JP2001311567A - Freezer device and environmental test device using the same - Google Patents

Freezer device and environmental test device using the same

Info

Publication number
JP2001311567A
JP2001311567A JP2000128923A JP2000128923A JP2001311567A JP 2001311567 A JP2001311567 A JP 2001311567A JP 2000128923 A JP2000128923 A JP 2000128923A JP 2000128923 A JP2000128923 A JP 2000128923A JP 2001311567 A JP2001311567 A JP 2001311567A
Authority
JP
Japan
Prior art keywords
expansion valve
compressor
temperature
electronic expansion
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000128923A
Other languages
Japanese (ja)
Inventor
Shinichi Enomoto
真一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP2000128923A priority Critical patent/JP2001311567A/en
Publication of JP2001311567A publication Critical patent/JP2001311567A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a cooling capability to be adjusted within a range of about 0 to 100% in respect to the maximum cooling capability and realize an energy saving. SOLUTION: A bypass passage 9 having a specific pressure expansion valve 8 is connected at its one end with an outlet side passage of a condenser 3 and at the other end with a suction side passage of a compressor 2. When a refrigerant pressure at the suction side passage of the compressor 2 become a negative pressure, the specific pressure expansion valve 8 is opened. A downstream side passage of the specific pressure expansion valve 8 in the bypass passage 9 is provided with a heat exchanger 7 for performing a heat exchanging operation between refrigerant flowing at the downstream side passage and refrigerant flowing at a discharging passage of the compressor 2. When a degree of opening of an electronic expansion valve 4 becomes 0% and a pressure within the suction side passage of the compressor 2 is apt to become a negative pressure, the specific pressure expansion valve 8 is opened, the refrigerant flows through the bypass passage 9 and it may be adjusted to prevent the pressure in the suction side passage of the compressor 2 from becoming a negative pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置およびそ
れを用いた環境試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus and an environmental test apparatus using the same.

【0002】[0002]

【従来の技術】従来より、環境試験装置は、所望の試験
環境を精度よく実現させるために、冷凍機を常時運転さ
せて冷却する一方、反応のよい加熱器により加熱し、そ
れらの冷却と加熱とのバランスで、前記装置の庫内温度
をほぼ一定に維持するように温度制御されるものが知ら
れている。
2. Description of the Related Art Conventionally, in order to accurately realize a desired test environment, an environmental test apparatus cools a refrigerator by constantly operating it, while heating it with a responsive heater, and cooling and heating them. There is known an apparatus in which the temperature is controlled so as to keep the internal temperature of the apparatus substantially constant in balance with the above.

【0003】このような環境試験装置においては、庫内
温度を制御する範囲が広いため、庫内最低温度を維持す
る能力を有する冷凍機では、庫内温度が高い場合に負担
が過大となり、これとバランスする加熱器の出力も大き
くなり、エネルギが無駄に消費されている。
[0003] In such an environmental test apparatus, since the range of controlling the temperature in the refrigerator is wide, a refrigerator having the ability to maintain the minimum temperature in the refrigerator becomes excessively burdensome when the temperature in the refrigerator is high. The output of the heater that balances with the power also increases, and energy is wasted.

【0004】そのため、電子膨張弁やインバータによる
冷媒流量の調節により、冷却能力を可変とし、冷却能力
が不用の場合は、冷却能力を低下させる制御システムが
採用されつつある。
[0004] Therefore, a control system that makes the cooling capacity variable by adjusting the refrigerant flow rate by an electronic expansion valve or an inverter and reduces the cooling capacity when the cooling capacity is unnecessary is being adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た環境試験装置は、冷凍機における圧縮機をON−OF
F制御すると庫内温度の乱れが生ずるという圧縮機の仕
様範囲からの制約により、冷凍機を常時運転しておく必
要があることから、冷凍機の冷却能力の可変範囲は最大
冷却能力に対して40%〜100%程度に止まり、40
%より小さくすることができないのが現状である。その
ため、加熱器の出力も、冷凍機の冷却能力とバランスさ
せるため、一定値までしか低下させることができない。
よって、冷凍機の冷却能力が必要以上に大きければ、そ
れとバランスする加熱器の出力も必要以上に大きくな
り、省エネの点からは十分とはいえなかった。
However, the above-mentioned environmental test apparatus uses an ON-OF compressor for a refrigerator.
Due to the restriction from the specification range of the compressor that the temperature inside the refrigerator is disturbed when the F control is performed, it is necessary to keep the refrigerator operating at all times. Therefore, the variable range of the cooling capacity of the refrigerator is smaller than the maximum cooling capacity. Only about 40% to 100%, 40
At present, it cannot be made smaller than%. Therefore, the output of the heater can be reduced only to a certain value in order to balance the cooling capacity of the refrigerator.
Therefore, if the cooling capacity of the refrigerator is larger than necessary, the output of the heater that balances it becomes larger than necessary, which is not sufficient in terms of energy saving.

【0006】そこで、発明者は、冷凍機の冷却能力が不
用の場合には、蒸発器への冷媒の流れをバイパスさせれ
ば、圧縮機の作動状態は維持するが、庫内の冷却は行わ
れないので、加熱器の出力を低下させることができるこ
とに着目し、本発明を着想するに至ったものである。
Therefore, the inventor of the present invention has proposed that when the cooling capacity of the refrigerator is unnecessary, the operation state of the compressor is maintained by bypassing the flow of the refrigerant to the evaporator, but the inside of the refrigerator is not cooled. Therefore, the inventors have focused on the fact that the output of the heater can be reduced, and have come up with the present invention.

【0007】ところで、例えば特開平8−5163号公
報に記載されるように、液戻りが生じる運転を要因とし
た冷凍サイクル内の過度の圧力上昇を、運転効率の低下
を抑制しつつ回避するために、熱交換器を介して凝縮器
の出口側と蒸発器の出口側とをバイパスするバイパス通
路を設け、前記凝縮器の出口側に向かう前記バイパス通
路の入口側のバイパス路部分に絞り装置を設け、この絞
り装置の上流側に冷媒圧力が所定圧力以上になるとき前
記バイパス通路を開放する弁装置(ポペット式弁)が設
けられたものが知られているが、高圧圧力が高くならな
いように、高圧が高くなるとバイパス通路を開くもので
あり、省エネを図るものではない。
Incidentally, as described in, for example, JP-A-8-5163, an excessive pressure increase in the refrigeration cycle due to an operation in which liquid return occurs is avoided while suppressing a decrease in operation efficiency. A bypass passage that bypasses the outlet side of the condenser and the outlet side of the evaporator via a heat exchanger, and a throttling device is provided in the bypass passage portion on the inlet side of the bypass passage toward the outlet side of the condenser. It is known that a valve device (poppet type valve) for opening the bypass passage when the refrigerant pressure becomes equal to or higher than a predetermined pressure is provided upstream of the expansion device. When the high pressure is increased, the bypass passage is opened, and energy is not saved.

【0008】本発明はかかる点に鑑みてなされたもの
で、最大冷却能力に対して0%〜100%の範囲で冷却
能力を調節することを可能とし、省エネを実現できる冷
凍装置およびそれを用いた環境試験装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a refrigeration apparatus capable of adjusting the cooling capacity within a range of 0% to 100% with respect to the maximum cooling capacity and realizing energy saving, and a refrigeration apparatus using the same. The purpose of the present invention is to provide an environmental test device that has been used.

【0009】[0009]

【課題を解決するための手段】本発明に係る冷凍装置
は、圧縮機、凝縮器、電子膨張弁、および蒸発器を順に
接続して冷凍サイクルを構成し、庫内を冷却する冷凍装
置において、前記凝縮器の出口側通路に一端部が、前記
圧縮機の吸い込み側通路に他端部が接続されているバイ
パス通路と、該バイパス通路に設けられ前記圧縮機の吸
い込み側通路の冷媒圧力が負圧になると開く定圧膨張弁
と、前記バイパス通路の前記定圧膨張弁の下流側通路に
設けられ該下流側通路を流れる冷媒と前記圧縮機の吐出
側通路を流れる冷媒との間で熱交換を行う熱交換器とを
備えるものである。
A refrigeration apparatus according to the present invention comprises a refrigeration cycle in which a compressor, a condenser, an electronic expansion valve, and an evaporator are sequentially connected to form a refrigeration cycle. One end is connected to the outlet side passage of the condenser, the other end is connected to the suction side passage of the compressor, and the refrigerant pressure of the suction side passage of the compressor provided in the bypass passage is negative. A heat exchange is performed between a constant pressure expansion valve that opens when pressure is reached, and a refrigerant that is provided in a downstream passage of the constant pressure expansion valve of the bypass passage and flows through the downstream passage and refrigerant that flows through a discharge passage of the compressor. And a heat exchanger.

【0010】このようにすれば、圧縮機の吸い込み側通
路の冷媒圧力が負圧になると、バイパス通路に設けられ
た定圧膨張弁が開かれ、該バイパス通路を通じて、前記
凝縮器の出口側通路と前記圧縮機の吸い込み側通路とが
連通される。よって、凝縮器の出口側通路からバイパス
通路を通じて圧縮機の吸い込み側通路に冷媒が流れ、圧
縮機の吸い込み側通路の圧力が負圧にならないように制
御され、圧縮機の運転状態は維持され、液バック運転が
回避される。ここで、圧縮機の吸い込み側通路に流れる
前に、熱交換器において圧縮機よりの吐出冷媒と熱交換
されるが、圧縮機の吸い込み側通路に流れる冷媒による
冷却能力と、圧縮機より吐出された冷媒の凝縮熱量で
は、常に圧縮機よりの入熱分だけ凝縮熱量の方が大きく
なるので、熱交換器で熱交換不良となることはない。
With this arrangement, when the refrigerant pressure in the suction side passage of the compressor becomes negative pressure, the constant pressure expansion valve provided in the bypass passage is opened, and the outlet side passage of the condenser communicates with the outlet passage through the bypass passage. The suction side passage of the compressor communicates with the suction side passage. Therefore, the refrigerant flows from the outlet side passage of the condenser to the suction side passage of the compressor through the bypass passage, and the pressure of the suction side passage of the compressor is controlled so as not to be a negative pressure, and the operating state of the compressor is maintained. Liquid back operation is avoided. Here, before flowing into the suction side passage of the compressor, heat is exchanged with the refrigerant discharged from the compressor in the heat exchanger. With respect to the amount of heat of condensation of the refrigerant, the amount of heat of condensation always becomes larger by the amount of heat input from the compressor, so that there is no heat exchange failure in the heat exchanger.

【0011】よって、電子膨張弁の開度が0%まで絞ら
れ、圧縮機の低圧側圧力(吸い込み側通路の冷媒圧力)
が負圧になろうとしても、定圧膨張弁が開き、圧縮機の
低圧側圧力が負圧にならないように調節されるので、液
バック運転が回避される。よって、電子膨張弁の開度を
0%〜100%の範囲で調節することができるようにな
り、冷却能力を、最大冷却能力に対して0〜100%の
範囲で調節することが実現される。
Therefore, the opening of the electronic expansion valve is reduced to 0%, and the low pressure side pressure of the compressor (the refrigerant pressure in the suction side passage).
Even if the pressure becomes negative pressure, the constant pressure expansion valve is opened and the low pressure side pressure of the compressor is adjusted so as not to become negative pressure, so that the liquid back operation is avoided. Therefore, the opening of the electronic expansion valve can be adjusted in the range of 0% to 100%, and the cooling capacity can be adjusted in the range of 0 to 100% with respect to the maximum cooling capacity. .

【0012】また、前記バイパス通路の一端部を、その
圧縮機の吸い込み側通路に代えて、蒸発器の入口側通路
に接続するようにすることもできる。
Also, one end of the bypass passage may be connected to the inlet passage of the evaporator instead of the suction passage of the compressor.

【0013】このようにすれば、前述した作用に加え
て、低流速によるオイルリターン不良を起こさなくな
る。
[0013] In this case, in addition to the above-described operation, an oil return defect due to a low flow velocity does not occur.

【0014】さらに、前記庫内の温度を検出する庫内温
度検出センサと、該庫内温度検出センサよりの信号を受
け、前記庫内温度検出センサによって検出された庫内温
度と設定温度との温度差に基づいて、前記電子膨張弁の
開度を調節する温度調節器とを備えるようにすることが
できる。
[0014] Further, an internal temperature detecting sensor for detecting the internal temperature, a signal received from the internal temperature detecting sensor, and an internal temperature detected by the internal temperature detecting sensor and a set temperature. A temperature controller that adjusts an opening degree of the electronic expansion valve based on the temperature difference.

【0015】このようにすれば、庫内温度検出センサに
よって検出された庫内温度と設定温度との温度差に基づ
いて、温度調節器によって、前記電子膨張弁の開度が0
%〜100%の範囲で調節される。
With this configuration, the opening degree of the electronic expansion valve is set to 0 by the temperature controller on the basis of the temperature difference between the inside temperature detected by the inside temperature detection sensor and the set temperature.
It is adjusted in the range of% to 100%.

【0016】さらに、前記冷凍装置を、加熱器により加
熱しつつ冷凍機により冷却して、庫内の温度が設定温度
に維持される環境試験装置の冷凍機として用いることも
可能である。すなわち、前記冷凍機としては、圧縮機、
凝縮器、電子膨張弁、および蒸発器を順に接続して冷凍
サイクルを構成し、庫内を冷却する冷凍装置であって、
前記凝縮器の出口側通路に一端部が、前記圧縮機の吸い
込み側通路に他端部が接続されているバイパス通路と、
該バイパス通路に設けられ前記圧縮機の吸い込み側通路
の冷媒圧力が負圧になると開く定圧膨張弁と、前記バイ
パス通路の前記定圧膨張弁の下流側通路に設けられ該下
流側通路を流れる冷媒と前記圧縮機の吐出側通路を流れ
る冷媒との間で熱交換を行う熱交換器とを備えるもの
や、前記バイパス通路の一端部を、その圧縮機の吸い込
み側通路に代えて、蒸発器の入口側通路に接続するよう
にしたものが用いられる。
Further, the refrigerating apparatus may be cooled by a refrigerating machine while being heated by a heater, and may be used as a refrigerating machine of an environmental test apparatus in which the temperature in a refrigerator is maintained at a set temperature. That is, as the refrigerator, a compressor,
A condenser, an electronic expansion valve, and an evaporator are sequentially connected to form a refrigeration cycle, and a refrigeration apparatus that cools the inside of the refrigerator.
A bypass passage having one end connected to the outlet side passage of the condenser and the other end connected to the suction side passage of the compressor;
A constant pressure expansion valve that is provided in the bypass passage and opens when the refrigerant pressure in the suction side passage of the compressor becomes a negative pressure; and a refrigerant that is provided in the bypass passage downstream of the constant pressure expansion valve and flows through the downstream passage. A heat exchanger that exchanges heat with a refrigerant flowing through a discharge side passage of the compressor, or an end of the bypass passage, wherein the suction passage of the compressor is replaced with an inlet of an evaporator. What is connected to the side passage is used.

【0017】このようにすれば、電子膨張弁の開度が0
%まで絞られ、圧縮機の低圧側圧力が負圧になろうとす
ると、定圧膨張弁が開き、バイパス通路を通じて冷媒が
流れ、圧縮機の低圧側圧力(吸い込み側通路の冷媒圧
力)が負圧にならないように調節され、液バック運転が
回避されるので、電子膨張弁の開度を0%〜100%の
範囲で調節することができるようになる。
With this configuration, the opening degree of the electronic expansion valve becomes zero.
%, And when the low pressure side pressure of the compressor becomes negative pressure, the constant pressure expansion valve opens, the refrigerant flows through the bypass passage, and the low pressure side pressure of the compressor (the refrigerant pressure in the suction side passage) becomes negative pressure. The liquid back operation is avoided so as not to occur, so that the opening degree of the electronic expansion valve can be adjusted in the range of 0% to 100%.

【0018】そして、電子膨張弁の開度が小さくなる
と、冷媒の流れが規制され、庫内の冷却能力が低下する
ので、温度バランスの点から、加熱器により庫内を加熱
する必要もなくなり、加熱器の出力を小さくすることが
できる。その結果、加熱器の出力を0%まで低下させる
ことが可能となる。
When the opening degree of the electronic expansion valve is reduced, the flow of the refrigerant is restricted, and the cooling capacity in the refrigerator is reduced. The output of the heater can be reduced. As a result, the output of the heater can be reduced to 0%.

【0019】また、前記加熱器は、前記冷凍機が庫内よ
り奪う熱量より、庫内への侵入熱負荷分および内部発熱
負荷分を除いた量とバランスするように出力制御される
ことが望ましい。
Further, it is desirable that the output of the heater is controlled so as to balance the amount of heat taken from the refrigerator by the amount of heat load entering the refrigerator and the amount of internal heat load from the amount of heat taken from the refrigerator. .

【0020】このようにすれば、庫内への侵入熱負荷分
および、ファンなどの内部発熱負荷分だけ余分に加熱す
ることがなくなり、省エネを図る点で一層有利となる。
With this configuration, it is possible to avoid excessive heating due to the heat load entering the refrigerator and the internal heat load of the fan and the like, which is further advantageous in saving energy.

【0021】さらに、前記加熱器の出力を監視し、前記
加熱器の出力が設定値を維持するように前記電子膨張弁
の開度を調節する温度調節器を備え、前記設定値が、前
記加熱器の最大出力の数%となるようにすることもでき
る。
Further, a temperature controller is provided for monitoring the output of the heater and adjusting the opening of the electronic expansion valve so that the output of the heater maintains a set value. It can also be a few percent of the maximum output of the vessel.

【0022】このようにすれば、加熱器の出力を大きく
することなく、冷凍機による冷却と、加熱器による加熱
とがバランスされ、省エネが図れる。
In this way, the cooling by the refrigerator and the heating by the heater are balanced without increasing the output of the heater, and energy saving can be achieved.

【0023】前記温度調節器は、前記加熱器の出力が設
定値より大きくなると前記電子膨張弁の開度を小さくす
る一方、前記加熱器の出力が設定値より小さくなると前
記電子膨張弁の開度を大きくするように構成することが
できる。
The temperature controller decreases the opening of the electronic expansion valve when the output of the heater becomes larger than a set value, and decreases the opening of the electronic expansion valve when the output of the heater becomes smaller than the set value. Can be increased.

【0024】このようにすれば、加熱器の出力が設定値
より大きくなると、庫内の温度が低くなっているので、
温度調節器によって電子膨張弁の開度が小さくされ、冷
却能力が低下せしめられる一方、前記加熱器の出力が設
定値より小さくなると、庫内の温度が高くなっているの
で、温度調節器によって電子膨張弁の開度が大きくさ
れ、冷却能力が高められる。
With this arrangement, when the output of the heater becomes larger than the set value, the temperature in the refrigerator becomes low.
The opening degree of the electronic expansion valve is reduced by the temperature controller, and the cooling capacity is reduced.On the other hand, when the output of the heater becomes smaller than the set value, the temperature in the refrigerator increases, so that the electronic temperature is controlled by the temperature controller. The degree of opening of the expansion valve is increased, and the cooling capacity is increased.

【0025】前記温度調節器は、前記設定値を含む不感
帯に基づいて調節するものであり、前記加熱器の出力が
不感帯内にあれば前記電子膨張弁の開度を維持し、前記
不感帯を超える場合は前記電子膨張弁の開度を小さくす
る一方、前記不感帯より小さい場合は前記電子膨張弁の
開度を大きくするように構成することもできる。
The temperature controller adjusts the temperature based on the dead zone including the set value. If the output of the heater is within the dead zone, the opening degree of the electronic expansion valve is maintained and the temperature exceeds the dead zone. In such a case, the opening degree of the electronic expansion valve may be reduced while the opening degree of the electronic expansion valve may be increased when the opening degree is smaller than the dead zone.

【0026】このようにすれば、庫内の温度が設定値を
含む不感帯の範囲内であれば、電子膨張弁の開度は維持
され、不感帯の範囲を超えれば、電子膨張弁の開度が小
さくされ、低温冷媒の送給が低減され、加熱器の出力の
上昇が抑制される一方、不感帯の範囲より小さければ、
電子膨張弁の開度が大きくされ、低温冷媒の供給が促さ
れ、加熱器の出力の上昇が促進される。
In this way, the opening of the electronic expansion valve is maintained if the temperature in the refrigerator is within the dead zone including the set value, and if the temperature exceeds the dead zone, the opening of the electronic expansion valve is maintained. It is reduced, the supply of low-temperature refrigerant is reduced, the rise in output of the heater is suppressed, while if it is smaller than the range of the dead zone,
The opening degree of the electronic expansion valve is increased, the supply of the low-temperature refrigerant is promoted, and the increase in the output of the heater is promoted.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】図1は本発明に係る環境試験装置に用いら
れた冷凍装置の概略構成を示す説明図である。
FIG. 1 is an explanatory view showing a schematic configuration of a refrigerating apparatus used in an environmental test apparatus according to the present invention.

【0029】本発明に係る環境試験装置は、所望の試験
環境を精度よく実現させるために、冷凍装置を常時運転
させる一方、反応がよく応答性に優れる加熱器(図示せ
ず)により加熱することで、冷凍装置による冷却と加熱
器による加熱とをバランスさせて、庫内温度をほぼ一定
に維持するように温度制御されるように構成されてい
る。
In the environmental test apparatus according to the present invention, in order to accurately realize a desired test environment, the refrigeration apparatus is always operated, and is heated by a heater (not shown) which has a good reaction and excellent responsiveness. Thus, the cooling by the refrigerating apparatus and the heating by the heater are balanced so that the temperature is controlled so as to keep the temperature in the refrigerator substantially constant.

【0030】図1に示すように、冷凍装置1は、圧縮機
2、凝縮器3、電子膨張弁4、および蒸発器5が順に接
続され、冷凍サイクルを構成している。前記蒸発器5
は、環境試験装置6の試験室となる庫内を冷却し、庫内
の温度を低下させるようになっている。
As shown in FIG. 1, in the refrigerating apparatus 1, a compressor 2, a condenser 3, an electronic expansion valve 4, and an evaporator 5 are connected in order to constitute a refrigerating cycle. The evaporator 5
Is designed to cool the inside of the storage, which serves as a test room of the environmental test device 6, and reduce the temperature in the storage.

【0031】なお、前記電子膨張弁4は、前記加熱器と
はリンクしておらず、加熱器は別の制御プログラムに基
づいて一定温度を維持しようとする。前記加熱器は、前
記冷凍装置1が庫内より奪う熱量より、庫内への侵入熱
負荷分やファンなどの内部発熱の熱負荷分を除いた量と
バランスするように出力制御され、余分な加熱が回避さ
れる。
The electronic expansion valve 4 is not linked to the heater, and the heater tries to maintain a constant temperature based on another control program. The output of the heater is controlled so as to balance the amount of heat taken by the refrigerating apparatus 1 from the inside of the refrigerator with the amount of heat load intruding into the refrigerator or heat load of internal heat generated by a fan or the like. Heating is avoided.

【0032】前記圧縮機2と凝縮器3との間には、熱交
換器7が設けられている。この熱交換器7は、周知のよ
うに、ケーシング内部に熱交換パイプで構成される第1
の通路7aと、その第1の通路7aの周囲にケーシング
の内部スペースを利用した第2の通路7bとを備える。
第1の通路7aは、圧縮機2の吐出側通路と凝縮器3の
入口側とを接続する通路の途中に設けられ、圧縮機2か
ら吐出された高温の冷媒が流れるように構成されてい
る。
A heat exchanger 7 is provided between the compressor 2 and the condenser 3. As is well known, the heat exchanger 7 has a first heat exchange pipe formed inside a casing.
And a second passage 7b using the internal space of the casing around the first passage 7a.
The first passage 7 a is provided in the middle of a passage connecting the discharge side passage of the compressor 2 and the inlet side of the condenser 3, and is configured so that the high-temperature refrigerant discharged from the compressor 2 flows. .

【0033】また、前記第2の通路7bの入口側は、定
圧膨張弁8が途中に設けられた上流側バイパス路9Aを
介して、凝縮器3と電子膨張弁4との間の冷媒通路に接
続されており、凝縮器3から出た冷媒が流入するように
構成されている。前記定圧膨張弁8は、圧縮機2の吸い
込み側通路の圧力(低圧側圧力)を基準に開閉され、圧
縮機2の低圧側圧力を一定に保持するように機能する。
The inlet side of the second passage 7b is connected to a refrigerant passage between the condenser 3 and the electronic expansion valve 4 via an upstream bypass 9A provided with a constant-pressure expansion valve 8 in the middle. It is connected so that the refrigerant flowing out of the condenser 3 flows in. The constant pressure expansion valve 8 opens and closes based on the pressure (low pressure side pressure) of the suction side passage of the compressor 2, and functions to keep the low pressure side pressure of the compressor 2 constant.

【0034】一方、前記第2の通路7bの出口側は、下
流側バイパス路9Bを介して、蒸発器5と圧縮機2との
間の冷媒通路に接続されており、第2の通路7bから圧
縮機2の吸い込み側通路に冷媒が戻されるように構成さ
れている。前記上流側および下流側バイパス路9A,9
Bによって、凝縮器3の出口側通路に一端部が、前記圧
縮機2の吸い込み側通路に他端部が接続されるバイパス
通路9が構成されている。
On the other hand, the outlet side of the second passage 7b is connected to a refrigerant passage between the evaporator 5 and the compressor 2 via a downstream bypass passage 9B. The refrigerant is returned to the suction side passage of the compressor 2. The upstream and downstream bypass paths 9A, 9
B forms a bypass passage 9 having one end connected to the outlet side passage of the condenser 3 and the other end connected to the suction side passage of the compressor 2.

【0035】前記定圧膨張弁8は、圧縮機2の吸い込み
側通路の圧力が負圧になると開くように設定されてお
り、これによって圧縮機2の吸い込み側通路の圧力が負
圧にならないように制御される。すなわち、圧縮機2の
吸い込み側通路の圧力が負圧になろうとすると、定圧膨
張弁8が開き、凝縮器3からの冷媒が、バイパス通路9
を通じて、圧縮機2の吸い込み側に流れることになる。
The constant pressure expansion valve 8 is set so as to open when the pressure in the suction side passage of the compressor 2 becomes negative pressure, so that the pressure in the suction side passage of the compressor 2 does not become negative pressure. Controlled. That is, when the pressure in the suction side passage of the compressor 2 is going to be a negative pressure, the constant pressure expansion valve 8 is opened, and the refrigerant from the condenser 3 flows into the bypass passage 9.
Through the compressor 2 to the suction side of the compressor 2.

【0036】前記電子膨張弁4の開度は、前記環境試験
装置6の庫内(試験室内)の温度を検出する庫内温度検
出センサ10よりの信号に基づき温度調節器11により
制御され、庫内を冷却する冷媒の量が調節され、庫内の
温度がほぼ一定の温度に維持されるように調節される。
すなわち、電子膨張弁4は、それの開度を制御するアク
チュエータ4aを有し、庫内温度検出センサ10によっ
て検出された庫内温度(試験室内温度)と設定温度との
温度差に基づいて、温度調節器11によって前記アクチ
ュエータ4aが制御され、開度が調節されるようになっ
ている。よって、例えば庫内の温度が設定温度より低い
と、電子膨張弁4の開度が小さくされる。また、庫内温
度検出センサ10にて検出された庫内の温度が設定温度
以上であれば一定開度だけ開き、設定温度に達しなけれ
ば閉じるというように制御するようにしてもよい。
The degree of opening of the electronic expansion valve 4 is controlled by a temperature controller 11 based on a signal from an internal temperature detection sensor 10 for detecting the temperature in the internal chamber (test chamber) of the environmental test apparatus 6. The amount of the refrigerant for cooling the inside is adjusted, and the temperature in the refrigerator is adjusted to be maintained at a substantially constant temperature.
That is, the electronic expansion valve 4 has an actuator 4a for controlling the opening thereof, and based on the temperature difference between the inside temperature (test room temperature) detected by the inside temperature detection sensor 10 and the set temperature, The actuator 4a is controlled by the temperature controller 11 to adjust the opening. Therefore, for example, when the temperature in the refrigerator is lower than the set temperature, the opening degree of the electronic expansion valve 4 is reduced. Alternatively, control may be performed such that if the inside temperature detected by the inside temperature detection sensor 10 is equal to or higher than the set temperature, the opening is opened by a certain opening degree, and if the inside temperature does not reach the set temperature, the opening is closed.

【0037】一方、電子膨張弁4の開度が制御され、圧
縮機2の吸い込み側通路の低圧側圧力が負圧になると、
定圧膨張弁8が開き、バイパス通路9が連通し、凝縮器
3からの冷媒が、バイパス通路9を通じて、圧縮機2の
吸い込み側通路に流れ、圧縮機2の吸い込み側通路の圧
力が負圧になるのが回避される。
On the other hand, when the opening of the electronic expansion valve 4 is controlled and the low-pressure side pressure in the suction side passage of the compressor 2 becomes negative,
The constant pressure expansion valve 8 opens, the bypass passage 9 communicates, the refrigerant from the condenser 3 flows through the bypass passage 9 to the suction side passage of the compressor 2, and the pressure of the suction side passage of the compressor 2 becomes negative pressure. Is avoided.

【0038】上記装置によれば、圧縮機2が作動する
と、通常時は、圧縮機2から吐出された冷媒が、熱交換
器7、凝縮器3,電子膨張弁4および蒸発器5を経て、
圧縮機2に戻るように循環され、蒸発器5での蒸発によ
る冷却と加熱器(図示せず)による加熱とのバランス
で、環境試験装置6の庫内の温度がほぼ一定の設定温度
となるように制御される。
According to the above apparatus, when the compressor 2 operates, the refrigerant discharged from the compressor 2 normally passes through the heat exchanger 7, the condenser 3, the electronic expansion valve 4, and the evaporator 5,
The temperature is circulated back to the compressor 2, and the temperature in the chamber of the environmental test device 6 becomes a substantially constant set temperature due to the balance between cooling by evaporation in the evaporator 5 and heating by a heater (not shown). Is controlled as follows.

【0039】この場合において、例えば、前記庫内の温
度が、設定温度にほぼ等しければ、冷却する必要がない
ので、温度調節器11による制御にて、電子膨張弁4の
開度が0%とされ、蒸発器5の入口側通路へは冷媒が全
く流れない状態となり、庫内に対する冷却能力は0とな
る。
In this case, for example, if the temperature in the refrigerator is substantially equal to the set temperature, there is no need to cool down. Therefore, under the control of the temperature controller 11, the opening of the electronic expansion valve 4 becomes 0%. As a result, no refrigerant flows into the inlet side passage of the evaporator 5, and the cooling capacity for the inside of the refrigerator becomes zero.

【0040】ところで、通常、圧縮機2の低圧側の管理
基準は、0MPa以上であるが、定圧膨張弁8の制御設定
値を0MPaに設定しておいたとすると、冷却能力が必要
とされる通常の運転時には、電子膨張弁4の開度が大き
いため、圧縮機2の低圧側圧力は0MPa以上で負圧状態
ではないので、定圧膨張弁8が全閉状態となっており、
バイパス通路9(バイパス路9A,9B)に冷媒が流れ
ることはない。一方、庫内の温度状態が安定し、冷却能
力が必要なくなってくると、電子膨張弁4の開度は徐々
に小さくなっていき、圧縮機2の低圧側圧力が下がって
くる。
Usually, the control standard for the low pressure side of the compressor 2 is 0 MPa or more. However, if the control set value of the constant pressure expansion valve 8 is set to 0 MPa, a cooling capacity is required. At the time of normal operation, since the opening degree of the electronic expansion valve 4 is large, the low-pressure side pressure of the compressor 2 is not more than 0 MPa and is not in a negative pressure state. Therefore, the constant pressure expansion valve 8 is in a fully closed state.
The refrigerant does not flow through the bypass passage 9 (the bypass passages 9A and 9B). On the other hand, when the temperature condition in the refrigerator becomes stable and the cooling capacity becomes unnecessary, the opening of the electronic expansion valve 4 gradually decreases, and the low-pressure side pressure of the compressor 2 decreases.

【0041】従来の場合であると、圧縮機2の低圧側圧
力が0MPaに低下するまで電子膨張弁4の開度を小さく
すると、それ以上電子膨張弁4の開度を絞り込むことは
できないが、この実施の形態では、さらに絞り込み、冷
却能力を低下させることができる。これは、前記圧縮機
2の低圧側圧力(吸い込み側通路の圧力)が負圧になろ
うとすると、定圧膨張弁8が自動的に開き、バイパス通
路9を流れる冷媒の量が調節され、前記定圧膨張弁8の
開度が圧縮機2の吸い込み側通路の圧力を0MPaにする
ように制御される。
In the conventional case, if the opening degree of the electronic expansion valve 4 is reduced until the low-pressure side pressure of the compressor 2 decreases to 0 MPa, the opening degree of the electronic expansion valve 4 cannot be reduced further. In this embodiment, it is possible to further narrow down the cooling capacity. This is because, when the low pressure side pressure (pressure in the suction side passage) of the compressor 2 becomes negative pressure, the constant pressure expansion valve 8 is automatically opened, the amount of the refrigerant flowing through the bypass passage 9 is adjusted, and the constant pressure The opening of the expansion valve 8 is controlled so that the pressure in the suction side passage of the compressor 2 is set to 0 MPa.

【0042】これによって、圧縮機2から吐出された冷
媒が、熱交換器7(第1の通路7a)、凝縮器3,定圧
膨張弁8および熱交換器7(第2の通路7b)を経て、
圧縮機2に戻るように循環され、液バック運転などを原
因とする圧縮機2の故障が回避される。
Thus, the refrigerant discharged from the compressor 2 passes through the heat exchanger 7 (first passage 7a), the condenser 3, the constant pressure expansion valve 8, and the heat exchanger 7 (second passage 7b). ,
Circulation is performed so as to return to the compressor 2, and a failure of the compressor 2 due to a liquid back operation or the like is avoided.

【0043】ここで、圧縮機2の吸い込み側通路に戻さ
れる前に、熱交換器7において圧縮機2よりの吐出冷媒
と熱交換されるが、戻される冷媒による冷却能力と、圧
縮機2より吐出された冷媒の凝縮熱量では、常に圧縮機
2よりの入熱分だけ凝縮熱量の方が多くなるので、熱交
換器7で熱交換不良となることはない。
Here, before returning to the suction side passage of the compressor 2, the heat is exchanged with the refrigerant discharged from the compressor 2 in the heat exchanger 7. With respect to the heat of condensation of the discharged refrigerant, the heat of condensation always increases by the amount of heat input from the compressor 2, so that the heat exchanger 7 does not fail in heat exchange.

【0044】さらに詳述すれば、従来の装置であれば、
前述したところの定圧膨張弁8を有するバイパス通路9
を備えていなかったので、このように電子膨張弁4を、
その開度が0%になるまで絞ることができず、蒸発器5
に一定の割合で冷媒を供給しておく必要があり、そのた
め、加熱器の出力も一定値までしか低下させることがで
きなかったが、本発明装置によれば、電子膨張弁4の開
度を0%とすることができるので、加熱器の出力も0%
まで低下させることができ、省エネを図ることができ
る。
More specifically, in a conventional apparatus,
The bypass passage 9 having the constant pressure expansion valve 8 as described above.
Therefore, the electronic expansion valve 4 is
It cannot be throttled until its opening reaches 0%.
, It was necessary to supply the refrigerant at a constant rate, so that the output of the heater could only be reduced to a constant value. However, according to the device of the present invention, the opening degree of the electronic expansion valve 4 was reduced. 0%, so the output of the heater is also 0%
And energy savings can be achieved.

【0045】前記実施の形態においては、前記凝縮器2
の出口側通路を、定圧膨張弁8を有するバイパス通路9
を介して、圧縮機2の吸い込み側通路に接続するように
しているが、本発明はそれに限定されるものではなく、
例えば図2に示す環境試験装置6′のように、定圧膨張
弁8を有するバイパス通路9′の下流側バイパス路9
B′の下流端(一端部)を、その圧縮機2の吸い込み側
通路に代えて、蒸発器5の入口側通路に接続するように
冷凍装置1′を構成することもできる。このようにすれ
ば、前述した作用効果に加えて、低流速によるオイルリ
ターン不良を起こさなくなるという効果を奏する。
In the above embodiment, the condenser 2
The bypass passage 9 having the constant pressure expansion valve 8
Is connected to the suction-side passage of the compressor 2 through the above, but the present invention is not limited to this.
For example, as shown in an environmental test apparatus 6 ′ shown in FIG. 2, a downstream side bypass passage 9 ′ of a bypass passage 9 ′ having a constant pressure expansion valve 8 is provided.
The refrigerating apparatus 1 ′ may be configured such that the downstream end (one end) of B ′ is connected to the inlet side passage of the evaporator 5 instead of the suction side passage of the compressor 2. With this configuration, in addition to the above-described functions and effects, there is an effect that the oil return failure due to the low flow velocity does not occur.

【0046】また、前記実施の形態においては、温度調
節器11は、試験室となる庫内の温度に基づいて電子膨
張弁4の開度を調節するようにしているが、加熱器の出
力を監視し、その出力が最大出力の数%になるように調
節するようにすることも可能である。
In the above-described embodiment, the temperature controller 11 adjusts the opening of the electronic expansion valve 4 based on the temperature in the chamber serving as a test room. It is also possible to monitor and adjust its output to be a few percent of the maximum output.

【0047】この場合、温度調節器8は、電子膨張弁4
のアクチュエータ4aを制御して、加熱器の出力が設定
値より小さくなると前記電子膨張弁4の開度を大きくす
る一方、前記加熱器の出力が設定値より大きくなると前
記電子膨張弁4の開度を小さくするように調節すること
ができる。
In this case, the temperature controller 8 includes the electronic expansion valve 4
The actuator 4a is controlled to increase the opening of the electronic expansion valve 4 when the output of the heater becomes smaller than the set value, while increasing the opening of the electronic expansion valve 4 when the output of the heater becomes larger than the set value. Can be adjusted to be smaller.

【0048】また、前記設定値を含む不感帯に基づいて
電子膨張弁4のアクチュエータ4aを制御するように
し、前記加熱器の出力が不感帯内にあれば前記電子膨張
弁4の開度を維持し、前記不感帯を超える場合は前記電
子膨張弁4の開度を小さくする一方、前記不感帯より小
さい場合は前記電子膨張弁4の開度を大きくするように
調節するようにしてもよい。このようにすれば、例えば
設定開度が3%である場合には、例えば不感帯の上限値
を5%、下限値を2%とすることで、加熱器の出力が5
%を超えれば電子膨張弁4の開度を小さくし、2%未満
であれば開度を大きくし、2%〜5%の範囲であれば、
開度を変更しないという具合に制御されるので、電子膨
張弁4の開度が頻繁に変更されることがなくなり、安定
した温度制御が実現される。
The actuator 4a of the electronic expansion valve 4 is controlled based on the dead zone including the set value. If the output of the heater is within the dead zone, the opening of the electronic expansion valve 4 is maintained. The opening of the electronic expansion valve 4 may be adjusted so as to be smaller when the temperature exceeds the dead zone, while the opening of the electronic expansion valve 4 is increased when the temperature is smaller than the dead zone. In this way, for example, when the set opening is 3%, the upper limit of the dead zone is set to 5% and the lower limit is set to 2%, so that the output of the heater becomes 5%.
%, The opening degree of the electronic expansion valve 4 is reduced, if it is less than 2%, the opening degree is increased, and if it is in the range of 2% to 5%,
Since the opening degree is controlled so as not to be changed, the opening degree of the electronic expansion valve 4 is not frequently changed, and stable temperature control is realized.

【0049】[0049]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に述べるような効果を奏する。
The present invention is embodied in the form described above, and has the following effects.

【0050】本発明に係る冷凍装置は、電子膨張弁の開
度が0%まで絞られ、圧縮機の吸い込み側通路の圧力が
負圧になろうとしても、バイパス通路に設けられた定圧
膨張弁が開き、凝縮器の出口側通路からバイパス通路を
通じて圧縮機の吸い込み側通路に冷媒が流れ、圧縮機の
吸い込み側通路の圧力が負圧にならないように制御し、
液バック運転を回避するようになっているので、電子膨
張弁の開度を、0%〜100%の範囲で調節して、冷却
能力を、最大冷却能力に対して0〜100%の範囲で調
節することが可能となり、省エネを実現することができ
る。
In the refrigeration apparatus according to the present invention, the constant-pressure expansion valve provided in the bypass passage is provided even if the opening of the electronic expansion valve is reduced to 0% and the pressure in the suction side passage of the compressor becomes negative. Is opened, the refrigerant flows from the outlet side passage of the condenser to the suction side passage of the compressor through the bypass passage, and the pressure of the suction side passage of the compressor is controlled so as not to be a negative pressure,
Since the liquid back operation is avoided, the opening degree of the electronic expansion valve is adjusted in the range of 0% to 100%, and the cooling capacity is set in the range of 0 to 100% with respect to the maximum cooling capacity. Adjustment is possible, and energy saving can be realized.

【0051】また、前記バイパス通路の一端部を、前記
圧縮機の吸い込み側通路に代えて、蒸発器の入口側通路
に接続すれば、さらに、低流速によるオイルリターン不
良を起こさないようにできる。
If one end of the bypass passage is connected to the inlet side passage of the evaporator instead of the suction side passage of the compressor, oil return failure due to a low flow rate can be prevented.

【0052】さらに、庫内温度と設定温度との温度差に
基づいて、温度調節器によって、電子膨張弁の開度を調
節すれば、庫内温度と設定温度との温度差が変化するの
に従って電子膨張弁の開度を効率よく調節することがで
きる。
Further, if the opening degree of the electronic expansion valve is adjusted by the temperature controller based on the temperature difference between the inside temperature and the set temperature, the temperature difference between the inside temperature and the set temperature changes. The degree of opening of the electronic expansion valve can be adjusted efficiently.

【0053】本発明に係る環境試験装置によれば、前述
した冷凍装置を、冷凍機として用いるようにしているの
で、冷却の必要がないときは、電子膨張弁の開度を0%
として、温度バランスのための加熱器による加熱を不要
とすることができる。したがって、加熱器の出力を0%
まで低下させることが可能となり、省エネを図ることが
できる。
According to the environmental test apparatus of the present invention, since the above-described refrigeration apparatus is used as a chiller, when the cooling is not required, the opening of the electronic expansion valve is set to 0%.
As a result, heating by a heater for temperature balance can be eliminated. Therefore, the output of the heater is 0%
It is possible to reduce energy consumption.

【0054】また、加熱器は、冷凍機が庫内より奪う熱
量より、庫内への侵入熱負荷分および内部発熱負荷分を
除いた量とバランスするように出力制御すれば、前記庫
内への侵入熱負荷分および内部発熱負荷分だけ余分に加
熱することがなく、省エネを図る点で一層有利となる。
Further, if the output of the heater is controlled so as to balance the amount of heat taken from the refrigerator by the amount of heat taken into the refrigerator and the amount of the internal heat load, the heater enters the refrigerator. As a result, it is possible to save energy without excessive heating due to the invasive heat load and the internal heat load.

【0055】その場合、温度調節器が、加熱器の出力を
監視し、前記加熱器の出力が最大出力の数%を維持する
ように電子膨張弁の開度を制御すれば、加熱器の出力を
大きくすることなく、冷凍機による冷却と、加熱器によ
る加熱とをバランスさせて、庫内温度を一定に維持する
ことができる。
In this case, if the temperature controller monitors the output of the heater and controls the opening of the electronic expansion valve so that the output of the heater maintains several percent of the maximum output, the output of the heater is controlled. Without increasing the temperature, the temperature in the refrigerator can be kept constant by balancing the cooling by the refrigerator and the heating by the heater.

【0056】前記温度調節器は、加熱器の出力が設定値
より大きくなると前記電子膨張弁の開度を小さくする一
方、設定値より小さくなると前記電子膨張弁の開度を大
きくすれば、加熱器の出力に応じて、庫内の温度に応じ
て簡単に電子膨張の開度を制御することができる。
The temperature controller reduces the opening of the electronic expansion valve when the output of the heater is larger than a set value, and increases the opening of the electronic expansion valve when the output is smaller than the set value. , The degree of opening of the electronic expansion can be easily controlled according to the temperature in the refrigerator.

【0057】また、前記温度調節器は、前記設定値を含
む不感帯に基づいて調節すれば、電子膨張弁の開度が頻
繁に変更されることがなくなり、安定した温度制御を実
現することができる。
Further, if the temperature controller adjusts based on the dead zone including the set value, the opening of the electronic expansion valve does not change frequently, and stable temperature control can be realized. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る環境試験装置に用いられた冷凍装
置の回路構成の一部を示す説明図である。
FIG. 1 is an explanatory diagram showing a part of a circuit configuration of a refrigeration apparatus used for an environmental test apparatus according to the present invention.

【図2】本発明に係る環境試験装置に用いられた冷凍装
置の回路構成の他の実施の形態の一部を示す説明図であ
る。
FIG. 2 is an explanatory view showing a part of another embodiment of the circuit configuration of the refrigeration apparatus used in the environmental test apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 冷凍装置 1′ 冷凍装置 2 圧縮機 3 凝縮器 4 電子膨張弁 5 蒸発器 6 環境試験装置 6′ 環境試験装置 7 熱交換器 8 定圧膨張弁 9 バイパス通路 9′ バイパス通路 9A 上流側バイパス路 9B 下流側バイパス路 9B′ 下流側バイパス路 10 庫内温度検出センサ 11 温度調節器 DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 1 'Refrigeration apparatus 2 Compressor 3 Condenser 4 Electronic expansion valve 5 Evaporator 6 Environmental test apparatus 6' Environmental test apparatus 7 Heat exchanger 8 Constant-pressure expansion valve 9 Bypass passage 9 'Bypass passage 9A Upstream bypass passage 9B Downstream bypass 9B 'Downstream bypass 10 Internal temperature detection sensor 11 Temperature controller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、電子膨張弁、および蒸
発器を順に接続して冷凍サイクルを構成し、庫内を冷却
する冷凍装置において、 前記凝縮器の出口側通路に一端部が、前記圧縮機の吸い
込み側通路に他端部が接続されているバイパス通路と、 該バイパス通路に設けられ前記圧縮機の吸い込み側通路
の冷媒圧力が負圧になると開く定圧膨張弁と、 前記バイパス通路の前記定圧膨張弁の下流側通路に設け
られ該下流側通路を流れる冷媒と前記圧縮機の吐出側通
路を流れる冷媒との間で熱交換を行う熱交換器とを備え
ることを特徴とする冷凍装置。
1. A refrigeration system comprising: a compressor, a condenser, an electronic expansion valve, and an evaporator connected in order to form a refrigeration cycle, and cools the interior of the refrigerator. A bypass passage having the other end connected to the suction-side passage of the compressor; a constant-pressure expansion valve provided in the bypass passage, which opens when the refrigerant pressure in the suction-side passage of the compressor becomes a negative pressure; And a heat exchanger provided in a downstream passage of the constant-pressure expansion valve and performing heat exchange between a refrigerant flowing through the downstream passage and a refrigerant flowing through a discharge-side passage of the compressor. apparatus.
【請求項2】 前記パイパス通路は、前記一端部が、前
記圧縮機の吸い込み側通路に代えて、前記蒸発器の入口
側通路に接続されている請求項1記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein the bypass portion has one end connected to an inlet-side passage of the evaporator instead of the suction-side passage of the compressor.
【請求項3】 さらに、前記庫内の温度を検出する庫内
温度検出センサと、 該庫内温度検出センサよりの信号を受け、前記庫内温度
検出センサによって検出された庫内温度と設定温度との
温度差に基づいて、前記電子膨張弁の開度を調節する温
度調節器とを備える請求項1又は2記載の冷凍装置。
3. An internal temperature detecting sensor for detecting the internal temperature, a signal from the internal temperature detecting sensor, and an internal temperature and a set temperature detected by the internal temperature detecting sensor. 3. The refrigerating apparatus according to claim 1, further comprising: a temperature controller that adjusts an opening degree of the electronic expansion valve based on a temperature difference between the refrigerating apparatus and the temperature controller.
【請求項4】 加熱器により加熱しつつ冷凍機により冷
却して、庫内の温度が設定温度に維持される環境試験装
置であって、 前記冷凍機が、請求項1〜3のいずれかに記載の冷凍装
置であることを特徴とする環境試験装置。
4. An environmental test apparatus in which a refrigerator is cooled by a refrigerator while being heated by a heater, and the temperature in the refrigerator is maintained at a set temperature, wherein the refrigerator is any one of claims 1 to 3. An environmental test apparatus, which is the refrigeration apparatus according to claim 1.
【請求項5】 前記加熱器は、前記冷凍機が庫内より奪
う熱量より、庫内への侵入熱負荷分および内部発熱負荷
分を除いた量とバランスするように出力制御されるもの
である請求項4記載の環境試験装置。
5. The output of the heater is controlled so as to balance the amount of heat taken from the refrigerator by the amount excluding the heat load entering the refrigerator and the internal heat load from the amount of heat taken from the refrigerator. The environmental test apparatus according to claim 4.
【請求項6】 さらに、前記加熱器の出力を監視し、前
記加熱器の出力が設定値を維持するように前記電子膨張
弁の開度を調節する温度調節器を備え、 前記設定値が、前記加熱器の最大出力の数%である請求
項5記載の環境試験装置。
6. A temperature controller that monitors an output of the heater and adjusts an opening degree of the electronic expansion valve so that the output of the heater maintains a set value, wherein the set value is: The environmental test apparatus according to claim 5, wherein the output is several percent of the maximum output of the heater.
【請求項7】 前記温度調節器は、前記加熱器の出力が
設定値より大きくなると前記電子膨張弁の開度を小さく
する一方、前記加熱器の出力が設定値より小さくなると
前記電子膨張弁の開度を大きくするものである請求項6
記載の環境試験装置。
7. The temperature controller decreases the opening of the electronic expansion valve when the output of the heater becomes larger than a set value, and decreases the opening of the electronic expansion valve when the output of the heater becomes smaller than the set value. An opening is increased.
Environmental test equipment as described.
【請求項8】 前記温度調節器は、前記設定値を含む不
感帯に基づいて調節するものであり、前記加熱器の出力
が不感帯内にあれば前記電子膨張弁の開度を維持し、前
記不感帯を超える場合は前記電子膨張弁の開度を小さく
する一方、前記不感帯より小さい場合は前記電子膨張弁
の開度を大きくするものである請求項6記載の環境試験
装置。
8. The temperature controller adjusts the temperature based on a dead zone including the set value, and maintains an opening of the electronic expansion valve when an output of the heater is within a dead zone. 7. The environmental test apparatus according to claim 6, wherein the opening degree of the electronic expansion valve is decreased when the value exceeds the threshold, and the opening degree of the electronic expansion valve is increased when the value is smaller than the dead zone.
JP2000128923A 2000-04-28 2000-04-28 Freezer device and environmental test device using the same Pending JP2001311567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128923A JP2001311567A (en) 2000-04-28 2000-04-28 Freezer device and environmental test device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128923A JP2001311567A (en) 2000-04-28 2000-04-28 Freezer device and environmental test device using the same

Publications (1)

Publication Number Publication Date
JP2001311567A true JP2001311567A (en) 2001-11-09

Family

ID=18638284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128923A Pending JP2001311567A (en) 2000-04-28 2000-04-28 Freezer device and environmental test device using the same

Country Status (1)

Country Link
JP (1) JP2001311567A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526636A (en) * 2004-02-16 2007-09-13 デルタ デザイン インコーポレーティッド Dual feedback control system to keep IC chip temperature close to set temperature
JP2013057506A (en) * 2012-12-27 2013-03-28 Espec Corp Operation control method of refrigerator in environmental test system, and environmental test system
JP2013181678A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Control device, method, program, air conditioning device with the same
CN104613687A (en) * 2014-11-17 2015-05-13 苟仲武 Pulse width modulation control method and device for expansion valve
KR20160005155A (en) * 2014-07-03 2016-01-14 한온시스템 주식회사 Cooling system of air conditioner for vehicle
CN106705228A (en) * 2017-01-10 2017-05-24 美的集团股份有限公司 Air conditioner system and controlling method
JP2017106717A (en) * 2017-03-07 2017-06-15 エスペック株式会社 Operation control method of refrigerating machine in environment test device, and environment test device
CN109323877A (en) * 2018-11-14 2019-02-12 仲恺农业工程学院 Heat exchanger integrated test system based on refrigeration cycle
JPWO2018016058A1 (en) * 2016-07-21 2019-02-28 三菱電機株式会社 Refrigeration cycle equipment
JP2020094719A (en) * 2018-12-11 2020-06-18 エスペック株式会社 Environment formation device and cooling device
WO2020211404A1 (en) * 2019-04-15 2020-10-22 青岛海尔空调电子有限公司 Method for controlling electronic expansion valve of air conditioner, and air conditioner
CN112710066A (en) * 2019-10-24 2021-04-27 广东美的制冷设备有限公司 Multi-split air conditioner, control method thereof and computer readable storage medium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651626B2 (en) * 2004-02-16 2011-03-16 デルタ デザイン インコーポレーティッド Dual feedback control system to keep IC chip temperature close to set temperature
JP2007526636A (en) * 2004-02-16 2007-09-13 デルタ デザイン インコーポレーティッド Dual feedback control system to keep IC chip temperature close to set temperature
JP2013181678A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Control device, method, program, air conditioning device with the same
JP2013057506A (en) * 2012-12-27 2013-03-28 Espec Corp Operation control method of refrigerator in environmental test system, and environmental test system
KR102047748B1 (en) * 2014-07-03 2019-11-25 한온시스템 주식회사 Cooling system of air conditioner for vehicle
KR20160005155A (en) * 2014-07-03 2016-01-14 한온시스템 주식회사 Cooling system of air conditioner for vehicle
CN104613687A (en) * 2014-11-17 2015-05-13 苟仲武 Pulse width modulation control method and device for expansion valve
JPWO2018016058A1 (en) * 2016-07-21 2019-02-28 三菱電機株式会社 Refrigeration cycle equipment
CN106705228A (en) * 2017-01-10 2017-05-24 美的集团股份有限公司 Air conditioner system and controlling method
CN106705228B (en) * 2017-01-10 2019-04-19 美的集团股份有限公司 A kind of air-conditioner system and control method
JP2017106717A (en) * 2017-03-07 2017-06-15 エスペック株式会社 Operation control method of refrigerating machine in environment test device, and environment test device
CN109323877A (en) * 2018-11-14 2019-02-12 仲恺农业工程学院 Heat exchanger integrated test system based on refrigeration cycle
CN109323877B (en) * 2018-11-14 2024-01-30 仲恺农业工程学院 Heat exchanger comprehensive test system based on refrigeration cycle
JP2020094719A (en) * 2018-12-11 2020-06-18 エスペック株式会社 Environment formation device and cooling device
JP7098513B2 (en) 2018-12-11 2022-07-11 エスペック株式会社 Environment forming device and cooling device
WO2020211404A1 (en) * 2019-04-15 2020-10-22 青岛海尔空调电子有限公司 Method for controlling electronic expansion valve of air conditioner, and air conditioner
CN112710066A (en) * 2019-10-24 2021-04-27 广东美的制冷设备有限公司 Multi-split air conditioner, control method thereof and computer readable storage medium
CN112710066B (en) * 2019-10-24 2022-06-24 广东美的制冷设备有限公司 Multi-split air conditioner, control method thereof and computer readable storage medium

Similar Documents

Publication Publication Date Title
US8875528B2 (en) Test chamber with temperature and humidity control
JP3972860B2 (en) Refrigeration equipment
US8261561B2 (en) Free-cooling capacity control for air conditioning systems
JP4411870B2 (en) Refrigeration equipment
JP4566052B2 (en) Constant temperature maintenance device.
US20080302118A1 (en) Heat Pump Water Heating System Using Variable Speed Compressor
CN107490090B (en) Air conditioner
WO2021063088A1 (en) Cooling system and method for inverter, and air conditioning apparatus
WO2017163296A1 (en) Refrigeration device
JP2001311567A (en) Freezer device and environmental test device using the same
JP2000205672A (en) Refrigerating system
JP2003214682A (en) Brine temperature control apparatus using proportional control valve
JPH10103834A (en) Refrigerator
JPH04251164A (en) Freezing cycle device
US20220252317A1 (en) A heat pump
CN109341126B (en) Refrigerating system and control method
JP2010014386A (en) Refrigerating device
JP2806090B2 (en) Operation control device for refrigeration equipment
JPH07218003A (en) Control system for refrigerator
JP7284381B2 (en) refrigeration equipment
KR102240147B1 (en) Load fluctuation type compact heat pump air conditioning unit and its control method
JPH02115585A (en) Capacity controller for compressor
JP2002228284A (en) Refrigerating machine
JP2010014387A (en) Refrigerating device
KR100438272B1 (en) Control system of Air conditioner