JP4566052B2 - Constant temperature maintenance device. - Google Patents
Constant temperature maintenance device. Download PDFInfo
- Publication number
- JP4566052B2 JP4566052B2 JP2005110439A JP2005110439A JP4566052B2 JP 4566052 B2 JP4566052 B2 JP 4566052B2 JP 2005110439 A JP2005110439 A JP 2005110439A JP 2005110439 A JP2005110439 A JP 2005110439A JP 4566052 B2 JP4566052 B2 JP 4566052B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cooler
- circulating fluid
- heater
- cooling capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012423 maintenance Methods 0.000 title claims description 29
- 239000012530 fluid Substances 0.000 claims description 63
- 238000001816 cooling Methods 0.000 claims description 55
- 238000005057 refrigeration Methods 0.000 claims description 5
- 239000003507 refrigerant Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 11
- 238000005265 energy consumption Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 239000000498 cooling water Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000036632 reaction speed Effects 0.000 description 3
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/02—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
- F25B41/35—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/24—Storage receiver heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21172—Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21173—Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Plasma & Fusion (AREA)
- Air Conditioning Control Device (AREA)
Description
本発明は、外部熱負荷装置の温度を一定に保つための恒温維持装置に関し、特に、半導体製造装置等に使用されるチラー装置等の、一定温度の液体熱媒体を循環させて外部熱負荷装置の温度を一定に保つための恒温維持装置に関する。 The present invention relates to a constant temperature maintaining device for maintaining a constant temperature of an external heat load device, and in particular, an external heat load device by circulating a liquid heat medium at a constant temperature, such as a chiller device used in a semiconductor manufacturing device or the like. The present invention relates to a constant temperature maintaining device for keeping the temperature of the apparatus constant.
従来の通常チラー装置と呼ばれている恒温維持装置は、冷却器、加熱器および外部熱負荷装置の間を循環する環状管路に液体の熱媒体を流し、外部熱負荷装置で加温された液媒体を冷却器で過冷却し、過冷却した液媒体を加熱器で外部熱負荷装置の要求する設定温度に迄加熱して外部熱負荷装置に供給している。 A conventional constant temperature maintenance device called a normal chiller device is a liquid heating medium that flows through an annular pipe that circulates between a cooler, a heater, and an external heat load device, and is heated by the external heat load device. The liquid medium is supercooled by a cooler, and the supercooled liquid medium is heated by a heater to a set temperature required by the external heat load device and supplied to the external heat load device.
通常このような装置では、外部熱負荷装置の熱負荷があるなしに拘わらず、冷却器はその装置仕様の冷却能力を常に発揮している。そのために、冷却が仮に冷凍機であった場合などは常に大きな電力を浪費することになる。そこで、外部熱負荷装置の運転状況にあわせて、運転モードと省エネルギーモードとを切り換えできる恒温維持装置が提案されている(特許文献1参照)。
また、恒温維持装置の冷却器は通常冷却器の出口の液媒体の温度が冷却器の設定温度になるように制御されている。ところが、冷却器の冷凍サイクル内の冷媒ガス(フロンガス等)は熱伝達速度が遅いので、設定温度に到着してから設定温度を大きく超えたり(オーバーシュート)、設定温度を大きく下回ったり(アンダーシュート)することがしばしば起こる。これは加熱器への負担が大きくなり、大型で広い温度範囲の温度調節ができる加熱器が要求される。 Further, the cooler of the constant temperature maintaining device is normally controlled so that the temperature of the liquid medium at the outlet of the cooler becomes the set temperature of the cooler. However, the refrigerant gas (such as chlorofluorocarbon gas) in the refrigeration cycle of the cooler has a slow heat transfer rate, so when it reaches the set temperature, it greatly exceeds the set temperature (overshoot) or falls below the set temperature (undershoot). ) Often happens. This increases the burden on the heater, and requires a large-sized heater capable of adjusting the temperature in a wide temperature range.
そこで、恒温維持装置の外で外部熱負荷装置に近い位置に熱媒体の温度を微調節する温度調節装置を設けることが提案されている(特許文献2参照)。
上記、特開2004-169933号公報には、コンピュータでプラズマエッチング処理装置の工程シーケンスのレシピ情報を先読みして、一定以上の休止状態がある時またはそれが回復される時にチラー装置の運転モードと省エネルギーモードとを切り換えるチラー制御装置が開示されている。 In JP-A-2004-169933, the recipe information of the process sequence of the plasma etching processing apparatus is pre-read by a computer, and the operation mode of the chiller apparatus when there is a certain pause state or when it is recovered. A chiller control device that switches between energy saving modes is disclosed.
しかしこの装置では、温度制御対象装置の稼働状況を常に把握し、その状況をチラー装置の制御系に送信するためのコンピュータやそれに付随する信号線等を必要とする。 However, this device requires a computer for constantly grasping the operating status of the temperature control target device and transmitting the status to the control system of the chiller device, a signal line associated therewith, and the like.
上記特開2001-153518号公報には、プロセス装置側の温度によってチラー装置の出口温度を設定すると共に、プロセス装置に供給する熱媒体の温度を微調整する第2温度制御部をチラー装置から分離してプロセス装置の近傍に設けた温度制御システムが開示されている。しかし、このシステムでは温度制御部が2箇所あり、電源系が2系統必要になるので、熱エネルギーロスが大きくなる。また、操作する信号線も2系統必要となり、また、操作自体も複雑になるという欠点がある。 In the above Japanese Patent Laid-Open No. 2001-153518, the outlet temperature of the chiller apparatus is set according to the temperature on the process apparatus side, and the second temperature control unit for finely adjusting the temperature of the heat medium supplied to the process apparatus is separated from the chiller apparatus. Thus, a temperature control system provided in the vicinity of the process apparatus is disclosed. However, in this system, there are two temperature control units and two power supply systems are required, so that thermal energy loss increases. Further, two signal lines are required for operation, and the operation itself is complicated.
本発明は、運転モードの切替え機能を持つ省エネルギー運転の可能な恒温維持装置を提供することを目的としている。 An object of the present invention is to provide a constant temperature maintenance device capable of energy-saving operation having an operation mode switching function.
本発明は、高精度の温度制御が可能であるにも拘わらず、熱エネルギーの消費が極めて少なく且つ運転制御の容易な恒温維持装置を安価に提供することを他の目的としている。 Another object of the present invention is to provide a constant temperature maintaining device that consumes very little heat energy and is easy to control operation at a low cost, despite the fact that highly accurate temperature control is possible.
本発明の恒温維持装置は、冷却器、加熱器および外部熱負荷装置とを接続する循環液路に熱媒体循環液を循環させて外部熱負荷装置を一定の設定温度に維持する恒温維持装置において、冷却器の入り口の循環液の温度と加熱器の出口の循環液の温度との温度差に基づいて少なくとも無負荷時の最小限の冷却能力で温度維持をするアイドリングモードと外部熱負荷に応じて冷却能力を増減させるロードモードとを含む冷却器運転モードを切り換える冷却器運転モード切替手段と、上記ロードモードにおいて冷却器の出口の循環液の温度と加熱器の設定温度との温度差が予め定められた値の指定温度差になるように冷却器の冷却能力を調整する冷却能力調整制御手段とを備えていることを特徴とするものである。 The constant temperature maintaining device of the present invention is a constant temperature maintaining device that maintains the external heat load device at a constant set temperature by circulating the heat medium circulating fluid in a circulating fluid path connecting the cooler, the heater, and the external heat load device. Based on the temperature difference between the circulating fluid temperature at the inlet of the cooler and the circulating fluid temperature at the outlet of the heater, depending on the idling mode and external heat load that maintain the temperature with the minimum cooling capacity at least when there is no load A cooling device operation mode switching means for switching a cooling device operation mode including a load mode for increasing or decreasing the cooling capacity, and a temperature difference between the temperature of the circulating fluid at the outlet of the cooler and the set temperature of the heater in the load mode in advance. Cooling capacity adjustment control means for adjusting the cooling capacity of the cooler so as to have a specified temperature difference of a predetermined value is provided.
上記冷却器運転モードの切り替えは、冷却器の入り口の循環液の温度と加熱器の出口の循環液の温度差によって実行される。
その理由は、温度制御対象である外部熱負荷装置から変動した熱負荷が何時戻って来るかは正確には予測できない。加熱器の設定温度すなわち恒温維持装置の設定温度は外部熱負荷装置の運転状態によって時々変更されることがある。恒温維持装置の設定温度が変更された場合、恒温維持装置の出口の循環液の温度が新たに設定された設定温度に到達し安定してから外部熱負荷装置から変動した熱負荷が戻ってくるとは限らない。恒温維持装置の設定温度を変更している際の温度変化中に変動した熱負荷が戻って来る可能性もある。
The switching of the cooler operation mode is executed by the temperature difference between the circulating fluid at the inlet of the cooler and the circulating fluid at the outlet of the heater.
The reason is that it cannot be accurately predicted when the fluctuating heat load returns from the external heat load device that is the temperature control target. The set temperature of the heater, that is, the set temperature of the constant temperature maintaining device, may be changed from time to time depending on the operating state of the external heat load device. When the set temperature of the temperature maintaining device is changed, the temperature of the circulating fluid at the outlet of the temperature maintaining device reaches the newly set temperature and stabilizes, and then the fluctuating heat load is returned from the external heat load device. Not necessarily. There is also a possibility that the fluctuating heat load returns during the temperature change when changing the set temperature of the constant temperature maintaining device.
従来のように冷却器の入り口の循環液の温度と恒温維持装置の設定温度の温度差で運転モードを切替える制御方式を採用すると、恒温維持装置の設定温度の変更中、すなわち恒温維持装置の出口の循環液の温度が新たに設定された設定温度に到達しないうちに変動した熱負荷が戻って来ると、設定温度を基準としているため設定温度を大きく超えたり(オーバーシュート)、設定温度を大きく下回ったり(アンダーシュート)する現象が起こる。 If the control method that switches the operation mode by the temperature difference between the circulating fluid temperature at the inlet of the cooler and the set temperature of the constant temperature maintenance device as in the past is adopted, the set temperature of the constant temperature maintenance device is being changed, that is, the outlet of the constant temperature maintenance device. If the fluctuating heat load returns before the circulating fluid temperature reaches the newly set temperature, the set temperature is used as the reference, so the set temperature may be exceeded (overshoot) or the set temperature may be increased. A phenomenon of undershoot occurs.
この状況を回避するため、本発明のように冷却器の入り口の循環液の温度と加熱器の出口の循環液の温度差によって運転モードの切替えを行う方式を採用すると、恒温維持装置の設定温度の変更中でも温度差の変化を迅速に検出することができるので、熱負荷の変動に対する反応速度が速く、設定温度を大きくオーバーシュートしたりアンダーシュートすることなく安定して運転モードの切り替えを行うことができる。その結果、早期に運転モードを切り替えることができ、早期に運転状態が安定する。 In order to avoid this situation, adopting a method of switching the operation mode according to the temperature difference between the circulating fluid temperature at the inlet of the cooler and the circulating fluid temperature at the outlet of the heater as in the present invention, the set temperature of the constant temperature maintaining device The change in temperature difference can be detected quickly even during the change of temperature, so the reaction speed against the fluctuation of the heat load is fast, and the operation mode can be switched stably without excessively overshooting or undershooting the set temperature. Can do. As a result, the operation mode can be switched early, and the operation state is stabilized early.
この温度差は外部熱負荷装置の種類や規模、恒温循環装置の種類や規模によって異なるが、通常1℃〜5℃の範囲で定められる。この温度差を測定するために冷却器の入り口に第1温度センサをまた加熱器の出口に第3温度センサーを設ける。 This temperature difference varies depending on the type and scale of the external heat load device and the type and scale of the constant temperature circulation device, but is usually determined in the range of 1 ° C to 5 ° C. In order to measure this temperature difference, a first temperature sensor is provided at the inlet of the cooler and a third temperature sensor is provided at the outlet of the heater.
上記冷却器の運転モードの切り替えは、冷却器の冷凍サイクル中に組み込まれた圧縮機を駆動するインバータの周波数を切り換えて行う。即ち、アイドリングモードでは圧縮機を低いインバータ周波数で駆動する。低い周波数で駆動することにより冷却能力を小さくすることができる。 The operation mode of the cooler is switched by switching the frequency of an inverter that drives a compressor incorporated in the refrigerating cycle of the cooler. That is, in the idling mode, the compressor is driven at a low inverter frequency. By driving at a low frequency, the cooling capacity can be reduced.
それと同時に、インバータを低周波数の電力で駆動するとインバータの消費電力も少なくなる。アイドリングモードでは外部熱負荷装置からの戻り熱負荷はほとんど無いので、リアルタイムに冷却能力を調整する必要はなく、低い冷却能力をほぼ一定に出力するように運転すればよい。この運転モードは恒温維持装置の仕様温度帯の全帯域で実行可能である。 At the same time, when the inverter is driven with low frequency power, the power consumption of the inverter is reduced. In the idling mode, there is almost no return heat load from the external heat load device, so there is no need to adjust the cooling capacity in real time, and it is sufficient to operate so as to output a low cooling capacity almost constant. This operation mode can be executed in the entire temperature range of the constant temperature maintaining device.
ロードモードは冷凍サイクルの圧縮機を高いインバータ周波数の電力で駆動する。インバータ周波数を高くすると冷却能力を大きくすることができる。しかし、圧縮機のインバータ周波数による制御方法は反応速度が遅いので、ロードモードではインバータの周波数を固定し、冷却器の冷却能力の制御には電子膨張弁を使用する。 In load mode, the compressor of the refrigeration cycle is driven by electric power at a high inverter frequency. Increasing the inverter frequency can increase the cooling capacity. However, since the control method based on the inverter frequency of the compressor has a slow reaction speed, the frequency of the inverter is fixed in the load mode, and an electronic expansion valve is used to control the cooling capacity of the cooler.
また、ロードモードにおいて冷凍機のインバータ周波数を固定する理由は、冷媒ガス(フロンガスなど)はインバータの周波数を可変にすると一時的に不安定になり温度精度が悪くなるためである。 The reason why the inverter frequency of the refrigerator is fixed in the load mode is that the refrigerant gas (such as chlorofluorocarbon) becomes unstable temporarily when the frequency of the inverter is made variable, resulting in poor temperature accuracy.
また、ロードモードでは外部熱負荷装置から変動する熱負荷が戻ってくるので、その熱負荷の変動に応じて冷却器の冷却能力をリアルタイムで制御しなければならない。そのために、ロードモードにおける冷却器の冷却能力の制御には反応速度の速い電子膨張弁を使用し、その弁開度の調節で冷却能力の調節を行うようにする。 In the load mode, the fluctuating heat load is returned from the external heat load device, so that the cooling capacity of the cooler must be controlled in real time according to the fluctuating heat load. For this purpose, an electronic expansion valve with a fast reaction speed is used for controlling the cooling capacity of the cooler in the load mode, and the cooling capacity is adjusted by adjusting the valve opening.
電子膨張弁の弁開度の調節は冷却器の出口の循環液の温度と加熱器の設定温度の差が予め定められた温度差(ここではこれを指定温度差と呼ぶ)になるように調整する。この指定温度差は加熱器のヒーターの加熱しろを確保するのに必要とする程度の温度差であって、冷却器の出口の循環液の温度が加熱器の設定温度より数度、例えば1℃〜5℃低いように設定すればよい。そのために冷却器の出口の循環液の温度を測定するための第2温度センサを設ける。 Adjustment of the valve opening of the electronic expansion valve is adjusted so that the difference between the circulating fluid temperature at the outlet of the cooler and the set temperature of the heater is a predetermined temperature difference (this is called the specified temperature difference here) To do. This specified temperature difference is a temperature difference required to secure the heating margin of the heater of the heater, and the temperature of the circulating fluid at the outlet of the cooler is several degrees from the set temperature of the heater, for example, 1 ° C. What is necessary is just to set so that -5 degreeC may be low. For this purpose, a second temperature sensor is provided for measuring the temperature of the circulating fluid at the outlet of the cooler.
電子膨張弁の弁開度の調節は、冷却器の出口の循環液の温度によってヒードバック制御する。
このヒードバック制御の方法は、冷却器の出口の循環液の温度を予め定められた複数の温度帯に区分し、各温度帯に応じて冷却器の冷却能力を調整する。
ここに、加熱器の設定温度より予め定められた温度だけ低い温度にある程度の幅を持たせた温度帯をターゲット温度帯とし、このターゲット温度帯よりも高い温度帯を高温温度帯、低い温度帯を低温温度帯と呼ぶことにする。
The adjustment of the opening degree of the electronic expansion valve is controlled by feedback based on the temperature of the circulating fluid at the outlet of the cooler.
In this method of feedback control, the temperature of the circulating fluid at the outlet of the cooler is divided into a plurality of predetermined temperature zones, and the cooling capacity of the cooler is adjusted according to each temperature zone.
Here, a temperature range in which a certain range is given to a temperature that is lower than a preset temperature of the heater is set as a target temperature range, and a temperature range higher than the target temperature range is a high temperature range and a low temperature range Is called a low temperature zone.
冷却器の出口の循環液の温度がターゲット温度帯にある場合は、電子膨張弁の弁開度をそのまま維持する。循環液の温度がターゲット温度帯よりも高い高温温度帯に移行した場合は、冷却能力が大きくなるように電子膨張弁の弁開度を大きくなる方に徐々に開く。反対に、循環液の温度がターゲット温度帯よりも低い低温温度帯に移行した場合は、冷却能力が小さくなるように電子膨張弁の弁開度を小さくなる方に徐々に閉じる。このように弁開度を制御する温度に幅を持たせることにより循環液温度の安定性が向上する。 When the temperature of the circulating fluid at the outlet of the cooler is in the target temperature range, the valve opening degree of the electronic expansion valve is maintained as it is. When the temperature of the circulating fluid has shifted to a high temperature range higher than the target temperature range, the valve opening degree of the electronic expansion valve is gradually opened to increase the cooling capacity. Conversely, when the temperature of the circulating fluid has shifted to a low temperature range that is lower than the target temperature range, the valve opening degree of the electronic expansion valve is gradually closed so as to reduce the cooling capacity. Thus, the stability of the circulating fluid temperature is improved by giving a range to the temperature for controlling the valve opening.
これをさらに具体的に説明すると、外部熱負荷装置に+30℃の循環液を供給したい場合、冷却器の出口温度は+30℃より1〜5℃低い指定温度差を保つように運転しなければならない。例えば、指定温度差を2℃とした場合、ターゲット温度は+28℃となり、+28℃より0.1℃高くても0.1℃低くても、膨張弁が開閉し、循環液温度の安定性に欠けることになる。そこでターゲット温度に幅を持たせ、例えば、+28.5℃〜+27.5℃をターゲット温度帯とすれば、この温度帯では膨張弁の開閉は行われず循環液温度の安定性が得られる。 More specifically, when it is desired to supply + 30 ° C. circulating fluid to the external heat load device, the outlet temperature of the cooler must be operated to maintain a specified temperature difference that is 1 to 5 ° C. lower than + 30 ° C. . For example, when the specified temperature difference is 2 ° C., the target temperature is + 28 ° C., and the expansion valve opens and closes regardless of whether it is 0.1 ° C. higher or lower than + 28 ° C. It will be lacking. Therefore, if the target temperature is widened, for example, if the target temperature range is + 28.5 ° C. to + 27.5 ° C., the expansion valve is not opened and closed in this temperature range, and the stability of the circulating fluid temperature can be obtained.
加熱器の設定温度とは恒温維持装置の設定温度のことで、この設定温度は外部熱負荷装置の種類または運転状況に応じて適宜変更される。
また、この加熱器は、加熱器の出口の循環液の温度を設定温度になるようにフィードバック制御する機能を備えている。
The set temperature of the heater is the set temperature of the constant temperature maintaining device, and this set temperature is appropriately changed according to the type of the external heat load device or the operating condition.
In addition, this heater has a function of performing feedback control so that the temperature of the circulating fluid at the outlet of the heater becomes a set temperature.
このフィードバック制御機能としてPID制御機能を使用する。PID制御機能を使用することによって極めて高精度に恒温維持装置の出口の循環液の温度を制御することができる。 A PID control function is used as the feedback control function. By using the PID control function, the temperature of the circulating fluid at the outlet of the constant temperature maintaining device can be controlled with extremely high accuracy.
さらに、冷却器の運転モードには昇温モードと降温モードを設定する事ができる。昇温モードとは恒温維持装置の設定温度を低い温度から高い温度に変更した場合に、新しく設定された高い温度の設定温度まで温度上昇させる運転モードである。このモードでは冷却能力を極力少なくし、加熱能力を最大限にして早く温度上昇するようにする。 Furthermore, a temperature increase mode and a temperature decrease mode can be set as the operation mode of the cooler. The temperature increase mode is an operation mode in which the temperature is increased to a newly set high temperature when the set temperature of the constant temperature maintaining device is changed from a low temperature to a high temperature. In this mode, the cooling capacity is minimized and the heating capacity is maximized so that the temperature rises quickly.
降温モードとは恒温維持装置の設定温度を高い温度から低い温度に変更した場合に、新しく設定された低い温度の設定温度まで温度降下させる運転モードである。このモードでは冷却能力を大きくし、加熱能力を無くして早く温度降下するようにする。昇温モードおよび降温モードの切り替えは恒温維持装置の設定温度を変更したときに自動的にまたは半自動的に行われる。 The temperature lowering mode is an operation mode in which when the set temperature of the constant temperature maintaining device is changed from a high temperature to a low temperature, the temperature is lowered to a newly set low set temperature. In this mode, the cooling capacity is increased, the heating capacity is lost, and the temperature drops quickly. Switching between the temperature raising mode and the temperature lowering mode is performed automatically or semi-automatically when the set temperature of the constant temperature maintaining device is changed.
本発明の恒温維持装置は、冷却器の入り口の循環液の温度と加熱器の出口の循環液の温度との温度差に基づいて冷却器の運転モードを切り換える冷却器運転モード切替手段を備えているので、恒温維持装置の設定温度の変更中でも温度差の変化を迅速に検出することができ、熱負荷の変動に対する反応速度が速く、設定温度を大きくオーバーシュートしたりアンダーシュートすることなく安定して運転モードの切り替えを行うことができる。その結果、早期に運転モードを切り替えることができ、早期に運転状態が安定する。 The constant temperature maintenance device of the present invention comprises a cooler operation mode switching means for switching the operation mode of the cooler based on the temperature difference between the temperature of the circulating fluid at the inlet of the cooler and the temperature of the circulating fluid at the outlet of the heater. Therefore, even if the set temperature of the constant temperature maintenance device is changed, the change in temperature difference can be detected quickly, the response speed to the fluctuation of the heat load is fast, and the set temperature is stable without greatly overshooting or undershooting. The operation mode can be switched. As a result, the operation mode can be switched early, and the operation state is stabilized early.
本発明の恒温維持装置は、冷凍サイクル中の圧縮機を駆動するインバータの周波数によって冷却能力を調整する冷却能力調整手段を備えているので、外部熱負荷装置の熱負荷に応じて冷却器の運転モードをアイドリングモードとロードモードに切り替えることができ、省エネルギーの運転を行うことができる。 Since the constant temperature maintaining device of the present invention includes the cooling capacity adjusting means for adjusting the cooling capacity according to the frequency of the inverter that drives the compressor in the refrigeration cycle, the operation of the cooler according to the heat load of the external heat load device The mode can be switched between an idling mode and a load mode, and energy-saving operation can be performed.
本発明の恒温維持装置は、冷凍サイクル中の電子膨張弁の弁開度によって冷却能力を調整する冷却能調整手段とを備えているので、ロードモード中の熱反応性が早く、しかも、高精度の冷却器の温度制御を行うことができる。 The constant temperature maintenance device of the present invention includes a cooling capacity adjusting means that adjusts the cooling capacity according to the opening degree of the electronic expansion valve in the refrigeration cycle, so that the thermal reactivity during the load mode is fast and highly accurate. The temperature of the cooler can be controlled.
本発明の恒温維持装置は、冷却器の出口の循環液の温度と加熱器の設定温度との温度差が予め定められた指定温度差になるように冷却器の冷却能力を調整する冷却器能力調整制御手段を備えているので、加熱器に流入される循環液の温度がほぼ一定し、しかも、その指定温度差を小さく設定すれば、外部熱負荷装置から戻ってくる戻り熱負荷の変化に影響されることが少なくなり、極めて小さな出力の加熱器、例えば、電熱ヒータを選定することができ、リアルタイムに加熱器を出る循環液の温度を高精度で制御することができる。 The constant temperature maintenance device of the present invention is a cooler ability that adjusts the cooling ability of the cooler so that the temperature difference between the temperature of the circulating fluid at the outlet of the cooler and the set temperature of the heater becomes a predetermined specified temperature difference. Since the adjustment control means is provided, the temperature of the circulating fluid flowing into the heater is almost constant, and if the specified temperature difference is set small, the return heat load returned from the external heat load device is changed. A heater with a very small output, for example, an electric heater, can be selected because it is less affected, and the temperature of the circulating fluid exiting the heater can be controlled with high accuracy in real time.
本発明の恒温維持装置は、冷却器の出口の循環液の温度を予め定められた複数の温度帯に区分し、各温度帯に応じて冷却器の冷却能力を調整する電子膨張弁による温度制御機能を備えているので、膨張弁の開度を調整する温度に幅を持たせることができ、温度安定性が向上する。 The constant temperature maintenance device of the present invention divides the temperature of the circulating fluid at the outlet of the cooler into a plurality of predetermined temperature zones, and controls the temperature by an electronic expansion valve that adjusts the cooling capacity of the cooler according to each temperature zone Since the function is provided, the temperature for adjusting the opening degree of the expansion valve can be widened, and the temperature stability is improved.
本発明の恒温維持装置は、PIDフィードバック制御機能を備えた加熱器を使用しているので、電熱ヒーターのサイズを小さくして省エネルギーの運転を可能にすると共に、外部熱負荷装置に供給する循環液の温度を高精度に制御することができる。 Since the constant temperature maintaining device of the present invention uses a heater having a PID feedback control function, the size of the electric heater can be reduced to enable energy saving operation, and the circulating fluid supplied to the external heat load device Can be controlled with high accuracy.
本発明を実施するための恒温維持装置の実施例を図面によって説明する。 An embodiment of a constant temperature maintenance device for carrying out the present invention will be described with reference to the drawings.
図1は本発明の恒温維持装置の概念図を示すもので、破線で囲まれた部分が恒温維持装置1である。恒温維持装置1は冷却器2と加熱器4とより構成されている。5は例えば半導体ウエハのエッチング装置のような一定の温度に維持する必要のある外部熱負荷装置で循環液管路6によって恒温維持装置1と連結され閉回路を構成している。
FIG. 1 is a conceptual diagram of a constant temperature maintaining device according to the present invention. A portion surrounded by a broken line is a constant
循環液管路6内には熱媒体である水が封入されている。循環液管路6には熱媒体の温度を測定するための温度センサが随所に取り付けられている。41は冷却器の入り口の循環液の温度、即ち外部熱媒体からの戻り温度を測定する第1温度センサ、42は冷却器の出口の循環液の温度を測定するための第2温度センサ、43は加熱器の出口の循環液の温度を測定するための第3温度センサである。
Water, which is a heat medium, is sealed in the circulating
図2は本発明の恒温維持装置のブロック図を示すもので、破線に囲まれた機器が恒温維持装置1であり、一点破線で囲まれた冷却器2と加熱器4とで構成されている。恒温維持装置1は循環液管路6によって外部熱負荷装置と連結されている。そのために外部熱負荷装置からの循環液を受け入れる循環液戻り口64と循環液を供給する循環液供給口65が設けられている。
FIG. 2 is a block diagram of the constant temperature maintaining device of the present invention. The device surrounded by a broken line is the constant
冷却器2は圧縮機21、コンデンサ22、熱交換器26が冷媒回路7で連結され冷凍機サイクルを構成している。冷媒回路7には第1電子膨張弁23、第2電子膨張弁24、第3電子膨張弁25、セパレータ27等が付設されている。コンデンサ22は冷媒回路7の冷媒を冷却水回路8の冷却水で冷却して冷媒を液化させるためのものである。
In the
なお、図中70はドライヤー(D:冷媒ガスの水分を除去するための乾燥剤入りフイルタ)、71はストレーナ(冷媒ガスのメッシュ式フィルタ)、72はサイトグラス(SG:冷媒ガスの液化状況を確認するための窓)、73は圧力センサ(高圧側の冷媒ガスの圧力を検知するセンサ)、74は低圧側サービスバルブ(冷媒ガス封入、メンテナンスなどに使用するアクセスポイント)、75は圧力センサ(低圧側の冷媒ガスの圧力を検知するセンサ)、76は高圧側サービスバルブ(冷媒ガス封入、メンテナンスなどに使用するアクセスポイント)、77は温度センサ(第4番目のセンサで、冷凍機から吐出される冷媒ガスの温度を検知する)、78はホットガスバイパス回路(冷媒ガスの圧縮熱を利用するための回路)、79はインジェクション回路(冷凍機の冷媒ガス吸い込み温度を下げ冷凍機を保護する回路)、81は冷却水入口、82は冷却水出口である。 In the figure, 70 is a dryer (D: a filter containing a desiccant for removing moisture from the refrigerant gas), 71 is a strainer (mesh type filter for refrigerant gas), and 72 is a sight glass (SG: liquefaction state of refrigerant gas). A window for checking), 73 is a pressure sensor (sensor for detecting the pressure of refrigerant gas on the high pressure side), 74 is a low pressure side service valve (access point used for refrigerant gas filling, maintenance, etc.), 75 is a pressure sensor ( A sensor for detecting the pressure of the refrigerant gas on the low-pressure side, 76 is a high-pressure side service valve (access point used for refrigerant gas filling, maintenance, etc.), and 77 is a temperature sensor (fourth sensor, which is discharged from the refrigerator). 78 is a hot gas bypass circuit (a circuit for utilizing the compression heat of the refrigerant gas), 79 is an injector. Deployment circuit (circuit for protecting the refrigerator lowering the refrigerant gas suction temperature of the refrigerator), 81 cooling water inlet, 82 is a cooling water outlet.
圧縮機21で圧縮された冷媒はコンデンサ22に送られ冷却水回路8を流れる冷却水によって冷却され液化される。液化した冷媒は第1電子膨張弁23によって断熱膨張されて急激に温度が降下する。温度が下がった冷媒は熱交換機26において循環液と熱交換して循環液を所望の温度に冷却する。温度の上がった冷媒はセパレータ30で液体を分離して再び圧縮機21に入る。
The refrigerant compressed by the
第1電子膨張弁23は冷却器の冷却能力を主として調整するためものである。第2電子膨張弁24は圧縮機21を保護するためのもので、第3電子膨張弁25は冷却器2の冷却能力を補助的に調整するものである。この電子膨張弁25を備えた回路はホットガスバイパス回路と呼ばれ、冷凍機で圧縮され圧縮熱を持つ冷媒ガスをコンデンサ22で冷却せず、直接熱交換機26に入れて熱交換させることにより加熱エネルギーを回収して、一時的に冷却能力が過多にった場合に冷却能力を調整する。
なお、各電子膨張弁はステッピングモーター27、28、29によって開度が調整される。
The first
The opening degree of each electronic expansion valve is adjusted by stepping
4は加熱器で、外部熱負荷装置から戻り管路61によって戻ってきた循環液を冷却器2の熱交換器26で一旦過冷却し、過冷却された循環液を設定温度まで加熱するために使用される。設定温度まで加熱された循環液はポンプ66で圧送され、送り管路63を経て外部熱負荷装置に供給される。
4 is a heater for temporarily cooling the circulating fluid returned from the external heat load device through the
図3は冷却器および加熱器を制御するためのコントローラ11の配線図を示すものである。コントローラ11は第1温度センサ41によって測定される外部熱負荷装置からの戻り循環液の温度と第3温度センサ43によって測定される加熱器4から送り出される循環液の温度差によって冷却器の圧縮機21を駆動するためのインバータ13の周波数制御信号を切り換え、冷却器の運転モードを切り換える。なお、図中12は表示・設定入力パネルである。
FIG. 3 shows a wiring diagram of the
第1温度センサ41と第3温度センサ43との温度差がほとんど無い時、即ち外部負荷装置が休止状態の場合は、コントローラ11はアイドリングモードを設定し、インバータ13の周波数を下げ、冷凍機サイクルの圧縮器21を低いインバータ周波数で駆動させる。インバータを低周波数で駆動するとインバータの消費電力も低くなる。同時に第1電子膨張弁23の開度を絞って、熱交換機に供給する冷熱のエネルギーを恒温維持装置の設定温度が維持できる最低限度にする。
When there is almost no temperature difference between the
第1温度センサ41と第3温度センサ43との温度差が予め定められた閾値を超えた場合、即ち外部熱負荷装置が稼働を始めたときは、コントローラ11はロードモードを設定して、冷凍サイクルの圧縮機21を高いインバータ周波数で駆動させるようにする。それによって冷却能力を高める一方、コントローラ11はステッピングモーター27に第1電子膨張弁23の開度を大きくする制御信号を送って冷却器2の冷却能力を高め、必要とする冷熱を熱交換器26に供給する。
When the temperature difference between the
しかし、ロードモードの場合は、外部熱負荷は一定ではないので、外部熱負荷に応じた冷却能力の調整が必要になる。この調整は、第2温度センサー42の検知温度と加熱器4の設定温度の温度差を常に一定に保つように電子膨張弁の弁開度を開閉して冷却能力を調整する。温度差は、加熱器4の電気ヒーター44の加熱しろを確保する程度の差で十分である。
However, in the load mode, since the external heat load is not constant, it is necessary to adjust the cooling capacity according to the external heat load. In this adjustment, the cooling capacity is adjusted by opening and closing the opening of the electronic expansion valve so that the temperature difference between the temperature detected by the
冷却器2の出口の循環液の温度と加熱器4の設定温度の温度差が一定に保たれていることは、加熱器4に入る負荷がほぼ一定に保たれたことになる。この負荷がほぼ一定になればヒーター44による温度制御も容易になり、結果的には加熱器4を出る循環液の温度を高精度で制御することができるようになる。また、温度差を狭くすることにより、ヒーター44の加熱能力を低く抑えることができる。
The fact that the temperature difference between the temperature of the circulating fluid at the outlet of the
ヒーター44はPID制御によって、加熱器4の設定温度と第3温度センサ43の検知した循環液の温度が等しくなるように制御される。
このヒーターの設定温度は外部熱負荷装置の種類または運転状況に応じて変更されることがある。
The
The set temperature of the heater may be changed depending on the type of the external heat load device or the operation status.
循環ポンプ66は第3温度センサ43の上流側に配置している。これはポンプ66の仕事熱も加熱器4以外の加熱源と考え消費エネルギーを抑えることと、外部熱負荷装置に供給される循環液の温度精度を良くすることを目的としている。
The
次に、図4によって本発明の恒温維持装置の運転モード切り換えおよび各運転モードにおける冷却器の冷却能力制御方法について説明する。
まず、ステップ91において、恒温維持装置の設定温度SVを入力し、第1温度センサ41の温度TS1、第2温度センサ42の温度TS2、第3温度センサ43の温度TS3をそれぞれ読み込む。
Next, the operation mode switching of the constant temperature maintaining device of the present invention and the cooling capacity control method of the cooler in each operation mode will be described with reference to FIG.
First, in
ステップ92において、TS3−TS1の値と指定温度差とを比較し、指定温度差よりも小さい場合はアイドルモードのステップ93に進む。指定温度差よりも大きい場合はロードモードのステップ95に進む。ステップ93では圧縮機21を駆動するインバータの周波数を降下させ冷却器2の冷却能力を低下させる。ステップ94では電子膨張弁27の弁開度をアイドリングモード用の開度に設定する。ロードモードのステップ95ではインバータ周波数を上げる。ステップ96では(設定温度SV−第2温度センサの温度TS2)の値と指定温度差とを比較し、指定温度差よりも小さい場合はステップ97に進み電子膨張弁ELV1の弁開度を絞る方向に調整する。
In
一方、指定温度差よりも大い場合はステップ98に進み電子膨張弁ELV1の弁開度を開く方向に調整する。ステップ99ではアイドリングモード、ロードモードとも加熱器4をPID制御して加熱器の出口の循環液の温度が設定温度になるように制御する。
On the other hand, when it is larger than the specified temperature difference, the routine proceeds to step 98 and the valve opening degree of the electronic expansion valve ELV1 is adjusted to open. In
次に本発明の恒温維持装置を運転状態を具体的に説明する。
指定温度差(1)は第1温度センサ41の測定温度と第3温度センサ43の測定温度の差を3℃と設定する。
指定温度差(2)は第2温度センサ42の測定温度と加熱器4の設定温度の差を−2℃と設定する。
Next, the operation state of the constant temperature maintaining device of the present invention will be specifically described.
The designated temperature difference (1) sets the difference between the measured temperature of the
The designated temperature difference (2) sets the difference between the measured temperature of the
図5は無負荷時のアイドリングモードで運転した状態を現わしている。
この場合の外部熱負荷は0W、第1温度センサ41の測定温度は30℃、第2温度センサ42の測定温度は29℃、第3温度センサ43の測定温度は30℃、冷却器の消費エネルギーは−500W、加熱器の消費エネルギーは+500Wである。
FIG. 5 shows a state in which the engine is operated in the idling mode when there is no load.
In this case, the external heat load is 0 W, the measured temperature of the
図6は熱負荷大のロードモードで運転した状態を現わしている。
この場合の外部熱負荷は+3000W、第1温度センサ41の測定温度は36℃、第2温度センサ42の測定温度は28℃、第3温度センサ43の測定温度は30℃、冷却器の消費エネルギーは−4000W、加熱器の消費エネルギーは+1000Wである。
FIG. 6 shows a state where the engine is operated in a load mode with a large heat load.
In this case, the external heat load is +3000 W, the measured temperature of the
図7は熱負荷小のロードモードで運転した状態を現わしている。
この場合の外部熱負荷は+1500W、第1温度センサ41の測定温度は33℃、第2温度センサ42の測定温度は28℃、第3温度センサ43の測定温度は30℃、冷却器の消費エネルギーは−2500W、加熱器の消費エネルギーは+1000Wである。
FIG. 7 shows a state where the engine is operated in a load mode with a small heat load.
In this case, the external heat load is +1500 W, the measured temperature of the
このように1℃当たり500Wの熱量と仮定して指定温度差を設定・制御した場合、指定温度差(1)の3℃は、1500W以上の熱負荷が戻ってきたことになる。指定温度差(2)の−2℃は冷却器で戻り熱負荷を−1000W分過冷却し、加熱器で+1000W分をPID制御されたヒータを用いて精度の高い温度調節を行うことになる。
また、指定温度差(2)を−1℃とした場合は、−500Wの過冷却となり、ヒーターの容量はさらに少ないエネルギーで制御が可能になる。
As described above, when the designated temperature difference is set and controlled on the assumption that the heat amount is 500 W per 1 ° C., the heat load of 1500 W or more is returned at 3 ° C. of the designated temperature difference (1). The specified temperature difference (2) of −2 ° C. is returned by the cooler, the heat load is subcooled by −1000 W, and the heater is +1000 W and the temperature is adjusted with high accuracy using a PID-controlled heater.
Further, when the specified temperature difference (2) is set to −1 ° C., the supercooling is −500 W, and the heater capacity can be controlled with less energy.
次に、従来の恒温維持装置(冷却器の運転モード切替機能と冷却能力調整機能を備えていないので大きなヒーターを搭載している)と本発明の恒温維持装置を同じ条件で運転した場合の熱効率について説明する。 Next, the thermal efficiency when operating the conventional constant temperature maintaining device (which is equipped with a large heater because it does not have an operation mode switching function and a cooling capacity adjustment function) and the constant temperature maintaining device of the present invention under the same conditions Will be described.
従来の恒温循環装置は、冷却器の発揮する冷却能力は温度制御対象(外部熱負荷装置)より戻ってくる熱負荷に関係無く一定の冷却能力を発揮している。
温度制御対象より戻って来る熱負荷が小さい場合は、冷却器の冷却能力は余ってしまい加熱器の加熱能力を大きく発揮しなければ循環液の温度を制御することができない。
The conventional constant-temperature circulation device exhibits a constant cooling capacity regardless of the heat load returned from the temperature control target (external heat load device).
When the heat load returned from the temperature control target is small, the cooling capacity of the cooler is excessive, and the temperature of the circulating fluid cannot be controlled unless the heating capacity of the heater is fully exerted.
温度制御対象より戻って来る熱負荷が仮に無負荷の場合は、冷却器の発揮する冷却能力のほぼ同等の加熱器の加熱能力を発揮して循環液温度を制御しなければならない。このため加熱器が大型になり、これに伴って消費されるエネルギーも多くなる。 If the heat load returned from the temperature control target is unloaded, the circulating fluid temperature must be controlled by exhibiting the heating capacity of the heater that is substantially equivalent to the cooling capacity exhibited by the cooler. For this reason, a heater becomes large-sized and the energy consumed with this increases.
最大冷却能力5000W恒温維持装置の場合、1000Wの加熱・冷却能力を発生させた時に消費されるエネルギーを1として、本発明の恒温維持装置とと従来の恒温維持装置との消費エネルギーを比較したものを表1に示す。
表1に示すように、無負荷時と有負荷時との合計の消費エネルギーは、従来装置では、10+7=17であるが、本発明の装置では、2+5=7となり、従来方式より約60%の消費エネルギーの削減となる。 As shown in Table 1, the total energy consumption during no load and when there is a load is 10 + 7 = 17 in the conventional device, but is 2 + 5 = 7 in the device of the present invention, which is about 60% of the conventional method. The energy consumption will be reduced.
1 恒温維持装置
2 冷却器
4 加熱器
41 第1温度センサ
42 第2温度センサ
43 第3温度センサ
DESCRIPTION OF
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110439A JP4566052B2 (en) | 2005-04-07 | 2005-04-07 | Constant temperature maintenance device. |
KR1020050057886A KR100646176B1 (en) | 2005-04-07 | 2005-06-30 | Heat exchanger |
US11/386,641 US20060225876A1 (en) | 2005-04-07 | 2006-03-23 | Constant temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110439A JP4566052B2 (en) | 2005-04-07 | 2005-04-07 | Constant temperature maintenance device. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006292204A JP2006292204A (en) | 2006-10-26 |
JP4566052B2 true JP4566052B2 (en) | 2010-10-20 |
Family
ID=37082064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005110439A Expired - Fee Related JP4566052B2 (en) | 2005-04-07 | 2005-04-07 | Constant temperature maintenance device. |
Country Status (3)
Country | Link |
---|---|
US (1) | US20060225876A1 (en) |
JP (1) | JP4566052B2 (en) |
KR (1) | KR100646176B1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009174802A (en) * | 2008-01-25 | 2009-08-06 | Okamura Corp | Central control system for freezing and refrigerating equipment |
KR100876185B1 (en) | 2008-05-02 | 2008-12-31 | 주식회사 에이알 | Energy-saving type thermo-hygrostat, its current thermo-cooling method and cooling/dehumidifying method thereof |
US20100078156A1 (en) * | 2008-09-29 | 2010-04-01 | Power Integration Consulting, Inc. | System and method for cooling an electrical device in a closed air volume |
JP5641709B2 (en) * | 2009-04-23 | 2014-12-17 | キヤノン株式会社 | Device manufacturing apparatus and device manufacturing method |
JP5084794B2 (en) * | 2009-07-22 | 2012-11-28 | 住友重機械工業株式会社 | Cryopump and cryopump monitoring method |
JP5191969B2 (en) | 2009-09-30 | 2013-05-08 | 三菱重工コンプレッサ株式会社 | Gas processing equipment |
US20120225395A1 (en) * | 2011-03-01 | 2012-09-06 | Haggerty Sean E | Method and system for limiting water boiler heat input |
CN102322715A (en) * | 2011-09-22 | 2012-01-18 | 合肥美的荣事达电冰箱有限公司 | Control device of refrigerating system and refrigerating equipment provided with control device |
CN102374711A (en) * | 2011-10-08 | 2012-03-14 | 合肥美的荣事达电冰箱有限公司 | Refrigeration system and refrigerator comprising same |
KR102207295B1 (en) * | 2014-02-12 | 2021-01-26 | 엘지전자 주식회사 | Refrigerator, hot water prividing system and method for the same |
TWI669492B (en) | 2015-06-05 | 2019-08-21 | 日商伸和控制工業股份有限公司 | Environmental test device |
CN105004110B (en) * | 2015-07-21 | 2018-01-30 | 三河同飞制冷股份有限公司 | Digit Control Machine Tool is with the frequency conversion temperature control system compensated with vapours |
JP6537986B2 (en) | 2016-01-26 | 2019-07-03 | 伸和コントロールズ株式会社 | Temperature control system |
US10731903B2 (en) * | 2017-05-01 | 2020-08-04 | Temptronic Corporation | System and method for device under test cooling using digital scroll compressor |
JP2021009590A (en) * | 2019-07-02 | 2021-01-28 | 株式会社Kelk | Temperature control system and temperature control method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024166A (en) * | 1988-06-21 | 1990-01-09 | Daikin Ind Ltd | Temperature control device for liquid cooler |
JPH0989436A (en) * | 1995-09-25 | 1997-04-04 | Shinwa Controls Kk | Supplying apparatus for brine |
JP2001165058A (en) * | 1999-12-14 | 2001-06-19 | Daikin Ind Ltd | Temperature controller of liquid cooling device |
JP2004502918A (en) * | 2000-07-11 | 2004-01-29 | テンプトロニック コーポレイション | Chuck with heat exchanger with inclined deflection surface for directing refrigerant and recovering circulating temperature control fluid |
JP2004169933A (en) * | 2002-11-15 | 2004-06-17 | Tokyo Electron Ltd | Method and device for controlling chiller for treatment apparatus |
JP2004198001A (en) * | 2002-12-17 | 2004-07-15 | Daikin Ind Ltd | Refrigerator |
JP2004353916A (en) * | 2003-05-28 | 2004-12-16 | Takasago Thermal Eng Co Ltd | Temperature controlling method and air conditioner |
-
2005
- 2005-04-07 JP JP2005110439A patent/JP4566052B2/en not_active Expired - Fee Related
- 2005-06-30 KR KR1020050057886A patent/KR100646176B1/en active IP Right Grant
-
2006
- 2006-03-23 US US11/386,641 patent/US20060225876A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024166A (en) * | 1988-06-21 | 1990-01-09 | Daikin Ind Ltd | Temperature control device for liquid cooler |
JPH0989436A (en) * | 1995-09-25 | 1997-04-04 | Shinwa Controls Kk | Supplying apparatus for brine |
JP2001165058A (en) * | 1999-12-14 | 2001-06-19 | Daikin Ind Ltd | Temperature controller of liquid cooling device |
JP2004502918A (en) * | 2000-07-11 | 2004-01-29 | テンプトロニック コーポレイション | Chuck with heat exchanger with inclined deflection surface for directing refrigerant and recovering circulating temperature control fluid |
JP2004169933A (en) * | 2002-11-15 | 2004-06-17 | Tokyo Electron Ltd | Method and device for controlling chiller for treatment apparatus |
JP2004198001A (en) * | 2002-12-17 | 2004-07-15 | Daikin Ind Ltd | Refrigerator |
JP2004353916A (en) * | 2003-05-28 | 2004-12-16 | Takasago Thermal Eng Co Ltd | Temperature controlling method and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
KR20060106557A (en) | 2006-10-12 |
KR100646176B1 (en) | 2006-11-14 |
JP2006292204A (en) | 2006-10-26 |
US20060225876A1 (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4566052B2 (en) | Constant temperature maintenance device. | |
US7426837B2 (en) | Refrigerator | |
EP2122276B1 (en) | Free-cooling limitation control for air conditioning systems | |
US20080289811A1 (en) | Constant temperature controller | |
EP2102571B1 (en) | Free-cooling capacity control for air conditioning systems | |
JP4411870B2 (en) | Refrigeration equipment | |
US6688124B1 (en) | Electronic expansion valve control for a refrigerant cooled variable frequency drive (VFD) | |
KR20080081002A (en) | Flash tank refrigerant control | |
JP5984456B2 (en) | Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device | |
JP2010249452A (en) | Air conditioner | |
JP3326141B2 (en) | Constant temperature refrigerant liquid circulation device | |
JP6890706B1 (en) | Air conditioning system and control method | |
JP2001311567A (en) | Freezer device and environmental test device using the same | |
CN111981642B (en) | Energy regulation control method for heat pump air conditioning system module unit | |
JP2011052913A (en) | Pump circulation amount control temperature control device | |
KR100826926B1 (en) | Water Cooling Type Air Conditioner and Control Method thereof | |
JP2003214682A (en) | Brine temperature control apparatus using proportional control valve | |
JP2009192186A (en) | Refrigeration system | |
KR101059817B1 (en) | Cooling system for power electronic components | |
JP2806090B2 (en) | Operation control device for refrigeration equipment | |
WO2022224689A1 (en) | Refrigeration-type chiller | |
JPH02176363A (en) | Heat pump device | |
JPH05296618A (en) | Water cooler | |
JPH06323638A (en) | Control system for refrigerator | |
JPH07111182B2 (en) | Refrigerator output capacity control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4566052 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140813 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |