JPH07127975A - Cold air drying machine - Google Patents

Cold air drying machine

Info

Publication number
JPH07127975A
JPH07127975A JP27869093A JP27869093A JPH07127975A JP H07127975 A JPH07127975 A JP H07127975A JP 27869093 A JP27869093 A JP 27869093A JP 27869093 A JP27869093 A JP 27869093A JP H07127975 A JPH07127975 A JP H07127975A
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerant
valve
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27869093A
Other languages
Japanese (ja)
Inventor
Kensuke Oka
健助 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27869093A priority Critical patent/JPH07127975A/en
Publication of JPH07127975A publication Critical patent/JPH07127975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

PURPOSE:To prevent drying capability from being lowered even upon changeover from a cooling operation to a reheating operation by increasing the number of condensers activated as the temperature in a drying machine rises upon using a drying operation function. CONSTITUTION:Capacity control of a compressor is effected by feeding back a refrigerant from a compressor 103 to a location of intermediate pressure of the compressor 103 or a suction side (S) of the same. An expansion valve 15 adjusts the amount of injection to the compressor in response to the temperature of a refrigerant fedback to the compressor. An accumulator 16 and a high/low pressure switch 17 are provided. A solenoid opening/closing valve 18 and a check valve 19 are provided, and when the solenoid opening/closing valve 18 is opened, a refrigerant flowing from a three-way valve 104 can pass through a reheater 6b. More specifically, the refrigerant flows through the reheaters 6a, 6b whereby they are operated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品や農作物等の乾燥
と保存に用いる冷風乾燥機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold air dryer used for drying and preserving foods and agricultural products.

【0002】[0002]

【従来の技術】従来この種の冷風乾燥機においては、例
えば図4に示す如き冷媒回路を試みた。すなわち、冷風
乾燥機は乾燥される食品等(被乾燥物)を収納する庫内
に設けられる室内ユニット101と室外ユニット102
とから成り、乾燥庫101側に設けられた圧縮機103
の吐出側には三方弁104が接続され、三方弁104の
一方の出口は前記室外ユニット102に設けられた凝縮
器105に接続されている。106は凝縮器105を強
制空冷するための送風機であり、凝縮器の温度に応じて
送風量が制御される。
2. Description of the Related Art Conventionally, in this type of cold air dryer, a refrigerant circuit as shown in FIG. 4 has been tried. That is, the cold air dryer is provided with an indoor unit 101 and an outdoor unit 102, which are provided inside a cabinet for storing foods to be dried (materials to be dried).
And a compressor 103 provided on the drying chamber 101 side.
A three-way valve 104 is connected to the discharge side of, and one outlet of the three-way valve 104 is connected to a condenser 105 provided in the outdoor unit 102. Reference numeral 106 denotes a blower for forcibly cooling the condenser 105, and the amount of blown air is controlled according to the temperature of the condenser.

【0003】凝縮器105は室内ユニット101側に設
けられた逆止弁107を介して受液器108に接続さ
れ、受液器108は膨張弁109を介して前記庫内に設
けられた冷却器110に接続されている。冷却器110
は圧縮機103の吸込側に接続されて環状の冷凍サイク
ルを構成する。前記膨張弁109は冷却器110の出口
側の温度を検知し、冷却器110の温度を所定値に維持
するように開度を自動調整する。
The condenser 105 is connected to a liquid receiver 108 via a check valve 107 provided on the side of the indoor unit 101, and the liquid receiver 108 is provided with a cooler provided in the storage via an expansion valve 109. It is connected to 110. Cooler 110
Is connected to the suction side of the compressor 103 to form an annular refrigeration cycle. The expansion valve 109 detects the temperature on the outlet side of the cooler 110 and automatically adjusts the opening so as to maintain the temperature of the cooler 110 at a predetermined value.

【0004】前記三方弁104の他方の出口は前記冷却
器110と共に庫内に設けられて熱交換器を構成する再
熱器112に接続されており、この再熱器112は逆止
弁113を介して前記受液器108に接続されている。
この逆止弁113及び前記逆止弁107は、いずれも受
液器108側が順方向とされている。また、114は前
記冷却器110及び再熱器112と熱交した空気を前記
庫内に強制循環するための送風機である。
The other outlet of the three-way valve 104 is connected to a reheater 112 which is provided inside the refrigerator together with the cooler 110 and constitutes a heat exchanger. The reheater 112 has a check valve 113. It is connected to the liquid receiver 108 through.
Both the check valve 113 and the check valve 107 have the liquid receiver 108 side in the forward direction. Further, 114 is a blower for forcibly circulating the air that has exchanged heat with the cooler 110 and the reheater 112 in the chamber.

【0005】前記三方弁104の手前となる圧縮機10
3の吐出側は開閉弁116、圧力調整弁122を介して
膨張弁109と冷却器110の間に接続されてデフロス
ト回路を構成している。開閉弁116は蒸発器110の
出口側の温度を検出してこの温度が設定値以下になった
時に流路を開いて冷却器110の除霜を行う。また、前
記三方弁104は庫内温度によって流れが切換えられ
る。尚、120は開閉弁であり常には開いている。ま
た、121は圧縮機103冷却用のリキッドインジェク
ション回路を制御する開閉弁である。
The compressor 10 in front of the three-way valve 104
The discharge side of 3 is connected between the expansion valve 109 and the cooler 110 via the on-off valve 116 and the pressure adjusting valve 122 to form a defrost circuit. The on-off valve 116 detects the temperature on the outlet side of the evaporator 110, and opens the flow path to defrost the cooler 110 when this temperature falls below a set value. Further, the flow of the three-way valve 104 is switched depending on the temperature inside the refrigerator. Incidentally, 120 is an open / close valve which is always open. Reference numeral 121 is an opening / closing valve that controls a liquid injection circuit for cooling the compressor 103.

【0006】以上の従来の冷風乾燥機の動作を説明す
る。冷風乾燥機は庫内温度が例えば+10℃〜+30℃
の範囲で使用されるものであり、庫内温度が例えば前記
+10℃に設定される。そして、圧縮機103を運転
し、前記設定温度に庫内温度が低下するまでは、三方弁
104の流路を前記一方の出口方向とする。これによっ
て、圧縮機103から吐出された高温高圧のガス冷媒
は、実線矢印で示す如く三方弁104を経て凝縮器10
5に入り、そこで放熱して凝縮した後、逆止弁107を
経て受液器108に入り、開閉弁120を経て膨張弁1
09に至る。膨張弁109は前述の如く冷却器110の
出口側の温度に基づいて開度を調整し、凝縮液化した冷
媒を絞って冷却器110に供給する。冷却器110に流
入した冷媒は蒸発し、周囲から吸熱して冷却作用を発揮
した後、圧縮機103に吸い込まれる。
The operation of the above conventional cold air dryer will be described. The temperature inside the cold air dryer is, for example, + 10 ° C to + 30 ° C.
The temperature inside the refrigerator is set to, for example, the above + 10 ° C. Then, the compressor 103 is operated, and the flow path of the three-way valve 104 is set to the one outlet direction until the temperature inside the refrigerator decreases to the set temperature. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 103 passes through the three-way valve 104 as shown by the solid line arrow and passes through the condenser 10.
5, heat is dissipated there and condensed, and then enters the liquid receiver 108 via the check valve 107 and the expansion valve 1 via the on-off valve 120.
09. As described above, the expansion valve 109 adjusts the opening degree based on the temperature on the outlet side of the cooler 110, throttles the condensed and liquefied refrigerant, and supplies it to the cooler 110. The refrigerant flowing into the cooler 110 evaporates, absorbs heat from the surroundings, exerts a cooling effect, and is then sucked into the compressor 103.

【0007】係る冷却運転によって庫内温度が設定温度
まで低下すると、三方弁104の流路は前記他方の出口
方向に切り換わる。これによって、圧縮機103から吐
出された高温高圧のガス冷媒は、点線矢印で示す如く三
方弁104を経て再熱器112に入り、そこで凝縮して
加熱作用を発揮する。一方、冷媒はそこで凝縮された
後、逆止弁113を経て受液器108に入り、以後は前
述同様に流れる。係る乾燥運転(再熱運転)によって庫
内温度が上昇すれば再び前記冷却運転に切り換わり、以
後は冷却運転と再熱運転を繰り返す。冷却器109によ
り冷却され、再熱器112により加熱された空気は送風
機114により庫内に循環されるので、係る冷却・再熱
運転の繰り返しにより庫内に収納した物品は乾燥され
る。
When the internal cold storage temperature is lowered to the set temperature by the cooling operation, the flow path of the three-way valve 104 is switched to the other outlet direction. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 103 enters the reheater 112 via the three-way valve 104 as shown by the dotted arrow, and is condensed there to exert a heating effect. On the other hand, the refrigerant is condensed there, then enters the liquid receiver 108 through the check valve 113, and thereafter flows as described above. If the internal temperature rises due to the drying operation (reheating operation), the cooling operation is switched to the cooling operation again, and thereafter, the cooling operation and the reheating operation are repeated. Since the air cooled by the cooler 109 and heated by the reheater 112 is circulated in the refrigerator by the blower 114, the articles stored in the refrigerator are dried by repeating the cooling / reheating operation.

【0008】ここで、庫内温度が+15℃以上の場合に
は冷却器110における冷媒の蒸発温度は0℃以上とな
るため着霜することはないが、庫内温度が+10℃にな
ると、冷却器110内の冷媒の蒸発温度は−5℃となる
ので冷却器110には着霜が成長する。冷却器110に
着霜が成長すると、熱交換が行われなくなるために冷却
器110の温度は低下して行く。デフロスト回路に設け
られた開閉弁116は、係る着霜により冷却器110の
出口温度が例えば−3℃まで低下すると、流路を開いて
圧縮機103から吐出された高温高圧のガス冷媒を膨張
弁109の下流側に流し、冷却器110に直接流入させ
る。係る高温高圧のガス冷媒の流入により冷却器110
は加熱されて除霜される。
Here, when the temperature in the refrigerator is + 15 ° C. or higher, the evaporation temperature of the refrigerant in the cooler 110 is 0 ° C. or higher, so that no frost is formed, but when the temperature in the refrigerator is + 10 ° C., cooling is performed. Since the evaporation temperature of the refrigerant in the cooler 110 is −5 ° C., frost grows on the cooler 110. When frost grows on the cooler 110, heat exchange is not performed and the temperature of the cooler 110 decreases. The on-off valve 116 provided in the defrost circuit opens the flow path and expands the high-temperature high-pressure gas refrigerant discharged from the compressor 103 when the outlet temperature of the cooler 110 decreases to, for example, -3 ° C. due to the frost formation. It is made to flow to the downstream side of 109 and directly made to flow into the cooler 110. Due to the inflow of the high-temperature and high-pressure gas refrigerant, the cooler 110
Is heated and defrosted.

【0009】また庫内の保冷運転を選択した場合は、前
記したような冷却運転が行われる。
When the cold storage operation in the refrigerator is selected, the cooling operation as described above is performed.

【0010】[0010]

【発明が解決しようとする課題】このように構成された
従来の冷風乾燥機では、乾燥運転と冷却運転とを選択で
きるものであった。
In the conventional cold air dryer having such a structure, the drying operation and the cooling operation can be selected.

【0011】図5は図4に示した冷風乾燥機を運転した
ときの冷凍サイクル中の高圧側の高圧圧力(例えば圧縮
機の吐出側の冷凍サイクル中の圧力)の特性図である。
尚、測定条件は、庫外温度32度、電源は三相200V
である。この特性図において、点線は冷却運転時の庫内
温度に対する高圧圧力の変化を示し、実線は再熱運転時
の庫内温度に対する高圧圧力の変化を示している。
FIG. 5 is a characteristic diagram of a high pressure on the high pressure side (for example, a pressure in the refrigeration cycle on the discharge side of the compressor) in the refrigeration cycle when the cold air dryer shown in FIG. 4 is operated.
In addition, the measurement conditions are an outside temperature of 32 degrees and a power source of three-phase 200V.
Is. In this characteristic diagram, the dotted line shows the change in the high pressure with respect to the temperature inside the refrigerator during the cooling operation, and the solid line shows the change in the high pressure with respect to the temperature inside the refrigerator during the reheat operation.

【0012】この図において、冷却運転時の高圧圧力は
凝縮器105の空気入り口温度が一定(庫外温度が32
度と一定のためこの温度も32度の一定になる)のた
め、主に庫内温度に左右される蒸発器110の蒸発温度
に応じて変化し、その高圧圧力の変化幅は約2.5Kg
/平方センチメートル(庫内温度15度から30度の範
囲)である。
In this figure, the high-pressure pressure during the cooling operation has a constant air inlet temperature of the condenser 105 (the outside temperature is 32 ° C).
Since this temperature is constant at 32 degrees, this temperature is also constant at 32 degrees), so that it changes depending on the evaporation temperature of the evaporator 110, which mainly depends on the internal temperature, and the change range of the high pressure is about 2.5 Kg.
/ Square centimeter (internal temperature range of 15 to 30 degrees).

【0013】一方、再熱運転時の高圧圧力は、再熱器1
12の空気入り口温度(15度〜30度)と蒸発器11
0の蒸発温度とに左右され、その高圧圧力の変化幅は約
7Kg/平方センチメートル(庫内温度15度〜30度
の範囲)である。
On the other hand, the high pressure during the reheat operation is the same as the reheater 1
12 Air inlet temperature (15-30 degrees) and evaporator 11
Depending on the evaporation temperature of 0, the variation range of the high pressure is about 7 kg / square centimeter (internal temperature range of 15 to 30 degrees).

【0014】尚、庫内温度が30度の時に冷却運転時の
高圧圧力と再熱運転時の高圧圧力とが約19Kg/平方
センチメートルで一致するように冷凍サイクルの各構成
要素を設計している。
Each component of the refrigeration cycle is designed so that the high pressure during the cooling operation and the high pressure during the reheating operation match at about 19 kg / square centimeter when the temperature inside the refrigerator is 30 degrees.

【0015】ここで冷却運転から再熱運転への切換を行
う(冷却運転時の高圧圧力特性から性熱運転時の高圧圧
力特性へ変わる)と冷凍サイクル中の高圧圧力が急激に
低下する。例えば、庫内温度が15度の時に冷却運転
(高圧圧力=16.5Kg/平方センチメートル、冷媒
温度=45度)から再熱運転(高圧圧力=12Kg/平
方センチメートル、冷媒温度=32度)へ切り換える
と、高圧圧力は急激に低下するが冷媒温度は急激に低下
できず、この間(2.5分〜3分間)冷凍サイクル中に
フラッシュガスが発生し冷凍能力、すなわち乾燥能力が
低下するものであった。
When the cooling operation is switched to the reheat operation (the high pressure characteristic during the cooling operation is changed to the high pressure characteristic during the heat operation), the high pressure during the refrigeration cycle sharply drops. For example, when the cooling temperature (high pressure = 16.5 kg / square centimeter, refrigerant temperature = 45 degrees) is switched to the reheat operation (high pressure = 12 kg / square centimeter, refrigerant temperature = 32 degrees) when the internal temperature is 15 degrees, The high-pressure pressure sharply dropped, but the refrigerant temperature could not drastically fall, and during this period (2.5 minutes to 3 minutes), flash gas was generated and the refrigerating capacity, that is, the drying capacity was lowered.

【0016】本発明はこのような問題点に対して、冷却
運転〜再熱運転への切換の際にも乾燥能力の低下を起こ
さない冷風乾燥機を提供するものである。
The present invention provides a cold air dryer that does not cause a decrease in drying capacity even when switching from cooling operation to reheat operation in order to solve such problems.

【0017】[0017]

【課題を解決するための手段】本発明は、圧縮機、凝縮
器、減圧装置、蒸発器を用いた冷凍サイクルを備え、被
乾燥物を収容した庫内へ蒸発器で冷却された空気を供給
する冷却運転機能と蒸発器で冷却された空気を凝縮器で
再加熱した後前記庫内へ供給する乾燥運転機能とを有す
る乾燥機に於いて、前記再加熱に用いる凝縮器を複数の
凝縮器に分割し、乾燥運転機能を用いる際に庫内の温度
が高くなるにつれて機能させる凝縮器の数を増加させる
ものである。
The present invention comprises a refrigeration cycle using a compressor, a condenser, a decompression device, and an evaporator, and supplies air cooled by the evaporator to the inside of a chamber containing a material to be dried. In a dryer having a cooling operation function to perform and a drying operation function to reheat the air cooled by the evaporator by the condenser and then supply the air to the inside of the refrigerator, a plurality of condensers are used for the reheating. When the drying operation function is used, the number of condensers to be operated increases as the temperature inside the storage chamber increases.

【0018】また、前記乾燥機能を用いている際に機能
していない凝縮器への冷媒の流入を防止する弁機構を備
えるものである。
A valve mechanism for preventing the refrigerant from flowing into the condenser that is not functioning when the drying function is used is provided.

【0019】[0019]

【作用】このように構成された冷風乾燥機では、再加熱
運転時に庫内温度に応じて機能する凝縮器の数を変えて
再加熱能力を変えるので冷媒の温度差に起因するフラッ
シュガスの発生時間を短くして乾燥能力の落ち込み時間
を短くすることができる。
In the cold air dryer configured as described above, the number of condensers functioning according to the temperature in the refrigerator during the reheating operation is changed to change the reheating ability, so that the flash gas generated due to the temperature difference of the refrigerant is generated. By shortening the time, it is possible to shorten the time for the drying ability to drop.

【0020】[0020]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。図1(a)は冷風乾燥機の利用側ユニットの正面図
であり、図2(b)は同じく一部断面側面図である。1
はユニットであり、庫内に設置される。2は空気吸込口
であり、送風機3が駆動することによって庫内の空気を
ユニット1内に吸い込む。ユニット1に吸い込まれた空
気は熱交換器4で冷却・加熱された後、送風機3で再び
庫内に供給される。この空気は図1(b)に示す実線に
沿ってユニット1内を流れる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a front view of a use side unit of a cold air dryer, and FIG. 2B is a partially sectional side view of the same. 1
Is a unit and is installed in the refrigerator. An air suction port 2 sucks the air in the refrigerator into the unit 1 by driving the blower 3. The air sucked into the unit 1 is cooled and heated by the heat exchanger 4 and then supplied again to the inside of the refrigerator by the blower 3. This air flows in the unit 1 along the solid line shown in FIG.

【0021】図1(c)は図1(b)に示した熱交換器
4の説明図であり、この熱交換器は空気の吸い込み側
(一次側)に位置する蒸発器5と2次側に位置する第1
再熱器(第1凝縮器)6a、第2再熱器(第2凝縮器)
6bとから構成されている。
FIG. 1 (c) is an explanatory view of the heat exchanger 4 shown in FIG. 1 (b). This heat exchanger has an evaporator 5 and a secondary side located on the air intake side (primary side). Located in 1st
Reheater (first condenser) 6a, second reheater (second condenser)
6b and.

【0022】図2は図1に示した冷風乾燥機に用いる冷
凍サイクルを示す冷媒回路図である。この図において、
冷凍サイクルの基本的な構成及び基本的な動作は第4に
示したものと同等であるため、同等の作用を行う構成要
素は同じ符号を付して説明は省略する。
FIG. 2 is a refrigerant circuit diagram showing a refrigeration cycle used in the cold air dryer shown in FIG. In this figure,
Since the basic configuration and the basic operation of the refrigeration cycle are the same as those shown in the fourth example, the components that perform the same operation are designated by the same reference numerals and the description thereof will be omitted.

【0023】10はドライや、11はインジケータ、1
2はオイルセパレータであり圧縮機103から吐出され
た冷媒からオイルを分離して圧縮機103へ戻す。1
3、14は圧縮機103の容量制御用の電磁弁であり、
圧縮機103からの吐出冷媒を圧縮機103の中間圧の
位置、又は吸入側(S)に帰還させることによって圧縮
機の容量制御を行う。15は膨張弁であり、圧縮機への
帰還冷媒の温度に応じて圧縮機へのインジェクション量
を調節する。16はアキュムレータ、17は高低圧スイ
ッチである。
10 is dry, 11 is an indicator, 1
An oil separator 2 separates oil from the refrigerant discharged from the compressor 103 and returns it to the compressor 103. 1
3 and 14 are solenoid valves for controlling the capacity of the compressor 103,
The capacity of the compressor is controlled by returning the refrigerant discharged from the compressor 103 to the intermediate pressure position of the compressor 103 or to the suction side (S). Reference numeral 15 is an expansion valve, which adjusts the injection amount into the compressor according to the temperature of the refrigerant returned to the compressor. Reference numeral 16 is an accumulator, and 17 is a high / low pressure switch.

【0024】18は電磁開閉弁、19は逆止弁であり、
電磁開閉弁18が開いているときは、三方弁104から
流れてくる冷媒が再熱器6bを通過できる。すなわち再
熱器6a、再熱器6bを冷媒が流れ2つの再熱器6a、
6bが機能するものである。電磁開閉弁18が閉じてい
るときは、再熱器6bへ冷媒が流れず、また逆止弁19
が冷媒の逆流を防止するので、再熱器6bに冷媒が寝込
むことはない。
Reference numeral 18 is an electromagnetic opening / closing valve, 19 is a check valve,
When the electromagnetic opening / closing valve 18 is open, the refrigerant flowing from the three-way valve 104 can pass through the reheater 6b. That is, the refrigerant flows through the reheater 6a and the reheater 6b, and the two reheater 6a,
6b is functional. When the electromagnetic opening / closing valve 18 is closed, the refrigerant does not flow to the reheater 6b, and the check valve 19
Prevents the refrigerant from flowing backward, so that the refrigerant does not lie in the reheater 6b.

【0025】電磁開閉弁18は次の条件を満たす際に開
となるように制御部(図示せず)で制御される。再熱
運転時、庫内温度が23度以上の時(図示しない庫内
温度センサが23度以上を判断したとき。
The solenoid on-off valve 18 is controlled by a control unit (not shown) so that it opens when the following conditions are satisfied. At the time of reheat operation, when the temperature inside the refrigerator is 23 degrees or higher (when the temperature sensor inside the refrigerator determines that the temperature is 23 degrees or higher.

【0026】尚、制御部は従来の制御回路(特願平5−
116109号参考)に、庫内温度を検出する温度セン
サと、この温度センサの検出温度と設定温度(本実施例
では23度)とを比較し、検出温度が設定温度以上で信
号を出力する比較回路と、この比較回路の出力信号で電
磁開閉弁18を開かせるためのドライバ回路とを追加す
ればよい。尚、比較回路には適選デファレンシャルを設
定することは言うまでもない。
The control unit is a conventional control circuit (Japanese Patent Application No.
116109 reference), the temperature sensor for detecting the temperature inside the refrigerator is compared with the temperature detected by this temperature sensor and the set temperature (23 degrees in this embodiment), and a signal is output when the detected temperature is equal to or higher than the set temperature. A circuit and a driver circuit for opening the electromagnetic on-off valve 18 by the output signal of this comparison circuit may be added. Needless to say, an appropriately selected differential is set in the comparison circuit.

【0027】また、設定温度は本実施例では23度とし
ているが、この温度に限るものではなく圧縮機の能力、
それぞれの熱交換器の大きさ、庫内の大きさなどに応じ
て適選設定するものである。
Further, although the set temperature is set to 23 degrees in this embodiment, it is not limited to this temperature but the capacity of the compressor,
It is set appropriately according to the size of each heat exchanger and the size of the interior.

【0028】図3は図5に示した特性図と同様の特性図
であり冷風乾燥機を運転したときの冷凍サイクル中の高
圧側の高圧圧力(例えば圧縮機の吐出側の冷凍サイクル
中の圧力)の特性図である。尚、測定条件は図3と同じ
く、庫外温度32度、電源は三相200Vである。この
特性図において、点線は冷却運転時の庫内温度に対する
高圧圧力の変化を示し、実線は再熱運転時の庫内温度に
対する高圧圧力の変化を示している。
FIG. 3 is a characteristic diagram similar to the characteristic diagram shown in FIG. 5, and is a high pressure on the high pressure side in the refrigeration cycle when the cold air dryer is operated (for example, the pressure in the refrigeration cycle on the discharge side of the compressor). ) Is a characteristic diagram of FIG. The measurement conditions are the same as in FIG. 3, where the outside temperature is 32 degrees and the power source is three-phase 200V. In this characteristic diagram, the dotted line shows the change in the high pressure with respect to the temperature inside the refrigerator during the cooling operation, and the solid line shows the change in the high pressure with respect to the temperature inside the refrigerator during the reheat operation.

【0029】この図において、冷却運転時の高圧圧力は
図3と同じであり、その高圧圧力の変化幅は約2.5K
g/平方センチメートル(庫内温度15度〜30度の範
囲)である。
In this figure, the high pressure during the cooling operation is the same as that in FIG. 3, and the change range of the high pressure is about 2.5K.
It is g / square centimeter (internal temperature range of 15 to 30 degrees).

【0030】一方、再熱運転時の高圧圧力は、再熱器6
a、6bの空気入り口温度(15度〜30度)と蒸発器
5の蒸発温度とに左右され、その高圧圧力の変化幅は約
4.5Kg/平方センチメートル(庫内温度15度〜3
0度の範囲)である。
On the other hand, the high pressure during the reheat operation is the same as the reheater 6
Depending on the air inlet temperature (15 to 30 degrees) of a and 6b and the evaporation temperature of the evaporator 5, the change width of the high pressure is about 4.5 kg / square centimeter (internal temperature 15 to 3 degrees).
0 degree range).

【0031】尚、庫内温度が30度の時に冷却運転時の
高圧圧力と再熱運転時の高圧圧力とが約19Kg/平方
センチメートルで一致するように冷凍サイクルの各構成
要素を設計している。
Each component of the refrigeration cycle is designed so that the high pressure during the cooling operation and the high pressure during the reheating operation match at about 19 kg / square centimeter when the temperature inside the refrigerator is 30 degrees.

【0032】本発明では、庫内温度が23度の時を境に
して機能する熱交換器の数が1から2に増加する。庫内
温度が23度より低いときには、再熱器6aのみが機能
するので、冷媒の循環量が少なくなり冷凍サイクル中の
高圧圧力が高くなる。庫内温度が15度の時で高圧圧力
が14.5Kg/平方センチメートル(冷媒温度が39
度)となる。尚、庫内温度が23度以上の時には図5に
示した特性と同じになる。
In the present invention, the number of functioning heat exchangers increases from 1 to 2 when the temperature inside the refrigerator is 23 degrees. When the temperature inside the refrigerator is lower than 23 degrees, only the reheater 6a functions, so that the circulation amount of the refrigerant decreases and the high pressure during the refrigeration cycle increases. When the internal temperature is 15 degrees, the high pressure is 14.5 kg / square centimeter (refrigerant temperature is 39
Degree). The characteristics shown in FIG. 5 are the same when the inside temperature is 23 degrees or higher.

【0033】従って前期と同様に庫内温度が15度の時
に冷風乾燥機の運転が冷却運転から再熱運転に切換わる
と、冷凍サイクル中の高圧圧力=16.5Kg/平方セ
ンチメートル(冷媒温度=45度)が高圧圧力=14.
5Kg/平方センチメートル(冷媒温度=39度)低下
する。この間の冷媒の温度差は6度と小さくなり、フラ
ッシュガスの発生期間も1分〜1分10秒程度に減少す
る。すなわち、フラッシュガスの発声期間を従来と比べ
約40%に減少させることができる。
Accordingly, when the operation of the cold air dryer is switched from the cooling operation to the reheating operation when the temperature inside the refrigerator is 15 degrees, as in the previous term, the high pressure in the refrigeration cycle = 16.5 Kg / square centimeter (refrigerant temperature = 45 Is high pressure = 14.
It decreases by 5 kg / square centimeter (refrigerant temperature = 39 degrees). The temperature difference of the refrigerant during this period is as small as 6 degrees, and the flash gas generation period is also reduced to about 1 minute to 1 minute 10 seconds. In other words, the vocalization period of the flash gas can be reduced to about 40% as compared with the conventional case.

【0034】また、庫内が23度以下での冷却運転から
再熱運転への切換では高圧圧力差が最大で2Kg/平方
センチメートルなので、常用される庫内温度範囲ではフ
ラッシュガスの発生を特に減らすことができ切換時の乾
燥能力の落ち込みを防止することができる。
Further, since the high pressure difference is 2 kg / cm 2 at the maximum when switching from the cooling operation to the reheating operation when the inside of the refrigerator is 23 ° C. or less, the generation of flash gas is particularly reduced in the temperature range inside the refrigerator which is normally used. Therefore, it is possible to prevent the deterioration of the drying ability at the time of switching.

【0035】[0035]

【発明の効果】本発明は、前記再加熱に用いる凝縮器を
複数の凝縮器に分割し、乾燥運転機能を用いる際に庫内
の温度が高くなるにつれて機能させる凝縮器の数を増加
させるようにしたので、庫内温度が低いときの冷媒循環
量を減らし冷凍サイクル中の高圧圧力を高くすることが
できる。従って冷却運転から再熱運転(乾燥運転)に切
り替わった際の一時的な乾燥能力の低下時間を短くする
ことができるものである。
According to the present invention, the condenser used for the reheating is divided into a plurality of condensers, and the number of condensers to be operated increases as the temperature in the refrigerator increases when the drying operation function is used. Therefore, the refrigerant circulation amount when the temperature inside the refrigerator is low can be reduced and the high pressure in the refrigeration cycle can be increased. Therefore, it is possible to shorten the temporary reduction time of the drying capacity when switching from the cooling operation to the reheating operation (drying operation).

【0036】さらに、乾燥機能を用いている際に機能し
ていない凝縮器への冷媒の流入を防止する弁機構を備え
ることによって、冷媒のこの熱交換器への寝込み量を最
小限にすることができるものである。
Furthermore, the amount of refrigerant stagnation in this heat exchanger is minimized by providing a valve mechanism for preventing the refrigerant from flowing into the condenser that is not functioning when using the drying function. Is something that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b),(c)は本発明の実施例を示
す冷風乾燥機の正面図、一部断面側面図、および熱交換
器の説明図である。
1A, 1B, and 1C are a front view, a partial cross-sectional side view, and a heat exchanger of a cold air dryer showing an embodiment of the present invention.

【図2】図1に示した冷風乾燥機に用いる冷凍サイクル
を示す冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram showing a refrigeration cycle used in the cold air dryer shown in FIG.

【図3】図2に示した冷凍サイクルを用いた際の高圧圧
力の変化を示す特性図である。
3 is a characteristic diagram showing changes in high pressure when the refrigeration cycle shown in FIG. 2 is used.

【図4】従来の冷風乾燥機に用いられていた冷凍サイク
ルを示す冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram showing a refrigeration cycle used in a conventional cold air dryer.

【図5】図4に示した冷凍サイクルを用いた際の高圧圧
力の変化を示す特性図である。
5 is a characteristic diagram showing changes in high pressure when the refrigeration cycle shown in FIG. 4 is used.

【符号の説明】[Explanation of symbols]

1 冷風乾燥機 4 熱交換器 5 蒸発器 6a 第1蒸発器 6b 第2蒸発器 18 電磁開閉弁 19 逆止弁 1 Cold Air Dryer 4 Heat Exchanger 5 Evaporator 6a First Evaporator 6b Second Evaporator 18 Electromagnetic Open / Close Valve 19 Check Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器を用
いた冷凍サイクルを備え、被乾燥物を収容した庫内へ蒸
発器で冷却された空気を供給する冷却運転機能と蒸発器
で冷却された空気を凝縮器で再加熱した後前記庫内へ供
給する乾燥運転機能とを有する乾燥機に於いて、前記再
加熱に用いる凝縮器を複数の凝縮器に分割し、乾燥運転
機能を用いる際に庫内の温度が高くなるにつれて機能さ
せる凝縮器の数を増加させることを特徴とする冷風乾燥
機。
1. A cooling operation function for supplying air cooled by an evaporator to a chamber containing a material to be dried, which comprises a refrigeration cycle using a compressor, a condenser, a pressure reducing device, and an evaporator. In a dryer having a drying operation function of supplying cooled air to the inside after reheating with a condenser, the condenser used for the reheating is divided into a plurality of condensers, and a drying operation function is provided. A cold air dryer characterized by increasing the number of condensers to be operated as the temperature inside the chamber increases when used.
【請求項2】 前記乾燥機能を用いている際に機能して
いない凝縮器への冷媒の流入を防止する弁機構を備える
ことを特徴とする請求項1に記載の冷風乾燥機。
2. The cold air dryer according to claim 1, further comprising a valve mechanism that prevents a refrigerant from flowing into a condenser that is not functioning while using the drying function.
JP27869093A 1993-11-08 1993-11-08 Cold air drying machine Pending JPH07127975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27869093A JPH07127975A (en) 1993-11-08 1993-11-08 Cold air drying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27869093A JPH07127975A (en) 1993-11-08 1993-11-08 Cold air drying machine

Publications (1)

Publication Number Publication Date
JPH07127975A true JPH07127975A (en) 1995-05-19

Family

ID=17600824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27869093A Pending JPH07127975A (en) 1993-11-08 1993-11-08 Cold air drying machine

Country Status (1)

Country Link
JP (1) JPH07127975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464838B1 (en) * 2009-09-15 2014-11-24 유치 차이 Method and device for rapidly drying ware shell and ware shell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464838B1 (en) * 2009-09-15 2014-11-24 유치 차이 Method and device for rapidly drying ware shell and ware shell

Similar Documents

Publication Publication Date Title
US5904049A (en) Refrigeration expansion control
US6935127B2 (en) Refrigerator
JPH05223384A (en) Heat-pump system
JP2009532654A (en) Refrigeration transport unit
JP3003356B2 (en) Vending machine cooling and heating equipment
JP3633997B2 (en) Refrigerated refrigerator and control method thereof
WO2013084510A1 (en) Refrigeration device for container
JP3426634B2 (en) Cold air dryer
JP2000205672A (en) Refrigerating system
JPH07127975A (en) Cold air drying machine
JP2000283626A (en) Refrigerator
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JPH085172A (en) Cooler for refrigerator with deep freezer
JPH05308943A (en) Freezing equipment
JPH01123966A (en) Refrigerator
JP3407918B2 (en) Cold air dryer
JP3954835B2 (en) refrigerator
JPH07151467A (en) Cold air dryer
JPH0682122A (en) Refrigerating apparatus
JPS5888580A (en) Cooling device
JP3332512B2 (en) Cold air dryer
JP2002195726A (en) Refrigerator
JP3469607B2 (en) Dryer
JPH10253182A (en) Binary refrigerating device
JPS61159072A (en) Refrigerator