of an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, and a refrigerant that functions as a radiator that releases heat from the refrigerant during cooling and as an evaporator that absorbs heat from the refrigerant during heating. An outdoor heat exchanger 7 for exchanging heat with the outside air, an indoor expansion valve 8 consisting of an electric valve (electronic expansion valve) for decompressing and expanding the refrigerant, and an indoor expansion valve 8 provided in the air flow passage 3 for cooling and dehumidification. A refrigerant circuit R is configured by sequentially connecting a heat absorber 9 that causes the refrigerant to absorb heat from the outside and outside of the vehicle, an accumulator 12, and the like through a refrigerant pipe 13. FIG.

この冷媒回路R内には所定量の冷媒(実施例では、HFO-1234yf)とオイル(潤滑油)が封入される。また、室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉(閉止)も可能とされている。 A predetermined amount of refrigerant (HFO-1234yf in the embodiment) and oil (lubricating oil) are sealed in the refrigerant circuit R. The outdoor expansion valve 6 and the indoor expansion valve 8 decompress and expand the refrigerant, and can be fully opened or fully closed (closed).

尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。また、図中23はグリルシャッタと称されるシャッタである。このシャッタ23が閉じられると、走行風が室外熱交換器7に流入することが阻止される構成とされている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15 . The outdoor blower 15 forcibly blows outside air through the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant. The heat exchanger 7 is configured to be ventilated with outside air. Reference numeral 23 in the figure denotes a shutter called a grille shutter. When the shutter 23 is closed, the running wind is prevented from flowing into the outdoor heat exchanger 7 .

また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して本発明における吸熱器入口側回路を構成する冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(吸熱器入口側回路)側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。 A refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected via a check valve 18 to a refrigerant pipe 13B forming a heat absorber inlet circuit in the present invention. The check valve 18 has a forward direction toward the refrigerant pipe 13B (heat absorber inlet side circuit), and the refrigerant pipe 13B is connected to the indoor expansion valve 8 .

また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。 In addition, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is connected to the refrigerant pipe 13C located on the outlet side of the heat absorber 9 via the electromagnetic valve 21 that is opened during heating. is connected to the This refrigerant pipe 13</b>C is connected to the accumulator 12 , and the accumulator 12 is connected to the refrigerant suction side of the compressor 2 .

更に、冷媒回路Rの高圧側となる放熱器4の冷媒出口側の冷媒配管13Eには本発明におけるもう一つの分岐部を構成する分岐部材B1(本発明におけるもう一つの分岐部材)が設けられており、この分岐部材B1には本発明における室外熱交換器入口側回路を構成する冷媒配管13Jの一端が接続されている。この冷媒配管13J(室外熱交換器入口側回路)の他端は室外熱交換器7の冷媒入口側に接続されると共に、前述した室外膨張弁6はこの冷媒配管13Jに接続されている。 Further, a branch member B1 (another branch member in the present invention) constituting another branch portion in the present invention is provided in the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, which is the high pressure side of the refrigerant circuit R. One end of a refrigerant pipe 13J that constitutes the outdoor heat exchanger inlet side circuit of the present invention is connected to the branch member B1. The other end of the refrigerant pipe 13J (outdoor heat exchanger inlet side circuit) is connected to the refrigerant inlet side of the outdoor heat exchanger 7, and the outdoor expansion valve 6 is connected to the refrigerant pipe 13J.

更に、分岐部材B1には本発明におけるバイパス回路を構成する冷媒配管13Fの一端が接続されている。この冷媒配管13F(バイパス回路)は、除湿時に開放される本発明における除湿弁としての電磁弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Aと冷媒配管13Bとの接続部(後述する分岐部材B2)に連通接続されている。即ち、冷媒配管13Fの他端は後述する分岐部材B2に接続されている。これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。 Furthermore, one end of a refrigerant pipe 13F constituting a bypass circuit in the present invention is connected to the branch member B1. This refrigerant pipe 13F (bypass circuit) is located downstream of the check valve 18 and upstream of the indoor expansion valve 8 via the electromagnetic valve 22 as a dehumidifying valve of the present invention that is opened during dehumidification. It is communicatively connected to a connecting portion (branching member B2 described later) between the refrigerant pipe 13A and the refrigerant pipe 13B. That is, the other end of the refrigerant pipe 13F is connected to a branch member B2, which will be described later. As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18 is bypassed.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 1). 25 is provided with an intake switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation), which is the air inside the vehicle compartment, and outside air (outside air introduction), which is the air outside the vehicle compartment. Furthermore, an indoor air blower (blower fan) 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26 .

また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 In addition, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 is provided for adjusting the ratio of ventilation to the vessel 4 . Further, in the air flow passage 3 on the air downstream side of the heat radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (representatively indicated by the outlet 29 in FIG. 1) are formed. The air outlet 29 is provided with an air outlet switching damper 31 for switching and controlling air blowing from each of the air outlets.

更に、車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するためのバッテリ温度調整装置61を備えている。実施例のバッテリ温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての熱媒体加熱ヒータ66と、冷媒-熱媒体熱交換器64を備え、それらとバッテリ55が熱媒体配管68にて環状に接続されている。 Furthermore, the vehicle air conditioner 1 includes a battery temperature adjustment device 61 for circulating a heat medium in the battery 55 to adjust the temperature of the battery 55 . The battery temperature adjustment device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium to the battery 55, a heat medium heater 66 as a heating device, and a refrigerant-heat medium heat exchanger 64. , and the battery 55 are annularly connected by a heat medium pipe 68 .

この実施例の場合、循環ポンプ62の吐出側に熱媒体加熱ヒータ66が接続され、熱媒体加熱ヒータ66の出口に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口にバッテリ55の入口が接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In this embodiment, a heat medium heater 66 is connected to the discharge side of the circulation pump 62, and the outlet of the heat medium heater 66 is connected to the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, The inlet of the battery 55 is connected to the outlet of the heat medium flow path 64A, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62. As shown in FIG.

このバッテリ温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ66はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the battery temperature adjustment device 61, for example, water, refrigerant such as HFO-1234yf, liquid such as coolant, and gas such as air can be employed. In addition, water is used as a heat medium in the embodiment. The heat medium heater 66 is composed of an electric heater such as a PTC heater. Further, the battery 55 is surrounded by a jacket structure that allows a heat medium to flow in a heat exchange relationship with the battery 55 .

そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、熱媒体加熱ヒータ66が発熱されている場合にはそこで加熱された後、次に冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至る。熱媒体はそこでバッテリ55と熱交換した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66. If the heat medium heater 66 is generating heat, the heat medium is heated there, and then It flows into the heat medium flow path 64 A of the refrigerant-heat medium heat exchanger 64 . The heat medium exiting the heat medium flow path 64 A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55 . After the heat medium exchanges heat with the battery 55 there, it is sucked into the circulation pump 62 and circulated in the heat medium pipe 68 .

一方、冷媒回路Rの冷媒配管13F(バイパス回路)の冷媒出口、即ち、逆止弁18の冷媒下流側(順方向側)であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13F、冷媒配管13A及び冷媒配管13Bの接続部には、本発明における分岐部を構成する分岐部材B2が設けられている。即ち、冷媒配管13B(吸熱器入口側回路)の一端はこの分岐部材B2に接続され、他端が吸熱器9に接続されたかたちとなる。 On the other hand, the refrigerant outlet of the refrigerant pipe 13F (bypass circuit) of the refrigerant circuit R, that is, the refrigerant pipe 13F located on the refrigerant downstream side (forward direction side) of the check valve 18 and on the refrigerant upstream side of the indoor expansion valve 8 A branching member B2 constituting a branching portion in the present invention is provided at the connecting portion of the refrigerant pipe 13A and the refrigerant pipe 13B. That is, one end of the refrigerant pipe 13B (heat absorber inlet side circuit) is connected to the branch member B2, and the other end is connected to the heat absorber 9. FIG.

また、分岐部材B2には本発明における分岐回路を構成する分岐配管72の一端が接続されている。この分岐配管72には電動弁(電子膨張弁)から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。 One end of a branch pipe 72 constituting a branch circuit in the present invention is connected to the branch member B2. The branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric valve (electronic expansion valve). The auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and can also be fully closed.

そして、分岐配管72の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端はアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、バッテリ温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 72 is connected to the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant channel 64B. The other end is connected to the refrigerant pipe 13C in front of the accumulator 12 (refrigerant upstream side). These auxiliary expansion valves 73 and the like also constitute a part of the refrigerant circuit R and at the same time constitute a part of the battery temperature adjustment device 61 .

補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)はこの補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。 When the auxiliary expansion valve 73 is open, the refrigerant (part or all of the refrigerant) discharged from the refrigerant pipe 13F or the outdoor heat exchanger 7 is decompressed by the auxiliary expansion valve 73, and then transferred to the refrigerant-heat medium heat exchanger. 64 into the coolant flow path 64B where it evaporates. After absorbing heat from the heat medium flowing through the heat medium flow path 64A in the course of flowing through the refrigerant flow path 64B, the refrigerant is sucked into the compressor 2 via the accumulator 12. FIG.

尚、前述した分岐部材B1の具体的な構成、及び、この分岐部材B1に対する冷媒配管13Jと冷媒配管13Fの接続構造、室外膨張弁6と電磁弁22の配置については後に詳述する。また、前述した分岐部材B2の具体的な構成、及び、この分岐部材B2に対する冷媒配管13Bと分岐配管72の接続構造、室内膨張弁8と補助膨張弁73の配置についても後に詳述する。 The specific configuration of the branch member B1, the connection structure of the refrigerant pipes 13J and 13F with respect to the branch member B1, and the arrangement of the outdoor expansion valve 6 and the solenoid valve 22 will be described in detail later. Further, the specific configuration of the branch member B2, the connection structure of the refrigerant pipe 13B and the branch pipe 72 with respect to the branch member B2, and the arrangement of the indoor expansion valve 8 and the auxiliary expansion valve 73 will also be described in detail later.

次に、図2において32は車両用空気調和装置1の制御を司る制御装置としてのコントローラであり、プロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。 Next, in FIG. 2, reference numeral 32 denotes a controller as a control device for controlling the vehicle air conditioner 1, which is composed of a microcomputer as an example of a computer equipped with a processor. The inputs of this controller 32 are an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 that detects the outside air humidity, and the temperature of the air sucked into the air flow passage 3 from the suction port 25. an HVAC intake temperature sensor 36, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior, and a carbon dioxide concentration in the vehicle interior. An indoor CO 2 concentration sensor 39, an air outlet temperature sensor 41 that detects the temperature of the air that is blown out from the air outlet 29 into the passenger compartment, and a discharge pressure sensor 42 that detects the pressure of the refrigerant discharged from the compressor 2 (discharge pressure Pd). , a discharge temperature sensor 43 for detecting the temperature of the refrigerant discharged from the compressor 2, a suction temperature sensor 44 for detecting the temperature of the suction refrigerant of the compressor 2, and the temperature of the radiator 4 (the temperature of the air passing through the radiator 4, or A radiator temperature sensor 46 that detects the temperature of the radiator 4 itself: radiator temperature TCI), and the refrigerant pressure of the radiator 4 (the pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: the radiator A radiator pressure sensor 47 that detects the pressure PCI), and a heat absorber temperature sensor 48 that detects the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself: heat absorber temperature Te). , a heat absorber pressure sensor 49 for detecting the pressure of the refrigerant in the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9), and for detecting the amount of solar radiation in the vehicle compartment, for example A photo sensor type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed), an air conditioning operation unit 53 for setting a set temperature and switching of air conditioning operation, and an outdoor heat exchanger 7 Temperature (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the temperature of the outdoor heat exchanger 7 itself: outdoor heat exchanger temperature TXO. When the outdoor heat exchanger 7 functions as an evaporator, the outdoor heat exchange The outdoor heat exchanger temperature sensor 54 detects the refrigerant pressure in the outdoor heat exchanger 7, and the refrigerant pressure in the outdoor heat exchanger 7 (inside the outdoor heat exchanger 7 or in the outdoor heat exchange Each output of an outdoor heat exchanger pressure sensor 56 for detecting the pressure of the refrigerant immediately after coming out of the unit 7 is connected.

また、コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、熱媒体加熱ヒータ66の温度(熱媒体加熱ヒータ66自体の温度、熱媒体加熱ヒータ66を出た熱媒体の温度)を検出する熱媒体加熱ヒータ温度センサ77と、冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体の温度を検出する第1出口温度センサ78と、冷媒流路64Bを出た冷媒の温度を検出する第2の出口温度センサ79の各出力も接続されている。 Further, the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium leaving the battery 55, or the temperature of the heat medium entering the battery 55: battery temperature Tb) is also detected as an input to the controller 32. a battery temperature sensor 76 for detecting the temperature of the heat medium heater 66 (the temperature of the heat medium heater 66 itself, the temperature of the heat medium exiting the heat medium heater 66); a first outlet temperature sensor 78 for detecting the temperature of the heat medium exiting the heat medium flow path 64A of the heat medium heat exchanger 64 and a second outlet temperature sensor for detecting the temperature of the refrigerant exiting the refrigerant flow path 64B; 79 are also connected.

一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁21(暖房)の各電磁弁と、シャッタ23、循環ポンプ62、熱媒体加熱ヒータ66、補助膨張弁73が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御するものである。 On the other hand, the outputs of the controller 32 include the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion The valve 6, the indoor expansion valve 8, the solenoid valve 22 (dehumidification), the solenoid valve 21 (heating), the shutter 23, the circulation pump 62, the heat medium heater 66, and the auxiliary expansion valve 73 are connected. . The controller 32 controls these based on the output of each sensor and the setting input by the air conditioning operation section 53 .

以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。コントローラ32は実施例では暖房運転と、除湿暖房運転と、内部サイクル運転(除湿運転)と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55の温度を所定の適温範囲内に調整する。先ず、冷媒回路Rの各空調運転について説明する。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In the embodiment, the controller 32 switches between air conditioning operations such as heating operation, dehumidifying heating operation, internal cycle operation (dehumidifying operation), dehumidifying cooling operation, and cooling operation, and controls the temperature of the battery 55 to a predetermined appropriate temperature. Adjust within range. First, each air conditioning operation of the refrigerant circuit R will be described.

(1)暖房運転
最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、コントローラ32は電磁弁21(暖房用)を開放し、室内膨張弁8を全閉とする。また、電磁弁22(除湿用)を閉じる。尚、シャッタ23は開放し、補助膨張弁73は全閉とする。
(1) Heating operation First, the heating operation will be described with reference to FIG. FIG. 3 shows the refrigerant flow (solid arrow) in the refrigerant circuit R during heating operation. When heating operation is selected by the controller 32 (auto mode) or by manual operation (manual mode) of the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (for heating) and closes the indoor expansion valve 8. Fully closed. Also, the electromagnetic valve 22 (for dehumidification) is closed. The shutter 23 is opened and the auxiliary expansion valve 73 is fully closed.

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 . As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air circulation passage 3 is passed through the radiator 4, the air in the air circulation passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 transfers heat to the air. It is robbed, cooled, condensed and liquefied.

放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、分岐部材B1を経て冷媒配管13J(室外熱交換器入口側回路)に流入し、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 After leaving the radiator 4, the refrigerant liquefied in the radiator 4 flows into the refrigerant pipe 13J (outdoor heat exchanger inlet side circuit) through the refrigerant pipe 13E and the branch member B1, and reaches the outdoor expansion valve 6. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7 . The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws up heat from the outside air blown by the outdoor blower 15 while the vehicle is running (heat absorption). That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipes 13A and 13D, the electromagnetic valve 21, and enters the accumulator 12 from the refrigerant pipe 13C. Repeat the circulation sucked into. Since the air heated by the radiator 4 is blown out from the outlet 29, the vehicle interior is heated.

コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。 The controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO, which will be described later. Based on this target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI, high pressure of the refrigerant circuit R), the rotation speed of the compressor 2 is controlled. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the radiator 4 (radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, and heat is released. Controls the degree of subcooling of the refrigerant at the outlet of vessel 4. The target heater temperature TCO is basically set to TCO=TAO, but a predetermined control limit is provided.

(2)除湿暖房運転
次に、図4を参照しながら除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、コントローラ32は上記暖房運転の状態において電磁弁22(除湿弁)を開き、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。また、シャッタ23は開放し、補助膨張弁73は全閉とする。これにより、放熱器4を出て冷媒配管13Eを流れる凝縮冷媒の一部は分岐部材B1にて冷媒配管13Fに分流され、この分流された冷媒が電磁弁22を経て分岐部材B2に至り、冷媒配管13B(吸熱器入口側回路)に流入して室内膨張弁8に流れ、残りの冷媒が冷媒配管13Jに流入して室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。また、このとき分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。
(2) Dehumidifying and Heating Operation Next, the dehumidifying and heating operation will be described with reference to FIG. FIG. 4 shows the flow of refrigerant (solid line arrows) in the refrigerant circuit R in the dehumidifying and heating operation. In the dehumidifying heating operation, the controller 32 opens the electromagnetic valve 22 (dehumidifying valve) in the heating operation state and opens the indoor expansion valve 8 to decompress and expand the refrigerant. Also, the shutter 23 is opened and the auxiliary expansion valve 73 is fully closed. As a result, part of the condensed refrigerant that exits the radiator 4 and flows through the refrigerant pipe 13E is branched to the refrigerant pipe 13F by the branch member B1. The refrigerant flows into the pipe 13B (heat absorber inlet side circuit) and flows into the indoor expansion valve 8, and the rest of the refrigerant flows into the refrigerant pipe 13J and flows into the outdoor expansion valve 6. That is, a portion of the branched refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate. At this time, the position of the branch member B2 is set to the high pressure side of the refrigerant circuit R.

コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。 The controller 32 controls the valve opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. Moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified. The remaining refrigerant that has flowed into the refrigerant pipe 13</b>J after being split is decompressed by the outdoor expansion valve 6 and then evaporated in the outdoor heat exchanger 7 .

吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 exits the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), passes through the accumulator 12, and is sucked into the compressor 2, repeating circulation. Since the air dehumidified by the heat absorber 9 is reheated in the course of passing through the radiator 4, dehumidification heating is performed in the passenger compartment.

コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。 The controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. , the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 .

(3)内部サイクル運転(除湿運転)
次に、図5を参照しながら本発明における除湿運転としての内部サイクル運転について説明する。図5は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。内部サイクル運転では、コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる(シャッタ23は開、補助膨張弁73は全閉)。
(3) Internal cycle operation (dehumidification operation)
Next, the internal cycle operation as the dehumidification operation in the present invention will be described with reference to FIG. FIG. 5 shows the refrigerant flow (solid line arrow) in the refrigerant circuit R in the internal cycle operation. In the internal cycle operation, the controller 32 fully closes the outdoor expansion valve 6 (fully closed position) in the state of the dehumidifying and heating operation. However, the electromagnetic valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2 . That is, this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by controlling the outdoor expansion valve 6 in the dehumidifying and heating operation, so this internal cycle operation can also be regarded as part of the dehumidifying and heating operation ( The shutter 23 is open and the auxiliary expansion valve 73 is fully closed).

但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は分岐部材B1から全て冷媒配管13Fに流れ、電磁弁22を経て分岐部材B2に至るようになる。従って、この場合も分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。そして、分岐部材B2から冷媒は冷媒配管13B(吸熱器入口側回路)に入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 However, by closing the outdoor expansion valve 6, the inflow of the refrigerant into the outdoor heat exchanger 7 is blocked. It flows into the pipe 13F, passes through the electromagnetic valve 22, and reaches the branch member B2. Therefore, in this case as well, the position of the branch member B2 is set on the high pressure side of the refrigerant circuit R. Then, the refrigerant enters the refrigerant pipe 13B (heat absorber inlet side circuit) from the branch member B2 and reaches the indoor expansion valve 8 . After the refrigerant is decompressed by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action at this time, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。 The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C, passes through the accumulator 12, and is sucked into the compressor 2, thereby repeating circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying and heating the vehicle interior is performed. Since the refrigerant is circulated between the radiator 4 (heat dissipation) and the heat absorber 9 (heat absorption) in the path 3, heat is not drawn from the outside air, and the power consumed by the compressor 2 is used for heating. Ability is demonstrated. Since the entire amount of refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is high compared to the dehumidifying and heating operation, but the heating capacity is low.

また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。 Although the outdoor expansion valve 6 is closed, the solenoid valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2. The refrigerant flows through the refrigerant pipe 13D and the electromagnetic valve 21 into the refrigerant pipe 13C, is recovered by the accumulator 12, and the inside of the outdoor heat exchanger 7 becomes gas refrigerant. As a result, the amount of refrigerant circulating in the refrigerant circuit R increases compared to when the solenoid valve 21 is closed, and the heating capacity of the radiator 4 and the dehumidification capacity of the heat absorber 9 can be improved.

コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。 The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the aforementioned radiator pressure PCI (high pressure of the refrigerant circuit R). At this time, the controller 32 controls the compressor 2 by selecting either the temperature of the heat absorber 9 or the radiator pressure PCI, whichever is the lower compressor target rotation speed obtained from the calculation.

(4)除湿冷房運転
次に、図6を参照しながら除湿冷房運転について説明する。図6は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、電磁弁21と電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。また、シャッタ23は開放し、補助膨張弁73は全閉とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(4) Dehumidifying Cooling Operation Next, the dehumidifying cooling operation will be described with reference to FIG. FIG. 6 shows the flow of refrigerant (solid line arrows) in the refrigerant circuit R in the dehumidifying and cooling operation. In the dehumidifying cooling operation, the controller 32 opens the indoor expansion valve 8 to decompress and expand the refrigerant, and closes the solenoid valves 21 and 22 . Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 . Also, the shutter 23 is opened and the auxiliary expansion valve 73 is fully closed. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air circulation passage 3 is passed through the radiator 4, the air in the air circulation passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 transfers heat to the air. It is stolen, cooled, and condensed.

放熱器4を出た冷媒は冷媒配管13Eを経て分岐部材B1から冷媒配管13J(室外熱交換器入口側回路)に流れ、室外膨張弁6に至る。そして、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て分岐部材B2から冷媒配管13B(吸熱器入口側回路)に入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 The refrigerant that has exited the radiator 4 flows through the refrigerant pipe 13</b>E from the branch member B<b>1 to the refrigerant pipe 13</b>J (outdoor heat exchanger inlet side circuit), and reaches the outdoor expansion valve 6 . Then, it flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 which is controlled to be slightly open. The refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled there by traveling or by outside air blown by the outdoor blower 15 and condensed. The refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipe 13 A and the check valve 18 , enters the refrigerant pipe 13 B (heat absorber inlet side circuit) through the branch member B 2 , and reaches the indoor expansion valve 8 . After the refrigerant is decompressed by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action at this time, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は冷媒配管13Cを経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13C, repeating circulation. The air cooled and dehumidified by the heat absorber 9 is reheated (reheated: the heat dissipation capacity is lower than that during heating) in the process of passing through the radiator 4, so dehumidifying and cooling the vehicle interior is performed. become.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。 Based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, the controller 32 adjusts the heat absorber temperature Te to the target heat absorber temperature TEO. In addition to controlling the rotation speed of the compressor 2, a target radiator pressure PCO (radiator pressure PCI (target value of )), the necessary reheat amount by the radiator 4 is obtained by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO.

(5)冷房運転
次に、冷房運転について説明する。冷媒回路Rの流れは図6の除湿冷房運転と同様である。冷房運転では、コントローラ32は上記除湿冷房運転の状態において室外膨張弁6の弁開度を全開とする。尚、エアミックスダンパ28は放熱器4に空気が通風される割合を調整する状態とする。また、シャッタ23は開放し、補助膨張弁73は全閉とする。
(5) Cooling operation Next, the cooling operation will be described. The flow in the refrigerant circuit R is the same as in the dehumidifying cooling operation of FIG. In the cooling operation, the controller 32 fully opens the outdoor expansion valve 6 in the dehumidifying cooling operation. Incidentally, the air mix damper 28 is set in a state of adjusting the ratio of the air to the radiator 4 . Also, the shutter 23 is opened and the auxiliary expansion valve 73 is fully closed.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て分岐部材B1から冷媒配管13Jに入り、室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Although the air in the air circulation passage 3 is ventilated to the radiator 4, the ratio is small (because it is only reheated during cooling), so most of it only passes through here, and the refrigerant leaving the radiator 4 is It enters the refrigerant pipe 13J from the branch member B1 through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. At this time, since the outdoor expansion valve 6 is fully open, the refrigerant passes through the outdoor expansion valve 6 and the refrigerant pipe 13J as it is, and flows into the outdoor heat exchanger 7, where it is ventilated by running or by the outdoor blower 15. It is air-cooled by the outside air and condensed and liquefied.

室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て分岐部材B2に至る。即ち、この場合も分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。そして、分岐部材B2からは冷媒配管13B(吸熱器入口側回路)に入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipe 13A and the check valve 18 and reaches the branch member B2. That is, the position of the branch member B2 is set on the high pressure side of the refrigerant circuit R also in this case. From the branch member B2, the refrigerant enters the refrigerant pipe 13B (heat absorber inlet side circuit) and reaches the indoor expansion valve 8. After the refrigerant is decompressed by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9 due to the endothermic action at this time, and the air is cooled.

吸熱器9で蒸発した冷媒は冷媒配管13Cを経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13C, repeating circulation. The air cooled and dehumidified by the heat absorber 9 is blown into the passenger compartment through the outlet 29, thereby cooling the passenger compartment. In this cooling operation, the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 .

(6)空調運転の切り換え
コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air-conditioning operation The controller 32 calculates the above-described target air temperature TAO from the following equation (I). This target blowout temperature TAO is a target value for the temperature of the air blown out from the blowout port 29 into the vehicle interior.
TAO=(Tset−Tin)×K+Tbal(f(Tset, SUN, Tam))
... (I)
Here, Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the interior air detected by the inside air temperature sensor 37, K is a coefficient, and Tbal is the set temperature Tset and the solar radiation sensor 51 detects. SUN and the outside air temperature Tam detected by the outside air temperature sensor 33 . In general, the lower the outside air temperature Tam is, the higher the target blowing temperature TAO is, and the higher the outside air temperature Tam is, the lower the target blowing temperature TAO is.

そして、コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。 At startup, the controller 32 selects one of the air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target air temperature TAO. Further, after startup, each air conditioning operation is selected and switched according to changes in the environment and setting conditions such as the outside air temperature Tam and the target blowout temperature TAO.

(7)バッテリ55の温度調整
次に、図7~図12を参照しながらコントローラ32によるバッテリ55の温度調整制御について説明する。ここで、バッテリ55は外気温度により温度が変化すると共に、自己発熱によっても温度が変化する。そして、外気温度が高温環境であるときや極低温環境であるときには、バッテリ55の温度が極めて高くなり、或いは、極めて低くなって、充電や放電が困難となる。例えば、バッテリ55の温度が+45℃以上では充電が困難となり、60℃以上では放電が困難となる。また、-20℃以下でも放電が困難となり、充電も殆どできなくなる。
(7) Temperature Adjustment of Battery 55 Next, temperature adjustment control of the battery 55 by the controller 32 will be described with reference to FIGS. 7 to 12. FIG. Here, the temperature of the battery 55 changes depending on the outside air temperature, and the temperature also changes due to self-heating. When the ambient temperature is in a high temperature environment or in an extremely low temperature environment, the temperature of the battery 55 becomes extremely high or extremely low, making charging and discharging difficult. For example, when the temperature of the battery 55 is +45° C. or higher, charging becomes difficult, and when the temperature is 60° C. or higher, discharging becomes difficult. In addition, discharging becomes difficult even below -20°C, and charging becomes almost impossible.

そこで、実施例の車両用空気調和装置1のコントローラ32は、上記の如き空調運転を実行しながら、或いは、空調運転を停止している状態において、バッテリ温度調整装置61により、バッテリ55の温度を所定の規定温度範囲内(使用温度範囲内)に調整する。このバッテリ55の規定温度範囲は一般的には+20℃以上+40℃以下とされているため、実施例ではこの規定温度範囲内にバッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)の目標値である目標バッテリ温度TBO(例えば、+20℃)を設定するものとする。 Therefore, the controller 32 of the vehicle air conditioner 1 according to the embodiment adjusts the temperature of the battery 55 by the battery temperature adjustment device 61 while performing the air conditioning operation as described above or in a state where the air conditioning operation is stopped. Adjust the temperature within the specified specified temperature range (within the operating temperature range). Since the specified temperature range of the battery 55 is generally +20° C. or more and +40° C. or less, in the embodiment, the temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76 falls within this specified temperature range. Assume that a target battery temperature TBO (for example, +20° C.), which is a target value, is set.

(7-1)暖房/バッテリ温調モード
前述した暖房運転においてバッテリ55の温度を調整することが必要となった場合、コントローラ32は暖房/バッテリ温調モードを実行する。図7はこの暖房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-1) Heating/Battery Temperature Control Mode When the temperature of the battery 55 needs to be adjusted in the heating operation described above, the controller 32 executes the heating/battery temperature control mode. FIG. 7 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrows) and the flow of the heat medium in the battery temperature control device 61 (broken line arrows) in this heating/battery temperature control mode.

この暖房/バッテリ温調モードでは、コントローラ32は図3に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22(除湿弁)を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、バッテリ温度調整装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒の一部が分岐部材B1にて分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側の分岐部材B2に至る。即ち、この場合も分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。冷媒はこの分岐部材B2から分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図7に実線矢印で示す)。 In this heating/battery temperature control mode, the controller 32 further opens the solenoid valve 22 (dehumidification valve) and also opens the auxiliary expansion valve 73 in the heating operation state of the refrigerant circuit R shown in FIG. to be in a controlled state. Then, the circulation pump 62 of the battery temperature adjustment device 61 is operated. As a result, part of the refrigerant coming out of the radiator 4 is branched by the branch member B1 and reaches the branch member B2 on the refrigerant upstream side of the indoor expansion valve 8 via the refrigerant pipe 13F. That is, the position of the branch member B2 is set on the high pressure side of the refrigerant circuit R also in this case. The refrigerant enters the branch pipe 72 from the branch member B2, is decompressed by the auxiliary expansion valve 73, flows through the branch pipe 72 into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and evaporates. At this time, it exerts an endothermic action. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation of being sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by solid arrows in FIG. 7).

一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、そこで加熱された後(熱媒体加熱ヒータ66が発熱している場合)、熱媒体配管68内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。熱媒体加熱ヒータ66で加熱され、及び/又は、冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55と熱交換した後、循環ポンプ62に吸い込まれる循環を繰り返す(図7に破線矢印で示す)。 On the other hand, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66 and is heated there (when the heat medium heater 66 is generating heat). It reaches the heat medium flow path 64A of the exchanger 64, where heat is absorbed by the refrigerant that evaporates in the refrigerant flow path 64B, and the heat medium is cooled. The heat medium heated by the heat medium heater 66 and/or cooled by the heat absorption action of the refrigerant exits the refrigerant-heat medium heat exchanger 64, reaches the battery 55, and after heat exchange with the battery 55, The circulation sucked by the circulation pump 62 is repeated (indicated by the dashed arrow in FIG. 7).

コントローラ32は、例えば常時冷媒-熱媒体熱交換器64の冷媒流路64Bに冷媒を流し、熱媒体を常時冷却しながら、バッテリ温度センサ76が検出するバッテリ温度Tbと目標バッテリ温度TBOに基づいて熱媒体加熱ヒータ66の発熱を制御することで、バッテリ温度Tbが目標バッテリ温度TBOとなるようにする(その場合は、実際には暖房運転に代えて暖房/バッテリ温調モードを常時実行するか、又は、暖房運転と暖房/バッテリ温調モードを切り換えて実行することになる)。或いは、暖房運転中にバッテリ温度Tb>目標バッテリ温度TBO+αとなった場合に、暖房/バッテリ温調モードに移行し、補助膨張弁73を制御してバッテリ温度Tbを低下させ、バッテリ温度Tb<目標バッテリ温度TBO-αとなった場合にも暖房運転から暖房/バッテリ温調モードに移行し、熱媒体加熱ヒータ66を発熱させてバッテリ温度Tbを上昇させることで、バッテリ温度Tbが目標バッテリ温度TBOとなるようにする。以上のようにしてコントローラ32は、バッテリ55の温度Tbを規定温度範囲内である目標バッテリ温度TBOに調整するものである。 The controller 32, for example, constantly flows the refrigerant through the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 to constantly cool the heat medium, based on the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO. By controlling the heat generation of the heat medium heater 66, the battery temperature Tb is brought to the target battery temperature TBO (in that case, in practice, the heating/battery temperature control mode is always executed instead of the heating operation). , or the heating operation and the heating/battery temperature control mode are switched for execution). Alternatively, when the battery temperature Tb>target battery temperature TBO+α during the heating operation, the mode shifts to the heating/battery temperature control mode, the auxiliary expansion valve 73 is controlled to lower the battery temperature Tb, and the battery temperature Tb<target Even when the battery temperature reaches TBO-α, the heating operation is shifted to the heating/battery temperature control mode, and the heat medium heater 66 is heated to raise the battery temperature Tb, so that the battery temperature Tb reaches the target battery temperature TBO. so that As described above, the controller 32 adjusts the temperature Tb of the battery 55 to the target battery temperature TBO within the specified temperature range.

(7-2)冷房/バッテリ温調モード
次に、前述した冷房運転においてバッテリ55の温度を調整することが必要となった場合、コントローラ32は冷房/バッテリ温調モードを実行する。図8はこの冷房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-2) Cooling/Battery Temperature Control Mode Next, when the temperature of the battery 55 needs to be adjusted during the cooling operation described above, the controller 32 executes the cooling/battery temperature control mode. FIG. 8 shows the flow of refrigerant in the refrigerant circuit R (solid line arrows) and the flow of the heat medium in the battery temperature control device 61 (broken line arrows) in this cooling/battery temperature control mode.

この冷房/バッテリ温調モードでは、コントローラ32は前述した図6の冷房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。 In this cooling/battery temperature control mode, the controller 32 opens the auxiliary expansion valve 73 to control the opening degree of the valve in the state of the refrigerant circuit R in the cooling operation of FIG. 62 is also operated to bring the refrigerant-heat medium heat exchanger 64 into a state in which heat is exchanged between the refrigerant and the heat medium.

これにより、圧縮機2から吐出された高温の冷媒は、放熱器4を経て分岐部材B1から室外熱交換器7に流入し、そこで室外送風機15により通風される外気や走行風と熱交換して放熱し、凝縮する。室外熱交換器7で凝縮した冷媒の一部は分岐部材B2に至る。即ち、この場合も分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。冷媒はこの分岐部材B2を経て室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3内の空気が冷却されるので、車室内は冷房される。 As a result, the high-temperature refrigerant discharged from the compressor 2 passes through the radiator 4 and flows into the outdoor heat exchanger 7 from the branch member B1, where it exchanges heat with outside air blown by the outdoor blower 15 and running wind. It dissipates heat and condenses. Part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the branch member B2. That is, the position of the branch member B2 is set on the high pressure side of the refrigerant circuit R also in this case. The refrigerant passes through the branch member B2 and reaches the indoor expansion valve 8, where it is decompressed and then flows into the heat absorber 9 where it evaporates. Since the air in the air flow passage 3 is cooled by the heat absorbing action at this time, the vehicle interior is cooled.

室外熱交換器7で凝縮した冷媒の残りは分岐部材B2にて分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。 The remainder of the refrigerant condensed in the outdoor heat exchanger 7 is branched to the branch pipe 72 by the branch member B2, depressurized by the auxiliary expansion valve 73, and evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. . Since the coolant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant coming out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant coming out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the compressor 2 through the accumulator 12. will be sucked.

コントローラ32はこの冷房/バッテリ温調モードでも、前述した暖房/バッテリ温調モードの場合と同様に、冷房運転に代え、又は、冷媒運転と冷房/バッテリ温調モードを切り換え、或いは、冷房運転から冷房/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを規定温度範囲内である目標バッテリ温度TBOに調整する。 In this cooling/battery temperature control mode, as in the heating/battery temperature control mode described above, the controller 32 can replace the cooling operation, switch between the refrigerant operation and the cooling/battery temperature control mode, or switch from the cooling operation. By shifting to the cooling/battery temperature control mode and controlling the auxiliary expansion valve 73 and the heat medium heater 66, the temperature Tb of the battery 55 is adjusted to the target battery temperature TBO within the specified temperature range.

(7-3)除湿冷房/バッテリ温調モード
次に、前述した除湿冷房運転中においてバッテリ55の温度を調整することが必要となった場合、コントローラ32は除湿冷房/バッテリ温調モードを実行する。尚、この除湿冷房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)は図8と同様であるが、室外膨張弁6は全開では無く開き気味で制御される。そして、コントローラ32は冷房/バッテリ温調モードの場合と同様に、補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを規定温度範囲内である目標バッテリ温度TBOに調整する。
(7-3) Dehumidification cooling/battery temperature control mode Next, when it becomes necessary to adjust the temperature of the battery 55 during the above-described dehumidification cooling operation, the controller 32 executes the dehumidification cooling/battery temperature control mode. . In this dehumidifying cooling/battery temperature control mode, the refrigerant flow (solid line arrow) in the refrigerant circuit R and the heat medium flow (broken line arrow) in the battery temperature control device 61 are the same as in FIG. is controlled to open rather than fully open. As in the cooling/battery temperature control mode, the controller 32 controls the auxiliary expansion valve 73 and the heat medium heater 66 to bring the temperature Tb of the battery 55 to the target battery temperature TBO within the specified temperature range. adjust.

(7-4)内部サイクル/バッテリ温調モード
次に、前述した内部サイクル運転においてバッテリ55の温度を調整することが必要となった場合、コントローラ32は内部サイクル/バッテリ温調モードを実行する。この内部サイクル/バッテリ温調モードでは、コントローラ32は前述した図5の内部サイクル運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図9はこの内部サイクル/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-4) Internal Cycle/Battery Temperature Control Mode Next, when the temperature of the battery 55 needs to be adjusted during the internal cycle operation described above, the controller 32 executes the internal cycle/battery temperature control mode. In this internal cycle/battery temperature control mode, the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation shown in FIG. The circulation pump 62 is also operated to bring about a state in which heat is exchanged between the refrigerant and the heat medium in the refrigerant-heat medium heat exchanger 64 . FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium in the battery temperature control device 61 (broken line arrow) in this internal cycle/battery temperature control mode.

これにより、圧縮機2から吐出された高温の冷媒は放熱器4で放熱した後、分岐部材B1から電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを出た冷媒は分岐部材B2に至る。即ち、この場合も分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。冷媒の一部はこの分岐部材B2から冷媒配管13Bを経て室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 As a result, the high-temperature refrigerant discharged from the compressor 2 radiates heat in the radiator 4, and then all flows from the branch member B1 through the solenoid valve 22 to the refrigerant pipe 13F. Then, the refrigerant exiting the refrigerant pipe 13F reaches the branch member B2. That is, the position of the branch member B2 is set on the high pressure side of the refrigerant circuit R also in this case. A portion of the refrigerant flows from the branch member B2 through the refrigerant pipe 13B to the indoor expansion valve 8, where it is decompressed and then flows into the heat absorber 9 to evaporate. Moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action at this time, so that the air is cooled and dehumidified.

冷媒配管13Fを出た冷媒の残りは分岐部材B2にて分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。 The rest of the refrigerant exiting the refrigerant pipe 13F is branched to the branch pipe 72 by the branch member B2, decompressed by the auxiliary expansion valve 73, and evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the coolant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant coming out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant coming out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the compressor 2 through the accumulator 12. will be sucked.

コントローラ32はこの内部サイクル/バッテリ温調モードでも、前述した暖房/バッテリ温調モードの場合と同様に、内部サイクル運転に代え、又は、内部サイクル運転と内部サイクル/バッテリ温調モードを切り換え、或いは、内部サイクル運転から内部サイクル/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを規定温度範囲内である目標バッテリ温度TBOに調整する。 Even in this internal cycle/battery temperature control mode, the controller 32 can replace the internal cycle operation, switch between the internal cycle operation and the internal cycle/battery temperature control mode, or By shifting from the internal cycle operation to the internal cycle/battery temperature control mode and controlling the auxiliary expansion valve 73 and the heat medium heater 66, the temperature Tb of the battery 55 is adjusted to the target battery temperature TBO within the specified temperature range. do.

(7-5)除湿暖房/バッテリ温調モード
次に、前述した除湿暖房運転においてバッテリ55の温度を調整することが必要となった場合、コントローラ32は除湿暖房/バッテリ温調モードを実行する。この除湿暖房/バッテリ温調モードでは、コントローラ32は前述した図4の除湿暖房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図10はこの除湿暖房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-5) Dehumidification Heating/Battery Temperature Control Mode Next, when the temperature of the battery 55 needs to be adjusted in the above-described dehumidification heating operation, the controller 32 executes the dehumidification heating/battery temperature control mode. In this dehumidification/heating/battery temperature control mode, the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the dehumidification/heating operation of FIG. The circulation pump 62 is also operated to bring about a state in which heat is exchanged between the refrigerant and the heat medium in the refrigerant-heat medium heat exchanger 64 . FIG. 10 shows the flow of refrigerant in the refrigerant circuit R (solid line arrows) and the flow of the heat medium in the battery temperature adjustment device 61 (broken line arrows) in this dehumidifying heating/battery temperature control mode.

これにより、放熱器4を出た凝縮冷媒の一部が分岐部材B1にて分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Fから出てそのうちの一部が分岐部材B2から冷媒配管13Bを経て室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された冷媒の内の一部が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。また、放熱器4から出た凝縮冷媒の残りは、分岐部材B1から冷媒配管13Jに流れ、室外膨張弁6で減圧された後、室外熱交換器7で蒸発し、外気から吸熱する。 As a result, part of the condensed refrigerant that has exited the radiator 4 is branched by the branch member B1, and the branched refrigerant flows through the solenoid valve 22 into the refrigerant pipe 13F, and exits from the refrigerant pipe 13F. part flows from the branch member B2 through the refrigerant pipe 13B to the indoor expansion valve 8, and the rest of the refrigerant flows to the outdoor expansion valve 6. That is, a part of the branched refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate. At this time, moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified. Since the air dehumidified by the heat absorber 9 is reheated in the course of passing through the radiator 4, dehumidification heating is performed in the passenger compartment. The remainder of the condensed refrigerant discharged from the radiator 4 flows from the branch member B1 into the refrigerant pipe 13J, is decompressed by the outdoor expansion valve 6, and then evaporates in the outdoor heat exchanger 7 to absorb heat from the outside air.

一方、冷媒配管13Fを出た冷媒の残りは分岐部材B2にて分岐配管72に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、室外熱交換器7から出た冷媒は冷媒配管13D、電磁弁21、冷媒配管13C及びアキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。 On the other hand, the rest of the refrigerant exiting the refrigerant pipe 13F flows into the branch pipe 72 through the branch member B2, is decompressed by the auxiliary expansion valve 73, and then evaporates in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. . Since the coolant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. Refrigerant coming out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and refrigerant coming out of the outdoor heat exchanger 7 flows through the refrigerant pipe 13D, the solenoid valve 21, the refrigerant pipe 13C and the accumulator 12. Refrigerant exiting the refrigerant-heat medium heat exchanger 64 is also sucked into the compressor 2 through the refrigerant pipe 74 through the accumulator 12 .

コントローラ32はこの除湿暖房/バッテリ温調モードでも、前述した暖房/バッテリ温調モードの場合と同様に、除湿暖房運転に代え、又は、除湿暖房運転と除湿暖房/バッテリ温調モードを切り換え、或いは、除湿暖房運転から除湿暖房/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを規定温度範囲内である目標バッテリ温度TBOに調整する。 Even in this dehumidification heating/battery temperature control mode, the controller 32 switches between the dehumidification heating operation and the dehumidification heating/battery temperature control mode in the same way as in the heating/battery temperature control mode described above, or switches between the dehumidification heating operation and the dehumidification heating/battery temperature control mode. , the temperature Tb of the battery 55 is adjusted to the target battery temperature TBO within the specified temperature range by shifting from the dehumidification heating operation to the dehumidification heating/battery temperature control mode and controlling the auxiliary expansion valve 73 and the heat medium heater 66. do.

(7-6)バッテリ温調単独モード
次に、車室内の空調を行うこと無く、バッテリ55の温調を行うバッテリ温調単独モードについて説明する。図11はこのバッテリ温調単独モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。コントローラ32圧縮機2を運転し、室外送風機15も運転する。また、室内膨張弁8を全閉とし、補助膨張弁37は開いて冷媒を減圧する状態とする。尚、室外膨張弁6は全開とする。更に、コントローラ32は電磁弁17、電磁弁21を閉じ、室内送風機27を停止する。そして、循環ポンプ62を運転し、冷媒-熱媒体熱交換器64において冷媒と熱媒体を熱交換させる状態とする。
(7-6) Battery Temperature Control Single Mode Next, the battery temperature control single mode for controlling the temperature of the battery 55 without air-conditioning the vehicle interior will be described. FIG. 11 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium in the battery temperature control device 61 (broken line arrow) in the independent battery temperature control mode. The controller 32 operates the compressor 2 and also operates the outdoor fan 15 . Also, the indoor expansion valve 8 is fully closed, and the auxiliary expansion valve 37 is opened to decompress the refrigerant. The outdoor expansion valve 6 is fully opened. Further, the controller 32 closes the solenoid valves 17 and 21 and stops the indoor blower 27 . Then, the circulation pump 62 is operated to bring about a state in which heat is exchanged between the refrigerant and the heat medium in the refrigerant-heat medium heat exchanger 64 .

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから分岐部材B1を経て冷媒配管13Jに入り、室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので、冷媒は冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7に着霜が成長していた場合は、このときの放熱作用で室外熱交換器7は除霜されることになる。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 passes through the radiator 4 , enters the refrigerant pipe 13</b>J through the branch member B<b>1 , and reaches the outdoor expansion valve 6 . At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7 as it is, is air-cooled by the outdoor air blown by the outdoor fan 15, and is condensed and liquefied. If frost builds up on the outdoor heat exchanger 7, the outdoor heat exchanger 7 is defrosted by the heat radiation action at this time.

室外熱交換器7を出た冷媒は冷媒配管13Aに入り、分岐部材B2に至る。即ち、この場合も分岐部材B2の位置は冷媒回路Rの高圧側に設定されたかたちとなる。このとき室内膨張弁8は全閉とされているので、室外熱交換器7を出た全ての冷媒は分岐部材B2から分岐配管72を経て補助膨張弁73に至る。冷媒はこの補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は冷媒配管74、冷媒配管13C、及び、アキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13A and reaches the branch member B2. That is, the position of the branch member B2 is set on the high pressure side of the refrigerant circuit R also in this case. Since the indoor expansion valve 8 is fully closed at this time, all the refrigerant that has left the outdoor heat exchanger 7 reaches the auxiliary expansion valve 73 via the branch pipe 72 from the branch member B2. After being decompressed by the auxiliary expansion valve 73, the refrigerant flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and evaporates. At this time, it exerts an endothermic action. The refrigerant evaporated in this refrigerant flow path 64B passes through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in sequence and is sucked into the compressor 2, repeating circulation.

一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て加熱され(熱媒体加熱ヒータ66が発熱している場合)、熱媒体配管68内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。熱媒体加熱ヒータ66で加熱され、及び/又は、冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55と熱交換した後、循環ポンプ62に吸い込まれる循環を繰り返す(図11に破線矢印で示す)。 On the other hand, the heat medium discharged from the circulation pump 62 is heated through the heat medium heater 66 (when the heat medium heater 66 is generating heat), and passes through the heat medium pipe 68 to the refrigerant-heat medium heat exchanger 64. It reaches the heat medium flow path 64A, where heat is absorbed by the refrigerant that evaporates in the refrigerant flow path 64B, and the heat medium is cooled. The heat medium heated by the heat medium heater 66 and/or cooled by the heat absorption action of the refrigerant exits the refrigerant-heat medium heat exchanger 64, reaches the battery 55, and after heat exchange with the battery 55, The circulation sucked by the circulation pump 62 is repeated (indicated by the dashed arrow in FIG. 11).

コントローラ32はこのバッテリ温調単独モードでも、前述した暖房/バッテリ温調モードの場合と同様に、補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを規定温度範囲内である目標バッテリ温度TBOに調整するものである。 The controller 32 controls the auxiliary expansion valve 73 and the heat medium heater 66 in this battery temperature control independent mode as well as in the heating/battery temperature control mode described above to keep the temperature Tb of the battery 55 within the specified temperature range. is adjusted to the target battery temperature TBO within.

(8)分岐部材B2の具体的な構造、室内膨張弁8及び補助膨張弁73等の配置接続構造
次に、図12、図13を参照しながら、前述した分岐部材B2(分岐部)の具体的な構造と、冷媒配管13B(吸熱器入口側回路)、分岐配管72(分岐回路)、冷媒配管13A、室内膨張弁8及び補助膨張弁73の配置接続構造について説明する。
(8) Specific structure of the branching member B2, layout and connection structure of the indoor expansion valve 8, the auxiliary expansion valve 73, etc. Next, with reference to FIGS. , and the arrangement and connection structure of the refrigerant pipe 13B (heat absorber inlet side circuit), the branch pipe 72 (branch circuit), the refrigerant pipe 13A, the indoor expansion valve 8, and the auxiliary expansion valve 73 will be described.

図12は分岐部材B2と室内膨張弁8、補助膨張弁73部分の平面図、図13は正面図をそれぞれ示している。分岐部材B2は金属製のブロックから構成されており、この分岐部材B2には第1の冷媒入口IN1及び第2の冷媒入口IN2と、内部でそれらに連通した第1の冷媒出口OUT1及び第2の冷媒出口OUT2を有している。そして、第1の冷媒入口IN1に冷媒配管13Fが接続され、第2の冷媒入口IN2に冷媒配管13Aが接続されている。 12 is a plan view of the branch member B2, the indoor expansion valve 8, and the auxiliary expansion valve 73, and FIG. 13 is a front view. The branch member B2 is composed of a metal block, and the branch member B2 has a first refrigerant inlet IN1 and a second refrigerant inlet IN2, and a first refrigerant outlet OUT1 and a second refrigerant outlet OUT1 communicating with them inside. of the refrigerant outlet OUT2. A refrigerant pipe 13F is connected to the first refrigerant inlet IN1, and a refrigerant pipe 13A is connected to the second refrigerant inlet IN2.

第1の冷媒出口OUT1には冷媒配管13Bが接続され、第2の冷媒出口OUT2には分岐配管72が接続されているが、図13に示されるように冷媒配管13Bは分岐部材B2の第1の冷媒出口OUT1から立ち上がっている。そして、室内膨張弁8は冷媒配管13Bのうち吸熱器9よりも分岐部材B2に近い側に接続されており、これにより、室内膨張弁8は分岐部材B2よりも高い位置に配置されている。 A refrigerant pipe 13B is connected to the first refrigerant outlet OUT1, and a branch pipe 72 is connected to the second refrigerant outlet OUT2. is rising from the refrigerant outlet OUT1. The indoor expansion valve 8 is connected to a side of the refrigerant pipe 13B closer to the branch member B2 than the heat absorber 9, so that the indoor expansion valve 8 is arranged at a position higher than the branch member B2.

また、図13に示されるように分岐配管72も分岐部材B2の第2の冷媒出口OUT2から立ち上がっており、補助膨張弁73も分岐配管72のうち冷媒-熱媒体熱交換器64よりも分岐部材B2に近い側に接続されている。これにより、補助膨張弁73も分岐部材B2よりも高い位置に配置されている。 Further, as shown in FIG. 13, the branch pipe 72 also rises from the second refrigerant outlet OUT2 of the branch member B2, and the auxiliary expansion valve 73 is also a branch member of the branch pipe 72 rather than the refrigerant-heat medium heat exchanger 64. It is connected to the side closer to B2. As a result, the auxiliary expansion valve 73 is also arranged at a position higher than the branch member B2.

このような構成としたことで、前述した除湿暖房運転、内部サイクル運転、除湿冷房運転及び冷房運転において補助膨張弁73を全閉とし、冷媒配管13Fや冷媒配管13Bからの冷媒を室内膨張弁8に流す場合に、分岐部材B2と補助膨張弁73との間の分岐配管72内の容積が小さくなり、そこに滞留する冷媒とオイルの量が少なくなると共に、分岐部材B2と補助膨張弁73との間の分岐配管72内に冷媒とオイルが溜まり難くなる。 With such a configuration, the auxiliary expansion valve 73 is fully closed in the dehumidifying heating operation, the internal cycle operation, the dehumidifying cooling operation, and the cooling operation described above, and the refrigerant from the refrigerant pipe 13F or the refrigerant pipe 13B is supplied to the indoor expansion valve 8. , the volume in the branch pipe 72 between the branch member B2 and the auxiliary expansion valve 73 becomes smaller, the amount of the refrigerant and the oil remaining therein becomes smaller, and the branch member B2 and the auxiliary expansion valve 73 become Refrigerant and oil are less likely to accumulate in the branch pipe 72 between .

また、前述した暖房/バッテリ温調モード及びバッテリ温調単独モードにおいて室内膨張弁8を全閉とし、冷媒配管13Fや冷媒配管13Bからの冷媒を補助膨張弁73に流す場合に、分岐部材B2と室内膨張弁8との間の冷媒配管13B内の容積が小さくなり、そこに滞留する冷媒とオイルの量が少なくなると共に、分岐部材B2と室内膨張弁8との間の冷媒配管13B内に冷媒とオイルが溜まり難くなる。 In addition, when the indoor expansion valve 8 is fully closed in the heating/battery temperature control mode and the battery temperature control single mode described above and the refrigerant from the refrigerant pipe 13F or the refrigerant pipe 13B flows to the auxiliary expansion valve 73, the branch member B2 and The volume in the refrigerant pipe 13B between the indoor expansion valve 8 becomes smaller, the amount of the refrigerant and oil remaining there decreases, and the refrigerant in the refrigerant pipe 13B between the branch member B2 and the indoor expansion valve 8 increases. It becomes difficult for oil to accumulate.

このように、室内膨張弁8を冷媒配管13Bのうち吸熱器9よりも分岐部材B2に近い側に配置し、補助膨張弁73を分岐配管72のうち冷媒-熱媒体熱交換器64よりも分岐部材B2に近い側に配置すれば、分岐部材B2と室内膨張弁8との間の冷媒配管13Bの容積と、分岐部材B2と補助膨張弁73との間の分岐配管72の容積を縮小させることができるようになる。 In this way, the indoor expansion valve 8 is arranged closer to the branch member B2 than the heat absorber 9 in the refrigerant pipe 13B, and the auxiliary expansion valve 73 is branched from the branch pipe 72 more than the refrigerant-heat medium heat exchanger 64. If it is arranged on the side closer to the member B2, the volume of the refrigerant pipe 13B between the branch member B2 and the indoor expansion valve 8 and the volume of the branch pipe 72 between the branch member B2 and the auxiliary expansion valve 73 can be reduced. will be able to

これにより、補助膨張弁73を全閉とした場合に、分岐部材B2と補助膨張弁73との間の分岐配管72内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、オイル循環率の低下を防止し、圧縮機2の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 As a result, when the auxiliary expansion valve 73 is fully closed, the amount of the refrigerant remaining in the branch pipe 72 between the branch member B2 and the auxiliary expansion valve 73 and the oil dissolved therein is remarkably reduced. It is possible to prevent a decrease in the oil circulation rate, improve the reliability of the compressor 2, and prevent an increase in the amount of refrigerant required and the amount of oil required.

更に、室内膨張弁8を全閉とした場合にも、分岐部材B2と室内膨張弁8との間の冷媒配管13B内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、同様にオイル循環率の低下を防止し、圧縮機2の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 Furthermore, even when the indoor expansion valve 8 is fully closed, the amount of the refrigerant remaining in the refrigerant pipe 13B between the branch member B2 and the indoor expansion valve 8 and the oil dissolved therein is remarkably reduced. Similarly, it is possible to prevent a decrease in the oil circulation rate, improve the reliability of the compressor 2, and prevent an increase in the required refrigerant amount and the required oil amount.

特に、実施例の如く冷媒入口IN1と第1及び第2の冷媒出口OUT1、OUT2を有した分岐部材B2から分岐部を構成し、冷媒配管13Bを分岐部材B2の第1の冷媒出口OUT1に接続して当該分岐部材B2から立ち上がるようにし、室内膨張弁8を分岐部材B2よりも高い位置に配置すると共に、分岐配管72を分岐部材B2の第2の冷媒出口OUT2に接続して当該分岐部材B2から立ち上がるようにし、補助膨張弁73を分岐部材B2よりも高い位置に配置するようにすることで、分岐部材B2と室内膨張弁8との間の冷媒配管13B、及び、分岐部材B2と補助膨張弁73との間の分岐配管72に冷媒とオイルが溜まり難くなり、オイル循環率の低下をより一層効果的に解消することができるようになる。 In particular, as in the embodiment, a branching member B2 having a refrigerant inlet IN1 and first and second refrigerant outlets OUT1 and OUT2 constitutes a branching portion, and the refrigerant pipe 13B is connected to the first refrigerant outlet OUT1 of the branching member B2. The indoor expansion valve 8 is arranged at a position higher than the branch member B2, and the branch pipe 72 is connected to the second refrigerant outlet OUT2 of the branch member B2 so as to rise from the branch member B2. By arranging the auxiliary expansion valve 73 at a position higher than the branch member B2, the refrigerant pipe 13B between the branch member B2 and the indoor expansion valve 8, and the branch member B2 and the auxiliary expansion valve Refrigerant and oil are less likely to accumulate in the branch pipe 72 between the valve 73, and the decrease in the oil circulation rate can be more effectively eliminated.

(9)分岐部材B1の具体的な構造、室外膨張弁6及び電磁弁22等の配置接続構造
次に、図14、図15を参照しながら、前述した分岐部材B1(もう一つの分岐部材。もう一つの分岐部)の具体的な構造と、冷媒配管13E、冷媒配管13J(室外熱交換器入口側回路)、冷媒配管13F(バイパス回路)、室外膨張弁6及び電磁弁22(除湿弁)の配置接続構造について説明する。
(9) Specific Structure of Branch Member B1, Arrangement and Connection Structure of Outdoor Expansion Valve 6, Electromagnetic Valve 22, etc. Next, with reference to FIGS. another branch), the refrigerant pipe 13E, the refrigerant pipe 13J (outdoor heat exchanger inlet side circuit), the refrigerant pipe 13F (bypass circuit), the outdoor expansion valve 6 and the electromagnetic valve 22 (dehumidification valve) will be described.

図14は分岐部材B1と室外膨張弁6、電磁弁22部分の平面図、図15は正面図をそれぞれ示している。分岐部材B1も金属製のブロックから構成されており、この分岐部材B1には冷媒入口INと、内部でそれに連通した第1の冷媒出口OUT1及び第2の冷媒出口OUT2を有している。そして、冷媒入口INに冷媒配管13Eが接続されている。 14 is a plan view of the branch member B1, the outdoor expansion valve 6, and the electromagnetic valve 22, and FIG. 15 is a front view. The branch member B1 is also made of a metal block, and has a refrigerant inlet IN and a first refrigerant outlet OUT1 and a second refrigerant outlet OUT2 internally communicating with the refrigerant inlet IN. A refrigerant pipe 13E is connected to the refrigerant inlet IN.

分岐部材B1の第1の冷媒出口OUT1には冷媒配管13Jが接続され、第2の冷媒出口OUT2には冷媒配管13Fが接続されているが、図15に示されるように冷媒配管13Jは分岐部材B1の第1の冷媒出口OUT1から立ち上がっている。そして、室外膨張弁6は冷媒配管13Jのうち室外熱交換器7よりも分岐部材B1に近い側に接続されており、これにより、室外膨張弁6は分岐部材B1よりも高い位置に配置されている。 A refrigerant pipe 13J is connected to the first refrigerant outlet OUT1 of the branch member B1, and a refrigerant pipe 13F is connected to the second refrigerant outlet OUT2. It rises from the first refrigerant outlet OUT1 of B1. The outdoor expansion valve 6 is connected to a side of the refrigerant pipe 13J closer to the branch member B1 than the outdoor heat exchanger 7, so that the outdoor expansion valve 6 is arranged at a position higher than the branch member B1. there is

また、図15に示されるように冷媒配管13Fも分岐部材B1の第2の冷媒出口OUT2から立ち上がっており、電磁弁22も冷媒配管13Fのうち分岐部材B2や室内膨張弁8よりも分岐部材B1に近い側に接続されている。これにより、電磁弁22も分岐部材B1よりも高い位置に配置されている。 Further, as shown in FIG. 15, the refrigerant pipe 13F also rises from the second refrigerant outlet OUT2 of the branch member B1, and the solenoid valve 22 is also connected to the branch member B1 rather than the branch member B2 and the indoor expansion valve 8 in the refrigerant pipe 13F. connected to the side closest to the As a result, the electromagnetic valve 22 is also arranged at a position higher than the branch member B1.

このような構成としたことで、前述した暖房運転において電磁弁22を閉じ、冷媒配管13Eからの冷媒を室外膨張弁6に流す場合に、分岐部材B1と電磁弁22との間の冷媒配管13F内の容積が小さくなり、そこに滞留する冷媒とオイルの量が少なくなると共に、分岐部材B1と電磁弁22との間の冷媒配管13F内に冷媒とオイルが溜まり難くなる。 With such a configuration, when the solenoid valve 22 is closed in the heating operation described above and the refrigerant from the refrigerant pipe 13E flows to the outdoor expansion valve 6, the refrigerant pipe 13F between the branch member B1 and the solenoid valve 22 The internal volume becomes smaller, the amount of refrigerant and oil staying therein is reduced, and the refrigerant and oil are less likely to accumulate in the refrigerant pipe 13F between the branch member B1 and the solenoid valve 22.

また、前述した内部サイクル運転及び内部サイクル/バッテリ温調モードにおいて室外膨張弁6を全閉とした場合にも、分岐部材B1と室外膨張弁6との間の冷媒配管13Jの容積が小さくなると共に、そこに冷媒とオイルが溜まり難くなる。 Further, even when the outdoor expansion valve 6 is fully closed in the internal cycle operation and the internal cycle/battery temperature control mode described above, the volume of the refrigerant pipe 13J between the branch member B1 and the outdoor expansion valve 6 becomes smaller and , it becomes difficult for refrigerant and oil to accumulate there.

このように、室外膨張弁6を冷媒配管13Jのうち室外熱交換器7よりも分岐部材B1に近い側に配置し、電磁弁22を冷媒配管13Fのうち分岐部材B2や室内膨張弁8よりも分岐部材B1に近い側に配置すれば、分岐部材B1と室外膨張弁6との間の冷媒配管13Jの容積と、分岐部材B1と電磁弁22との間の冷媒配管13Fの容積を縮小させることができるようになる。 Thus, the outdoor expansion valve 6 is arranged closer to the branch member B1 than the outdoor heat exchanger 7 in the refrigerant pipe 13J, and the solenoid valve 22 is arranged closer to the branch member B2 and the indoor expansion valve 8 in the refrigerant pipe 13F. If it is arranged on the side closer to the branch member B1, the volume of the refrigerant pipe 13J between the branch member B1 and the outdoor expansion valve 6 and the volume of the refrigerant pipe 13F between the branch member B1 and the solenoid valve 22 can be reduced. will be able to

これにより、電磁弁22を閉じた場合に、分岐部材B1と電磁弁22との間の冷媒配管13F内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、オイル循環率の低下を防止し、圧縮機2の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 As a result, when the solenoid valve 22 is closed, the amount of the refrigerant remaining in the refrigerant pipe 13F between the branch member B1 and the solenoid valve 22 and the oil dissolved therein is remarkably reduced, thereby increasing the oil circulation rate. It is possible to prevent a decrease, improve the reliability of the compressor 2, and prevent an increase in the required refrigerant amount and the required oil amount.

更に、室外膨張弁6を全閉とした場合にも、分岐部材B1と室外膨張弁6との間の冷媒配管13J内に滞留する冷媒とそれに相溶されたオイルの量を著しく低減させて、同様にオイル循環率の低下を防止し、圧縮機2の信頼性を向上させることができるようになると共に、必要冷媒量及び必要オイル量の増加も防ぐことができるようになる。 Furthermore, even when the outdoor expansion valve 6 is fully closed, the amount of the refrigerant remaining in the refrigerant pipe 13J between the branch member B1 and the outdoor expansion valve 6 and the oil dissolved therein is remarkably reduced. Similarly, it is possible to prevent a decrease in the oil circulation rate, improve the reliability of the compressor 2, and prevent an increase in the required refrigerant amount and the required oil amount.

特に、実施例の如く冷媒入口INと第1及び第2の冷媒出口OUT1、OUT2を有した分岐部材B1からもう一つの分岐部を構成し、冷媒配管13Jを分岐部材B1の第1の冷媒出口OUT1に接続して当該分岐部材B1から立ち上がるようにし、室外膨張弁6を分岐部材B1よりも高い位置に配置すると共に、冷媒配管13Fを分岐部材B1の第2の冷媒出口OUT2に接続して当該分岐部材B1から立ち上がるようにし、電磁弁22を分岐部材B1よりも高い位置に配置するようにすることで、分岐部材B1と室外膨張弁6との間の冷媒配管13J、及び、分岐部材B1と電磁弁22との間の冷媒配管13Fに冷媒とオイルが溜まり難くなり、オイル循環率の低下をより一層効果的に解消することができるようになる。 In particular, as in the embodiment, the branch member B1 having the refrigerant inlet IN and the first and second refrigerant outlets OUT1 and OUT2 constitutes another branch, and the refrigerant pipe 13J is connected to the first refrigerant outlet of the branch member B1. The outdoor expansion valve 6 is arranged at a position higher than the branch member B1, and the refrigerant pipe 13F is connected to the second refrigerant outlet OUT2 of the branch member B1 so as to rise from the branch member B1. By standing up from the branch member B1 and arranging the electromagnetic valve 22 at a position higher than the branch member B1, the refrigerant pipe 13J between the branch member B1 and the outdoor expansion valve 6 and the branch member B1 and Refrigerant and oil are less likely to accumulate in the refrigerant pipe 13F between the solenoid valve 22, and the decrease in the oil circulation rate can be more effectively eliminated.

尚、実施例で説明した冷媒回路Rやバッテリ温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 It goes without saying that the configurations of the refrigerant circuit R and the battery temperature adjusting device 61 described in the embodiment are not limited thereto, and can be changed without departing from the gist of the present invention.

B1 分岐部材(もう一つの分岐部材。もう一つの分岐部)
B2 分岐部材(分岐部)
1 車両用空気調和装置
2 圧縮機
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
13B 冷媒配管(吸熱器入口側回路)
13F 冷媒配管(バイパス回路)
13J 冷媒配管(室外熱交換器入口側回路)
22 電磁弁(除湿弁)
32 コントローラ
55 バッテリ
61 バッテリ温度調整装置
62 循環ポンプ
64 冷媒-熱媒体熱交換器
66 熱媒体加熱ヒータ(加熱装置)
72 分岐配管(分岐回路)
73 補助膨張弁
B1 branching member (another branching member, another branching part)
B2 branching member (branching part)
1 vehicle air conditioner 2 compressor 4 radiator 6 outdoor expansion valve 7 outdoor heat exchanger 8 indoor expansion valve 9 heat absorber 13B refrigerant pipe (heat absorber inlet side circuit)
13F refrigerant pipe (bypass circuit)
13J refrigerant pipe (outdoor heat exchanger inlet side circuit)
22 solenoid valve (dehumidification valve)
32 controller 55 battery 61 battery temperature regulator 62 circulation pump 64 refrigerant-heat medium heat exchanger 66 heat medium heater (heating device)
72 branch piping (branch circuit)
73 auxiliary expansion valve

Claims (8)

冷媒を圧縮する圧縮機と、車室外に設けられた室外熱交換器と、前記冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、該吸熱器に流入する前記冷媒を減圧するための室内膨張弁を有して構成され、所定量の前記冷媒とオイルが封入された冷媒回路と、
制御装置を備え、前記車室内を空調する車両用空気調和装置において、
前記冷媒回路の高圧側に設定された分岐部と、
該分岐部から前記吸熱器に至り、前記室内膨張弁が設けられた吸熱器入口側回路と、
前記室外熱交換器の冷媒出口側から前記分岐部に至る冷媒配管と、
該冷媒配管に設けられ、前記吸熱器入口側回路側が順方向とされた逆止弁と、
前記室外熱交換器の冷媒入口側に設定されたもう一つの分岐部と、
該もう一つの分岐部と前記分岐部を連通して、前記室外熱交換器及び前記逆止弁をバイパスするバイパス回路と、
熱媒体を循環させて車両に搭載されたバッテリの温度を調整するためのバッテリ温度調整装置を備え、
該バッテリ温度調整装置は、
前記冷媒と前記熱媒体を熱交換させるための冷媒-熱媒体熱交換器と、
前記分岐部から前記冷媒-熱媒体熱交換器に至る分岐回路と、
該分岐回路に設けられ、前記冷媒-熱媒体熱交換器に流入する前記冷媒を減圧するための補助膨張弁を有し、
前記制御装置は、前記室内膨張弁又は前記補助膨張弁を全閉とした運転を実行可能とされており、
前記室内膨張弁は、前記吸熱器入口側回路のうち前記吸熱器よりも前記分岐部に近い側に配置され、前記補助膨張弁は、前記分岐回路のうち前記冷媒-熱媒体熱交換器よりも前記分岐部に近い側に配置されると共に、
冷媒入口と第1及び第2の冷媒出口を有して前記もう一つの分岐部を構成するもう一つの分岐部材と、
前記バイパス回路に設けられた除湿弁を備え、
前記バイパス回路は前記もう一つの分岐部材の第2の冷媒出口に接続されて当該もう一つの分岐部材から立ち上がり、前記除湿弁は前記もう一つの分岐部材よりも高い位置に配置されることを特徴とする車両用空気調和装置。
A compressor that compresses a refrigerant, an outdoor heat exchanger provided outside the vehicle, a heat absorber that absorbs heat from the refrigerant and cools the air that is supplied to the vehicle, and the refrigerant that flows into the heat absorber. a refrigerant circuit configured to have an indoor expansion valve for reducing the pressure and containing a predetermined amount of the refrigerant and oil;
In a vehicle air conditioner that includes a control device and air-conditions the interior of the vehicle,
a branching portion set on the high-pressure side of the refrigerant circuit;
a heat absorber inlet side circuit extending from the branch to the heat absorber and provided with the indoor expansion valve;
a refrigerant pipe extending from the refrigerant outlet side of the outdoor heat exchanger to the branch portion;
a check valve provided in the refrigerant pipe and having a forward direction toward the heat absorber inlet circuit side;
another branch set on the refrigerant inlet side of the outdoor heat exchanger;
a bypass circuit that communicates with the other branch portion and the branch portion to bypass the outdoor heat exchanger and the check valve;
Equipped with a battery temperature adjustment device for circulating a heat medium to adjust the temperature of the battery mounted on the vehicle,
The battery temperature regulator comprises:
a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium;
a branch circuit from the branch portion to the refrigerant-heat medium heat exchanger;
an auxiliary expansion valve provided in the branch circuit for decompressing the refrigerant flowing into the refrigerant-heat medium heat exchanger;
The control device is capable of executing operation with the indoor expansion valve or the auxiliary expansion valve fully closed,
The indoor expansion valve is arranged closer to the branch portion than the heat absorber in the heat absorber inlet circuit, and the auxiliary expansion valve is arranged in the branch circuit closer to the refrigerant-heat medium heat exchanger. While being arranged on the side close to the branching part,
another branching member having a refrigerant inlet and first and second refrigerant outlets and constituting the another branching part;
A dehumidification valve provided in the bypass circuit,
The bypass circuit is connected to a second refrigerant outlet of the another branch member and rises from the another branch member, and the dehumidification valve is arranged at a position higher than the another branch member. and a vehicle air conditioner.
前記制御装置は、前記補助膨張弁を全閉とし、前記圧縮機から吐出された前記冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を前記分岐部から前記吸熱器入口側回路に流し、前記室内膨張弁にて減圧した後、前記吸熱器にて吸熱させる冷房運転を実行することを特徴とする請求項1に記載の車両用空気調和装置。 The control device fully closes the auxiliary expansion valve, causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger, and transfers the radiated refrigerant from the branch to the heat absorber inlet side circuit. 2. The vehicle air conditioning apparatus according to claim 1, wherein after the air is flowed and decompressed by the indoor expansion valve, a cooling operation is performed in which heat is absorbed by the heat absorber. 前記制御装置は、前記室内膨張弁を全閉とし、前記圧縮機から吐出された前記冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を前記分岐部から前記分岐回路に流し、前記補助膨張弁にて減圧した後、前記冷媒-熱媒体熱交換器にて吸熱させるバッテリ温調単独モードを実行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 The control device fully closes the indoor expansion valve, causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger, flows the radiated refrigerant from the branch portion to the branch circuit, and 3. The vehicle air conditioner according to claim 1, wherein a battery temperature control independent mode is executed in which heat is absorbed by the refrigerant-heat medium heat exchanger after the pressure is reduced by the auxiliary expansion valve. 冷媒入口と第1及び第2の冷媒出口を有して前記分岐部を構成する分岐部材を備え、
前記吸熱器入口側回路は前記分岐部材の第1の冷媒出口に接続されて当該分岐部材から立ち上がり、前記室内膨張弁は前記分岐部材よりも高い位置に配置されると共に、
前記分岐回路は前記分岐部材の第2の冷媒出口に接続されて当該分岐部材から立ち上がり、前記補助膨張弁は前記分岐部材よりも高い位置に配置されることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
a branching member having a refrigerant inlet and first and second refrigerant outlets to form the branching part;
The heat absorber inlet side circuit is connected to a first refrigerant outlet of the branch member and rises from the branch member, and the indoor expansion valve is arranged at a position higher than the branch member,
The branch circuit is connected to a second refrigerant outlet of the branch member and rises from the branch member, and the auxiliary expansion valve is arranged at a position higher than the branch member. 4. The vehicle air conditioner according to any one of 3.
前記冷媒回路は、前記冷媒を放熱させて前記車室内に供給する空気を加熱するための放熱器と、前記放熱器から出た前記冷媒を前記室外熱交換器に流すための室外熱交換器入口側回路と、該室外熱交換器入口側回路に設けられ、前記室外熱交換器に流入する前記冷媒を減圧するための室外膨張弁を有し、
前記バイパス回路は、前記室外膨張弁の冷媒上流側に設定された前記もう一つの分岐部から分岐し、前記放熱器から出た前記冷媒を前記室内膨張弁に流すと共に、
前記制御装置は、前記室外膨張弁又は前記除湿弁により流路を閉止した運転を実行可能とされており、
前記室外膨張弁は、前記室外熱交換器入口側配管のうち前記室外熱交換器よりも前記もう一つの分岐部に近い側に配置され、前記除湿弁は、前記バイパス回路のうち前記室内膨張弁よりも前記もう一つの分岐部に近い側に配置されていることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
The refrigerant circuit includes a radiator for radiating heat from the refrigerant to heat the air supplied to the vehicle interior, and an outdoor heat exchanger inlet for flowing the refrigerant discharged from the radiator to the outdoor heat exchanger. a side circuit, and an outdoor expansion valve provided in the outdoor heat exchanger inlet side circuit for decompressing the refrigerant flowing into the outdoor heat exchanger ,
The bypass circuit is branched from the another branch portion set upstream of the refrigerant of the outdoor expansion valve, and flows the refrigerant discharged from the radiator to the indoor expansion valve,
The control device is capable of executing operation with the flow path closed by the outdoor expansion valve or the dehumidification valve,
The outdoor expansion valve is arranged closer to the other branch than the outdoor heat exchanger in the outdoor heat exchanger inlet pipe, and the dehumidification valve is the indoor expansion valve in the bypass circuit. 5. The vehicle air conditioner according to any one of claims 1 to 4, wherein the vehicle air conditioner is arranged on a side closer to the another branch than the second branch.
前記制御装置は、前記除湿弁を閉じ、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記もう一つの分岐部から前記室外膨張弁に流し、該室外膨張弁にて減圧した後、前記室外熱交換器にて吸熱させる暖房運転を実行することを特徴とする請求項5に記載の車両用空気調和装置。 The control device closes the dehumidification valve, causes the refrigerant discharged from the compressor to radiate heat in the radiator, flows the radiated refrigerant from the another branch portion to the outdoor expansion valve, and 6. The vehicle air conditioner according to claim 5, wherein after the pressure is reduced by the expansion valve, a heating operation is performed in which heat is absorbed by the outdoor heat exchanger. 前記制御装置は、前記室外膨張弁を全閉とし、前記除湿弁を開放して前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記もう一つの分岐部から前記バイパス回路に流し、前記室内膨張弁にて減圧した後、前記吸熱器にて吸熱させる除湿運転を実行する請求項5又は請求項6に記載の車両用空気調和装置。 The control device fully closes the outdoor expansion valve, opens the dehumidification valve, causes the refrigerant discharged from the compressor to radiate heat in the radiator, and transfers the heat-dissipated refrigerant to the other branch portion. 7. The vehicle air conditioner according to claim 5 or 6, wherein a dehumidifying operation is performed in which the dehumidifying operation is performed in which the air is flowed from the outlet to the bypass circuit, decompressed by the indoor expansion valve, and then the heat is absorbed by the heat absorber. 前記室外熱交換器入口側回路は前記もう一つの分岐部材の第1の冷媒出口に接続されて当該もう一つの分岐部材から立ち上がり、前記室外膨張弁は前記もう一つの分岐部材よりも高い位置に配置されることを特徴とする請求項5乃至請求項7のうちの何れかに記載の車両用空気調和装置。
The outdoor heat exchanger inlet side circuit is connected to the first refrigerant outlet of the another branch member and rises from the another branch member, and the outdoor expansion valve is positioned higher than the another branch member. 8. The vehicle air conditioner according to any one of claims 5 to 7, wherein the vehicle air conditioner is arranged.
JP2018056100A 2018-03-23 2018-03-23 Vehicle air conditioner Active JP7185412B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018056100A JP7185412B2 (en) 2018-03-23 2018-03-23 Vehicle air conditioner
PCT/JP2019/005637 WO2019181312A1 (en) 2018-03-23 2019-02-15 Vehicle air conditioner
CN201980016607.XA CN111770845A (en) 2018-03-23 2019-02-15 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056100A JP7185412B2 (en) 2018-03-23 2018-03-23 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2019166962A JP2019166962A (en) 2019-10-03
JP7185412B2 true JP7185412B2 (en) 2022-12-07

Family

ID=67986978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056100A Active JP7185412B2 (en) 2018-03-23 2018-03-23 Vehicle air conditioner

Country Status (3)

Country Link
JP (1) JP7185412B2 (en)
CN (1) CN111770845A (en)
WO (1) WO2019181312A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946535B1 (en) * 2020-10-08 2021-10-06 マレリ株式会社 Temperature control system
CN112677732A (en) * 2020-12-29 2021-04-20 潍柴动力股份有限公司 Control method and device of vehicle air conditioning system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145185A (en) 2004-11-25 2006-06-08 Hitachi Ltd Multiple type air conditioner
JP2011105150A (en) 2009-11-18 2011-06-02 Hitachi Ltd Air conditioner for vehicle
JP2013199251A (en) 2012-03-26 2013-10-03 Denso Corp Air-conditioning system for vehicle
JP2014066410A (en) 2012-09-25 2014-04-17 Denso Corp Refrigeration cycle device
JP2014074516A (en) 2012-10-03 2014-04-24 Denso Corp Refrigeration cycle device and pilot type opening/closing valve
JP2014094677A (en) 2012-11-09 2014-05-22 Sanden Corp Air conditioning unit for vehicle
JP2014126226A (en) 2012-12-25 2014-07-07 Denso Corp Refrigeration cycle device
JP2015058774A (en) 2013-09-18 2015-03-30 サンデン株式会社 Vehicular air conditioner
JP2015114049A (en) 2013-12-11 2015-06-22 ダイキン工業株式会社 Refrigerant flow passage switching unit and flow passage switching assembly unit
JP2016068687A (en) 2014-09-29 2016-05-09 サンデンホールディングス株式会社 Air conditioning unit for vehicle
JP2016090201A (en) 2014-11-11 2016-05-23 株式会社デンソー Refrigeration cycle device
JP2018184108A (en) 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621727B2 (en) * 1984-08-09 1994-03-23 株式会社日立製作所 Air conditioner
JP3726552B2 (en) * 1999-05-06 2005-12-14 日産自動車株式会社 Air conditioner for vehicles
CN101929760B (en) * 2009-06-25 2013-01-30 海尔集团公司 Hot water air conditioner
JP2012242020A (en) * 2011-05-20 2012-12-10 Denso Corp Heat pump apparatus
CN202762695U (en) * 2012-09-20 2013-03-06 山东豪马克石油科技有限公司 Lubricating oil processing pipeline oil scavenging device
CN103162475B (en) * 2013-03-22 2015-04-15 青岛海信日立空调系统有限公司 Heat dissipation circulating system of air conditioner
WO2014155980A1 (en) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ Vehicle air conditioner
JP5845225B2 (en) * 2013-10-03 2016-01-20 サンデンホールディングス株式会社 Vehicle air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145185A (en) 2004-11-25 2006-06-08 Hitachi Ltd Multiple type air conditioner
JP2011105150A (en) 2009-11-18 2011-06-02 Hitachi Ltd Air conditioner for vehicle
JP2013199251A (en) 2012-03-26 2013-10-03 Denso Corp Air-conditioning system for vehicle
JP2014066410A (en) 2012-09-25 2014-04-17 Denso Corp Refrigeration cycle device
JP2014074516A (en) 2012-10-03 2014-04-24 Denso Corp Refrigeration cycle device and pilot type opening/closing valve
JP2014094677A (en) 2012-11-09 2014-05-22 Sanden Corp Air conditioning unit for vehicle
JP2014126226A (en) 2012-12-25 2014-07-07 Denso Corp Refrigeration cycle device
JP2015058774A (en) 2013-09-18 2015-03-30 サンデン株式会社 Vehicular air conditioner
JP2015114049A (en) 2013-12-11 2015-06-22 ダイキン工業株式会社 Refrigerant flow passage switching unit and flow passage switching assembly unit
JP2016068687A (en) 2014-09-29 2016-05-09 サンデンホールディングス株式会社 Air conditioning unit for vehicle
JP2016090201A (en) 2014-11-11 2016-05-23 株式会社デンソー Refrigeration cycle device
JP2018184108A (en) 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
CN111770845A (en) 2020-10-13
WO2019181312A1 (en) 2019-09-26
JP2019166962A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6855281B2 (en) Vehicle air conditioner
CN110505968B (en) Air conditioner for vehicle
US11077736B2 (en) Vehicular air conditioner
US11577579B2 (en) Vehicle air-conditioning device
JP7268976B2 (en) Vehicle air conditioner
JP6963405B2 (en) Vehicle air conditioner
JP2019038352A (en) Air conditioner for vehicle
WO2020066719A1 (en) Vehicle air conditioner
CN114126900B (en) Air conditioning equipment for vehicle
JP7185412B2 (en) Vehicle air conditioner
JP6997567B2 (en) Vehicle air conditioner
JP7164986B2 (en) Vehicle air conditioner
JP2019172267A (en) Vehicular air-conditioner
JP7221789B2 (en) Vehicle air conditioner
JP2021035174A (en) Vehicle battery cooling device and vehicle air-conditioning device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7185412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150