JP7284381B2 - refrigeration equipment - Google Patents

refrigeration equipment Download PDF

Info

Publication number
JP7284381B2
JP7284381B2 JP2019027195A JP2019027195A JP7284381B2 JP 7284381 B2 JP7284381 B2 JP 7284381B2 JP 2019027195 A JP2019027195 A JP 2019027195A JP 2019027195 A JP2019027195 A JP 2019027195A JP 7284381 B2 JP7284381 B2 JP 7284381B2
Authority
JP
Japan
Prior art keywords
opening
refrigerant
degree
expansion
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019027195A
Other languages
Japanese (ja)
Other versions
JP2020133998A (en
Inventor
翼 西尾
信頼 小薗
賢一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2019027195A priority Critical patent/JP7284381B2/en
Publication of JP2020133998A publication Critical patent/JP2020133998A/en
Application granted granted Critical
Publication of JP7284381B2 publication Critical patent/JP7284381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、冷凍装置に関するものである。 The present disclosure relates to refrigeration equipment.

従来、蒸気圧縮式の冷凍サイクルを行う冷凍装置において、蒸発器となる熱交換器の出口側の実際の冷媒過熱度を求め、この冷媒過熱度が目標値になるように、蒸発器の流入側に設けられている膨張弁の開度を制御するものがある(例えば、特許文献1参照)。いわゆるフィードバック制御である。 Conventionally, in a refrigeration system that performs a vapor compression refrigeration cycle, the actual degree of superheat of the refrigerant on the outlet side of a heat exchanger serving as an evaporator is determined, and the inflow side of the evaporator is adjusted so that the degree of refrigerant superheat reaches a target value. (see, for example, Patent Document 1). This is so-called feedback control.

特開昭61-175457号公報JP-A-61-175457

膨張弁を蒸発器の出口の冷媒過熱度に基づいてフィードバック制御する場合、膨張弁(膨張機構)の開度を必要以上に調節してしまうことがある。例えば、冷凍負荷が急激に変化したり、室外に設置される熱交換器に強風が吹き付けられるような急激な運転条件の変化が生じたりしたときに、礼装装置の制御器がこれらの変化に対応しようとする場合などである。 When the expansion valve is feedback-controlled based on the degree of superheat of the refrigerant at the outlet of the evaporator, the opening of the expansion valve (expansion mechanism) may be adjusted more than necessary. For example, when the refrigeration load suddenly changes, or when there is a sudden change in operating conditions such as a strong wind blowing against a heat exchanger installed outdoors, the controller of the dressing device can respond to these changes. such as when trying to

膨張弁の開度を必要以上に調節すると、冷媒過熱度が目標過熱度を通り過ぎて変化して、今度は膨張弁の開度を逆方向に調節することになり、膨張弁開度が増減を繰り返すおそれがある。そうすると、冷媒過熱度も増減を繰り返し、いわゆるハンチングの不安定な動作が生じてしまう。 If the degree of opening of the expansion valve is adjusted more than necessary, the degree of superheat of the refrigerant will change past the target degree of superheat, and this time the degree of opening of the expansion valve will be adjusted in the opposite direction, increasing or decreasing the degree of opening of the expansion valve. Likely to repeat. As a result, the degree of superheating of the refrigerant also repeatedly increases and decreases, resulting in an unstable so-called hunting operation.

本開示の目的は、熱交換器の出口の冷媒過熱度をフィードバック制御で調節する冷凍装置において、運転条件が変化しても冷媒過熱度を安定させることである。 An object of the present disclosure is to stabilize the degree of superheat of the refrigerant even if the operating conditions change in a refrigeration system in which the degree of superheat of the refrigerant at the outlet of the heat exchanger is adjusted by feedback control.

本開示の第1の態様は、
圧縮機(31)と放熱器(15)(21a,21b)と膨張機構(22a,22b)(36)と蒸発器(21a,21b)(15)とが順に接続されて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)と、
上記冷媒回路(11,12)の冷凍サイクルの動作を制御する制御器(90)と、を備え、
上記制御器(90)が、上記蒸発器(21a,21b)(15)の出口側の冷媒過熱度が目標値となるように、上記膨張機構(22a,22b)(36)の開度をフィードバック制御で定めるように構成された冷凍装置を前提とする。
A first aspect of the present disclosure includes:
A vapor compression refrigeration cycle in which a compressor (31), a radiator (15) (21a, 21b), an expansion mechanism (22a, 22b) (36), and an evaporator (21a, 21b) (15) are connected in order. a refrigerant circuit (11, 12) for
a controller (90) for controlling the operation of the refrigeration cycle of the refrigerant circuit (11, 12);
The controller (90) feeds back the degree of opening of the expansion mechanism (22a, 22b) (36) so that the degree of superheat of the refrigerant on the outlet side of the evaporator (21a, 21b) (15) reaches a target value. A refrigeration system configured as defined by the control is assumed.

この冷凍装置は、上記制御器(90)が、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度を、運転条件から定まる理論上の冷凍サイクル(以下、理論冷凍サイクルともいう)において計算で求められる必要開度を含む所定範囲内に制限する
ことを特徴とする。
In this refrigeration system, the controller (90) adjusts the opening degrees of the expansion mechanisms (22a, 22b) (36), which are determined by feedback control in an actual refrigeration cycle during operation, to a theoretical refrigeration system determined from operating conditions. It is characterized in that the opening is limited within a predetermined range including the necessary opening calculated by calculation in the cycle (hereinafter also referred to as the theoretical refrigerating cycle).

上記の「計算で求められる必要開度」は、運転条件が変わる都度計算で求められる開度に限らない。例えば、上記必要開度は、運転条件ごとに予め計算で求められた値が記録されたデータを、上記制御器(90)が読み込む構成であってもよい。 The "necessary degree of opening calculated" is not limited to the degree of opening calculated each time the operating conditions change. For example, the required opening may be configured such that the controller (90) reads data in which a value calculated in advance for each operating condition is recorded.

第1の態様では、膨張機構(22a,22b)(36)の開度は、基本的には、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる。言い換えると、制御器(90)は、蒸発器(21a,21b)(15)の出口の冷媒過熱度が目標値より大きい場合は膨張機構(22a,22b)(36)の開度を大きくして冷媒流量を増やし、蒸発器(21a,21b)(15)の出口の冷媒過熱度が目標値より小さい場合は膨張機構(22a,22b)(36)の開度を小さくして冷媒流量を減らす制御を行う。 In the first mode, the opening degrees of the expansion mechanisms (22a, 22b) (36) are basically determined by feedback control in the actual refrigeration cycle during operation. In other words, the controller (90) increases the opening of the expansion mechanisms (22a, 22b) (36) when the degree of superheat of the refrigerant at the outlet of the evaporators (21a, 21b) (15) is greater than the target value. Increase the refrigerant flow rate, and if the degree of superheat of the refrigerant at the outlet of the evaporator (21a, 21b) (15) is lower than the target value, control to decrease the opening of the expansion mechanism (22a, 22b) (36) to reduce the refrigerant flow rate. I do.

一方、制御器(90)は、フィードバック制御を行うと同時に、そのときの運転条件から定められる理論冷凍サイクルにおける膨張機構(22a,22b)(36)の必要開度を求める。制御器(90)は、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超える場合は、実際の開度を、その所定範囲内に入るように制限する。このことにより、開度の調節範囲が制限されるので、運転条件が急激に変化しても、膨張機構(22a,22b)(36)の開度は必要以上に変化しない。よって、冷媒過熱度が増減を繰り返すハンチングの不安定な動作を抑制できる。 On the other hand, the controller (90) performs feedback control and, at the same time, finds the required opening of the expansion mechanisms (22a, 22b) (36) in the theoretical refrigeration cycle determined from the operating conditions at that time. When the opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control during actual operation exceeds a predetermined range including the required opening, the controller (90) adjusts the actual opening to It is restricted so that it falls within the predetermined range. As a result, the adjustment range of the opening is limited, so that even if the operating conditions suddenly change, the opening of the expansion mechanisms (22a, 22b) (36) does not change more than necessary. Therefore, it is possible to suppress unstable operation of hunting in which the degree of superheating of the refrigerant repeatedly increases and decreases.

本開示の第2の態様は、第1の態様において、
上記制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の上限を上回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の上限の開度に設定し、上記フィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の下限を下回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の下限の開度に設定する
ことを特徴とする。
A second aspect of the present disclosure provides, in the first aspect,
The controller (90) operates when the degree of opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control in the actual refrigeration cycle during operation exceeds the upper limit of a predetermined range including the required degree of opening. , the opening of the expansion mechanisms (22a, 22b) (36) is set to the upper limit of the predetermined range, and the opening of the expansion mechanisms (22a, 22b) (36) determined by the feedback control is , the opening of the expansion mechanism (22a, 22b) (36) is set to the lower limit of the predetermined range when the required opening falls below the lower limit of the predetermined range.

第2の態様では、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超えて大きくなる場合は、実際の開度がその所定範囲の上限に設定される。フィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を下回る小さな値になる場合は、実際の開度がその所定範囲の下限に設定される。いずれの場合も、膨張機構(22a,22b)(36)の開度は必要以上に調節されず、しかもフィードバック制御で求められた値に近い開度に設定される。 In the second aspect, when the opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control during actual operation exceeds a predetermined range including the required opening, the actual opening is set to the upper limit of the predetermined range. When the opening of the expansion mechanisms (22a, 22b) (36) obtained by feedback control is a small value below the predetermined range including the required opening, the actual opening is set to the lower limit of the predetermined range. . In either case, the openings of the expansion mechanisms (22a, 22b) (36) are not adjusted more than necessary, and are set to values close to values obtained by feedback control.

本開示の第3の態様は、第1または第2の態様において、
上記制御器(90)は、
上記膨張機構(22a,22b)(36)への冷媒の流入側圧力と流出側圧力との圧力差をΔP、
上記圧縮機(31)の単位時間当たりの吸入冷媒量をG、
上記膨張機構(22a,22b)(36)を単位時間当たりに通過する冷媒の体積流量をQ、
及び係数をαとすると、
上記膨張機構(22a,22b)(36)の開度と冷媒流量との関係を表す流量特性を表す値Cvを、Cv=α×Q×(G/ΔP)1/2で表される式から求め、
上記流量特性値Cvが得られる膨張機構(22a,22b)(36)の開度を、上記必要開度に設定する
ことを特徴とする。
A third aspect of the present disclosure is, in the first or second aspect,
The controller (90) is
ΔP is the pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to the expansion mechanism (22a, 22b) (36),
G is the amount of refrigerant sucked into the compressor (31) per unit time;
Q is the volumetric flow rate of the refrigerant passing through the expansion mechanisms (22a, 22b) (36) per unit time;
and the coefficient α,
The value Cv representing the flow rate characteristic representing the relationship between the opening degree of the expansion mechanisms (22a, 22b) (36) and the refrigerant flow rate is obtained from the formula Cv=α×Q×(G/ΔP) 1/2 seek,
The opening of the expansion mechanisms (22a, 22b) (36) from which the flow rate characteristic value Cv is obtained is set to the required opening.

第3の態様では、理論冷凍サイクルにおける膨張機構(22a,22b)(36)の必要開度が、上記の圧力差、吸入冷媒量、冷媒の体積流量から求めた膨張機構(22a,22b)(36)の流量特性値Cvにより求められる。 In the third aspect, the required degree of opening of the expansion mechanisms (22a, 22b) (36) in the theoretical refrigeration cycle is obtained from the pressure difference, the refrigerant suction amount, and the refrigerant volumetric flow rate of the expansion mechanisms (22a, 22b) ( 36) is obtained from the flow rate characteristic value Cv.

図1は、実施形態のチラー装置の構成を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing the configuration of the chiller device of the embodiment. 図2は、冷却運転中の冷媒の流れを示すチラー装置の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of the chiller showing the flow of refrigerant during cooling operation. 図3は、加熱運転中の冷媒の流れを示すチラー装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the chiller showing the flow of refrigerant during heating operation. 図4は、熱源側膨張弁の開度-流量特性(開度(パルス数)とCv値との関係)を示すグラフである。FIG. 4 is a graph showing the opening degree-flow characteristics (relationship between opening degree (pulse number) and Cv value) of the heat source side expansion valve.

本実施形態のチラー装置(1)は、冷凍サイクルを行う冷凍装置である。図1に示すように、このチラー装置(1)は、冷媒を循環させて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)を備え、冷媒によって熱媒水を冷却し又は加熱する。チラー装置(1)において冷却され又は加熱された熱媒水の冷熱又は温熱は、水熱交換器(15)を介して図外のファンコイルユニットへ伝達され、室内空間の冷房または暖房に利用される。本実施形態では、熱源機(2)であるチラー装置(1)に対し、水熱交換器(15)に室内器(3)であるファンコイルユニットが接続される。 A chiller device (1) of the present embodiment is a refrigeration device that performs a refrigeration cycle. As shown in FIG. 1, the chiller device (1) includes a refrigerant circuit (11, 12) that circulates a refrigerant to perform a vapor compression refrigeration cycle, and cools or heats heat transfer water with the refrigerant. Cold heat or heat of the heat transfer water cooled or heated in the chiller device (1) is transmitted to the fan coil unit (not shown) via the water heat exchanger (15) and used for cooling or heating the indoor space. be. In this embodiment, a fan coil unit, which is an indoor unit (3), is connected to a water heat exchanger (15) of a chiller device (1), which is a heat source device (2).

チラー装置(1)は、第1冷媒回路(11)と第2冷媒回路(12)とを備える。第1冷媒回路(11)と第2冷媒回路(12)は、一つの水熱交換器(15)を共用する。また、チラー装置(1)は、室外ファン(5)を、冷媒回路(11,12)毎に一つずつ備える。各室外ファン(5)は、対応する冷媒回路(11,12)の室外熱交換器(21a,21b)へ室外空気を送る。更に、チラー装置(1)は、制御器(90)を備える。 The chiller device (1) comprises a first refrigerant circuit (11) and a second refrigerant circuit (12). The first refrigerant circuit (11) and the second refrigerant circuit (12) share one water heat exchanger (15). The chiller device (1) also includes one outdoor fan (5) for each refrigerant circuit (11, 12). Each outdoor fan (5) sends outdoor air to the outdoor heat exchangers (21a, 21b) of the corresponding refrigerant circuits (11, 12). Furthermore, the chiller device (1) comprises a controller (90).

-冷媒回路-
第1冷媒回路(11)と第2冷媒回路(12)は、それぞれの構成が互いに同じである。図1は、第1冷媒回路(11)の具体構成を図示し、第2冷媒回路(12)の具体構成の図示を省略する。ここでは、第1冷媒回路(11)について説明する。冷媒回路(11,12)は、後述の室外熱交換器(21a,21b)と水熱交換器(15)の一方が放熱器となり、他方が蒸発器となって冷凍サイクルを行う。
-Refrigerant circuit-
The first refrigerant circuit (11) and the second refrigerant circuit (12) have the same configuration. FIG. 1 illustrates the specific configuration of the first refrigerant circuit (11) and omits the specific configuration of the second refrigerant circuit (12). Here, the first refrigerant circuit (11) will be described. In the refrigerant circuit (11, 12), one of an outdoor heat exchanger (21a, 21b) and a water heat exchanger (15), which will be described later, serves as a radiator, and the other serves as an evaporator to perform a refrigeration cycle.

第1冷媒回路(11)は、圧縮機(31)と、四方切換弁(32)と、ブリッジ回路(40)と、受液器(33)と、過冷却用熱交換器(35)と、利用側膨張弁(36)とを、一つずつ備える。第1冷媒回路(11)には、水熱交換器(15)が接続される。第1冷媒回路(11)は、一方向管路(53)と、過冷却管路(54)と、機器冷却管路(55)と、吸入接続管路(60)と、ガス抜き管路(61)とを、一つずつ備える。また、第1冷媒回路(11)は、二つの分岐管路(20a,20b)を備える。各分岐管路(20a,20b)には、室外熱交換器(21a,21b)と熱源側膨張弁(22a,22b)とが一つずつ設けられる。熱源側膨張弁(22a,22b)は本開示の膨張機構である。 The first refrigerant circuit (11) includes a compressor (31), a four-way switching valve (32), a bridge circuit (40), a liquid receiver (33), a supercooling heat exchanger (35), A utilization side expansion valve (36) is provided one by one. A water heat exchanger (15) is connected to the first refrigerant circuit (11). The first refrigerant circuit (11) includes a one-way pipeline (53), a supercooling pipeline (54), an equipment cooling pipeline (55), a suction connection pipeline (60), and a gas vent pipeline ( 61) and are provided one by one. The first refrigerant circuit (11) also has two branch pipes (20a, 20b). Each branch pipeline (20a, 20b) is provided with one outdoor heat exchanger (21a, 21b) and one heat source side expansion valve (22a, 22b). The heat source side expansion valves (22a, 22b) are the expansion mechanism of the present disclosure.

〈圧縮機〉
圧縮機(31)は、全密閉型のスクロール圧縮機である。圧縮機(31)の運転容量は可変である。圧縮機(31)の電動機には、図外のインバータから交流が供給される。インバータの出力周波数を変更すると、圧縮機(31)に設けられた電動機の回転速度が変化し、圧縮機(31)の運転容量が変化する。
<Compressor>
The compressor (31) is a fully hermetic scroll compressor. The operating capacity of the compressor (31) is variable. Alternating current is supplied to the electric motor of the compressor (31) from an inverter (not shown). When the output frequency of the inverter is changed, the rotation speed of the electric motor provided in the compressor (31) changes, and the operating capacity of the compressor (31) changes.

圧縮機(31)の吸入管は、吸入配管(51)に接続する。圧縮機(31)の吐出管は、吐出配管(52)に接続する。圧縮機(31)の中間インジェクション管は、過冷却管路(54)に接続する。吐出配管(52)には、逆止弁(CV13)が設けられる。この逆止弁(CV13)は、圧縮機(31)から流出する向きの冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。 A suction pipe of the compressor (31) is connected to the suction pipe (51). A discharge pipe of the compressor (31) is connected to the discharge pipe (52). The intermediate injection pipe of the compressor (31) connects to the subcooling line (54). A check valve (CV13) is provided in the discharge pipe (52). The check valve (CV13) allows refrigerant to flow in the direction out of the compressor (31) and blocks refrigerant from flowing in the opposite direction.

〈四方切換弁〉
四方切換弁(32)は、四つのポートを有する切換弁である。四方切換弁(32)の第1のポートは、吐出配管(52)を介して圧縮機(31)に接続する。四方切換弁(32)の第2のポートは、吸入配管(51)を介して圧縮機(31)に接続する。四方切換弁の第3のポートは、各分岐管路(20a,20b)の一端に接続する。四方切換弁(32)の第4のポートは、水熱交換器(15)に接続する。
<Four-way switching valve>
The four-way switching valve (32) is a switching valve having four ports. A first port of the four-way switching valve (32) is connected to the compressor (31) via a discharge pipe (52). A second port of the four-way switching valve (32) is connected to the compressor (31) through a suction pipe (51). A third port of the four-way switching valve is connected to one end of each branch line (20a, 20b). A fourth port of the four-way switching valve (32) is connected to the water heat exchanger (15).

四方切換弁(32)は、図1に実線で示す第1状態と、図1に破線で示す第2状態とに切り換わる。第1状態の四方切換弁(32)では、第1のポートが第3のポートと連通し、第2のポートが第4のポートと連通する。第2状態の四方切換弁(32)では、第1のポートが第4のポートと連通し、第2のポートが第3のポートと連通する。 The four-way switching valve (32) switches between a first state indicated by solid lines in FIG. 1 and a second state indicated by broken lines in FIG. In the four-way switching valve (32) in the first state, the first port communicates with the third port and the second port communicates with the fourth port. In the four-way switching valve (32) in the second state, the first port communicates with the fourth port and the second port communicates with the third port.

〈分岐管路〉
二つの分岐管路(20a,20b)は、互いに並列に接続される。各分岐管路(20a,20b)のガス側端は、四方切換弁(32)の第3のポートに接続する。各分岐管路(20a,20b)の液側端は、ブリッジ回路(40)に接続する。
<Branch pipeline>
The two branch pipelines (20a, 20b) are connected in parallel with each other. The gas side end of each branch pipe (20a, 20b) is connected to the third port of the four-way switching valve (32). The liquid side end of each branch line (20a, 20b) is connected to the bridge circuit (40).

第1分岐管路(20a)には、第1室外熱交換器(21a)とそれに対応する第1熱源側膨張弁(22a)とが直列に配置される。第2分岐管路(20b)には、第2室外熱交換器(21b)とそれに対応する第2熱源側膨張弁(22b)とが直列に配置される。各分岐管路(20a,20b)では、分岐管路(20a,20b)のガス側端寄りに室外熱交換器(21a,21b)が配置され、分岐管路(20a,20b)の液側端寄りに熱源側膨張弁(22a,22b)が配置される。 A first outdoor heat exchanger (21a) and a corresponding first heat source side expansion valve (22a) are arranged in series in the first branch pipe (20a). A second outdoor heat exchanger (21b) and a corresponding second heat source side expansion valve (22b) are arranged in series in the second branch pipe (20b). In each branch pipeline (20a, 20b), an outdoor heat exchanger (21a, 21b) is arranged near the gas side end of the branch pipeline (20a, 20b), and the liquid side end of the branch pipeline (20a, 20b) The heat source side expansion valves (22a, 22b) are arranged on the side.

各室外熱交換器(21a,21b)は、冷媒を室外空気と熱交換させる熱源側熱交換器である。第1室外熱交換器(21a)の熱交換容量は、第2室外熱交換器(21b)の熱交換容量よりも大きい。各熱源側膨張弁(22a,22b)は、開度調整可能な電子膨張弁である。 Each of the outdoor heat exchangers (21a, 21b) is a heat source side heat exchanger that exchanges heat between refrigerant and outdoor air. The heat exchange capacity of the first outdoor heat exchanger (21a) is greater than that of the second outdoor heat exchanger (21b). Each heat source side expansion valve (22a, 22b) is an electronic expansion valve whose degree of opening is adjustable.

第1冷媒回路(11)に対応する室外ファン(5)は、第1冷媒回路(11)の第1室外熱交換器(21a)と第2室外熱交換器(21b)の両方へ室外空気を送る。 The outdoor fan (5) corresponding to the first refrigerant circuit (11) supplies outdoor air to both the first outdoor heat exchanger (21a) and the second outdoor heat exchanger (21b) of the first refrigerant circuit (11). send.

〈ブリッジ回路〉
ブリッジ回路(40)は、四つの配管(41~44)を備える。第1配管(41)には第1逆止弁(CV1)が、第2配管(42)には第2逆止弁(CV2)が、第3配管(43)には第3逆止弁(CV3)が、第4配管(44)には第4逆止弁(CV4)が、それぞれ設けられる。各逆止弁(CV1~CV4)は、対応する配管(41~44)の流入端から流出端に向かう方向の冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。
<Bridge circuit>
The bridge circuit (40) has four pipes (41-44). A first check valve (CV1) is provided in the first pipe (41), a second check valve (CV2) is provided in the second pipe (42), and a third check valve (CV2) is provided in the third pipe (43). CV3), and the fourth pipe (44) is provided with a fourth check valve (CV4). Each check valve (CV1-CV4) allows the flow of refrigerant in the direction from the inflow end to the outflow end of the corresponding pipe (41-44) and prevents the flow of refrigerant in the opposite direction.

第1配管(41)の流出端と第2配管(42)の流入端とは、分岐管路(20a,20b)の液側端に接続する。第2配管(42)の流出端と第3配管(43)の流出端とは、一方向管路(53)の一端に接続する。第3配管(43)の流入端と第4配管(44)の流出端とは、利用側膨張弁(36)の一端に接続する。第4配管(44)の流入端と第1配管(41)の流入端とは、一方向管路(53)の他端に接続する。 The outflow end of the first pipe (41) and the inflow end of the second pipe (42) are connected to the liquid side ends of the branch pipes (20a, 20b). The outflow end of the second pipe (42) and the outflow end of the third pipe (43) are connected to one end of the one-way pipe (53). The inflow end of the third pipe (43) and the outflow end of the fourth pipe (44) are connected to one end of the utilization side expansion valve (36). The inflow end of the fourth pipe (44) and the inflow end of the first pipe (41) are connected to the other end of the one-way pipe (53).

〈利用側膨張弁〉
利用側膨張弁(36)は、開度可変の電子膨張弁である。利用側膨張弁(36)の他端は、水熱交換器(15)に接続する。
<Use side expansion valve>
The utilization side expansion valve (36) is an electronic expansion valve with a variable opening. The other end of the utilization side expansion valve (36) is connected to the water heat exchanger (15).

〈水熱交換器〉
水熱交換器(15)は、利用側熱交換器である。水熱交換器(15)は、第1冷媒回路(11)及び第2冷媒回路(12)の冷媒を熱媒水と熱交換させる。
<Water heat exchanger>
The water heat exchanger (15) is a utilization side heat exchanger. The water heat exchanger (15) heat-exchanges the refrigerant in the first refrigerant circuit (11) and the second refrigerant circuit (12) with heat transfer water.

水熱交換器(15)には、水流路(16)と、第1冷媒流路(17)と、第2冷媒流路(18)とが形成される。水流路(16)には、熱媒水の循環回路が接続する。第1冷媒流路(17)には、第1冷媒回路(11)が接続する。第2冷媒流路(18)には、第2冷媒回路(12)が接続する。各冷媒流路(17,18)の一端は、対応する冷媒回路(11,12)の四方切換弁(32)の第4のポートに接続する。各冷媒流路(17,18)の他端は、対応する冷媒回路(11,12)の利用側膨張弁(36)の他端に接続する。 A water flow path (16), a first refrigerant flow path (17), and a second refrigerant flow path (18) are formed in the water heat exchanger (15). A heat transfer water circulation circuit is connected to the water flow path (16). The first refrigerant circuit (11) is connected to the first refrigerant flow path (17). A second refrigerant circuit (12) is connected to the second refrigerant flow path (18). One end of each refrigerant flow path (17, 18) is connected to the fourth port of the four-way switching valve (32) of the corresponding refrigerant circuit (11, 12). The other end of each refrigerant flow path (17, 18) is connected to the other end of the utilization side expansion valve (36) of the corresponding refrigerant circuit (11, 12).

〈一方向管路、過冷却管路、過冷却熱交換器〉
一方向管路(53)には、一端から他端へ向かって順に、受液器(33)と過冷却用熱交換器(35)とが配置される。
<One-way pipeline, supercooling pipeline, supercooling heat exchanger>
A liquid receiver (33) and a subcooling heat exchanger (35) are arranged in order from one end to the other end of the one-way pipe (53).

過冷却管路(54)の一端は、一方向管路(53)における受液器(33)と過冷却用熱交換器(35)の間に接続する。過冷却管路(54)の他端は、圧縮機(31)の中間インジェクション管に接続する。過冷却管路(54)には、一端から他端へ向かって順に、過冷却用膨張弁(34)と過冷却用熱交換器(35)とが配置される。 One end of the subcooling line (54) is connected between the liquid receiver (33) and the subcooling heat exchanger (35) in the one-way line (53). The other end of the subcooling line (54) is connected to the intermediate injection pipe of the compressor (31). A supercooling expansion valve (34) and a supercooling heat exchanger (35) are arranged in this order from one end to the other end of the supercooling pipe (54).

過冷却用熱交換器(35)には、一次側流路(35a)と二次側流路(35b)とが形成される。一次側流路(35a)は、一方向管路に接続する。二次側流路(35b)は、過冷却管路に接続する。過冷却用熱交換器(35)は、一次側流路(35a)の冷媒を二次側流路(35b)の冷媒と熱交換させて冷却する。 The supercooling heat exchanger (35) is formed with a primary side flow path (35a) and a secondary side flow path (35b). The primary channel (35a) is connected to the one-way pipeline. The secondary channel (35b) is connected to the subcooling pipeline. The subcooling heat exchanger (35) cools the refrigerant in the primary side flow path (35a) by exchanging heat with the refrigerant in the secondary side flow path (35b).

〈機器冷却管路、機器冷却器〉
機器冷却管路(55)の一端は、第1分岐管路(20a)における第1室外熱交換器(21a)と第1熱源側膨張弁(22a)の間に接続する。機器冷却管路(55)の他端は、二つの分岐管路(20a,20b)の液側端とブリッジ回路(40)を繋ぐ配管に接続する。
<Equipment cooling pipeline, equipment cooler>
One end of the equipment cooling pipeline (55) is connected between the first outdoor heat exchanger (21a) and the first heat source side expansion valve (22a) in the first branch pipeline (20a). The other end of the equipment cooling line (55) is connected to a pipe connecting the liquid side ends of the two branch lines (20a, 20b) and the bridge circuit (40).

機器冷却管路(55)には、一端から他端へ向かって順に、流量調節弁(57)と機器冷却器(56)とが配置される。流量調節弁(57)は、開度可変の電子膨張弁である。機器冷却器(56)は、チラー装置(1)の構成部品を冷却するための部材である。機器冷却器(56)によって冷却される構成部品の一例としては、例えばインバータのパワー素子などの発熱する電気部品が挙げられる。機器冷却器(56)は、冷却対象の構成部品に熱的に接続され、その構成部品において発生した熱を冷媒に吸収させる。 A flow control valve (57) and a device cooler (56) are arranged in order from one end to the other end of the device cooling pipeline (55). The flow control valve (57) is an electronic expansion valve with a variable opening. The equipment cooler (56) is a member for cooling the components of the chiller device (1). An example of a component cooled by the equipment cooler (56) is an electrical component that generates heat, such as an inverter power element. The equipment cooler (56) is thermally connected to the component to be cooled and causes the coolant to absorb the heat generated in the component.

〈吸入接続管路〉
吸入接続管路(60)の一端は、過冷却管路(54)における過冷却用熱交換器(35)の下流側に接続する。吸入接続管路(60)の他端は、吸入配管(51)に接続する。
<Suction connection pipe>
One end of the suction connection pipe (60) is connected to the downstream side of the supercooling heat exchanger (35) in the supercooling pipe (54). The other end of the suction connection pipe (60) is connected to the suction pipe (51).

吸入接続管路(60)には、一端から他端へ向かって順に、電磁弁(SV1)と逆止弁(CV11)とが配置される。逆止弁(CV11)は、吸入接続管路(60)の一端から他端に向かう冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。 A solenoid valve (SV1) and a check valve (CV11) are arranged in order from one end to the other end of the suction connection pipe (60). The check valve (CV11) allows refrigerant to flow from one end of the intake connection pipe (60) to the other end and prevents refrigerant from flowing in the opposite direction.

〈ガス抜き管路〉
ガス抜き管路(61)の一端は、受液器(33)の頂部に接続する。ガス抜き管路(61)の他端は、吸入接続管路(60)における逆止弁(CV11)の下流側に接続する。
<Gas release pipe>
One end of the gas vent line (61) is connected to the top of the liquid receiver (33). The other end of the gas vent line (61) is connected to the downstream side of the check valve (CV11) in the suction connection line (60).

ガス抜き管路(61)には、一端から他端へ向かって順に、電磁弁(SV2)と、キャピラリチューブ(62)と、逆止弁(CV12)とが配置される。逆止弁(CV12)は、ガス抜き管路(61)の一端から他端に向かう冷媒の流通を許容し、逆向きの冷媒の流通を阻止する。 A solenoid valve (SV2), a capillary tube (62), and a check valve (CV12) are arranged in this order from one end to the other end of the gas vent pipe (61). The check valve (CV12) allows refrigerant to flow from one end to the other end of the gas vent pipe (61) and prevents refrigerant from flowing in the opposite direction.

〈圧力センサ、温度センサ〉
第1冷媒回路(11)には、吸入圧力センサ(81)と、吐出圧力センサ(82)とが設けられる。吸入圧力センサ(81)は、吸入配管(51)に接続され、吸入配管(51)を通って圧縮機(31)へ吸入される冷媒の圧力を計測する。吐出圧力センサ(82)は、吐出配管(52)に接続され、圧縮機(31)から吐出されて吐出配管(52)を流れる冷媒の圧力を計測する。
<Pressure sensor, temperature sensor>
The first refrigerant circuit (11) is provided with a suction pressure sensor (81) and a discharge pressure sensor (82). The suction pressure sensor (81) is connected to the suction pipe (51) and measures the pressure of refrigerant sucked into the compressor (31) through the suction pipe (51). The discharge pressure sensor (82) is connected to the discharge pipe (52) and measures the pressure of refrigerant discharged from the compressor (31) and flowing through the discharge pipe (52).

第1冷媒回路(11)には、吸入温度センサ(83)と、吐出温度センサ(84)とが設けられる。吸入温度センサ(83)は、吸入配管(51)に取り付けられ、吸入配管(51)の温度を計測する。吸入温度センサ(83)の計測値は、実質的に、吸入配管(51)を通って圧縮機(31)へ吸入される冷媒の温度である。吐出温度センサ(84)は、吐出配管(52)に取り付けられ、吐出配管(52)の温度を計測する。吐出温度センサ(84)の計測値は、実質的に、圧縮機(31)から吐出されて吐出配管(52)を流れる冷媒の温度である。 The first refrigerant circuit (11) is provided with a suction temperature sensor (83) and a discharge temperature sensor (84). The suction temperature sensor (83) is attached to the suction pipe (51) and measures the temperature of the suction pipe (51). The measured value of the suction temperature sensor (83) is substantially the temperature of the refrigerant sucked into the compressor (31) through the suction pipe (51). The discharge temperature sensor (84) is attached to the discharge pipe (52) and measures the temperature of the discharge pipe (52). The measured value of the discharge temperature sensor (84) is substantially the temperature of the refrigerant discharged from the compressor (31) and flowing through the discharge pipe (52).

また、第1冷媒回路(11)には、第1ガス側温度センサ(85a)と、第2ガス側温度センサ(85b)とが設けられる。第1ガス側温度センサ(85a)は、第1分岐管路(20a)のガス側端と第1室外熱交換器(21a)の間に取り付けられる。第2ガス側温度センサ(85b)は、第2分岐管路(20b)のガス側端と第2室外熱交換器(21b)の間に取り付けられる。各ガス側温度センサ(85a,85b)は、対応する分岐管路(20a,20b)の温度を計測する。各ガス側温度センサ(85a,85b)の計測値は、実質的に、対応する分岐管路(20a,20b)のうちガス側温度センサ(85a,85b)が取り付けられた箇所を流れる冷媒の温度である。なお、図1では図示を省略するが、第1冷媒回路(11)には、吸入温度センサ(83)、吐出温度センサ(84)、及びガス側温度センサ(85a,85b)以外にも多数の温度センサが設けられる。 Further, the first refrigerant circuit (11) is provided with a first gas side temperature sensor (85a) and a second gas side temperature sensor (85b). The first gas-side temperature sensor (85a) is attached between the gas-side end of the first branch pipe (20a) and the first outdoor heat exchanger (21a). The second gas side temperature sensor (85b) is attached between the gas side end of the second branch pipe (20b) and the second outdoor heat exchanger (21b). Each gas-side temperature sensor (85a, 85b) measures the temperature of the corresponding branch pipeline (20a, 20b). The measured value of each gas side temperature sensor (85a, 85b) is substantially the temperature of the refrigerant flowing through the corresponding branch pipeline (20a, 20b) where the gas side temperature sensor (85a, 85b) is attached. is. Although not shown in FIG. 1, the first refrigerant circuit (11) includes a number of sensors other than the suction temperature sensor (83), the discharge temperature sensor (84), and the gas side temperature sensors (85a, 85b). A temperature sensor is provided.

-制御器-
制御器(90)は、演算処理ユニット(91)と、メモリーユニット(92)とを備える。演算処理ユニット(91)は、例えば集積回路から成るマイクロプロセッサである。メモリーユニット(92)は、例えば集積回路から成る半導体メモリーである。制御器(90)は、運転指令やセンサの検出信号に基づいて、チラー装置(1)の各機器の動作を調節し、冷媒回路(11,12)における冷凍サイクルの動作を制御する。
-controller-
The controller (90) comprises an arithmetic processing unit (91) and a memory unit (92). The arithmetic processing unit (91) is, for example, a microprocessor comprising an integrated circuit. The memory unit (92) is, for example, a semiconductor memory comprising an integrated circuit. The controller (90) adjusts the operation of each component of the chiller device (1) based on the operation command and sensor detection signals, and controls the operation of the refrigeration cycle in the refrigerant circuits (11, 12).

制御器(90)は、例えば各室外熱交換器(21a,21b)が蒸発器になる後述の加熱運転時に、その蒸発器の出口側の冷媒過熱度が目標値となるように、熱源側膨張弁(22a,22b)の開度をフィードバック制御により調節する。具体的には、制御器(90)は、蒸発器の出口側の冷媒過熱度が目標値より大きい場合は、熱源側膨張弁(22a,22b)の開度を大きくして冷媒流量を増やす。逆に、蒸発器(21a,21b)(15)の出口の冷媒過熱度が目標値より小さい場合は、制御器(90)は、膨張機構(22a,22b)(36)の開度を小さくして冷媒流量を減らす。 The controller (90) controls the heat source side expansion so that the degree of superheat of the refrigerant on the outlet side of the evaporator reaches the target value during heating operation described later in which the outdoor heat exchangers (21a, 21b) serve as evaporators, for example. The opening of the valves (22a, 22b) is adjusted by feedback control. Specifically, when the degree of superheat of refrigerant on the outlet side of the evaporator is greater than a target value, the controller (90) increases the opening of the heat source side expansion valves (22a, 22b) to increase the refrigerant flow rate. Conversely, when the refrigerant superheat at the outlet of the evaporator (21a, 21b) (15) is smaller than the target value, the controller (90) reduces the opening of the expansion mechanism (22a, 22b) (36). to reduce refrigerant flow.

一方、制御器(90)は、フィードバック制御を行うと同時に、そのときの運転条件から定められる理論上の冷凍サイクル(理論冷凍サイクル)における熱源側膨張弁(22a,22b)の必要開度を求める。そして、制御器(90)は、実際の運転中にフィードバック制御で求めた熱源側膨張弁(22a,22b)の開度が上記必要開度を含む所定範囲を超える場合は、実際の開度を、その所定範囲内に入るように制限する。 On the other hand, the controller (90) performs feedback control and at the same time obtains the required opening of the heat source side expansion valves (22a, 22b) in a theoretical refrigeration cycle (theoretical refrigeration cycle) determined from the operating conditions at that time. . If the opening of the heat source side expansion valves (22a, 22b) determined by feedback control during actual operation exceeds a predetermined range including the required opening, the controller (90) adjusts the actual opening. , to be within the predetermined range.

特に、制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる熱源側膨張弁(22a,22b)の開度が、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲の上限を上回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の上限の開度に設定する。制御器(90)は、上記フィードバック制御で定められる熱源側膨張弁(22a,22b)の開度が、上記必要開度を含む所定範囲の下限を下回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の下限の開度に設定する。ただし、熱源側膨張弁(22a,22b)は、必要開度を含む所定範囲の上限と下限に開度調節する必要はなく、上記所定範囲内に入るように制御すればよい。 In particular, the controller (90) calculates the degree of opening of the heat source side expansion valves (22a, 22b) determined by feedback control in an actual refrigeration cycle during operation in a theoretical refrigeration cycle determined from operating conditions. When the upper limit of the predetermined range including the required opening is exceeded, the opening of the heat source side expansion valves (22a, 22b) is set to the upper limit of the predetermined range. When the degrees of opening of the heat source side expansion valves (22a, 22b) determined by the feedback control fall below the lower limit of the predetermined range including the required degree of opening, the controller (90) controls the heat source side expansion valves (22a, 22b) to is set to the lower limit of the predetermined range. However, the heat source side expansion valves (22a, 22b) need not be adjusted to the upper and lower limits of a predetermined range including the required opening, and may be controlled to fall within the predetermined range.

このように、本実施形態では、熱源側膨張弁(22a,22b)を蒸発器の出口の冷媒過熱度に基づいて単にフィードバック制御するだけでなく、開度調節をするに当たって、その調節範囲に、理論冷凍サイクルにおける必要開度を基準とする制限を設けている。 Thus, in this embodiment, the heat source side expansion valves (22a, 22b) are not only feedback-controlled based on the degree of superheat of the refrigerant at the outlet of the evaporator, but also when adjusting the opening, A limit is set based on the required opening in the theoretical refrigeration cycle.

制御器(90)は、熱源側膨張弁(22a,22b)への冷媒の流入側圧力と流出側圧力との圧力差と、圧縮機(31)の単位時間当たりの吸入冷媒量と、熱源側膨張弁(22a,22b)を通過する冷媒の体積流量と、熱源側膨張弁(22a,22b)を通過する冷媒の密度から、熱源側膨張弁(22a,22b)の流量特性を表す容量係数(いわゆるCv値)を算出し、そのCv値になる開度を上記必要開度として設定する。 The controller (90) controls the pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to the heat source side expansion valves (22a, 22b), the amount of refrigerant sucked into the compressor (31) per unit time, and the heat source side A capacity coefficient ( A so-called Cv value) is calculated, and the opening degree corresponding to the Cv value is set as the required opening degree.

Cv値は、Cv=α×Q×(G/ΔP)1/2で表される式により求められる。ここで、Qは、熱源側膨張弁(22a,22b)を通過する冷媒の体積流量であり、Q=G/Dである。Gは、単位時間当たりに圧縮機(31)へ吸入される冷媒の質量である。Dは、熱源側膨張弁(22a,22b)を通過する冷媒の密度である。ΔPは、“熱源側膨張弁(22a,22b)の入口における冷媒の圧力(流入側圧力)”と“熱源側膨張弁(22a,22b)の出口における冷媒の圧力(流出側圧力)”の差である。αは、係数である。 The Cv value is determined by the formula Cv=α×Q×(G/ΔP) 1/2 . Here, Q is the volumetric flow rate of refrigerant passing through the heat source side expansion valves (22a, 22b), and Q=G/D. G is the mass of refrigerant sucked into the compressor (31) per unit time. D is the density of the refrigerant passing through the heat source side expansion valves (22a, 22b). ΔP is the difference between the "refrigerant pressure at the inlet of the heat source side expansion valve (22a, 22b) (inflow side pressure)" and the "refrigerant pressure at the outlet of the heat source side expansion valve (22a, 22b) (outflow side pressure)". is. α is a coefficient.

上式により求めたCv値は、熱源側膨張弁(22a,22b)の開度と冷媒流量との関係を表す流量特性であり、冷媒の流れやすさを表す指標である。本実施形態では、求められたCv値に対応する開度を上記必要開度とする。その際、Cv値に対応する開度は、図4のグラフから求められる。図4は、熱源側膨張弁(22a,22b)の開度-流量特性(開度(パルス数)とCv値との関係)を示すグラフである。このグラフに示すように、熱源側膨張弁(22a,22b)は、パルス数を増やして開度を大きくすると、冷媒が流通する口径が大きくなり、Cv値が大きくなる。そして、熱源側膨張弁(22a,22b)が適切なCv値となるように、必要開度が定められる。 The Cv value obtained by the above equation is a flow rate characteristic representing the relationship between the opening degree of the heat source side expansion valve (22a, 22b) and the flow rate of the refrigerant, and is an index representing ease of flow of the refrigerant. In this embodiment, the required opening is defined as the opening corresponding to the obtained Cv value. At that time, the opening corresponding to the Cv value is obtained from the graph of FIG. FIG. 4 is a graph showing the opening degree-flow characteristics (relationship between the opening degree (number of pulses) and Cv value) of the heat source side expansion valves (22a, 22b). As shown in this graph, when the number of pulses of the heat source side expansion valves (22a, 22b) is increased to increase the degree of opening, the diameter through which the refrigerant flows increases, and the Cv value increases. Then, the necessary degree of opening is determined so that the heat source side expansion valves (22a, 22b) have an appropriate Cv value.

-チラー装置の運転動作-
チラー装置(1)は、冷却運転と加熱運転を行う。冷却運転は、水熱交換器(15)において熱媒水を冷却する運転である。加熱運転は、水熱交換器(15)において熱媒水を加熱する運転である。
-Operating operation of chiller equipment-
The chiller device (1) performs cooling operation and heating operation. The cooling operation is an operation for cooling the heat transfer water in the water heat exchanger (15). The heating operation is an operation for heating the heat transfer water in the water heat exchanger (15).

〈冷却運転〉
冷却運転において、制御器(90)は、四方切換弁(32)を第1状態に設定し、第1熱源側膨張弁(22a)及び第2熱源側膨張弁(22b)と、利用側膨張弁(36)と、過冷却用膨張弁(34)と、流量調節弁(57)との開度を調節する。
<Cooling operation>
In the cooling operation, the controller (90) sets the four-way switching valve (32) to the first state, and operates the first heat source side expansion valve (22a), the second heat source side expansion valve (22b), and the user side expansion valve (22b). (36), the subcooling expansion valve (34), and the flow control valve (57) are adjusted.

図2に示すように、冷却運転において、圧縮機(31)から吐出された冷媒は、一部が第1分岐管路(20a)へ流入し、残りが第2分岐管路(20b)へ流入する。各分岐管路(20a,20b)へ流入した冷媒は、室外熱交換器(21a,21b)において室外空気へ放熱して凝縮し、続いて熱源側膨張弁(22a,22b)を通過してから合流する。また、第1分岐管路(20a)において第1室外熱交換器(21a)から流出した冷媒の一部は、流量調節弁(57)を通過後に機器冷却器(56)へ流入し、機器冷却器(56)において構成機器から吸熱し、ブリッジ回路(40)の上流側において、各分岐管路(20a,20b)の液側端から流出した冷媒と合流する。 As shown in FIG. 2, in the cooling operation, part of the refrigerant discharged from the compressor (31) flows into the first branch pipe (20a) and the rest flows into the second branch pipe (20b). do. The refrigerant that has flowed into each branch pipe (20a, 20b) releases heat to the outdoor air in the outdoor heat exchanger (21a, 21b), condenses, and then passes through the heat source side expansion valve (22a, 22b). merge. Further, part of the refrigerant flowing out of the first outdoor heat exchanger (21a) in the first branch pipe (20a) flows through the flow control valve (57) and then flows into the equipment cooler (56) to cool the equipment. In the vessel (56), the refrigerant absorbs heat from the components, and joins with the refrigerant flowing out from the liquid side ends of the branch pipes (20a, 20b) on the upstream side of the bridge circuit (40).

続いて、冷媒は、ブリッジ回路(40)の第2配管(42)を通って一方向管路(53)へ流入し、その後に受液器(33)へ流入する。受液器(33)から流出した冷媒は、一部が過冷却管路(54)へ流入し、残りが過冷却用熱交換器(35)の一次側流路(35a)へ流入する。過冷却管路(54)へ流入した冷媒は、過冷却用膨張弁(34)を通過する際に中間圧にまで膨張し、続いて過冷却用熱交換器(35)の二次側流路(35b)へ流入して一次側流路(35a)の冷媒から吸熱し、その後に圧縮機(31)へ流入する。 Subsequently, the refrigerant flows through the second pipe (42) of the bridge circuit (40) into the one-way pipe (53) and then into the liquid receiver (33). Part of the refrigerant that has flowed out of the liquid receiver (33) flows into the supercooling pipe (54), and the rest flows into the primary flow path (35a) of the supercooling heat exchanger (35). The refrigerant that has flowed into the supercooling pipe (54) expands to an intermediate pressure when passing through the supercooling expansion valve (34), and then flows through the secondary flow path of the supercooling heat exchanger (35). (35b), absorbs heat from the refrigerant in the primary flow path (35a), and then flows into the compressor (31).

過冷却用熱交換器(35)の一次側流路(35a)において冷却された冷媒は、ブリッジ回路(40)の第4配管(44)と利用側膨張弁(36)を順に通過する。利用側膨張弁(36)を通過する際に低圧にまで膨張した冷媒は、水熱交換器(15)の第1冷媒流路(17)へ流入し、水流路(16)の熱媒水から吸熱して蒸発する。水熱交換器(15)では、水流路(16)を流れる熱媒水が、冷媒によって冷却される。水熱交換器(15)から流出した冷媒は、圧縮機(31)へ吸入される。圧縮機(31)は、吸入した冷媒を圧縮して吐出する。 The refrigerant cooled in the primary side flow path (35a) of the supercooling heat exchanger (35) passes through the fourth pipe (44) of the bridge circuit (40) and the utilization side expansion valve (36) in order. The refrigerant expanded to a low pressure when passing through the utilization side expansion valve (36) flows into the first refrigerant flow path (17) of the water heat exchanger (15), and is discharged from the heat transfer water in the water flow path (16). It absorbs heat and evaporates. In the water heat exchanger (15), the heat transfer water flowing through the water flow path (16) is cooled by the refrigerant. Refrigerant that has flowed out of the water heat exchanger (15) is sucked into the compressor (31). The compressor (31) compresses and discharges the sucked refrigerant.

〈加熱運転〉
加熱運転において、制御器(90)は、四方切換弁(32)を第2状態に設定し、第1熱源側膨張弁(22a)及び第2熱源側膨張弁(22b)と、過冷却用膨張弁(34)と、流量調節弁(57)との開度を調節し、利用側膨張弁(36)の開度を実質的に全開に保持する。
<Heating operation>
In the heating operation, the controller (90) sets the four-way switching valve (32) to the second state, the first heat source side expansion valve (22a), the second heat source side expansion valve (22b), and the subcooling expansion valve (22a). The degree of opening of the valve (34) and the flow control valve (57) is adjusted, and the degree of opening of the utilization side expansion valve (36) is maintained substantially fully open.

図3に示すように、加熱運転において、圧縮機(31)から吐出された冷媒は、水熱交換器(15)の第1冷媒流路(17)へ流入し、水流路(16)の熱媒水へ放熱して凝縮する。水熱交換器(15)では、水流路(16)を流れる熱媒水が、冷媒によって加熱される。 As shown in FIG. 3, in the heating operation, the refrigerant discharged from the compressor (31) flows into the first refrigerant flow path (17) of the water heat exchanger (15) and heats the water flow path (16). Heat is released to medium water and condensed. In the water heat exchanger (15), the heat transfer water flowing through the water flow path (16) is heated by the refrigerant.

水熱交換器(15)から流出した冷媒は、利用側膨張弁(36)とブリッジ回路(40)の第3配管(43)を順に通過し、その後に受液器(33)へ流入する。受液器(33)から流出した冷媒は、一部が過冷却管路(54)へ流入し、残りが過冷却用熱交換器(35)の一次側流路(35a)へ流入する。過冷却管路(54)へ流入した冷媒は、過冷却用膨張弁(34)を通過する際に中間圧にまで膨張し、その後に過冷却用熱交換器(35)の二次側流路(35b)へ流入して一次側流路(35a)の冷媒から吸熱し、その後に圧縮機(31)へ流入する。 The refrigerant flowing out of the water heat exchanger (15) sequentially passes through the utilization side expansion valve (36) and the third pipe (43) of the bridge circuit (40), and then flows into the liquid receiver (33). Part of the refrigerant that has flowed out of the liquid receiver (33) flows into the supercooling pipe (54), and the rest flows into the primary flow path (35a) of the supercooling heat exchanger (35). The refrigerant that has flowed into the supercooling pipe (54) expands to an intermediate pressure when passing through the supercooling expansion valve (34), and then flows through the secondary flow path of the supercooling heat exchanger (35). (35b), absorbs heat from the refrigerant in the primary flow path (35a), and then flows into the compressor (31).

過冷却用熱交換器(35)の一次側流路(35a)において冷却された冷媒は、ブリッジ回路(40)の第1配管(41)を通過する。その後、冷媒は、一部が機器冷却管路(55)へ流入し、残りが分岐管路(20a,20b)の液側端に向かって流れる。機器冷却管路(55)へ流入した冷媒は、機器冷却器(56)において構成機器から吸熱し、流量調節弁(57)を通過する際に低圧にまで膨張し、その後に第1分岐管路(20a)に流入する。 The refrigerant cooled in the primary side flow path (35a) of the supercooling heat exchanger (35) passes through the first pipe (41) of the bridge circuit (40). After that, part of the refrigerant flows into the equipment cooling conduit (55) and the rest flows toward the liquid side ends of the branch conduits (20a, 20b). The refrigerant flowing into the equipment cooling pipeline (55) absorbs heat from the components in the equipment cooler (56), expands to a low pressure when passing through the flow control valve (57), and then flows into the first branch pipeline. flow into (20a).

分岐管路(20a,20b)の液側端に向かって流れる冷媒は、一部が第1分岐管路(20a)へ流入し、残りが第2分岐管路(20b)へ流入する。各分岐管路(20a,20b)へ流入した冷媒は、熱源側膨張弁(22a,22b)を通過する際に低圧にまで膨張し、その後に室外熱交換器(21a,21b)へ流入する。その際、第1分岐管路(20a)において、第1熱源側膨張弁(22a)を通過した冷媒は、機器冷却管路(55)を通過した冷媒と合流後に第1室外熱交換器(21a)へ流入する。室外熱交換器(21a,21b)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(31)へ吸入される。圧縮機(31)は、吸入した冷媒を圧縮して吐出する。 A portion of the refrigerant flowing toward the liquid side ends of the branch pipes (20a, 20b) flows into the first branch pipe (20a) and the rest flows into the second branch pipe (20b). The refrigerant flowing into each branch pipe (20a, 20b) expands to a low pressure when passing through the heat source side expansion valve (22a, 22b), and then flows into the outdoor heat exchanger (21a, 21b). At this time, in the first branch pipe (20a), the refrigerant that has passed through the first heat source side expansion valve (22a) joins the refrigerant that has passed through the equipment cooling pipe (55), and then flows through the first outdoor heat exchanger (21a). ). The refrigerant that has flowed into the outdoor heat exchangers (21a, 21b) absorbs heat from outdoor air, evaporates, and is then sucked into the compressor (31). The compressor (31) compresses and discharges the sucked refrigerant.

-熱源側膨張弁の開度制御-
室外熱交換器(21a,21b)が蒸発器になるときの熱源側膨張弁(22a,22b)の開度の制御について説明する。
- Opening degree control of heat source side expansion valve -
Control of the degree of opening of the heat source side expansion valves (22a, 22b) when the outdoor heat exchangers (21a, 21b) function as evaporators will be described.

本実施形態では、熱源側膨張弁(22a,22b)は、蒸発器である室外熱交換器(21a,21b)の出口側の冷媒過熱度を目標値に保つように、基本的にはフィードバック制御で開度が調節される。言い換えると、制御器(90)は、蒸発器の出口側の冷媒過熱度が目標値より大きい場合は、熱源側膨張弁(22a,22b)の開度を大きくして冷媒流量を増やす。その結果、蒸発器の出口側の冷媒過熱度が小さくなり、目標値に近づく。逆に、蒸発器の出口の冷媒過熱度が目標値より小さい場合、制御器(90)は、膨張機構(22a,22b)の開度を小さくして冷媒流量を減らす。その結果、蒸発器の出口側の冷媒過熱度が大きくなり、目標値に近づく。 In the present embodiment, the heat source side expansion valves (22a, 22b) are basically feedback-controlled so as to maintain the degree of superheat of the refrigerant on the outlet side of the outdoor heat exchangers (21a, 21b), which are evaporators, at a target value. to adjust the opening. In other words, the controller (90) increases the degree of opening of the heat source side expansion valves (22a, 22b) to increase the refrigerant flow rate when the degree of superheat of the refrigerant on the outlet side of the evaporator is greater than the target value. As a result, the degree of superheat of the refrigerant on the outlet side of the evaporator becomes smaller and approaches the target value. Conversely, when the degree of superheating of the refrigerant at the outlet of the evaporator is smaller than the target value, the controller (90) reduces the degree of opening of the expansion mechanisms (22a, 22b) to reduce the refrigerant flow rate. As a result, the degree of superheat of the refrigerant on the outlet side of the evaporator increases and approaches the target value.

本実施形態では、制御器(90)は、熱源側膨張弁(22a,22b)の開度に基づいて単にフィードバック制御をするだけでなく、そのときの運転条件から定められる理論上の冷凍サイクル(理論冷凍サイクル)における熱源側膨張弁(22a,22b)の必要開度も用いて熱源側膨張弁(22a,22b)を制御する。 In the present embodiment, the controller (90) not only performs feedback control based on the opening degrees of the heat source side expansion valves (22a, 22b), but also a theoretical refrigeration cycle ( The required degree of opening of the heat source side expansion valves (22a, 22b) in the theoretical refrigeration cycle) is also used to control the heat source side expansion valves (22a, 22b).

具体的には、制御器(90)は、運転中に、そのときの運転条件から定められる理論冷凍サイクルにおける熱源側膨張弁(22a,22b)の必要開度を求める。そして、制御器(90)は、実際の運転中にフィードバック制御で求めた熱源側膨張弁(22a,22b)の開度が上記必要開度を含む所定範囲を超える場合は、フィードバック制御で求めた開度を、必要開度を含む所定範囲内に入るように制限する。 Specifically, during operation, the controller (90) obtains the necessary degree of opening of the heat source side expansion valves (22a, 22b) in the theoretical refrigeration cycle determined from the operating conditions at that time. When the opening of the heat source side expansion valves (22a, 22b) determined by feedback control during actual operation exceeds a predetermined range including the required opening, the controller (90) determines the opening by feedback control. The degree of opening is restricted to be within a predetermined range including the required degree of opening.

具体的には、制御器(90)は、上記フィードバック制御で定められた熱源側膨張弁(22a,22b)の開度が、上記必要開度を含む所定範囲の上限を上回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の上限の開度に設定する。また、制御器(90)は、上記フィードバック制御で定められた熱源側膨張弁(22a,22b)の開度が、上記必要開度を含む所定範囲の下限を下回ると、熱源側膨張弁(22a,22b)の開度を、その所定範囲の下限の開度に設定する。 Specifically, when the degree of opening of the heat source side expansion valves (22a, 22b) determined by the feedback control exceeds the upper limit of the predetermined range including the required degree of opening, the controller (90) controls the heat source side expansion valves (22a, 22b). The degree of opening of the valves (22a, 22b) is set to the upper limit of the predetermined range. In addition, when the degree of opening of the heat source side expansion valve (22a, 22b) determined by the feedback control falls below the lower limit of the predetermined range including the required degree of opening, the controller (90) controls the heat source side expansion valve (22a , 22b) is set to the lower limit of the predetermined range.

このように、本実施形態では、チラー装置の実際の運転中にフィードバック制御で求められる熱源側膨張弁(22a,22b)の開度に、上記必要開度に基づく制限をかける制御を行っている。本実施形態の熱源側膨張弁(22a,22b)の開度制御は、その点で、単なるフィードバック制御とは異なる。 As described above, in the present embodiment, control is performed to limit the degree of opening of the heat source side expansion valves (22a, 22b) obtained by feedback control during the actual operation of the chiller device based on the necessary degree of opening. . In this respect, the opening degree control of the heat source side expansion valves (22a, 22b) of the present embodiment differs from simple feedback control.

制御器(90)は、上記必要開度を、熱源側膨張弁(22a,22b)の開度と冷媒流量との関係を表す流量特性(いわゆるCv値(容量係数))と、熱源側膨張弁(22a,22b)への冷媒の流入側圧力と流出側圧力との圧力差と、圧縮機(31)の単位時間当たりの吸入冷媒量と、熱源側膨張弁(22a,22b)を単位時間当たりに通過する冷媒の体積流量と、熱源側膨張弁(22a,22b)を通過する冷媒の密度と、から算出する。このようにすることにより、上記必要開度を高精度で求められる。 The controller (90) determines the required degree of opening from the flow characteristics (so-called Cv value (capacity coefficient)) representing the relationship between the degree of opening of the heat source side expansion valves (22a, 22b) and the flow rate of the refrigerant, and the heat source side expansion valve The pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to (22a, 22b), the amount of refrigerant sucked into the compressor (31) per unit time, and the heat source side expansion valve (22a, 22b) per unit time and the density of the refrigerant passing through the heat source side expansion valves (22a, 22b). By doing so, the required opening degree can be obtained with high accuracy.

-実施形態の効果-
本実施形態のチラー装置(冷凍装置)(1)は、圧縮機(31)と放熱器になる水熱交換器(15)と膨張機構(22a,22b)(36)と蒸発器になる室外熱交換器(21a,21b)とが順に接続されて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)と、上記冷媒回路(11,12)の冷凍サイクルの動作を制御する制御器(90)と、を備えている。上記制御器(90)は、基本的には、上記蒸発器(21a,21b)の出口側の冷媒過熱度が目標値となるように、上記膨張機構(22a,22b)の開度をフィードバック制御で定めるように構成されている。
- Effects of the embodiment -
The chiller device (refrigerating device) (1) of the present embodiment includes a compressor (31), a water heat exchanger (15) serving as a radiator, an expansion mechanism (22a, 22b) (36), and an outdoor heat exchanger (36) serving as an evaporator. Refrigerant circuits (11, 12) connected in order to exchangers (21a, 21b) for performing a vapor compression refrigeration cycle; and a controller (90 ), and The controller (90) basically feedback-controls the degree of opening of the expansion mechanism (22a, 22b) so that the degree of superheat of the refrigerant on the outlet side of the evaporator (21a, 21b) reaches a target value. It is configured as specified in

本実施形態のチラー装置(1)は、上記制御器(90)が、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)の開度を、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲内に制限する。 In the chiller device (1) of the present embodiment, the controller (90) determines the degree of opening of the expansion mechanisms (22a, 22b) determined by feedback control in the actual refrigeration cycle during operation. Limit to within a predetermined range including the required opening calculated in the above refrigeration cycle.

ここで、従来の装置において、膨張弁を蒸発器の出口の冷媒過熱度に基づいてフィードバック制御する場合、膨張弁の開度を必要以上に調節してしまうことがある。例えば、冷凍負荷が急激に変化したり、室外に設置される熱交換器に強風が吹き付けられるような急激な運転条件の変化が生じたりしたときに、これらの変化に対応しようとする場合などである。 Here, in the conventional device, when the expansion valve is feedback-controlled based on the degree of superheat of the refrigerant at the outlet of the evaporator, the degree of opening of the expansion valve may be adjusted more than necessary. For example, when the refrigerating load changes suddenly, or when operating conditions change suddenly, such as when strong wind blows against a heat exchanger installed outdoors, it is necessary to respond to these changes. be.

膨張弁の開度を必要以上に調節することになると、冷媒過熱度が目標過熱度を通り過ぎて変化し、膨張弁開度が増減を繰り返すおそれがある。そうすると、冷媒過熱度も増減を繰り返し、いわゆるハンチングの不安定な動作が生じてしまう。 If the degree of opening of the expansion valve is adjusted more than necessary, the degree of superheating of the refrigerant may change past the target degree of superheating, and the degree of opening of the expansion valve may repeat increases and decreases. As a result, the degree of superheating of the refrigerant also repeatedly increases and decreases, resulting in an unstable so-called hunting operation.

これに対して、本実施形態によれば、膨張弁(22a,22b)の開度を、基本的には運転中の実際の冷凍サイクルにおいて蒸発器の過熱度のフィードバック制御で定められる。一方、本実施形態によれば、制御器(90)は、フィードバック制御を行うと同時に、そのときの運転条件から定められる理論冷凍サイクルにおける膨張機構(22a,22b)の必要開度を求め、フィードバック制御で求めた膨張弁(22a,22b)開度を制限する。具体的には、制御器(90)は、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超える場合は、実際の開度を、その所定範囲内に入るように制限する。 In contrast, according to the present embodiment, the degree of opening of the expansion valves (22a, 22b) is basically determined by feedback control of the degree of superheat of the evaporator in the actual refrigeration cycle during operation. On the other hand, according to the present embodiment, the controller (90) performs feedback control, and at the same time obtains the necessary degree of opening of the expansion mechanism (22a, 22b) in the theoretical refrigeration cycle determined from the operating conditions at that time, and feeds it back. Limit the opening of the expansion valves (22a, 22b) determined by control. Specifically, when the opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control during actual operation exceeds a predetermined range including the required opening, the controller (90) to be within the predetermined range.

このことにより、運転条件が急激に変化しても、膨張機構(22a,22b)(36)の開度は必要以上に変化しない。よって、冷媒過熱度が増減を繰り返すハンチングの不安定な動作を抑制できる。 As a result, even if the operating conditions suddenly change, the opening of the expansion mechanisms (22a, 22b) (36) does not change more than necessary. Therefore, it is possible to suppress unstable operation of hunting in which the degree of superheating of the refrigerant repeatedly increases and decreases.

また、本実施形態では、制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲の上限を上回ると、膨張機構(22a,22b)(36)の開度を、その所定範囲の上限の開度に設定する。逆に、制御器(90)は、上記フィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の下限を下回ると、膨張機構(22a,22b)(36)の開度を、その所定範囲の下限の開度に設定する。 Further, in the present embodiment, the controller (90) controls the opening of the expansion mechanisms (22a, 22b) (36), which is determined by feedback control in the actual refrigeration cycle during operation, based on the operating conditions. When the upper limit of the predetermined range including the required opening degree calculated in the refrigeration cycle is exceeded, the opening degrees of the expansion mechanisms (22a, 22b) (36) are set to the upper limit opening degree of the predetermined range. Conversely, the controller (90) controls the expansion mechanism (22a , 22b) Set the opening of (36) to the lower limit of the predetermined range.

この構成によれば、実際の運転中にフィードバック制御で求めた膨張機構(22a,22b)(36)の開度が上記必要開度を含む所定範囲を超えて大きくなる場合は、実際の開度がその所定範囲の上限に設定される。フィードバック制御で求めた膨張機構(22a,22b)の開度が上記必要開度を含む所定範囲を下回る小さな値になる場合は、実際の開度がその所定範囲の下限に設定される。いずれの場合も、膨張機構(22a,22b)の開度は必要以上に調節されず、しかもフィードバック制御で求められた値に近い開度に設定される。 According to this configuration, when the opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control during actual operation exceeds the predetermined range including the required opening, the actual opening is set to the upper limit of the predetermined range. When the degree of opening of the expansion mechanism (22a, 22b) determined by feedback control is a small value below the predetermined range including the necessary degree of opening, the actual degree of opening is set to the lower limit of the predetermined range. In either case, the opening of the expansion mechanism (22a, 22b) is not adjusted more than necessary, and is set to an opening close to the value obtained by feedback control.

本実施形態では、上記必要開度を、膨張機構(22a,22b)の開度と冷媒流量との関係を表す流量特性と、膨張機構(22a,22b)(36)への冷媒の流入側圧力と流出側圧力との圧力差と、圧縮機(31)の単位時間当たりの吸入冷媒量と、膨張機構(22a,22b)(36)を単位時間当たりに通過する冷媒の体積流量と、膨張機構(22a,22b)(36)を通過する冷媒の密度とから、高精度で算出することができる。 In the present embodiment, the required degree of opening is defined by the flow rate characteristics representing the relationship between the degree of opening of the expansion mechanisms (22a, 22b) and the refrigerant flow rate, and the pressure on the inflow side of the refrigerant to the expansion mechanisms (22a, 22b) (36). and the outflow side pressure, the amount of refrigerant sucked into the compressor (31) per unit time, the volumetric flow rate of refrigerant passing through the expansion mechanisms (22a, 22b) (36) per unit time, and the expansion mechanism (22a, 22b) and the density of the refrigerant passing through (36) can be calculated with high accuracy.

本実施形態では、室外熱交換器(21a,21b)が蒸発器になるときに、フィードバック制御で求めた熱源側膨張弁(22a,22b)の開度を、理論冷凍サイクルの必要開度で制限するようにしている。室外の熱源機(2)は室内機(3)に比べて通風条件などが変化しやすく、その場合にフィードバック制御ではハンチングなどの不安定な動作が生じやすいが、本実施形態では、熱源機(2)に設けられる熱源側膨張弁(22a,22b)の不安定な制御を効果的に抑制できる。 In this embodiment, when the outdoor heat exchangers (21a, 21b) serve as evaporators, the opening of the heat source side expansion valves (22a, 22b) determined by feedback control is limited by the required opening of the theoretical refrigeration cycle. I am trying to The ventilation conditions of the outdoor heat source unit (2) are more likely to change than the indoor unit (3). 2) can effectively suppress unstable control of the heat source side expansion valves (22a, 22b).

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<<Other embodiments>>
The above embodiment may be configured as follows.

例えば、上記実施形態では、チラー装置(1)において室外熱交換器(21a,21b)が蒸発器になるときに熱源側膨張弁(22a,22b)を制御する制御器(90)を説明したが、本開示の過熱度制御は、水熱交換器(15)が蒸発器になるときの利用側膨張弁(36)の制御に適用してもよい。 For example, in the above embodiment, the controller (90) that controls the heat source side expansion valves (22a, 22b) when the outdoor heat exchangers (21a, 21b) in the chiller device (1) serve as evaporators has been described. Also, the superheat control of the present disclosure may be applied to control the utilization side expansion valve (36) when the water heat exchanger (15) becomes the evaporator.

また、本開示の過熱度制御は、冷蔵庫や冷凍庫の庫内を冷媒の冷熱で冷却する冷凍装置が並列接続の庫内熱交換器を有する構成において、庫内熱交換器の膨張機構の制御に適用してもよい。言い換えると、本開示の対象の冷凍装置はチラー装置には限定されない。 Further, the degree of superheat control of the present disclosure is applied to the control of the expansion mechanism of the internal heat exchanger in a configuration in which a refrigerating device that cools the inside of a refrigerator or a freezer with the cold heat of a refrigerant has an internal heat exchanger connected in parallel. may apply. In other words, the refrigeration equipment of the present disclosure is not limited to chiller equipment.

上記実施形態において説明した必要開度は、上述したとおり、理論冷凍サイクルの最適な膨張弁開度として計算で求めることができる開度のことである。言い換えると、必要開度は、必ずしも運転中に実際に計算で求めた開度である必要はない。例えば、上記実施形態において、種々の運転条件に対応する必要開度の値をデータとして、メモリーに保存しておいてもよい。 The required opening degree described in the above embodiment is, as described above, an opening degree that can be obtained by calculation as the optimum expansion valve opening degree of the theoretical refrigeration cycle. In other words, the required opening does not necessarily have to be the opening actually calculated during operation. For example, in the above-described embodiment, the required opening degree values corresponding to various operating conditions may be stored in the memory as data.

以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although embodiments and variations have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the claims. In addition, the embodiments and modifications described above may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired.

以上説明したように、本開示は、冷凍装置について有用である。 INDUSTRIAL APPLICABILITY As described above, the present disclosure is useful for refrigerators.

1 チラー装置(冷凍装置)
11 第1冷媒回路
12 第2冷媒回路
21a 第1室外熱交換器(蒸発器、放熱器)
21b 第2室熱交換器(蒸発器、凝縮器)
22a 第1熱源側膨張弁(膨張機構)
22b 第2熱源側膨張弁(膨張機構)
31 圧縮機
90 制御器
1 Chiller equipment (refrigerating equipment)
11 First refrigerant circuit
12 Second refrigerant circuit
21a 1st outdoor heat exchanger (evaporator, radiator)
21b 2nd chamber heat exchanger (evaporator, condenser)
22a 1st heat source side expansion valve (expansion mechanism)
22b 2nd heat source side expansion valve (expansion mechanism)
31 Compressor
90 controller

Claims (2)

圧縮機(31)と放熱器(15)(21a,21b)と膨張機構(22a,22b)(36)と蒸発器(21a,21b)(15)とが順に接続されて蒸気圧縮式の冷凍サイクルを行う冷媒回路(11,12)と、
上記冷媒回路(11,12)の冷凍サイクルの動作を制御する制御器(90)と、を備え、
上記制御器(90)が、上記蒸発器(21a,21b)(15)の出口側の冷媒過熱度が目標値となるように、上記膨張機構(22a,22b)(36)の開度をフィードバック制御で定めるように構成された冷凍装置であって、
上記制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度を、運転条件から定まる理論上の冷凍サイクルにおいて計算で求められる必要開度を含む所定範囲内に制限し、
上記制御器(90)は、
上記膨張機構(22a,22b)(36)への冷媒の流入側圧力と流出側圧力との圧力差をΔP、
上記圧縮機(31)の単位時間当たりの吸入冷媒量をG、
上記膨張機構(22a,22b)(36)を単位時間当たりに通過する冷媒の体積流量をQ、
及び係数をαとすると、
上記膨張機構(22a,22b)(36)の開度と冷媒流量との関係を表す流量特性を表す値Cvを、Cv=α×Q×(G/ΔP) 1/2 で表される式から求め、
上記流量特性値Cvが得られる膨張機構(22a,22b)(36)の開度を、上記必要開度に設定する
ことを特徴とする冷凍装置。
A vapor compression refrigeration cycle in which a compressor (31), a radiator (15) (21a, 21b), an expansion mechanism (22a, 22b) (36), and an evaporator (21a, 21b) (15) are connected in order. a refrigerant circuit (11, 12) for
a controller (90) for controlling the operation of the refrigeration cycle of the refrigerant circuit (11, 12);
The controller (90) feeds back the degree of opening of the expansion mechanism (22a, 22b) (36) so that the degree of superheat of the refrigerant on the outlet side of the evaporator (21a, 21b) (15) reaches a target value. A refrigeration system configured to be controlled,
The controller (90) calculates the degree of opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control in an actual refrigeration cycle during operation in a theoretical refrigeration cycle determined from operating conditions. limited within a predetermined range including the required opening ,
The controller (90) is
ΔP is the pressure difference between the inflow side pressure and the outflow side pressure of the refrigerant to the expansion mechanism (22a, 22b) (36),
G is the amount of refrigerant sucked into the compressor (31) per unit time;
Q is the volumetric flow rate of the refrigerant passing through the expansion mechanisms (22a, 22b) (36) per unit time;
and the coefficient α,
The value Cv representing the flow rate characteristic representing the relationship between the opening degree of the expansion mechanisms (22a, 22b) (36) and the refrigerant flow rate is obtained from the formula Cv=α×Q×(G/ΔP ) 1/2 seek,
The opening degree of the expansion mechanism (22a, 22b) (36) for obtaining the flow rate characteristic value Cv is set to the required opening degree.
A refrigeration device characterized by:
請求項1において、
上記制御器(90)は、運転中の実際の冷凍サイクルにおいてフィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の上限を上回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の上限の開度に設定し、上記フィードバック制御で定められる上記膨張機構(22a,22b)(36)の開度が、上記必要開度を含む所定範囲の下限を下回ると、その膨張機構(22a,22b)(36)の開度を、上記所定範囲の下限の開度に設定する
ことを特徴とする冷凍装置。
In claim 1,
The controller (90) operates when the degree of opening of the expansion mechanisms (22a, 22b) (36) determined by feedback control in the actual refrigeration cycle during operation exceeds the upper limit of a predetermined range including the required degree of opening. , the opening of the expansion mechanisms (22a, 22b) (36) is set to the upper limit of the predetermined range, and the opening of the expansion mechanisms (22a, 22b) (36) determined by the feedback control is and the opening of the expansion mechanism (22a, 22b) (36) is set to the lower limit of the predetermined range when the opening falls below the lower limit of the predetermined range including the required opening.
JP2019027195A 2019-02-19 2019-02-19 refrigeration equipment Active JP7284381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027195A JP7284381B2 (en) 2019-02-19 2019-02-19 refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027195A JP7284381B2 (en) 2019-02-19 2019-02-19 refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2020133998A JP2020133998A (en) 2020-08-31
JP7284381B2 true JP7284381B2 (en) 2023-05-31

Family

ID=72278212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027195A Active JP7284381B2 (en) 2019-02-19 2019-02-19 refrigeration equipment

Country Status (1)

Country Link
JP (1) JP7284381B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156244A (en) 2001-11-20 2003-05-30 Fujitsu General Ltd Control method for air-conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205057A (en) * 1982-05-26 1983-11-29 株式会社東芝 Air conditioner
JPH0714772Y2 (en) * 1988-02-16 1995-04-10 三菱重工業株式会社 Refrigeration cycle
JP2863305B2 (en) * 1990-11-26 1999-03-03 松下冷機株式会社 Multi-room air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156244A (en) 2001-11-20 2003-05-30 Fujitsu General Ltd Control method for air-conditioner

Also Published As

Publication number Publication date
JP2020133998A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP3972860B2 (en) Refrigeration equipment
JP3864980B2 (en) Air conditioner
US9010135B2 (en) Refrigeration apparatus with a refrigerant collection operation between a plurality of outdoor units
JP4411870B2 (en) Refrigeration equipment
KR20100123729A (en) Refrigeration device
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
CN111256292B (en) Air conditioner and control method thereof
JP2012067985A (en) Refrigerating machine, refrigerating device, and air conditioning device
JP2006300371A (en) Air conditioner
US11187447B2 (en) Refrigeration cycle apparatus
JP2008039233A (en) Refrigerating device
JP2007232265A (en) Refrigeration unit
JP2006300373A (en) Air conditioner
JP5174084B2 (en) Refrigerator and refrigeration cycle apparatus
JP7284381B2 (en) refrigeration equipment
JP2003106610A (en) Refrigeration unit
JP2012141070A (en) Refrigerating device
JP6881424B2 (en) Refrigerator
US20220252317A1 (en) A heat pump
JP3835478B1 (en) Air conditioner
GB2578533A (en) Refrigeration cycle device
JP3661014B2 (en) Refrigeration equipment
JP2018194260A (en) Freezer
JP2013124843A (en) Refrigeration cycle system
JP2010014386A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7284381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151