JPH07151467A - Cold air dryer - Google Patents

Cold air dryer

Info

Publication number
JPH07151467A
JPH07151467A JP5300615A JP30061593A JPH07151467A JP H07151467 A JPH07151467 A JP H07151467A JP 5300615 A JP5300615 A JP 5300615A JP 30061593 A JP30061593 A JP 30061593A JP H07151467 A JPH07151467 A JP H07151467A
Authority
JP
Japan
Prior art keywords
reheater
valve
condenser
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5300615A
Other languages
Japanese (ja)
Inventor
Kensuke Oka
健助 岡
Renkou Muwatari
錬幸 六渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5300615A priority Critical patent/JPH07151467A/en
Publication of JPH07151467A publication Critical patent/JPH07151467A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cold air dryer in which temperature variations are reduced. CONSTITUTION:A cooling device 21 and a reheater 23 are provided within a dryer. High temperature refrigerant discharged from a compressor 6 is condensed by a condenser 8 and are made, after pressure reduction, to flow into the cooling device 21 so as to cool the interior of the dryer. High temperature refrigerant is made to flow into a reheater 23 so as to heat the interior of the dryer. A dryer thermostat 32 is provided for detecting temperature within the dryer. A control circuit 31 controls a motor operated valve 20 so as to adjust the ratio between the flow rates of refrigerant flowing to the reheater 23 and the condenser 21 on the basis of the output of the dryer thermostat 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品或いは農産物等の
乾燥に使用する冷風乾燥機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold air dryer used for drying food or agricultural products.

【0002】[0002]

【従来の技術】従来この種冷風乾燥機においては、例え
ば図4及び図5に示す如き冷媒回路が用いられていた。
即ち、冷風乾燥機100は乾燥させる食品等を収納する
図示しない庫内を具備した乾燥庫101、室内ユニット
140及びコンデンサ102とから成り、室内ユニット
140側に設けられた圧縮機103の吐出側には三方弁
104が接続され、三方弁104の一方の出口は前記コ
ンデンサ102に設けられた凝縮器105に接続されて
いる。106は凝縮器105を強制空冷するための送風
機である。
2. Description of the Related Art Conventionally, in this type of cold air dryer, a refrigerant circuit as shown in FIGS. 4 and 5, for example, has been used.
That is, the cold air dryer 100 is composed of a drying cabinet 101 having an interior (not shown) for storing foods to be dried, an indoor unit 140, and a condenser 102, and is provided on the discharge side of a compressor 103 provided on the indoor unit 140 side. Is connected to a three-way valve 104, and one outlet of the three-way valve 104 is connected to a condenser 105 provided in the condenser 102. Reference numeral 106 is a blower for forcedly cooling the condenser 105.

【0003】凝縮器105は室内ユニット140側に設
けられた逆止弁107を介して受液器108に接続さ
れ、受液器108は膨張弁109を介して前記庫内に設
けられた冷却器110に接続されている。冷却器110
はアキュムレータ138を介して圧縮機103の吸込側
に接続されて環状の冷凍サイクルを構成する。前記膨張
弁109は冷却器110の出口側の温度を検知し、過熱
度を所定値に維持するように開度を調整する。
The condenser 105 is connected to a liquid receiver 108 via a check valve 107 provided on the indoor unit 140 side, and the liquid receiver 108 is provided with a cooler provided inside the storage chamber via an expansion valve 109. It is connected to 110. Cooler 110
Is connected to the suction side of the compressor 103 via an accumulator 138 to form an annular refrigeration cycle. The expansion valve 109 detects the temperature on the outlet side of the cooler 110 and adjusts the opening so as to maintain the degree of superheat at a predetermined value.

【0004】前記三方弁104の他方の出口は前記冷却
器110と共に庫内に設けられて熱交換器111を構成
する再熱器112に接続されており、この再熱器112
は逆止弁113を介して前記受液器108に接続されて
いる。この逆止弁113及び前記逆止弁107は、いず
れも受液器108側が順方向とされている。また、11
4は前記冷却器110及び再熱器112と熱交した空気
を前記庫内に強制循環するための送風機である。
The other outlet of the three-way valve 104 is connected to a reheater 112 which is provided inside the refrigerator together with the cooler 110 and constitutes a heat exchanger 111.
Is connected to the liquid receiver 108 via a check valve 113. Both the check valve 113 and the check valve 107 have the liquid receiver 108 side in the forward direction. Also, 11
Reference numeral 4 is a blower for forcedly circulating the air that has exchanged heat with the cooler 110 and the reheater 112 in the chamber.

【0005】前記三方弁104の手前となる圧縮機10
3の吐出側にはデフロスト回路115が接続され、この
デフロスト回路115は開閉弁116、キャピラリチュ
ーブ125を介して膨張弁109と冷却器110の間に
接続されている。開閉弁116は蒸発器110の出口側
の温度を検出してデフロスト回路115を開閉する(図
中*2で示す)。また、前記三方弁104はコントロー
ル回路117によって制御されると共に、(図中*1で
示す)コントロール回路117には庫内温度を検出する
乾燥用サーモスタット118及び保冷用サーモスタット
119が接続されている。
The compressor 10 in front of the three-way valve 104
A defrost circuit 115 is connected to the discharge side of No. 3, and this defrost circuit 115 is connected between the expansion valve 109 and the cooler 110 via the opening / closing valve 116 and the capillary tube 125. The opening / closing valve 116 detects the temperature on the outlet side of the evaporator 110 and opens / closes the defrost circuit 115 (indicated by * 2 in the figure). Further, the three-way valve 104 is controlled by a control circuit 117, and a drying thermostat 118 and a cold storage thermostat 119 for detecting the temperature inside the refrigerator are connected to the control circuit 117 (* 1 in the figure).

【0006】また、この圧縮機103には能力制御装置
を構成するシリンダーバイパス方式の容量制御回路13
4が取り付けられ、直列に接続された開閉弁135、1
36及び逆止弁137とを具備した細管により、三方弁
104の手前における圧縮機103の吐出側と吸込側と
を連通している。
The compressor 103 has a cylinder bypass type capacity control circuit 13 which constitutes a capacity control device.
4 attached and connected on-off valves 135, 1 connected in series
A discharge tube and a suction side of the compressor 103 in front of the three-way valve 104 are communicated with each other by a thin tube provided with a check valve 36 and a check valve 137.

【0007】尚、126は開閉弁、120は液電磁弁で
あり常には開いている。また、127、128及び12
9はそれぞれドライヤ、インジケータ及びストレーナで
あり、130は圧縮機103に潤滑油を戻すオイル制御
回路である。尚、受液器108の出口からは開閉弁13
1とサーモバルブ132を具備した圧縮機103冷却用
のリキッドインジェクション回路133が圧縮機108
に接続されている。
Reference numeral 126 is an opening / closing valve, and 120 is a liquid solenoid valve, which is always open. Also 127, 128 and 12
Reference numeral 9 is a dryer, indicator and strainer, respectively, and 130 is an oil control circuit for returning lubricating oil to the compressor 103. From the outlet of the liquid receiver 108, the on-off valve 13
1, a liquid injection circuit 133 for cooling the compressor 103, which is equipped with the thermo-valve 132 and the compressor 108,
It is connected to the.

【0008】以上の従来の冷風乾燥機100の動作を説
明する。冷風乾燥機100は庫内温度が例えば+15℃
〜+30℃の範囲で使用されるものであり、コントロー
ル回路117には例えば前記+15℃の庫内温度が設定
される。そして、コントロール回路117は圧縮機10
3を運転し、前記設定温度に庫内温度が低下するまで
は、三方弁104の流路を前記一方の出口方向とする。
これによって、圧縮機103から吐出された高温高圧の
ガス冷媒は、図4に太線で示す如く三方弁104を経て
凝縮器105に入り、そこで放熱して凝縮した後、逆止
弁107を経て受液器108に入り、開閉弁126、ド
ライヤ127、インジケータ128及び開閉弁120を
経て膨張弁109に至る。
The operation of the above conventional cold air dryer 100 will be described. The cold air dryer 100 has an inside temperature of, for example, + 15 ° C.
It is used in the range of up to + 30 ° C., and the control circuit 117 is set to the inside temperature of + 15 ° C., for example. Then, the control circuit 117 controls the compressor 10
3 is operated and the flow path of the three-way valve 104 is set to the one outlet direction until the temperature inside the refrigerator decreases to the set temperature.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 103 enters the condenser 105 via the three-way valve 104 as shown by the thick line in FIG. 4, radiates heat there and is condensed there, and then receives it via the check valve 107. The liquid enters the liquid container 108, and reaches the expansion valve 109 via the on-off valve 126, the dryer 127, the indicator 128 and the on-off valve 120.

【0009】膨張弁109は前述の如く冷却器110の
出口側の温度に基づいて開度を調整し、凝縮液化した冷
媒を絞って冷却器110に供給する。冷却器110に流
入した冷媒は蒸発し、周囲から吸熱して冷却作用を発揮
した後、アキュムレータ138を介して圧縮機103に
吸い込まれる。
As described above, the expansion valve 109 adjusts the opening based on the temperature on the outlet side of the cooler 110, throttles the condensed and liquefied refrigerant, and supplies it to the cooler 110. The refrigerant flowing into the cooler 110 evaporates, absorbs heat from the surroundings to exert a cooling effect, and is then sucked into the compressor 103 via the accumulator 138.

【0010】係る冷却運転によって庫内温度が設定温度
(+15℃)まで低下すると、乾燥用サーモスタット1
18により庫内温度を検出してコントロール回路117
は三方弁104の流路を前記他方の出口方向に切り換え
る。これによって、圧縮機103から吐出された高温高
圧のガス冷媒は、図5に太線で示す如く三方弁104を
経て再熱器112に入り、そこで放熱して加熱作用を発
揮する。一方、冷媒はそこで凝縮された後、逆止弁11
3を経て受液器108に入り、以後は前述同様に流れ
る。
When the internal temperature drops to the set temperature (+ 15 ° C.) due to such cooling operation, the drying thermostat 1
Control circuit 117 detects the temperature inside the chamber by 18
Switches the flow path of the three-way valve 104 toward the other outlet. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 103 enters the reheater 112 via the three-way valve 104 as shown by the thick line in FIG. 5, and radiates heat there to exert a heating effect. On the other hand, after the refrigerant is condensed there, the check valve 11
The liquid enters the liquid receiver 108 via 3, and thereafter flows as described above.

【0011】係る再熱運転によって庫内温度が例えば+
18℃(ディファレンシャル3℃)に上昇すると、乾燥
用サーモスタット118により係る庫内温度の上昇を検
出してコントロール回路117は再び図4の冷却運転に
切り換わり、以後は上記のような冷却運転と再熱運転を
繰り返す。冷却器109により冷却され、再熱器112
により加熱された空気は送風機114により庫内に循環
されるので、係る冷却・再熱運転の繰り返しにより庫内
に収納した物品は乾燥される。
Due to such reheat operation, the temperature in the refrigerator is, for example, +
When the temperature rises to 18 ° C. (differential 3 ° C.), the drying thermostat 118 detects an increase in the temperature inside the refrigerator, and the control circuit 117 switches to the cooling operation in FIG. 4 again. Repeat thermal operation. Cooled by cooler 109, reheater 112
Since the air heated by is circulated in the storage by the blower 114, the articles stored in the storage are dried by repeating the cooling / reheating operation.

【0012】また、庫内の保冷運転を行う場合には、前
記三方弁104を強制的に凝縮器105側に切り換えて
保冷用サーモスタット119により圧縮機103を制御
し、庫内を所定の保冷温度に維持する。
When the cold storage operation is performed in the cold storage, the three-way valve 104 is forcibly switched to the condenser 105 side, and the cold storage thermostat 119 controls the compressor 103 to keep the cold storage inside the cold storage at a predetermined cold temperature. To maintain.

【0013】[0013]

【発明が解決しようとする課題】このように従来の冷風
乾燥機100では、圧縮機103から吐出された高温高
圧のガス冷媒を、三方弁104により再熱器112に流
すか、凝縮器105に流すか切り換えていたため、前述
の如く乾燥用サーモスタット118のディファレンシャ
ル(入り切りの差)を3℃とした場合、三方弁104は
10分〜15分と云う短いサイクルで切り換えられるよ
うになり、耐久性に問題が生ずる。
As described above, in the conventional cold air dryer 100, the high-temperature and high-pressure gas refrigerant discharged from the compressor 103 is supplied to the reheater 112 by the three-way valve 104 or is supplied to the condenser 105. Since the flow has been switched, the three-way valve 104 can be switched in a short cycle of 10 to 15 minutes when the differential (difference of opening and closing) of the drying thermostat 118 is set to 3 ° C. as described above, and durability is improved. A problem arises.

【0014】また、再熱運転と冷却運転を切り換えて行
うものであるため、乾燥用サーモスタット118のディ
ファレンシャルは3℃であっても、実際の庫内温度の変
動幅は10℃以上となり、食品の乾燥には適さなくなる
問題もあった。
Further, since the reheating operation and the cooling operation are switched, even if the differential of the drying thermostat 118 is 3 ° C., the actual fluctuation range of the internal temperature is 10 ° C. or more, and There was also a problem that it became unsuitable for drying.

【0015】本発明は係る従来の技術的課題を解決する
ために成されたものであり、庫内温度の変動を少なくす
ることができる冷風乾燥機を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned conventional technical problems, and an object of the present invention is to provide a cold air dryer capable of reducing fluctuations in the internal temperature.

【0016】[0016]

【課題を解決するための手段】本発明の冷風乾燥機は、
庫内に冷却器と再熱器とを設け、圧縮機から吐出された
高温冷媒を凝縮器にて凝縮し、減圧して冷却器に流入さ
せることにより庫内を冷却すると共に、前記高温冷媒を
再熱器に流入させて庫内を加熱するものであって、庫内
温度を検出する庫内温度検出手段と、この庫内温度検出
手段の出力に基づいて再熱器と凝縮器に流入する冷媒量
の割合を調整する流量調整手段とを設けたものである。
The cold air dryer of the present invention comprises:
A cooler and a reheater are provided in the refrigerator, the high temperature refrigerant discharged from the compressor is condensed in a condenser, the inside of the refrigerator is cooled by depressurizing and flowing into the cooler, and the high temperature refrigerant is The inside of the refrigerator is made to flow into the reheater to heat the inside of the refrigerator, and the inside temperature detecting means for detecting the inside temperature and the inside of the reheater and the condenser are output based on the output of the inside temperature detecting means. A flow rate adjusting means for adjusting the ratio of the amount of the refrigerant is provided.

【0017】また、請求項2の発明の冷風乾燥機は上記
において、流量調整手段を再熱器の入口側、若しくは凝
縮器の入口側の配管に介設した電動弁にて構成したもの
である。
Further, in the cold air dryer according to a second aspect of the present invention, in the above, the flow rate adjusting means is constituted by a motor-operated valve provided in a pipe on the inlet side of the reheater or the inlet side of the condenser. .

【0018】[0018]

【作用】本発明の冷風乾燥機によれば、庫内温度検出手
段の出力に基づいて再熱器と凝縮器に流入する冷媒量の
割合を調整する流量調整手段を設けたので、庫内温度が
下降した場合は流量調整手段により再熱器に流入する冷
媒量を増加させ、逆に庫内温度が上昇した場合には凝縮
器に流入する冷媒量を増加させて再熱器に流入する冷媒
量を減少させることができる。
According to the cold air dryer of the present invention, since the flow rate adjusting means for adjusting the ratio of the refrigerant amount flowing into the reheater and the condenser based on the output of the inside temperature detecting means is provided, the inside temperature is reduced. If the temperature decreases, the amount of refrigerant flowing into the reheater is increased by the flow rate adjusting means, and conversely, if the internal temperature rises, the amount of refrigerant flowing into the condenser is increased to flow into the reheater. The amount can be reduced.

【0019】従って、従来の再熱・冷却運転の切り換え
のみによる制御に比して庫内温度の変動を少なくするこ
とができると共に、部品故障の発生も抑制することが可
能となる。
Therefore, it is possible to reduce fluctuations in the internal cold storage temperature and to suppress the occurrence of component failure, as compared with the conventional control that involves only switching between reheating and cooling operations.

【0020】また、請求項2の発明の冷風乾燥機によれ
ば、再熱器の入口側、若しくは凝縮器の入口側の配管に
介設した電動弁にて流量調整弁を構成したので、再熱器
と凝縮器に流入する冷媒量の割合を精度良く調整するこ
とが可能となる。
According to the cold air dryer of the second aspect of the present invention, since the flow rate adjusting valve is constituted by the electric valve provided in the pipe on the inlet side of the reheater or the inlet side of the condenser, It is possible to accurately adjust the ratio of the amount of refrigerant flowing into the heat generator and the condenser.

【0021】[0021]

【実施例】次に、図面に基づき本発明の一実施例を詳述
する。図1は本発明の冷風乾燥機1の冷媒回路図を示し
ている。即ち、冷風乾燥機1は乾燥させる食品等の物品
を収納する図示しない庫内を備えた乾燥庫3、室内ユニ
ット2及びコンデンサ4とから成り、室内ユニット2側
に設けられた圧縮機6の吐出側には吐出ガス電磁弁7が
接続されている。吐出ガス電磁弁7の入口側と出口側に
は圧力制御弁10がバイパスして接続されており、吐出
ガス電磁弁7の出口側はコンデンサ4に設けられた凝縮
器8に接続されている。前記圧力制御弁10は吐出ガス
電磁弁7が故障した場合の異常高圧を防止するためのも
のであり、9は凝縮器8を強制空冷するための送風機で
ある。
An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of a cold air dryer 1 of the present invention. That is, the cold air dryer 1 is composed of a drying cabinet 3 having an interior (not shown) for storing articles such as foods to be dried, an indoor unit 2 and a condenser 4, and the discharge of a compressor 6 provided on the indoor unit 2 side. The discharge gas solenoid valve 7 is connected to the side. A pressure control valve 10 is connected by bypass to the inlet side and the outlet side of the discharge gas electromagnetic valve 7, and the outlet side of the discharge gas electromagnetic valve 7 is connected to a condenser 8 provided in the condenser 4. The pressure control valve 10 is for preventing an abnormally high pressure when the discharge gas solenoid valve 7 fails, and 9 is a blower for forcibly cooling the condenser 8.

【0022】前記圧縮機6は例えば従来例で詳述した如
くスクロールコンプレッサであり、この圧縮機6には能
力制御装置を構成するシリンダーバイパス方式の容量制
御回路11が取り付けられている。この容量制御回路1
1は、直列に接続された開閉弁12、13及び逆止弁1
4とを具備した細管により、吐出ガス電磁弁7の手前に
おける圧縮機6の吐出側と吸込側とを連通しており、更
に、開閉弁12、13の間は圧縮機6のスクロールに連
通されている。双方の開閉弁12、13が開くと、圧縮
機6から吐出された冷媒が吸込側に帰還されてその運転
能力が大きく低減され、開閉弁12が開き、開閉弁13
が閉じた状態では吐出冷媒がスクロールに帰還されてそ
の運転能力が小さく低減される。
The compressor 6 is, for example, a scroll compressor as described in detail in the conventional example, and a cylinder bypass type capacity control circuit 11 constituting a capacity control device is attached to the compressor 6. This capacity control circuit 1
1 is an on-off valve 12, 13 and a check valve 1 connected in series
The discharge tube and the suction side of the compressor 6 in front of the discharge gas electromagnetic valve 7 are communicated with each other by the thin tube provided with 4, and the open / close valves 12 and 13 are further communicated with the scroll of the compressor 6. ing. When both the on-off valves 12 and 13 are opened, the refrigerant discharged from the compressor 6 is returned to the suction side and its operating capacity is greatly reduced, the on-off valve 12 is opened, and the on-off valve 13 is opened.
In the state where is closed, the discharged refrigerant is returned to the scroll, and its driving ability is reduced to a small level.

【0023】凝縮器8は室内ユニット2側に設けられた
逆止弁16を介して受液器17に接続され、受液器17
は膨張弁19を介して庫内に設けられた冷却器21に接
続されている。冷却器21はアキュムレータ22を介し
て圧縮機6の吸込側に接続されて環状の冷凍サイクルを
構成する。前記膨張弁19は冷却器21の出口側の温度
を検知し、過熱度を所定値に維持するように開度を調整
する。
The condenser 8 is connected to a liquid receiver 17 via a check valve 16 provided on the indoor unit 2 side, and the liquid receiver 17 is connected to the liquid receiver 17.
Is connected to a cooler 21 provided in the refrigerator via an expansion valve 19. The cooler 21 is connected to the suction side of the compressor 6 via an accumulator 22 to form an annular refrigeration cycle. The expansion valve 19 detects the temperature on the outlet side of the cooler 21 and adjusts the opening degree to maintain the superheat degree at a predetermined value.

【0024】前記吐出ガス電磁弁7の手前と圧縮機6の
吐出側との間の配管は分岐され、この分岐配管は冷却器
21と共に庫内に設けられた再熱器23に接続されてい
る。更に、この再熱器23の入口側の前記分岐配管には
流量調整手段を構成する電動弁20が介設されており、
前記再熱器23の出口側は逆止弁24を介して前記受液
器17に接続されている。この逆止弁24及び前記逆止
弁16は、いずれも受液器17側が順方向とされてい
る。また、26は前記冷却器21及び再熱器23と熱交
した空気を前記庫内に強制循環するための送風機であ
る。
The pipe between the discharge gas solenoid valve 7 and the discharge side of the compressor 6 is branched, and this branched pipe is connected to the reheater 23 provided inside the refrigerator together with the cooler 21. . Further, an electric valve 20 constituting a flow rate adjusting means is provided in the branch pipe on the inlet side of the reheater 23,
The outlet side of the reheater 23 is connected to the liquid receiver 17 via a check valve 24. In both the check valve 24 and the check valve 16, the liquid receiver 17 side is in the forward direction. Further, reference numeral 26 is a blower for forcibly circulating the air that has exchanged heat with the cooler 21 and the reheater 23 in the chamber.

【0025】吐出ガス電磁弁7の手前となる圧縮機6の
吐出側にはデフロスト回路27が接続され、このデフロ
スト回路27は開閉弁28及びキャピラリチューブ29
を介して膨張弁19と冷却器21の間に接続されてい
る。開閉弁28は冷却器21の出口側の温度を検出して
デフロスト回路27を開閉する。また、流量調整手段を
構成する制御装置としてのコントロール回路31には庫
内温度を検出する庫内温度検出手段としての乾燥用サー
モスタット32と、保冷用サーモスタット33及び庫内
湿度を検出するヒューミディスタット34が接続されて
いる。
A defrost circuit 27 is connected to the discharge side of the compressor 6, which is in front of the discharge gas electromagnetic valve 7, and this defrost circuit 27 includes an opening / closing valve 28 and a capillary tube 29.
Is connected between the expansion valve 19 and the cooler 21 via. The opening / closing valve 28 detects the temperature on the outlet side of the cooler 21 and opens / closes the defrost circuit 27. Further, a control circuit 31 as a control device constituting the flow rate adjusting means has a drying thermostat 32 as an in-compartment temperature detecting means for detecting the in-compartment temperature, a cold keeping thermostat 33 and a humidistat for detecting in-compartment humidity. 34 is connected.

【0026】前記電動弁20は、例えばパルスモータに
よって弁座を閉じるアクチュエータを駆動し、その開度
を全閉〜100%開(全開)の範囲で略連続して変更可
能とされている。そして、この電動弁20の開度は前記
コントロール回路31により制御される(図中*1で示
す)。即ち、コントロール回路31は乾燥用サーモスタ
ット32が検出する庫内温度に基づいて電動弁20の弁
開度を、例えば全閉と、50%開〜100%開の間で略
連続的に変化させる。
The electrically operated valve 20 drives an actuator that closes the valve seat by, for example, a pulse motor, and the opening thereof can be changed substantially continuously within the range of fully closed to 100% open (fully open). The opening degree of the electrically operated valve 20 is controlled by the control circuit 31 (indicated by * 1 in the figure). That is, the control circuit 31 changes the valve opening degree of the motor-operated valve 20 substantially continuously based on the temperature inside the refrigerator detected by the drying thermostat 32, for example, between fully closed and 50% open to 100% open.

【0027】尚、受液器17の出口からは開閉弁30、
液電磁弁36とサーモバルブ37を備えたリキッドイン
ジェクション回路38が圧縮機6に接続されている。ま
た、39は開閉弁、41は液電磁弁であり常には開いて
いる。更に、42、43及び44はそれぞれドライヤ、
インジケータ及びストレーナであり、46は圧縮機6に
潤滑油を戻すオイル制御回路である。
From the outlet of the liquid receiver 17, the on-off valve 30,
A liquid injection circuit 38 including a liquid solenoid valve 36 and a thermo valve 37 is connected to the compressor 6. Further, 39 is an opening / closing valve and 41 is a liquid solenoid valve which is always open. Further, 42, 43 and 44 are dryers,
An indicator and a strainer, and 46 is an oil control circuit for returning lubricating oil to the compressor 6.

【0028】以上の構成で次に本発明の冷風乾燥機1の
動作を説明する。冷風乾燥機1は庫内温度が例えば+1
5℃〜+30℃の範囲で使用されるものであり、コント
ロール回路31には例えば前記+15℃の庫内温度が設
定されているものとする。また、乾燥運転時、吐出ガス
電磁弁7は開放されている。そして、今電動弁20は或
る開度で開いているものとし、コントロール回路31が
圧縮機6を運転すると、圧縮機6から吐出された高温高
圧のガス冷媒は、吐出ガス電磁弁7の手間で再熱器23
方向と凝縮器8方向とに分流する。
Next, the operation of the cold air dryer 1 of the present invention having the above construction will be described. The temperature inside the cold air dryer 1 is, for example, +1
It is used in the range of 5 ° C. to + 30 ° C., and it is assumed that the control circuit 31 is set to the inside temperature of + 15 ° C., for example. Also, during the drying operation, the discharge gas electromagnetic valve 7 is open. Then, assuming that the motor-operated valve 20 is now opened at a certain opening degree, when the control circuit 31 operates the compressor 6, the high-temperature and high-pressure gas refrigerant discharged from the compressor 6 requires the trouble of the discharge gas solenoid valve 7. In the reheater 23
And the condenser 8 direction.

【0029】吐出ガス電磁弁7を経て凝縮器8に流入し
た高温高圧のガス冷媒は、そこで放熱して凝縮した後、
逆止弁16を経て受液器17に入り、液電磁弁41を経
て膨張弁19に至る。膨張弁19は前述の如く冷却器2
1の出口側の温度に基づいて開度を調整し、凝縮液化し
た冷媒を絞って冷却器21に供給する。冷却器21に流
入した冷媒は蒸発し、周囲から吸熱して冷却作用を発揮
した後、アキュムレータ22を経て圧縮機6に吸い込ま
れる。
The high-temperature and high-pressure gas refrigerant that has flowed into the condenser 8 through the discharge gas electromagnetic valve 7 radiates heat there and is condensed,
The liquid enters the liquid receiver 17 via the check valve 16 and reaches the expansion valve 19 via the liquid solenoid valve 41. The expansion valve 19 is the cooler 2 as described above.
The opening degree is adjusted based on the temperature of the outlet side of 1, and the condensed and liquefied refrigerant is squeezed and supplied to the cooler 21. The refrigerant that has flowed into the cooler 21 evaporates, absorbs heat from the surroundings, exerts a cooling effect, and is then sucked into the compressor 6 via the accumulator 22.

【0030】一方、電動弁20を経て再熱器23に流入
した高温高圧のガス冷媒は、そこで放熱して加熱作用を
発揮する。他方、冷媒はそこで凝縮された後、逆止弁2
4を経て受液器17に入り、凝縮器8からの冷媒と合流
して以後は上述同様に流れる。係る再熱器23による加
熱作用及び冷却器21による冷却作用により庫内は乾燥
される。
On the other hand, the high-temperature and high-pressure gas refrigerant flowing into the reheater 23 through the motor-operated valve 20 radiates heat there and exerts a heating action. On the other hand, after the refrigerant is condensed there, the check valve 2
After passing through 4, the liquid enters the liquid receiver 17, merges with the refrigerant from the condenser 8, and thereafter flows as described above. The inside of the refrigerator is dried by the heating action of the reheater 23 and the cooling action of the cooler 21.

【0031】ここで、圧縮機6から吐出された高温高圧
ガス冷媒が全て再熱器23方向に流れた場合、再熱器2
3における加熱熱量と、冷却器21における冷却熱量
は、図2のモリエル線図に示す如く、加熱熱量が冷却熱
量の約1.2倍となる。即ち、従来の冷風乾燥機では再
熱運転時、係る熱量の差によって庫内温度が上昇してい
たことになる。
Here, when all the high-temperature high-pressure gas refrigerant discharged from the compressor 6 flows toward the reheater 23, the reheater 2
As shown in the Mollier diagram of FIG. 2, the heating heat quantity of No. 3 and the cooling heat quantity of the cooler 21 are about 1.2 times the cooling heat quantity. That is, in the conventional cold air dryer, the temperature inside the chamber was increased due to the difference in the amount of heat during the reheat operation.

【0032】従って、電動弁20の開度を調整すること
により、圧縮機6からの吐出ガス冷媒量の約80%を再
熱器23側に、残りの20%を凝縮器8側に供給すれ
ば、前記加熱熱量と冷却熱量とは平衡することになり、
外乱及び負荷の変化等を考慮に入れなければ、理論的に
は庫内温度は変化しなくなる。
Therefore, by adjusting the opening degree of the motor-operated valve 20, about 80% of the discharged gas refrigerant amount from the compressor 6 is supplied to the reheater 23 side and the remaining 20% is supplied to the condenser 8 side. For example, the heating heat quantity and the cooling heat quantity are in equilibrium,
If the disturbance and the change of load are not taken into consideration, the temperature inside the refrigerator theoretically does not change.

【0033】そこで、コントロール回路31は乾燥用サ
ーモスタット32の出力に基づき、庫内温度が前記設定
温度(+15℃)より高くなったら、この温度上昇に反
比例して電動弁20の開度(%)を減少させ、再熱器2
3に流入する冷媒量を減少させ、凝縮器8に流入する冷
媒量を増加させる。そして、庫内温度が前記設定温度
(+15℃)より低くなったら、この温度降下に反比例
して電動弁20の開度(%)を増加させ、再熱器23に
流入する冷媒量を増加させると共に、凝縮器8に流入す
る冷媒量を減少させる。
Therefore, based on the output of the drying thermostat 32, the control circuit 31 causes the opening degree (%) of the motor-operated valve 20 to be inversely proportional to the temperature rise when the internal temperature becomes higher than the preset temperature (+ 15 ° C.). Reduce the reheater 2
The amount of refrigerant flowing into the condenser 3 is decreased, and the amount of refrigerant flowing into the condenser 8 is increased. Then, when the internal temperature becomes lower than the set temperature (+ 15 ° C.), the opening degree (%) of the motor-operated valve 20 is increased in inverse proportion to this temperature decrease, and the amount of refrigerant flowing into the reheater 23 is increased. At the same time, the amount of refrigerant flowing into the condenser 8 is reduced.

【0034】即ち、コントロール回路31は庫内温度に
基づいて再熱器23と凝縮器8に流入する高温高圧ガス
冷媒の量の割合を細かく、或いは連続的に調整するの
で、庫内温度の変動幅は極めて小さくなり、設定温度
(+15℃)を中心として略一定に精度良く制御される
ようになる。また、従来の如く三方弁を用いていないの
で、再熱・冷却運転の頻繁な切り換えによる三方弁の故
障発生も解消される。
That is, the control circuit 31 finely or continuously adjusts the ratio of the amounts of the high-temperature high-pressure gas refrigerant flowing into the reheater 23 and the condenser 8 on the basis of the internal temperature, so that the internal temperature changes. The width becomes extremely small, and it becomes possible to control the temperature substantially constant around the set temperature (+ 15 ° C.) with high precision. Further, since the three-way valve is not used as in the conventional case, the occurrence of failure of the three-way valve due to frequent switching of reheat / cooling operation can be eliminated.

【0035】尚、庫内の保冷運転を行う場合にはコント
ロール回路31は電動弁20を全閉とする。また、実施
例では再熱器23側の分岐配管に電動弁20を介設した
が、図3に示す如く圧縮機6と凝縮器8の間の配管に電
動弁20を介設し、再熱器23側の分岐配管に吐出ガス
電磁弁7を設けても良い。但し、この場合電動弁20の
開度調整は前述と逆になると共に、保冷運転を行う場合
には電動弁20を全開吐出ガス電磁弁7を全閉とするこ
とは云うまでもない。
When the cold storage operation is performed in the refrigerator, the control circuit 31 fully closes the electric valve 20. Further, in the embodiment, the motor-operated valve 20 is provided in the branch pipe on the reheater 23 side, but as shown in FIG. 3, the motor-operated valve 20 is provided in the pipe between the compressor 6 and the condenser 8 to reheat the reheater. The discharge gas solenoid valve 7 may be provided in the branch pipe on the container 23 side. However, in this case, it goes without saying that the opening degree adjustment of the motor-operated valve 20 is the reverse of the above-mentioned operation and the motor-operated valve 20 is fully opened and the discharge gas solenoid valve 7 is fully closed when the cold insulation operation is performed.

【0036】[0036]

【発明の効果】以上詳述した如く本発明によれば、庫内
温度検出手段の出力に基づいて再熱器と凝縮器に流入す
る冷媒量の割合を調整する流量調整手段を設けたので、
庫内温度が下降した場合は流量調整手段により再熱器に
流入する冷媒量を増加させ、逆に庫内温度が上昇した場
合には凝縮器に流入する冷媒量を増加させて再熱器に流
入する冷媒量を減少させることができる。
As described above in detail, according to the present invention, the flow rate adjusting means for adjusting the ratio of the refrigerant amount flowing into the reheater and the condenser based on the output of the internal temperature detecting means is provided.
When the temperature inside the refrigerator has decreased, the amount of refrigerant flowing into the reheater is increased by the flow rate adjusting means, and conversely, when the temperature inside the refrigerator has increased, the amount of refrigerant flowing into the condenser is increased to the reheater. The amount of refrigerant flowing in can be reduced.

【0037】従って、従来の再熱・冷却運転の切り換え
のみによる制御に比して庫内温度の変動を少なくするこ
とができると共に、部品故障の発生も抑制することが可
能となる。
Therefore, it is possible to reduce fluctuations in the internal cold storage temperature and to suppress the occurrence of component failures, as compared with the conventional control that involves only switching between reheating and cooling operations.

【0038】また、請求項2の発明によれば、再熱器の
入口側、若しくは凝縮器の入口側の配管に介設した電動
弁にて流量調整弁を構成したので、再熱器と凝縮器に流
入する冷媒量の割合を精度良く調整することが可能とな
る。
Further, according to the second aspect of the invention, since the flow rate adjusting valve is constituted by the electric valve provided on the inlet side of the reheater or the pipe on the inlet side of the condenser, the reheater and the condenser are connected. It is possible to accurately adjust the ratio of the amount of refrigerant flowing into the container.

【0039】[0039]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷風乾燥機の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a cold air dryer of the present invention.

【図2】本発明の冷風乾燥機の再熱器における加熱熱量
及び冷却器における冷却熱量の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the heating heat amount in the reheater and the cooling heat amount in the cooler of the cold air dryer of the present invention.

【図3】本発明の冷風乾燥機の他の実施例を示す冷媒回
路図である。
FIG. 3 is a refrigerant circuit diagram showing another embodiment of the cold air dryer of the present invention.

【図4】従来の冷風乾燥機の冷却運転時の冷媒の流れを
示す冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram showing a refrigerant flow during a cooling operation of a conventional cold air dryer.

【図5】従来の冷風乾燥機の再熱運転時の冷媒の流れを
示す冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow during a reheat operation of a conventional cold air dryer.

【符号の説明】[Explanation of symbols]

1 冷風乾燥機 6 圧縮機 8 凝縮器 19 膨張弁 20 電動弁 21 冷却器 23 再熱器 31 コントロール回路 32 乾燥用サーモスタット 1 Cold Air Dryer 6 Compressor 8 Condenser 19 Expansion Valve 20 Motorized Valve 21 Cooler 23 Reheater 31 Control Circuit 32 Drying Thermostat

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 庫内に冷却器と再熱器とを設け、圧縮機
から吐出された高温冷媒を凝縮器にて凝縮し、減圧して
前記冷却器に流入させることにより庫内を冷却すると共
に、前記高温冷媒を前記再熱器に流入させて庫内を加熱
する冷風乾燥機において、前記庫内温度を検出する庫内
温度検出手段と、この庫内温度検出手段の出力に基づい
て前記再熱器と凝縮器に流入する冷媒量の割合を調整す
る流量調整手段とを設けたことを特徴とする冷風乾燥
機。
1. A cooler and a reheater are provided in the refrigerator, the high temperature refrigerant discharged from the compressor is condensed by a condenser, the pressure is reduced, and the refrigerant is allowed to flow into the condenser to cool the refrigerator. Along with, in the cold air dryer that heats the inside of the refrigerator by flowing the high-temperature refrigerant into the reheater, the inside temperature detecting means for detecting the inside temperature, and the output based on the output of the inside temperature detecting means. A cool air dryer, comprising: a reheater and a flow rate adjusting means for adjusting the ratio of the amount of refrigerant flowing into the condenser.
【請求項2】 流量調整手段を再熱器の入口側、若しく
は凝縮器の入口側の配管に介設した電動弁にて構成した
ことを特徴とする請求項1の冷風乾燥機。
2. The cool air dryer according to claim 1, wherein the flow rate adjusting means is constituted by an electrically operated valve provided in a pipe on the inlet side of the reheater or the inlet side of the condenser.
JP5300615A 1993-11-30 1993-11-30 Cold air dryer Pending JPH07151467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300615A JPH07151467A (en) 1993-11-30 1993-11-30 Cold air dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300615A JPH07151467A (en) 1993-11-30 1993-11-30 Cold air dryer

Publications (1)

Publication Number Publication Date
JPH07151467A true JPH07151467A (en) 1995-06-16

Family

ID=17886994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300615A Pending JPH07151467A (en) 1993-11-30 1993-11-30 Cold air dryer

Country Status (1)

Country Link
JP (1) JPH07151467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089118A3 (en) * 2002-04-16 2005-03-03 Hankison Internat Variable evaporator control for a gas dryer
JP2018009712A (en) * 2016-07-11 2018-01-18 煉三 上田 Cool air dryer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019321U (en) * 1973-06-19 1975-03-04
JPS5216352A (en) * 1975-07-22 1977-02-07 Hiroo Akiyama Shiitake mushroom cultivation
JPS5264144A (en) * 1975-11-25 1977-05-27 Daikin Ind Ltd Air conditioner
JPS55107859A (en) * 1979-02-13 1980-08-19 Hitachi Ltd Air conditioner
JPH05308943A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Freezing equipment
JPH05312433A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Freezer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019321U (en) * 1973-06-19 1975-03-04
JPS5216352A (en) * 1975-07-22 1977-02-07 Hiroo Akiyama Shiitake mushroom cultivation
JPS5264144A (en) * 1975-11-25 1977-05-27 Daikin Ind Ltd Air conditioner
JPS55107859A (en) * 1979-02-13 1980-08-19 Hitachi Ltd Air conditioner
JPH05308943A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Freezing equipment
JPH05312433A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Freezer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111470B2 (en) 2001-04-20 2006-09-26 Spx Corporation Variable evaporator control for a gas dryer
US7370484B2 (en) 2001-04-20 2008-05-13 Flair Corporation Variable evaporator control for a gas dryer
WO2003089118A3 (en) * 2002-04-16 2005-03-03 Hankison Internat Variable evaporator control for a gas dryer
JP2018009712A (en) * 2016-07-11 2018-01-18 煉三 上田 Cool air dryer

Similar Documents

Publication Publication Date Title
US7997092B2 (en) Refrigerant vapor compression system operating at or near zero load
DK2147264T3 (en) Refrigerant vapor compression system
US9951975B2 (en) Carbon dioxide refrigerant vapor compression system
DK2417406T3 (en) Coolant vapor compression system with hot gas bypass
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
US9250001B2 (en) Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
US11624538B2 (en) Refrigeration device provided with a secondary by-pass branch and method of use thereof
JP2001311567A (en) Freezer device and environmental test device using the same
JP3426634B2 (en) Cold air dryer
US4290272A (en) Means and method for independently controlling vapor compression cycle device evaporator superheat and thermal transfer capacity
JPH07151467A (en) Cold air dryer
JPH04251164A (en) Freezing cycle device
JPH04217754A (en) Air conditioner
JP3407918B2 (en) Cold air dryer
JPH01123966A (en) Refrigerator
JPH0712439A (en) Binary refrigerator
JPH07127975A (en) Cold air drying machine
JPH03225161A (en) Liquid injection device of freezing cycle in thermostatic device
JPS61159072A (en) Refrigerator
JPH07133983A (en) Cold air drier
JPS6383556A (en) Refrigeration cycle
JPH08145494A (en) Absorption type heat pump
JP3094998B2 (en) Binary refrigeration equipment
JPH06323690A (en) Drier
JPS622675B2 (en)