JP6350577B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP6350577B2 JP6350577B2 JP2016072724A JP2016072724A JP6350577B2 JP 6350577 B2 JP6350577 B2 JP 6350577B2 JP 2016072724 A JP2016072724 A JP 2016072724A JP 2016072724 A JP2016072724 A JP 2016072724A JP 6350577 B2 JP6350577 B2 JP 6350577B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- pressure
- air conditioner
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
本発明は、空気調和装置に関し、特に、液状の熱源媒体の冷熱や温熱を利用して空調を行う空気調和装置に関するものである。 The present invention relates to an air conditioner, and more particularly to an air conditioner that performs air conditioning using cold or warm heat of a liquid heat source medium.
従来、蒸気圧縮式の冷凍サイクルを行う冷媒回路を備えた空気調和装置では、冷媒回路は一般に、圧縮機と室外熱交換器と膨張機構と室内熱交換器を順に接続することにより構成されている。ここで、室外熱交換器として、冷媒と熱源水(液状の熱源媒体)とが熱交換をする熱交換器を用いた水熱源式の空気調和装置では、室外熱交換器には例えばプレート熱交換器が用いられている(例えば、特許文献1参照)。熱源水は、空気調和装置の外部に設置された冷水塔設備やボイラー設備から水配管を通じて室外熱交換器に供給され、冷媒と熱交換を行った後に冷水塔設備やボイラー設備に戻るようになっている。 Conventionally, in an air conditioner equipped with a refrigerant circuit that performs a vapor compression refrigeration cycle, the refrigerant circuit is generally configured by sequentially connecting a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger. . Here, as an outdoor heat exchanger, a water heat source type air conditioner using a heat exchanger in which heat is exchanged between refrigerant and heat source water (liquid heat source medium), for example, plate heat exchange is used as the outdoor heat exchanger. A device is used (see, for example, Patent Document 1). The heat source water is supplied to the outdoor heat exchanger from the chilled water tower equipment and boiler equipment installed outside the air conditioner through the water pipe, and returns to the chilled water tower equipment and boiler equipment after exchanging heat with the refrigerant. ing.
ところで、室外熱交換器が冷媒と熱源水とが熱交換をするプレート熱交換器である場合、室外熱交換器として冷媒と空気とが熱交換をする空気熱交換器を用いる場合と比べて、室外熱交換器の内容積が室内熱交換器の内容積に対して極めて小さくなる。そのため、冷房運転時に余剰冷媒が多く発生する。余剰冷媒は、特に冷媒の充填量が多くなると発生しやすくなり、余剰冷媒が多くなり過ぎると高圧圧力が上昇しすぎて冷凍サイクルの動作が正常に行われなくなる。 By the way, when the outdoor heat exchanger is a plate heat exchanger that exchanges heat between the refrigerant and the heat source water, compared to the case where an air heat exchanger that exchanges heat between the refrigerant and air is used as the outdoor heat exchanger, The internal volume of the outdoor heat exchanger is extremely small relative to the internal volume of the indoor heat exchanger. Therefore, a large amount of excess refrigerant is generated during the cooling operation. The surplus refrigerant is likely to be generated particularly when the amount of the refrigerant charged is large, and when the surplus refrigerant is excessive, the high-pressure pressure is excessively increased and the operation of the refrigeration cycle is not performed normally.
これに対して、水熱源式の空気調和装置では、冷媒回路の高圧側に余剰冷媒を貯留する容器を設けて冷房運転時の余剰冷媒対策をするのが一般的であった。 On the other hand, in a water heat source type air conditioner, it has been common to provide a container for storing excess refrigerant on the high pressure side of the refrigerant circuit to take measures against excess refrigerant during cooling operation.
しかしながら、余剰冷媒対策として冷媒回路の高圧側に容器を配置する構成では、高圧設計したレシーバが必要であり、部品コストが高くなる問題があった。 However, in the configuration in which the container is arranged on the high-pressure side of the refrigerant circuit as a countermeasure against surplus refrigerant, a receiver with a high-pressure design is required, and there is a problem that the cost of parts increases.
また、高圧容器であるレシーバに冷媒を貯留するためには、レシーバからガスを抜くためのガス抜き弁をレシーバに接続する必要があり、冷媒回路が複雑化してやはりコストが高くなる。 In addition, in order to store the refrigerant in the receiver, which is a high-pressure vessel, it is necessary to connect a gas vent valve for extracting gas from the receiver to the receiver, which complicates the refrigerant circuit and increases the cost.
上記の問題は、室外熱交換器(12)が冷媒と熱源水とが熱交換をするプレート熱交換器である場合のほか、二重管熱交換器など、冷媒と液状の熱源媒体とが熱交換をする熱交換器である場合に生じうる問題である。 In addition to the case where the outdoor heat exchanger (12) is a plate heat exchanger that exchanges heat between the refrigerant and the heat source water, the problem is that the refrigerant and the liquid heat source medium such as a double-tube heat exchanger are heated. This is a problem that may occur when the heat exchanger is to be replaced.
本発明は、このような問題点に鑑みてなされたものであり、その目的は、室外熱交換器(12)として冷媒と液状の熱源媒体とが熱交換をする熱交換器を用いた空気調和装置において、部品コストが高くなったり回路構成が複雑化したりするのを抑えつつ、冷房運転時の余剰冷媒対策を可能にすることである。 The present invention has been made in view of such problems, and an object of the present invention is to use an air conditioner that uses a heat exchanger that exchanges heat between a refrigerant and a liquid heat source medium as an outdoor heat exchanger (12). In the apparatus, it is possible to take measures against excess refrigerant during cooling operation while suppressing an increase in component costs and a complicated circuit configuration.
第1の発明は、圧縮機(11)と室外熱交換器(12)と膨張機構(13,14)と室内熱交換器(15)とを備えて冷媒が循環する冷媒回路(10)を有し、該冷媒回路(10)が冷媒の循環方向を可逆に切り換える切換機構(16)を有し、上記室外熱交換器(12)が冷媒と液状の熱源媒体とが熱交換をする熱交換器であり、室外熱交換器(12)の内容積が室内熱交換器(15)の内容積よりも小さい空気調和装置を前提としている。 The first invention includes a refrigerant circuit (10) that includes a compressor (11), an outdoor heat exchanger (12), an expansion mechanism (13, 14), and an indoor heat exchanger (15), and circulates the refrigerant. The refrigerant circuit (10) has a switching mechanism (16) for reversibly switching the refrigerant circulation direction, and the outdoor heat exchanger (12) is a heat exchanger for exchanging heat between the refrigerant and the liquid heat source medium. der is, the internal volume of the outdoor heat exchanger (12) assumes a small air conditioner than the internal volume of the indoor heat exchanger (15).
そして、この空気調和装置は、高圧流路(17a)と低圧流路(17b)とを有する冷媒/冷媒熱交換器(17)と、圧縮機(11)の吸入側に設けられたアキュムレータ(19)とを備え、上記冷媒/冷媒熱交換器(17)の高圧流路(17a)が上記冷媒回路(10)の液配管(10b)に接続され、上記液配管(10b)から分岐した戻り冷媒通路(20)が圧力調整機構(18)と上記冷媒/冷媒熱交換器(17)の低圧流路(17b)を介して上記アキュムレータ(19)に接続され、冷房運転時にのみ、高圧圧力が目標値よりも上昇しないように圧力調整機構(18)を調整して冷媒をアキュムレータ(19)に戻す余剰冷媒貯留制御を行う制御部(5)を備えていることを特徴としている。 The air conditioner includes a refrigerant / refrigerant heat exchanger (17) having a high pressure channel (17a) and a low pressure channel (17b), and an accumulator (19) provided on the suction side of the compressor (11). ), And the high-pressure flow path (17a) of the refrigerant / refrigerant heat exchanger (17) is connected to the liquid pipe (10b) of the refrigerant circuit (10) and branched from the liquid pipe (10b). The passage (20) is connected to the accumulator (19) via the pressure adjustment mechanism (18) and the low pressure flow path (17b) of the refrigerant / refrigerant heat exchanger (17), and the high pressure is targeted only during cooling operation. It is characterized by having a control part (5) for adjusting the pressure adjustment mechanism (18) so as not to rise above the value and performing surplus refrigerant storage control for returning the refrigerant to the accumulator (19).
この第1の発明では、冷房運転時に高圧圧力が目標値に達すると、上記制御部(5)により、余剰冷媒貯留制御が行われる。余剰冷媒貯留制御では、高圧圧力が目標値よりも上昇しないように圧力調整機構(18)が調整され、冷媒がアキュムレータ(19)に戻される。この余剰冷媒貯留制御時には、余剰の冷媒がアキュムレータに戻されるので、冷媒の充填量が比較的多くなっても高圧圧力が上昇しすぎるのを抑えることが可能であり、冷凍サイクルの動作が正常に行われなくなるのを抑制できる。 In the first aspect of the invention, when the high pressure reaches the target value during the cooling operation, the control section (5) performs surplus refrigerant storage control. In surplus refrigerant storage control, the pressure adjustment mechanism (18) is adjusted so that the high pressure does not rise above the target value, and the refrigerant is returned to the accumulator (19). At the time of this surplus refrigerant storage control, surplus refrigerant is returned to the accumulator, so that it is possible to prevent the high-pressure pressure from rising excessively even if the refrigerant charge amount is relatively large, and the refrigeration cycle operates normally. It can suppress that it is not performed.
第2の発明は、第1の発明において、上記制御部(5)が、冷房運転時に、高圧圧力が目標値に達するまでは液冷媒の過冷却度を一定に維持するように上記圧力調整機構(18)を調整する過冷却制御を行う一方、高圧圧力が目標値に達すると高圧圧力がそれよりも上昇しないように余剰冷媒貯留制御に切り換えることを特徴としている。 In a second aspect based on the first aspect, the control unit (5) is configured so that the supercooling degree of the liquid refrigerant is maintained constant until the high pressure reaches a target value during the cooling operation. While the supercooling control for adjusting (18) is performed, when the high pressure reaches a target value, the control is switched to the surplus refrigerant storage control so that the high pressure does not increase further.
この第2の発明では、冷房運転時には、上記制御部(5)により高圧圧力が目標値に達しているかどうかが判断され、高圧圧力が目標値に達するまでは、上記圧力調整機構(18)を調整することにより、液冷媒の過冷却度を一定に維持する過冷却制御が行われる。このとき、冷媒/冷媒熱交換器(17)は過冷却熱交換器として機能する。一方、高圧圧力が目標値に達すると、上記制御部(5)により、余剰冷媒貯留制御に切り換えられるので、高圧圧力はそれ以上に上昇しない。 In the second aspect of the invention, during the cooling operation, the control unit (5) determines whether or not the high pressure has reached the target value, and the pressure adjustment mechanism (18) is turned on until the high pressure reaches the target value. By adjusting, the supercooling control is performed to keep the supercooling degree of the liquid refrigerant constant. At this time, the refrigerant / refrigerant heat exchanger (17) functions as a supercooling heat exchanger. On the other hand, when the high pressure reaches the target value, the control unit (5) switches to excess refrigerant storage control, so the high pressure does not increase any further.
第3の発明は、第1または第2の発明において、上記制御部(5)は、暖房運転時には、常に液冷媒の過冷却度を一定に維持するように上記圧力調整機構(18)を調整する過冷却制御を行うことを特徴としている。 According to a third invention, in the first or second invention, the control unit (5) adjusts the pressure adjusting mechanism (18) so that the degree of supercooling of the liquid refrigerant is always kept constant during heating operation. It is characterized by performing supercooling control.
この第3の発明では、暖房運転時には、上記圧力調整機構(18)を上記制御部(5)で調整することにより、常に液冷媒の過冷却度を一定に維持する過冷却制御が行われる。つまり、暖房運転時には、冷媒/冷媒熱交換器(17)は常に過冷却熱交換器として機能する。 In the third aspect of the invention, during the heating operation, supercooling control is performed in which the supercooling degree of the liquid refrigerant is always kept constant by adjusting the pressure adjusting mechanism (18) with the control unit (5). That is, during the heating operation, the refrigerant / refrigerant heat exchanger (17) always functions as a supercooling heat exchanger.
本発明によれば、冷房運転時に余剰冷媒が多くなって高圧圧力が上昇しすぎるのを抑えることができ、冷凍サイクルが正常な動作を行わなくなるのを抑制できる。また、本発明では、高圧容器であるレシーバに冷媒を貯留するのとは違って、冷媒回路(10)に一般に設けられるアキュムレータ(19)を使用できる。したがって、レシーバを設けることによるコストの上昇を抑えることができるとともに、それに伴って設けることが必要になるガス抜き弁も設けなくてよいので、その点でもコストの上昇を抑えることが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it can suppress that a surplus refrigerant | coolant increases at the time of air_conditionaing | cooling operation, and a high pressure rises too much, and it can suppress that a refrigerating cycle does not perform normal operation | movement. Further, in the present invention, an accumulator (19) generally provided in the refrigerant circuit (10) can be used, unlike the refrigerant stored in the receiver which is a high-pressure vessel. Accordingly, an increase in cost due to the provision of the receiver can be suppressed, and a gas vent valve that needs to be provided in accordance with the receiver need not be provided, which also makes it possible to suppress an increase in cost.
上記第2の発明によれば、第1の発明と同様の効果を得られることに加えて、冷房運転時に高圧圧力が目標値に達するまでは過冷却制御を行うことにより、高効率の運転を行うことが可能になる。 According to the second aspect of the invention, in addition to obtaining the same effect as the first aspect of the invention, high-efficiency operation is achieved by performing supercooling control until the high pressure reaches the target value during cooling operation. It becomes possible to do.
上記第3の発明によれば、暖房運転時には高圧圧力が上昇しすぎることがないので、常に過冷却制御を行うことにより高効率の運転を行うことが可能になる。 According to the third aspect of the present invention, since the high pressure does not increase excessively during heating operation, it is possible to perform highly efficient operation by always performing supercooling control.
以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本実施形態は、1つの室外ユニット(2)と複数の室内ユニット(3)を備え、室内ユニット(3)が室外ユニット(2)に対して並列に接続された構成の空気調和装置(1)に関するものである。この空気調和装置(1)は、液状の熱媒体である熱源水の冷熱や温熱を利用して室内を空調するように構成されている。 This embodiment is provided with one outdoor unit (2) and a plurality of indoor units (3), and the air conditioner (1) is configured such that the indoor unit (3) is connected in parallel to the outdoor unit (2). It is about. This air conditioner (1) is configured to air-condition the room using the cold and hot heat of heat source water that is a liquid heat medium.
この空気調和装置(1)は、冷媒が循環する冷媒回路(10)を有している。冷媒回路(10)は、冷房運転と暖房運転とを切り換えて行うように冷媒の循環方向を可逆に切り換え可能な回路である。冷媒回路(10)は、圧縮機(11)と室外熱交換器(11)と膨張機構である膨張弁(室外膨張弁(13)及び室内膨張弁(14))と室内熱交換器(15)とを備えている。この空気調和装置(1)は、さらに、冷媒の循環方向を切り換えるための切換機構である四路切換弁(16)と、高圧流路(17a)と低圧流路(17b)とを有する冷媒/冷媒熱交換器(17)と、圧力調整機構である圧力調整弁(18)と、アキュムレータ(19)とを有している。上記膨張弁(13,14)は、室外膨張弁(13)と室内膨張弁(14)とを含んでいる。 The air conditioner (1) has a refrigerant circuit (10) through which refrigerant circulates. The refrigerant circuit (10) is a circuit that can reversibly switch the circulation direction of the refrigerant so that the cooling operation and the heating operation are switched. The refrigerant circuit (10) includes a compressor (11), an outdoor heat exchanger (11), an expansion valve as an expansion mechanism (outdoor expansion valve (13) and indoor expansion valve (14)), and an indoor heat exchanger (15). And. The air conditioner (1) further includes a four-way switching valve (16), which is a switching mechanism for switching the refrigerant circulation direction, and a refrigerant / high-pressure channel (17a) and a low-pressure channel (17b). It has a refrigerant heat exchanger (17), a pressure adjustment valve (18) which is a pressure adjustment mechanism, and an accumulator (19). The expansion valve (13, 14) includes an outdoor expansion valve (13) and an indoor expansion valve (14).
室外ユニット(2)には、上記圧縮機(11)と四路切換弁(16)と室外熱交換器(11)と室外膨張弁(13)と冷媒/冷媒熱交換器(17)とアキュムレータ(19)とが設けられている。各室内ユニット(3)には、上記室内膨張弁(14)と室内熱交換器(15)とが設けられている。 The outdoor unit (2) includes the compressor (11), the four-way switching valve (16), the outdoor heat exchanger (11), the outdoor expansion valve (13), the refrigerant / refrigerant heat exchanger (17), and the accumulator ( 19). Each indoor unit (3) is provided with the indoor expansion valve (14) and the indoor heat exchanger (15).
上記室外熱交換器(11)は、冷媒と熱源水(液状の熱源媒体)とが熱交換をする熱交換器である。室外熱交換器(11)は、具体的には、冷媒流路(12a)と熱源水流路(12b)を有するプレート熱交換器により構成されている。冷媒流路(12a)は冷媒回路(10)の冷媒配管(ガス配管(10a)及び液配管(10b))に接続され、熱源水流路(12b)は冷水塔設備やボイラー設備に接続された熱源水回路(30)の水配管(31)に接続されている。 The outdoor heat exchanger (11) is a heat exchanger that exchanges heat between the refrigerant and the heat source water (liquid heat source medium). Specifically, the outdoor heat exchanger (11) is configured by a plate heat exchanger having a refrigerant channel (12a) and a heat source water channel (12b). The refrigerant flow path (12a) is connected to the refrigerant pipe (gas pipe (10a) and liquid pipe (10b)) of the refrigerant circuit (10), and the heat source water flow path (12b) is a heat source connected to the chilled water tower equipment and boiler equipment. It is connected to the water pipe (31) of the water circuit (30).
上記室内熱交換器(15)は、クロスフィン式の熱交換器により構成されている。図示していないが、室内ユニット(3)には、この室内熱交換器(15)に室内空気を流して冷媒回路(10)の冷媒と熱交換をさせるように、室内熱交換器(15)の近傍に室内ファンが設けられている。 The indoor heat exchanger (15) is a cross fin heat exchanger. Although not shown, the indoor heat exchanger (15) is connected to the indoor unit (3) so that indoor air flows through the indoor heat exchanger (15) to exchange heat with the refrigerant in the refrigerant circuit (10). An indoor fan is provided in the vicinity.
上記圧縮機(11)の吐出側は四路切換弁(16)の第1ポート(16a)に接続され、四路切換弁(16)の第2ポート(16b)は室外熱交換器(11)のガス側端部に接続されている。四路切換弁(16)の第3ポート(16c)は上記圧縮機(11)の吸入側にアキュムレータ(19)を介して接続され、四路切換弁(16)の第4ポート(16d)は室内熱交換器(15)のガス側端部に接続されている。 The discharge side of the compressor (11) is connected to the first port (16a) of the four-way selector valve (16), and the second port (16b) of the four-way selector valve (16) is the outdoor heat exchanger (11). Connected to the gas side end. The third port (16c) of the four-way selector valve (16) is connected to the suction side of the compressor (11) via the accumulator (19), and the fourth port (16d) of the four-way selector valve (16) is It is connected to the gas side end of the indoor heat exchanger (15).
また、室外熱交換器(11)の液側端部と室内熱交換器(15)の液側端部は液配管(10b)により接続され、この液配管(10b)には、室外ユニット(2)内に上記室外膨張弁(13)が、室内ユニット(3)内に上記室内膨張弁(14)が接続されている。 In addition, the liquid side end of the outdoor heat exchanger (11) and the liquid side end of the indoor heat exchanger (15) are connected by a liquid pipe (10b). The liquid pipe (10b) has an outdoor unit (2 ) Is connected to the outdoor expansion valve (13), and the indoor unit (3) is connected to the indoor expansion valve (14).
上記四路切換弁(16)は、第1ポート(16a)と第2ポート(16b)が連通して第3ポート(16c)と第4ポート(16d)が連通する冷房運転時の第1位置(図2参照)と、第1ポート(16a)と第4ポート(16d)が連通して第2ポート(16b)と第3ポート(16c)が連通する暖房運転時の第2位置(図3参照)とに切り換えることができるように構成されている。 The four-way selector valve (16) has a first position during cooling operation in which the first port (16a) and the second port (16b) communicate with each other and the third port (16c) and the fourth port (16d) communicate with each other. (Refer to FIG. 2) and the second position during heating operation in which the first port (16a) and the fourth port (16d) communicate with each other and the second port (16b) and the third port (16c) communicate with each other (FIG. 3). It is configured to be able to switch to
上記冷媒/冷媒熱交換器(17)は高圧流路(17a)と低圧流路(17b)を有している。この冷媒/冷媒熱交換器(17)の高圧流路(17a)は上記液配管(10b)に接続されている。また、上記圧力調整弁(18)は、上記液配管(10b)から分岐した戻り冷媒通路(20)に設けられている。この戻り冷媒通路(20)は、上記冷媒/冷媒熱交換器(17)の低圧流路(17b)を介して上記アキュムレータ(19)の流入側に接続されている。 The refrigerant / refrigerant heat exchanger (17) has a high-pressure channel (17a) and a low-pressure channel (17b). The high-pressure channel (17a) of the refrigerant / refrigerant heat exchanger (17) is connected to the liquid pipe (10b). The pressure regulating valve (18) is provided in the return refrigerant passage (20) branched from the liquid pipe (10b). The return refrigerant passage (20) is connected to the inflow side of the accumulator (19) via the low pressure flow path (17b) of the refrigerant / refrigerant heat exchanger (17).
圧縮機(11)の吐出側には油分離器(21)が設けられている。油分離器(21)は油戻し用開閉弁(22)である電磁弁とキャピラリチューブ(23)とが設けられた油戻し管(24)を介して圧縮機(11)の吸入側に接続されている。また、圧縮機(11)の吐出管には吐出温度センサ(T1)と高圧圧力開閉器(SW)が設けられ、油分離器(21)と四路切換弁(16)の間には逆止弁(CV)と高圧圧力センサ(P1)が設けられている。吐出温度センサ(T1)は圧縮機(11)の吐出冷媒温度を検出し、高圧圧力開閉器(SW)は高圧圧力が上昇しすぎると圧縮機(11)を停止させ、高圧圧力センサ(P1)は冷媒の高圧圧力を検出する。 An oil separator (21) is provided on the discharge side of the compressor (11). The oil separator (21) is connected to the suction side of the compressor (11) via an oil return pipe (24) provided with a solenoid valve as an oil return on-off valve (22) and a capillary tube (23). ing. The discharge pipe of the compressor (11) is provided with a discharge temperature sensor (T1) and a high pressure switch (SW), and there is a check between the oil separator (21) and the four-way selector valve (16). A valve (CV) and a high pressure sensor (P1) are provided. The discharge temperature sensor (T1) detects the refrigerant temperature discharged from the compressor (11), and the high pressure switch (SW) stops the compressor (11) when the high pressure rises too much, and the high pressure sensor (P1) Detects the high pressure of the refrigerant.
上記液配管(10b)には、上記室外熱交換器(11)の近傍に室外熱交換器温度センサ(T2)が設けられ、冷媒/冷媒熱交換器(17)の近傍に冷媒熱交換器温度センサ(T3)が設けられている。また、冷媒/冷媒熱交換器(17)に接続された戻り冷媒通路(20)には戻り冷媒温度センサ(T4)が設けられ、アキュムレータ(19)の入口側には低圧冷媒温度センサ(T5)と低圧圧力センサ(P2)が設けられている。 The liquid pipe (10b) is provided with an outdoor heat exchanger temperature sensor (T2) in the vicinity of the outdoor heat exchanger (11), and a refrigerant heat exchanger temperature in the vicinity of the refrigerant / refrigerant heat exchanger (17). A sensor (T3) is provided. A return refrigerant temperature sensor (T4) is provided in the return refrigerant passage (20) connected to the refrigerant / refrigerant heat exchanger (17), and a low pressure refrigerant temperature sensor (T5) is provided at the inlet side of the accumulator (19). And a low pressure sensor (P2).
本実施形態の空気調和装置(1)には、制御部であるコントローラ(5)が設けられている。このコントローラ(5)は、冷房運転と暖房運転を切り換えて制御するように構成されている。 The air conditioner (1) of the present embodiment is provided with a controller (5) that is a control unit. The controller (5) is configured to control by switching between cooling operation and heating operation.
また、コントローラ(5)は、冷房運転時に、予め定められた目標値よりも高圧圧力が上昇しないように圧力調整弁(18)を開き気味に調整して冷媒をアキュムレータ(19)に戻す余剰冷媒貯留制御を行うように構成されている。本実施形態で余剰冷媒貯留制御を行うようにしているのは以下の理由による。つまり、プレート熱交換器である室外熱交換器(11)の内容積が室内熱交換器(15)の内容積に対して小さいことは、冷房運転時の凝縮器(室外熱交換器(11))の容積が蒸発器である室内熱交換器(15)の容積よりも小さいことであり、そうすると、液冷媒の量が蒸発器で処理される量よりも多くなり、それが余剰冷媒になるからである。言い換えると、上記構成で普通に運転をしていたのでは、特に冷媒の充填量が多くなると冷媒回路(10)の高圧圧力が余剰冷媒によって上昇しすぎることになって冷凍サイクルの動作が正常に行われなくなり、圧縮機(11)が停止するなどの問題が生じてしまうからである。 In addition, the controller (5) opens the pressure regulating valve (18) so that the high pressure does not rise above a predetermined target value during cooling operation, and adjusts the refrigerant to return to the accumulator (19). It is comprised so that storage control may be performed. The reason why the excess refrigerant storage control is performed in the present embodiment is as follows. In other words, the fact that the internal volume of the outdoor heat exchanger (11), which is a plate heat exchanger, is smaller than the internal volume of the indoor heat exchanger (15) is that the condenser (outdoor heat exchanger (11) during cooling operation) ) Is smaller than the volume of the indoor heat exchanger (15), which is an evaporator, and then the amount of liquid refrigerant is larger than the amount processed by the evaporator, which becomes surplus refrigerant It is. In other words, in normal operation with the above configuration, the refrigerant circuit (10) increases in pressure due to excess refrigerant, particularly when the refrigerant charge increases, and the operation of the refrigeration cycle is normal. This is because it is not performed and problems such as the compressor (11) stopping occur.
また、コントローラ(5)は、上述したように冷房運転時に高圧圧力が上昇し過ぎる場合には上記余剰冷媒制御を行うが、高圧圧力が目標値に達するまでの通常運転時には、上記圧力調整弁(18)を所定開度に調整することによって液冷媒の過冷却度を一定に維持する過冷却制御を行うように構成されている。つまり、このときには冷媒/冷媒熱交換器(17)は過冷却熱交換器として機能する。 Further, as described above, the controller (5) performs the surplus refrigerant control when the high pressure is excessively increased during the cooling operation as described above, but during the normal operation until the high pressure reaches the target value, the controller (5) It is configured to perform supercooling control for maintaining the degree of supercooling of the liquid refrigerant constant by adjusting 18) to a predetermined opening. That is, at this time, the refrigerant / refrigerant heat exchanger (17) functions as a supercooling heat exchanger.
さらに、コントローラ(5)は、暖房運転時には、上記圧力調整弁(18)を所定開度に調整することにより、常に液冷媒の過冷却度を一定に維持する過冷却制御を行うように構成されている。つまり、本実施形態では、暖房運転時には余剰冷媒は発生しないので、冷媒/冷媒熱交換器(17)は常に過冷却熱交換器として機能し、余剰冷媒貯留制御は行われない。 Furthermore, the controller (5) is configured to perform supercooling control that constantly maintains the degree of supercooling of the liquid refrigerant by adjusting the pressure regulating valve (18) to a predetermined opening degree during heating operation. ing. That is, in the present embodiment, surplus refrigerant is not generated during the heating operation, so the refrigerant / refrigerant heat exchanger (17) always functions as a supercooling heat exchanger, and surplus refrigerant storage control is not performed.
−運転動作−
次に、この空気調和装置(1)の運転動作について説明する。
-Driving action-
Next, the operation of the air conditioner (1) will be described.
〈冷房運転〉
図2の冷房運転時には、圧縮機(11)を起動すると、圧縮機(11)から吐出された冷媒が油分離器(21)を通ってから室外熱交換器(11)に流入する。油分離器(21)で油がほぼ除去された冷媒は、室外熱交換器(11)において熱源水回路(30)の熱源水(冷水)に放熱し、凝縮して室外熱交換器(11)から流出する。また、油分離器(21)で冷媒から分離された油は、油戻し用開閉弁(22)を開くことで油戻し管(24)を通り、アキュムレータ(19)を通過した後の低圧のガス冷媒と合流して圧縮機(11)へ戻る。
<Cooling operation>
In the cooling operation of FIG. 2, when the compressor (11) is started, the refrigerant discharged from the compressor (11) passes through the oil separator (21) and then flows into the outdoor heat exchanger (11). The refrigerant from which oil has been almost removed by the oil separator (21) dissipates heat to the heat source water (cold water) of the heat source water circuit (30) in the outdoor heat exchanger (11) and condenses to the outdoor heat exchanger (11). Spill from. The oil separated from the refrigerant in the oil separator (21) passes through the oil return pipe (24) by opening the oil return on-off valve (22), and then passes through the accumulator (19). It merges with the refrigerant and returns to the compressor (11).
この冷房運転時には室外膨張弁(13)は全開になるように制御されており、室外熱交換器(11)から流出した液冷媒は室外膨張弁(13)を通過する。液冷媒は液配管(10b)を流れるときに一部が液配管(10b)から戻り冷媒通路(20)へ分流する。ここで分流した冷媒は圧力調整弁(18)で減圧され、低圧冷媒になる。そして、冷媒/冷媒熱交換器(17)において高圧流路(17a)を流れる高圧冷媒と低圧流路(17b)を流れる低圧冷媒とが熱交換し、低圧冷媒はアキュムレータ(19)に流入する(過冷却制御)。 During this cooling operation, the outdoor expansion valve (13) is controlled to be fully open, and the liquid refrigerant flowing out of the outdoor heat exchanger (11) passes through the outdoor expansion valve (13). When the liquid refrigerant flows through the liquid pipe (10b), a part of the liquid refrigerant returns from the liquid pipe (10b) to the refrigerant passage (20). The refrigerant divided here is depressurized by the pressure regulating valve (18) to become a low-pressure refrigerant. In the refrigerant / refrigerant heat exchanger (17), the high-pressure refrigerant flowing through the high-pressure channel (17a) and the low-pressure refrigerant flowing through the low-pressure channel (17b) exchange heat, and the low-pressure refrigerant flows into the accumulator (19) ( Supercooling control).
低圧冷媒と熱交換した高圧流路(17a)の高圧冷媒は、各室内ユニット(3)へ流入する。各室内ユニット(3)では、冷媒が室内膨張弁(14)で減圧されてから、室内熱交換器(15)を通過するときに室内空気から吸熱して蒸発する。このことにより室内空気が冷却される。 The high-pressure refrigerant in the high-pressure channel (17a) that exchanges heat with the low-pressure refrigerant flows into each indoor unit (3). In each indoor unit (3), after the refrigerant is depressurized by the indoor expansion valve (14), the refrigerant absorbs heat from the indoor air and evaporates when passing through the indoor heat exchanger (15). This cools the room air.
室内熱交換器(15)で蒸発した冷媒は室外ユニット(2)へ流入して四路切換弁(16)を通り、冷媒/冷媒熱交換器(17)から戻ってきた低圧冷媒と合流してアキュムレータ(19)に流入する。アキュムレータ(19)では液冷媒とガス冷媒が分離され、ガス冷媒が圧縮機(11)へ吸入される。 The refrigerant evaporated in the indoor heat exchanger (15) flows into the outdoor unit (2), passes through the four-way selector valve (16), and joins the low-pressure refrigerant returned from the refrigerant / refrigerant heat exchanger (17). It flows into the accumulator (19). In the accumulator (19), the liquid refrigerant and the gas refrigerant are separated, and the gas refrigerant is sucked into the compressor (11).
本実施形態の空気調和装置(1)では、冷媒が以上のようにして冷媒回路(10)を循環することにより、冷房運転が行われる。 In the air conditioner (1) of the present embodiment, the cooling operation is performed by circulating the refrigerant through the refrigerant circuit (10) as described above.
〈暖房運転〉
図3の暖房運転時には、圧縮機(11)を起動すると、圧縮機(11)から吐出された冷媒が油分離器(21)を通ってから各室内ユニット(3)へ流入する。油分離器(21)からの油戻しの動作は冷房運転時と同様に行われる。各室内ユニット(3)では、室内熱交換器(15)において冷媒が室内空気に放熱し、凝縮して室内熱交換器(15)から流出する。このことにより室内空気が加熱される。
<Heating operation>
In the heating operation of FIG. 3, when the compressor (11) is started, the refrigerant discharged from the compressor (11) flows into the indoor units (3) after passing through the oil separator (21). The operation of returning the oil from the oil separator (21) is performed in the same manner as in the cooling operation. In each indoor unit (3), the refrigerant radiates heat to the indoor air in the indoor heat exchanger (15), condenses, and flows out from the indoor heat exchanger (15). This heats the room air.
この暖房運転時には室内膨張弁(14)は全開になるように制御されており、室内熱交換器(15)から流出した液冷媒は室内膨張弁(14)を通過する。液冷媒は液配管(10b)を流れて室外ユニット(2)へ流入し、一部が液配管(10b)から戻り冷媒通路(20)へ分流する。分流した冷媒は圧力調整弁(18)で減圧され、低圧冷媒になる。そして、冷媒/冷媒熱交換器(17)において高圧流路(17a)を流れる高圧冷媒と低圧流路(17b)を流れる低圧冷媒とが熱交換し、低圧冷媒はアキュムレータ(19)に流入する(過冷却制御)。 During this heating operation, the indoor expansion valve (14) is controlled to be fully open, and the liquid refrigerant flowing out of the indoor heat exchanger (15) passes through the indoor expansion valve (14). The liquid refrigerant flows through the liquid pipe (10b) and flows into the outdoor unit (2), and part of the liquid refrigerant returns from the liquid pipe (10b) to the refrigerant passage (20). The divided refrigerant is depressurized by the pressure regulating valve (18) to become a low-pressure refrigerant. In the refrigerant / refrigerant heat exchanger (17), the high-pressure refrigerant flowing through the high-pressure channel (17a) and the low-pressure refrigerant flowing through the low-pressure channel (17b) exchange heat, and the low-pressure refrigerant flows into the accumulator (19) ( Supercooling control).
低圧冷媒と熱交換した高圧流路(17a)の高圧冷媒は、室外膨張弁(13)で減圧されてから、室外熱交換器(11)を通過するときに熱源水回路(30)の熱源水(温水)から吸熱して蒸発する。室外熱交換器(11)で蒸発した冷媒は四路切換弁(16)を通り、冷媒/冷媒熱交換器(17)から戻ってきた低圧冷媒と合流してアキュムレータ(19)に流入する。アキュムレータ(19)では液冷媒とガス冷媒が分離され、ガス冷媒が圧縮機(11)へ吸入される。 The high-pressure refrigerant in the high-pressure flow path (17a) that exchanges heat with the low-pressure refrigerant is depressurized by the outdoor expansion valve (13) and then passes through the outdoor heat exchanger (11), and the heat source water of the heat source water circuit (30) It absorbs heat from (warm water) and evaporates. The refrigerant evaporated in the outdoor heat exchanger (11) passes through the four-way switching valve (16), merges with the low-pressure refrigerant returned from the refrigerant / refrigerant heat exchanger (17), and flows into the accumulator (19). In the accumulator (19), the liquid refrigerant and the gas refrigerant are separated, and the gas refrigerant is sucked into the compressor (11).
本実施形態の空気調和装置(1)では、冷媒が以上のようにして冷媒回路(10)を循環することにより、暖房運転が行われる。 In the air conditioner (1) of the present embodiment, the heating operation is performed by circulating the refrigerant through the refrigerant circuit (10) as described above.
〈過冷却制御と余剰冷媒貯留制御〉
冷房運転時には、上記コントローラ(5)が、上記冷媒回路(10)で検出した冷媒の高圧圧力が目標値に達しているかどうかを判断する(例えば30秒ごとに判断する)。そして、高圧圧力が目標値に達するまでは、上記コントローラ(5)により上記圧力調整弁(18)を所定開度に調整することにより、液冷媒の過冷却度を一定に維持する過冷却制御が行われる。この過冷却制御では、高圧流路(17a)を流れる高圧冷媒が低圧冷媒によって過冷却されることにより各室内膨張弁(14)に供給される冷媒が液のみになり、低圧流路(17b)を流れる低圧冷媒はアキュムレータ(19)へ戻っていく。
<Supercooling control and surplus refrigerant storage control>
During the cooling operation, the controller (5) determines whether or not the high pressure of the refrigerant detected by the refrigerant circuit (10) has reached a target value (for example, every 30 seconds). Then, until the high pressure reaches the target value, the controller (5) adjusts the pressure regulating valve (18) to a predetermined degree of opening so that the degree of supercooling of the liquid refrigerant is kept constant. Done. In this supercooling control, the high-pressure refrigerant flowing through the high-pressure channel (17a) is supercooled by the low-pressure refrigerant, so that the refrigerant supplied to each indoor expansion valve (14) becomes only liquid, and the low-pressure channel (17b) The low-pressure refrigerant flowing through is returned to the accumulator (19).
一方、高圧圧力が目標値に達すると、上記コントローラ(5)により、運転が過冷却制御から余剰冷媒貯留制御に切り換えられる。余剰冷媒貯留制御では、高圧圧力が目標値よりも上昇しないように圧力調整弁(18)の開度がコントローラ(5)により調整され、余剰の冷媒がアキュムレータ(19)に戻される。この余剰冷媒貯留制御時には、高圧圧力が上昇しすぎて冷凍サイクルが正常に動作しなくなるのを抑制するようになっており、冷媒の過冷却度を重視した制御は行われないが、高圧流路(17a)を流れる液冷媒は、実際には低圧冷媒によって過冷却されることになる。ただし、冷媒の過冷却度が目標値で一定になるように圧力調整弁(18)の開度を制御する過冷却制御に比べて、余剰冷媒貯留制御のほうが圧力調整弁(18)は一般的に言って開き気味になる。また、この余剰冷媒貯留制御中も、上記冷媒回路(10)で検出した冷媒の高圧圧力が目標値に達しているかどうかは、例えば30秒ごとに判断される。 On the other hand, when the high pressure reaches the target value, the controller (5) switches the operation from the supercooling control to the surplus refrigerant storage control. In surplus refrigerant storage control, the opening degree of the pressure regulating valve (18) is adjusted by the controller (5) so that the high pressure does not rise above the target value, and surplus refrigerant is returned to the accumulator (19). At the time of this excessive refrigerant storage control, the high pressure pressure is excessively increased to prevent the refrigeration cycle from operating normally, and control with an emphasis on the degree of refrigerant supercooling is not performed. The liquid refrigerant flowing through (17a) is actually supercooled by the low-pressure refrigerant. However, the surplus refrigerant storage control is more common for the pressure regulation valve (18) than the supercooling control for controlling the opening of the pressure regulation valve (18) so that the degree of refrigerant supercooling is constant at the target value. I feel like opening up. Further, during the surplus refrigerant storage control, whether or not the high pressure of the refrigerant detected by the refrigerant circuit (10) has reached the target value is determined every 30 seconds, for example.
一方、暖房運転時には、上記圧力調整弁(18)を上記コントローラ(5)で調整することにより、常に液冷媒の過冷却度を所定値に維持する過冷却制御が行われ、冷媒/冷媒熱交換器(17)は常に過冷却熱交換器として機能する。 On the other hand, during heating operation, by adjusting the pressure regulating valve (18) with the controller (5), supercooling control is always performed to maintain the subcooling degree of the liquid refrigerant at a predetermined value, and refrigerant / refrigerant heat exchange is performed. The oven (17) always functions as a supercooling heat exchanger.
ここで、比較例として、冷房運転時に余剰冷媒貯留制御を適用しない例を挙げ、図4から図6を用いてこの比較例と本実施形態とを対比する。 Here, as a comparative example, an example in which surplus refrigerant storage control is not applied during cooling operation is given, and this comparative example is compared with this embodiment using FIGS. 4 to 6.
図4に示すように、比較例の場合、冷房運転時には冷媒の充填量がQ1からQ2,Q3,Q4へと多くなると、図の破線で示すように高圧圧力が上昇しすぎることになり、冷凍サイクルの動作中に圧縮機(11)が停止するか低容量になるおそれがある。これに対して、本実施形態では、余剰冷媒をアキュムレータ(19)に貯留するように圧力調整弁(18)の開度を調整することにより、図に実線で示すように高圧圧力の過上昇が抑えられるから、冷凍サイクルが正常に動作する。また、このとき、図5にEVTと示している圧力調整弁(18)は、図5の充填量Q2やQ3の時の縦軸から分かるように、その開度が比較例よりも開き気味に制御される。そして、図6に示すように、比較例では冷媒の充填量が多くなるとCOP(成績係数)が大きく低下しているのに対して、本実施形態では冷媒の充填量が多くなってもCOPの低下を抑えられる。 As shown in FIG. 4, in the comparative example, if the charging amount of the refrigerant increases from Q1 to Q2, Q3, Q4 during the cooling operation, the high pressure increases excessively as shown by the broken line in the figure, The compressor (11) may stop or become low capacity during cycle operation. On the other hand, in the present embodiment, by adjusting the opening of the pressure regulating valve (18) so as to store surplus refrigerant in the accumulator (19), an excessive increase in the high pressure is caused as shown by the solid line in the figure. Since it is suppressed, the refrigeration cycle operates normally. At this time, the pressure adjustment valve (18) indicated as EVT in FIG. 5 has an opening degree that is more open than the comparative example, as can be seen from the vertical axis at the filling amount Q2 or Q3 in FIG. Be controlled. As shown in FIG. 6, in the comparative example, the COP (coefficient of performance) greatly decreases as the refrigerant charge increases. In this embodiment, even if the refrigerant charge increases, the COP Reduction can be suppressed.
なお、本実施形態では、冷媒の充填量は、冷房運転時と暖房運転時のバランスを考慮して、できるだけ充填量が多くなり、しかも運転効率の低下を抑えられるように、Q3に定めている。 In the present embodiment, the charging amount of the refrigerant is set to Q3 so that the charging amount is increased as much as possible in consideration of the balance between the cooling operation and the heating operation, and the decrease in the operation efficiency is suppressed. .
以上のように、室外熱交換器(11)にプレート熱交換器を用いた空気調和装置(1)では、冷房運転時に高圧圧力が上昇して余剰冷媒が生じやすくなり、特に冷媒の充填量が多くなるとその問題が顕著に現れるのに対して、本実施形態では、冷媒/冷媒熱交換器(17)を通過する冷媒の一部をアキュムレータ(19)に戻して貯留する余剰冷媒貯留制御を行うことで、冷媒の充填量をできるだけ多くしながらも、高圧圧力が上昇しすぎるのを抑えている。そして、このことにより、運転中に圧縮機(11)が停止する恐れを少なくし、冷凍サイクルの動作を正常に行うことが可能となる。 As described above, in the air conditioner (1) using a plate heat exchanger for the outdoor heat exchanger (11), high-pressure pressure rises during cooling operation, and surplus refrigerant is likely to be generated. In the present embodiment, excessive refrigerant storage control is performed in which a part of the refrigerant passing through the refrigerant / refrigerant heat exchanger (17) is returned to the accumulator (19) and stored. Thus, while increasing the charging amount of the refrigerant as much as possible, the high pressure is prevented from rising excessively. This reduces the risk of the compressor (11) stopping during operation, and allows the refrigeration cycle to operate normally.
−実施形態の効果−
本実施形態によれば、冷房運転時に余剰冷媒が多くなるのを抑えられるから、冷媒回路(10)の高圧圧力が上昇しすぎるのを抑えることができる。しかも、本実施形態では、高圧容器であるレシーバに冷媒を貯留するのとは違って、冷媒回路(10)に一般に設けられるとともに高圧のレシーバよりもコストが安いアキュムレータ(19)を使用して余剰冷媒対策をすることができる。したがって、レシーバを設けることによるコストの上昇を抑えることができるうえ、それに伴って設けることが必要になるガス抜き弁も設けなくてよいので、その点でもコストの上昇を抑えられる。
-Effect of the embodiment-
According to the present embodiment, it is possible to suppress an increase in excess refrigerant during the cooling operation, and thus it is possible to suppress an excessive increase in the high pressure of the refrigerant circuit (10). Moreover, in the present embodiment, unlike storing the refrigerant in the receiver that is a high-pressure vessel, the surplus is obtained by using the accumulator (19) that is generally provided in the refrigerant circuit (10) and is less expensive than the high-pressure receiver. Refrigerant measures can be taken. Therefore, an increase in cost due to the provision of the receiver can be suppressed, and a gas vent valve that needs to be provided in accordance with the receiver need not be provided. In this respect, an increase in cost can be suppressed.
また、本実施形態によれば、冷房運転時に高圧圧力が目標値に達するまでは過冷却制御を行うことにより、効率のよい運転を行うことが可能になる。 Further, according to the present embodiment, it is possible to perform an efficient operation by performing the supercooling control until the high pressure reaches the target value during the cooling operation.
また、本実施形態によれば、暖房運転時には高圧圧力が上昇しすぎることがないので常に過冷却制御を行うことにより、同様に効率のよい運転を行うことが可能になる。 Further, according to the present embodiment, since the high pressure does not increase excessively during the heating operation, it is possible to perform an efficient operation similarly by always performing the supercooling control.
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
例えば、上記実施形態では室外熱交換器(11)としてプレート熱交換器を用いているが、室外熱交換器(11)には二重管熱交換器を用いてもよく、要するに室外熱交換器(11)は、冷媒と液状の熱源媒体とが熱交換をするものであれば構成を適宜変更してもよい。 For example, in the above embodiment, a plate heat exchanger is used as the outdoor heat exchanger (11), but a double pipe heat exchanger may be used as the outdoor heat exchanger (11). The configuration of (11) may be changed as appropriate as long as the refrigerant and the liquid heat source medium exchange heat.
また、上記実施形態では液状の熱媒体として水を用いた例を説明したが、ブラインなどの他の液状の熱媒体を用いてもよい。 Moreover, although the example which used water as a liquid heat medium was demonstrated in the said embodiment, you may use other liquid heat media, such as a brine.
また、上記実施形態は、本発明を1つの室外熱交換器(11)と複数の室内熱交換器(15)を有し、すべての室内熱交換器(15)が同時に蒸発器になったり同時に凝縮器になったりするように冷房と暖房が切り換えられる空気調和装置(1)に適用した例であるが、複数の室内熱交換器において冷房と暖房が混在する冷暖同時運転を行える空気調和装置に適用してもよい。その場合、余剰冷媒貯留運転が適用される本発明の「冷房運転」は、合計の冷房負荷が暖房負荷よりも大きいときに行う運転のことを意味する。 In the above-described embodiment, the present invention has one outdoor heat exchanger (11) and a plurality of indoor heat exchangers (15), and all the indoor heat exchangers (15) simultaneously become evaporators or simultaneously. This is an example applied to an air conditioner (1) that can be switched between cooling and heating so that it becomes a condenser, but in an air conditioner that can perform simultaneous cooling and heating operations that mix cooling and heating in multiple indoor heat exchangers You may apply. In that case, the “cooling operation” of the present invention to which the surplus refrigerant storage operation is applied means an operation performed when the total cooling load is larger than the heating load.
また、本発明は、1つの室外熱交換器(11)と1つの室内熱交換器(15)とが接続されて冷暖房を切り換える空気調和装置(1)であっても適用することが可能である。 The present invention can also be applied to an air conditioner (1) in which one outdoor heat exchanger (11) and one indoor heat exchanger (15) are connected to switch between heating and cooling. .
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.
以上説明したように、本発明は、液状の熱源媒体の冷熱や温熱を用いて空調を行う空気調和装置について有用である。 As described above, the present invention is useful for an air conditioner that performs air conditioning using cold or hot heat of a liquid heat source medium.
1 空気調和装置
5 コントローラ(制御部)
10 冷媒回路
10b 液配管
11 圧縮機
12 室外熱交換器
13 室外膨張弁(膨張機構)
14 室内膨張弁
15 室内熱交換器
16 四路切換弁(切換機構)
17 冷媒/冷媒熱交換器
17a 高圧流路
17b 低圧流路
18 圧力調整弁(圧力調整機構)
19 アキュムレータ
20 戻り冷媒通路
1 Air conditioner
5 Controller (control unit)
10 Refrigerant circuit
10b Liquid piping
11 Compressor
12 Outdoor heat exchanger
13 Outdoor expansion valve (expansion mechanism)
14 Indoor expansion valve
15 Indoor heat exchanger
16 Four-way selector valve (switching mechanism)
17 Refrigerant / refrigerant heat exchanger
17a High pressure flow path
17b Low pressure flow path
18 Pressure regulating valve (pressure regulating mechanism)
19 Accumulator
20 Return refrigerant path
Claims (3)
高圧流路(17a)と低圧流路(17b)とを有する冷媒/冷媒熱交換器(17)と、圧縮機(11)の吸入側に設けられたアキュムレータ(19)とを備え、
上記冷媒/冷媒熱交換器(17)の高圧流路(17a)が上記冷媒回路(10)の液配管(10b)に接続され、
上記液配管(10b)から分岐した戻り冷媒通路(20)が圧力調整機構(18)と上記冷媒/冷媒熱交換器(17)の低圧流路(17b)を介して上記アキュムレータ(19)に接続され、
冷房運転時にのみ、高圧圧力が目標値よりも上昇しないように圧力調整機構(18)を調整して冷媒をアキュムレータ(19)に戻す余剰冷媒貯留制御を行う制御部(5)を備えていることを特徴とする空気調和装置。 A refrigerant circuit (10) including a compressor (11), an outdoor heat exchanger (12), an expansion mechanism (13, 14), and an indoor heat exchanger (15), in which the refrigerant circulates; 10) has a switching mechanism (16) for switching the reversible circulation direction of the refrigerant, Ri heat exchanger der the outdoor heat exchanger (12) which is a heat source medium of the refrigerant and a liquid to the heat exchanger, the outdoor heat An air conditioner in which the internal volume of the exchanger (12) is smaller than the internal volume of the indoor heat exchanger (15) ,
A refrigerant / refrigerant heat exchanger (17) having a high-pressure channel (17a) and a low-pressure channel (17b), and an accumulator (19) provided on the suction side of the compressor (11),
The high-pressure flow path (17a) of the refrigerant / refrigerant heat exchanger (17) is connected to the liquid pipe (10b) of the refrigerant circuit (10),
The return refrigerant passage (20) branched from the liquid pipe (10b) is connected to the accumulator (19) via the pressure adjustment mechanism (18) and the low pressure flow path (17b) of the refrigerant / refrigerant heat exchanger (17). And
A control unit (5) is provided that performs surplus refrigerant storage control that adjusts the pressure adjustment mechanism (18) and returns the refrigerant to the accumulator (19) so that the high pressure does not rise above the target value only during cooling operation. An air conditioner characterized by.
上記制御部(5)は、冷房運転時に、高圧圧力が目標値に達するまでは液冷媒の過冷却度を一定に維持するように上記圧力調整機構(18)を調整する過冷却制御を行う一方、高圧圧力が目標値に達すると高圧圧力がそれよりも上昇しないように余剰冷媒貯留制御に切り換えることを特徴とする空気調和装置。 In claim 1,
The controller (5) performs supercooling control for adjusting the pressure adjustment mechanism (18) so that the supercooling degree of the liquid refrigerant is maintained constant until the high pressure reaches a target value during the cooling operation. An air conditioner that switches to excess refrigerant storage control so that the high pressure does not increase further when the high pressure reaches a target value.
上記制御部(5)は、暖房運転時には、常に液冷媒の過冷却度を一定に維持するように上記圧力調整機構(18)を調整する過冷却制御を行うことを特徴とする空気調和装置。
In claim 1 or 2,
The air conditioner characterized in that the control unit (5) performs supercooling control for adjusting the pressure adjusting mechanism (18) so that the degree of supercooling of the liquid refrigerant is always kept constant during heating operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016072724A JP6350577B2 (en) | 2016-03-31 | 2016-03-31 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016072724A JP6350577B2 (en) | 2016-03-31 | 2016-03-31 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017181001A JP2017181001A (en) | 2017-10-05 |
JP6350577B2 true JP6350577B2 (en) | 2018-07-04 |
Family
ID=60005852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016072724A Active JP6350577B2 (en) | 2016-03-31 | 2016-03-31 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6350577B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021166126A1 (en) * | 2020-02-19 | 2021-08-26 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2508183B2 (en) * | 1988-04-28 | 1996-06-19 | ダイキン工業株式会社 | Air conditioner |
JP3440910B2 (en) * | 2000-02-17 | 2003-08-25 | ダイキン工業株式会社 | Refrigeration equipment |
JP4120682B2 (en) * | 2006-02-20 | 2008-07-16 | ダイキン工業株式会社 | Air conditioner and heat source unit |
JP2011133177A (en) * | 2009-12-25 | 2011-07-07 | Fujitsu General Ltd | Air conditioner |
-
2016
- 2016-03-31 JP JP2016072724A patent/JP6350577B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017181001A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5855129B2 (en) | Outdoor unit and air conditioner | |
JP5125116B2 (en) | Refrigeration equipment | |
JP6792057B2 (en) | Refrigeration cycle equipment | |
US9151522B2 (en) | Air conditioner and control method thereof | |
CN102419024B (en) | Refrigeration cycle apparatus and hot-water heating apparatus | |
WO2015125743A1 (en) | Air-conditioning device | |
CN113405243A (en) | Control method of air conditioning system | |
KR20100123729A (en) | Refrigeration device | |
JP5908183B1 (en) | Air conditioner | |
JP6493460B2 (en) | Refrigeration equipment | |
US11226112B2 (en) | Air-conditioning system | |
JP2017161182A (en) | Heat pump device | |
CN107238161B (en) | Multi-split system and mode switching control method thereof | |
JP6436196B1 (en) | Refrigeration equipment | |
US8769968B2 (en) | Refrigerant system and method for controlling the same | |
WO2018025934A1 (en) | Heat source unit for refrigeration device | |
JP5202073B2 (en) | Refrigeration air conditioner | |
WO2019017370A1 (en) | Freezer | |
JP2014134366A (en) | Separation-type air conditioner | |
JP6350577B2 (en) | Air conditioner | |
JP6242289B2 (en) | Refrigeration cycle equipment | |
JP2009293887A (en) | Refrigerating device | |
JP2019020089A (en) | Freezing unit | |
CN210154138U (en) | Expansion valve assembly, bidirectional throttling system and air conditioner | |
CN107356009B (en) | Multi-split air conditioning system and low-temperature control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180320 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180521 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6350577 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |