JP2003156244A - Control method for air-conditioner - Google Patents

Control method for air-conditioner

Info

Publication number
JP2003156244A
JP2003156244A JP2001354150A JP2001354150A JP2003156244A JP 2003156244 A JP2003156244 A JP 2003156244A JP 2001354150 A JP2001354150 A JP 2001354150A JP 2001354150 A JP2001354150 A JP 2001354150A JP 2003156244 A JP2003156244 A JP 2003156244A
Authority
JP
Japan
Prior art keywords
temperature
discharge temperature
heat exchanger
compressor
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354150A
Other languages
Japanese (ja)
Inventor
Motoyoshi Fujishiro
基芳 藤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2001354150A priority Critical patent/JP2003156244A/en
Publication of JP2003156244A publication Critical patent/JP2003156244A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Abstract

PROBLEM TO BE SOLVED: To provide a control method for an air-conditioner allowing the operation for an always optimum refrigerating cycle, without additionally using sensors. SOLUTION: An exterior heat exchange temperature sensor 9, an interior heat exchange temperature sensor 9 and a discharge temperature sensor 8 are provided for detecting an evaporation temperature Te and a condensation temperature Tc. A degree of superheat SH corresponding thereto for the optimum refrigerating cycle is found from a Mollier chart, a discharge temperature Trd in a theoretical cycle is found from an evaporation temperature Te, a condensation temperature Tc and the degree of superheat SH, and the discharge temperature Trd in the theoretical cycle is corrected with compression efficiency determined by the unit performance of a compressor to calculate a target discharge temperature Tmd. The opening of an electronic expansion valve is controlled so that an actual discharge temperature Td approximates to the target discharge temperature Tmd. Thus, the degree of superheat is kept for the always optimum refrigerating cycle without additionally using conventional sensors for detecting an interior heat exchange inlet pipe temperature and a compressor suction pipe temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機の制御
方法に係わり、とくに、最適な冷凍サイクルを保った運
転を可能とする制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for an air conditioner, and more particularly to a control method that enables operation while maintaining an optimum refrigeration cycle.

【0002】[0002]

【従来の技術】従来、圧縮機、四方弁及び、室外熱交換
器、電動膨張弁、室内熱交換器とを順次配管して冷凍サ
イクルを構成してなり、前記四方弁を切換えることによ
り、冷房運転時は前記圧縮機により圧縮した高圧冷媒
を、室外熱交換器、電動膨張弁、室内熱交換器の順に、
暖房運転時は室内熱交換器、電動膨張弁、室外熱交換器
の順に流通し、最適な冷凍サイクルを保って運転を行な
う空気調和機は、前記冷凍サイクルの蒸発温度と圧縮吸
入管温度を検出し、運転中の過熱度を算出し、同過熱度
が最適な過熱度となるように、前記膨張弁の開度を調節
するように制御していた。しかし、この制御方法では正
確な過熱度を検出しなければならず、正確な過熱度を検
出するには通常保護制御用に用いる室内熱交中間温度セ
ンサと、室外熱交温度センサの他に、室内熱交入口管温
度と圧縮機吸入管温度を検出するセンサが必要となり、
コストアップの要因となるという問題があった。また、
上記問題を解決するため、各運転モードに応じた圧縮機
の吐出管温度の基準温度を予め求めておき、運転時に前
記吐出管温度が前記基準温度となるように前期電子膨張
弁の開度を調節するように制御する方法も用いられてい
る。しかし、この方法の場合、室温条件の変化に対応で
きず、一定の室温条件では良いが、常に最適な冷凍サク
ルを保って運転することはできないという問題があっ
た。
2. Description of the Related Art Conventionally, a compressor, a four-way valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger are sequentially piped to form a refrigeration cycle. By switching the four-way valve, cooling is performed. During operation, the high-pressure refrigerant compressed by the compressor, the outdoor heat exchanger, the electric expansion valve, the indoor heat exchanger in this order,
During heating operation, the air conditioner that flows through the indoor heat exchanger, the electric expansion valve, and the outdoor heat exchanger in this order and operates while maintaining an optimal refrigeration cycle detects the evaporation temperature and compression suction pipe temperature of the refrigeration cycle. Then, the degree of superheat during operation is calculated, and the opening degree of the expansion valve is controlled so that the degree of superheat becomes the optimum degree of superheat. However, in this control method, it is necessary to detect an accurate superheat degree, and in order to detect an accurate superheat degree, in addition to the indoor heat exchange intermediate temperature sensor normally used for protection control and the outdoor heat exchange temperature sensor, A sensor to detect the indoor heat exchange inlet pipe temperature and the compressor suction pipe temperature is required,
There was a problem that it became a factor of cost increase. Also,
In order to solve the above problems, the reference temperature of the discharge pipe temperature of the compressor corresponding to each operation mode is obtained in advance, and the opening degree of the electronic expansion valve is adjusted so that the discharge pipe temperature becomes the reference temperature during operation. Methods of controlling to adjust are also used. However, in the case of this method, it is not possible to cope with changes in room temperature conditions, and there is a problem in that it is not possible to always maintain and operate an optimum refrigeration cycle, although it is possible under constant room temperature conditions.

【0003】[0003]

【発明が解決しようとする課題】本発明は以上述べた問
題点を解決し、センサを追加しなくとも、常に最適な冷
凍サイクルを保った運転を可能とした空気調和機の制御
方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for controlling an air conditioner that enables operation that always maintains an optimum refrigeration cycle without adding a sensor. Is intended.

【0004】[0004]

【課題を解決するための手段】本発明は上述の課題を解
決するため、圧縮機、四方弁及び、室外熱交換器、電動
膨張弁、室内熱交換器とを順次配管して冷凍サイクルを
構成してなり、前記四方弁を切換えることにより、冷房
運転時は前記圧縮機により圧縮した高圧冷媒を、室外熱
交換器、電動膨張弁、室内熱交換器の順に、暖房運転時
は室内熱交換器、電動膨張弁、室外熱交換器の順に流通
し、最適冷凍サイクルとなるように前記電子膨張弁の開
度を調節してなる空気調和機において、前記室外熱交換
器の中間温度を検出する室外熱交温度センサと、前記室
内熱交換器の中間温度を検出する室内熱交温度センサ
と、前記圧縮機の吐出温度を検出する吐出温度センサと
を設け、所定の回転数Nで圧縮機を作動して冷房又は暖
房運転を開始すると、前記室外熱交温度センサ及び室内
熱交温度センサの検出する蒸発温度Teと凝縮温度Tc
と、前記検出された蒸発温度Teと凝縮温度Tcに対し
てモリエル線図上で最適となるように設定した過熱度S
Hとにそれぞれ一定の係数a,b,cを乗算して加算す
ることにより、理論サイクル時の吐出温度Trdを算出
し、同理論サイクル時の吐出温度Trdを目標吐出温度
Tmdとして、前記圧縮機の吐出温度Tdが同目標吐出
温度Tmdに近づくように、前記電子膨張弁の開度を調
節するようにした空気調和機の制御方法としている。
In order to solve the above problems, the present invention constitutes a refrigeration cycle by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger. By switching the four-way valve, the high-pressure refrigerant compressed by the compressor during the cooling operation is the outdoor heat exchanger, the electric expansion valve, the indoor heat exchanger in this order, and the indoor heat exchanger during the heating operation. , An electric expansion valve, an outdoor heat exchanger, and an air conditioner in which the degree of opening of the electronic expansion valve is adjusted so that an optimal refrigeration cycle is achieved, and an outdoor unit that detects an intermediate temperature of the outdoor heat exchanger. A heat exchange temperature sensor, an indoor heat exchange temperature sensor for detecting an intermediate temperature of the indoor heat exchanger, and a discharge temperature sensor for detecting a discharge temperature of the compressor are provided, and the compressor is operated at a predetermined rotation speed N. And then start cooling or heating operation Evaporation temperature Te and the condensation temperature Tc for detecting the outdoor heat exchanger temperature sensor and an indoor heat exchanger temperature sensor
And the superheat degree S set to be optimum on the Mollier diagram for the detected evaporation temperature Te and condensation temperature Tc.
The discharge temperature Trd during the theoretical cycle is calculated by multiplying H and the constant coefficients a, b, and c and adding them, and the discharge temperature Trd during the theoretical cycle is set as the target discharge temperature Tmd. The control method of the air conditioner is such that the opening degree of the electronic expansion valve is adjusted so that the discharge temperature Td of 1 approaches the target discharge temperature Tmd.

【0005】前記圧縮機の回転数Nと凝縮温度Tcとに
一定の係数d,eを乗算し、これらを加算することによ
り算出した補正値Thdを、前記理論サイクル時の吐出
温度Trdに加算した値を目標吐出温度Tmdとしてな
る空気調和機の制御方法としている。
A correction value Thd calculated by multiplying the number of revolutions N of the compressor and the condensing temperature Tc by constant coefficients d and e and adding them is added to the discharge temperature Trd in the theoretical cycle. The value is set as the target discharge temperature Tmd in the control method of the air conditioner.

【0006】[0006]

【発明の実施の形態】以下、図面に基づいて本発明によ
る空気調和機の制御方法を詳細に説明する。図1は本発
明による空気調和機の制御方法の一実施例を示す概略構
成図である。図1において、1はガス冷媒を圧縮する圧
縮機、2は冷媒の方向を切換える四方弁、3は冷媒と外
気と熱交換する室外熱交換器、4はその開度を調節して
圧縮された冷媒を減圧する電子膨張弁、5は冷媒と室内
空気と熱交換する室内熱交換器であり、これらを順次配
管して冷凍サイクルを構成している。そして、前記四方
弁2を切換えることにより、冷房運転と暖房運転とを切
換えて、前記圧縮機1で圧縮された圧縮冷媒を、冷房運
転時は室外熱交換器3、電子膨張弁4、室内熱交換器5
の順に、暖房運転時は室内熱交換器5、電子膨張弁4、
室外熱交換器3の順に流通して圧縮機1に循環するよう
にしている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a control method for an air conditioner according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a control method for an air conditioner according to the present invention. In FIG. 1, 1 is a compressor for compressing a gas refrigerant, 2 is a four-way valve for switching the direction of the refrigerant, 3 is an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, and 4 is compressed by adjusting its opening degree. Electronic expansion valves 5 for reducing the pressure of the refrigerant are indoor heat exchangers for exchanging heat between the refrigerant and the indoor air, and these are sequentially piped to form a refrigeration cycle. Then, by switching the four-way valve 2, the cooling operation and the heating operation are switched, and the compressed refrigerant compressed by the compressor 1 is transferred to the outdoor heat exchanger 3, the electronic expansion valve 4, and the indoor heat during the cooling operation. Exchanger 5
In this order, during the heating operation, the indoor heat exchanger 5, the electronic expansion valve 4,
The outdoor heat exchanger 3 is circulated in this order and circulated to the compressor 1.

【0007】また、6は室外機に設けられる室外機制御
部、7は室内機に設けられる室内機制御部、8は圧縮機
1の吐出温度Tdを検出する吐出温度センサ、9は室外
熱交換器の中間温度を検出する室外熱交温度センサ、1
0は室内熱交換器の中間温度を検出する室内熱交温度セ
ンサであり、前記吐出温度センサ8と室外熱交温度セン
サ9は直接前記室外機制御部6に接続され、室内熱交温
度センサ10は室内機制御部7を介して前記室外機制御
部6に接続されている。前記室外熱交温度センサ9は、
冷房運転時に冷媒の凝縮温度Tcを検出し、暖房運転時
に蒸発温度Teを検出する。また、前記室内熱交温度セ
ンサ10は、冷房運転時に冷媒の蒸発温度Teを検出
し、暖房運転時に凝縮温度Tcを検出する。
Further, 6 is an outdoor unit controller provided in the outdoor unit, 7 is an indoor unit controller provided in the indoor unit, 8 is a discharge temperature sensor for detecting the discharge temperature Td of the compressor 1, and 9 is outdoor heat exchange. Outdoor heat exchange temperature sensor to detect the intermediate temperature of the vessel, 1
Reference numeral 0 denotes an indoor heat exchange temperature sensor that detects an intermediate temperature of the indoor heat exchanger. The discharge temperature sensor 8 and the outdoor heat exchange temperature sensor 9 are directly connected to the outdoor unit control unit 6, and the indoor heat exchange temperature sensor 10 is connected. Is connected to the outdoor unit control unit 6 via the indoor unit control unit 7. The outdoor heat exchange temperature sensor 9 is
The condensing temperature Tc of the refrigerant is detected during the cooling operation, and the evaporation temperature Te is detected during the heating operation. Further, the indoor heat exchange temperature sensor 10 detects the evaporation temperature Te of the refrigerant during the cooling operation and the condensation temperature Tc during the heating operation.

【0008】図2は本発明の空気調和機の制御方法を説
明するためのフローチャート、図3はモリエル線図上に
理論サイクルを示した図である。以下、図2、図3を参
照してその制御方法を説明する。冷房運転モード又は暖
房運転モードが指定されると前記四方弁2を冷房側又は
暖房側に切換えて、圧縮機1を設定温度、室内温度等か
ら決まる所定の回転数Nで作動することにより、冷房運
転又は暖房運転が開始される。冷房運転又は暖房運転が
開始されると、前記圧縮機1の回転数Nと、前記室外熱
交温度センサ9及び前記室内熱交温度センサ10により
検出される蒸発温度Teと凝縮温度Tcが前記室外機制
御部6に入力される(ST1)。つぎに、前記蒸発温度
Teと凝縮温度Tcとから、図3に示すモリエル線図上
で、冷凍サイクルが最適となる過熱度SHを入力し(S
T2)図3のA点を求め、この蒸発温度Teと凝縮温度
Tcと過熱度SHにそれぞれ一定の係数a,b,cを乗
算し、これらを加算することにより、理論サイクル時の
吐出温度Trdを、 Trd=a×Te+b×Tc+c×SH (a,b,cは係数)・・・式1 として算出する(ST3)。さらに、前記圧縮機1の回
転数Nと凝縮温度Tcとにそれぞれ一定の係数d,eを
乗算し、これらを加算することにより補正値Thdを、 Thd=d×N+e×Tc (d,eは係数)・・・式2 として算出する(ST4)。そして、前記理論サイクル
時の吐出温度Trdに補正値Thdをを加算して、図3
に示す吐出温度の目標値Tmdを、 Tmd=Trd+Thd ・・・式3 として算出する(ST5)。つぎに、前記吐出温度セン
サ8の検出する吐出温度Tdを前記室外機制御部6に入
力し、同吐出温度Tdが吐出温度の目標値Tmdに近づ
くように(ST6)前記電子膨張弁4の開度を調節する
(ST7)。
FIG. 2 is a flow chart for explaining the control method of the air conditioner of the present invention, and FIG. 3 is a diagram showing theoretical cycles on the Mollier diagram. The control method will be described below with reference to FIGS. 2 and 3. When the cooling operation mode or the heating operation mode is designated, the four-way valve 2 is switched to the cooling side or the heating side, and the compressor 1 is operated at a predetermined rotation speed N determined by the set temperature, the room temperature, etc. The operation or heating operation is started. When the cooling operation or the heating operation is started, the rotation speed N of the compressor 1 and the evaporation temperature Te and the condensation temperature Tc detected by the outdoor heat exchange temperature sensor 9 and the indoor heat exchange temperature sensor 10 become the outdoor temperature. It is input to the machine control unit 6 (ST1). Next, based on the evaporation temperature Te and the condensation temperature Tc, the superheat degree SH that makes the refrigeration cycle optimum is input on the Mollier diagram shown in FIG. 3 (S
T2) The point A in FIG. 3 is obtained, the evaporation temperature Te, the condensation temperature Tc, and the superheat degree SH are multiplied by constant coefficients a, b, and c, respectively, and these are added to obtain the discharge temperature Trd in the theoretical cycle. Is calculated as Trd = a × Te + b × Tc + c × SH (a, b, and c are coefficients) ... Equation 1 (ST3). Further, the rotational speed N of the compressor 1 and the condensing temperature Tc are respectively multiplied by constant coefficients d and e, and these are added to obtain a correction value Thd: Thd = d × N + e × Tc (where d and e are Coefficient) ... Calculated as Equation 2 (ST4). Then, the correction value Thd is added to the discharge temperature Trd during the theoretical cycle, and
The target value Tmd of the discharge temperature shown in is calculated as Tmd = Trd + Thd (Equation 3) (ST5). Next, the discharge temperature Td detected by the discharge temperature sensor 8 is input to the outdoor unit control unit 6 so that the discharge temperature Td approaches the target value Tmd of the discharge temperature (ST6) to open the electronic expansion valve 4. Adjust the degree (ST7).

【0009】以上説明したように、吐出温度Tdが最適
な冷凍サイクルとなるように、室内温度条件に関わる圧
縮機の回転数N、蒸発温度Te、外気温度や圧縮機の性
能に関わる凝縮温度Tc及び、圧縮機固有の性能に関わ
る補正値を基に算出した吐出温度の目標値Tmdに近づ
くように電子膨張弁4の開度を調節するので、室内温度
条件、外気温度条件及び圧縮機の性能条件が変わっても
最適な冷凍サイクルで運転することが可能な空気調和機
の制御方法を提供することができる。
As described above, the number of revolutions N of the compressor relating to the indoor temperature conditions, the evaporation temperature Te, the outside air temperature, and the condensing temperature Tc relating to the performance of the compressor so that the discharge temperature Td becomes the optimum refrigeration cycle. Also, since the opening of the electronic expansion valve 4 is adjusted so as to approach the target value Tmd of the discharge temperature calculated based on the correction value related to the performance peculiar to the compressor, the indoor temperature condition, the outside air temperature condition, and the performance of the compressor. It is possible to provide a control method for an air conditioner that can operate in an optimum refrigeration cycle even if conditions change.

【0010】[0010]

【発明の効果】以上説明したように、本発明による空気
調和機の制御方法によれば、蒸発温度Teと凝縮温度T
cとを検出し、これに対応する冷凍サイクルが最適とな
る過熱度SHをモリエル線図上から求め、前記蒸発温度
Teと凝縮温度Tcと過熱度SHとから理論サイクル時
の吐出温度Trdを求め、この理論サイクル時の吐出温
度Trdを、圧縮機の単体性能より決まる圧縮効率によ
り補正して目標吐出温度Tmdを算出し、実際の吐出温
度Tdが目標吐出温度Tmdに近づくように電子膨張弁
の開度を調節するので、従来のように、室内熱交入口管
温度と圧縮機吸入管温度を検出するセンサを追加しなく
とも常に最適な冷凍サイクルとなる過熱度を保つことが
できる。
As described above, according to the control method of the air conditioner of the present invention, the evaporation temperature Te and the condensation temperature T
c is detected, and the corresponding superheat degree SH that optimizes the refrigeration cycle is obtained from the Mollier diagram, and the discharge temperature Trd at the theoretical cycle is obtained from the evaporation temperature Te, the condensation temperature Tc, and the superheat degree SH. The target discharge temperature Tmd is calculated by correcting the discharge temperature Trd during this theoretical cycle with the compression efficiency determined by the performance of the compressor alone, and the electronic discharge valve of the electronic expansion valve is adjusted so that the actual discharge temperature Td approaches the target discharge temperature Tmd. Since the opening degree is adjusted, it is possible to always maintain the superheat degree that is an optimum refrigeration cycle without adding a sensor for detecting the indoor heat exchange inlet pipe temperature and the compressor suction pipe temperature as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空気調和機の制御方法の一実施例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a control method for an air conditioner according to the present invention.

【図2】本発明による空気調和機の制御方法の動作を説
明するフローチャートである。
FIG. 2 is a flowchart illustrating the operation of the control method for an air conditioner according to the present invention.

【図3】本発明による空気調和機の制御方法の動作を説
明するモリエル線図である。
FIG. 3 is a Mollier diagram for explaining the operation of the control method for an air conditioner according to the present invention.

【図4】従来の空気調和機の制御方法を示す概略構成図
である。
FIG. 4 is a schematic configuration diagram showing a control method for a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 電子膨張弁 5 室内熱交換器 6 室外機制御部 7 室内機制御部 8 吐出温度センサ 9 室外熱交温度センサ 10 室内熱交温度センサ 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 Electronic expansion valve 5 Indoor heat exchanger 6 Outdoor unit control unit 7 Indoor unit controller 8 Discharge temperature sensor 9 Outdoor heat exchange temperature sensor 10 Indoor heat exchange temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁及び、室外熱交換器、電
動膨張弁、室内熱交換器とを順次配管して冷凍サイクル
を構成してなり、前記四方弁を切換えることにより、冷
房運転時は前記圧縮機により圧縮した高圧冷媒を、室外
熱交換器、電動膨張弁、室内熱交換器の順に、暖房運転
時は室内熱交換器、電動膨張弁、室外熱交換器の順に流
通し、最適冷凍サイクルとなるように前記電子膨張弁の
開度を調節してなる空気調和機において、 前記室外熱交換器の中間温度を検出する室外熱交温度セ
ンサと、前記室内熱交換器の中間温度を検出する室内熱
交温度センサと、前記圧縮機の吐出温度を検出する吐出
温度センサとを設け、 所定の回転数Nで圧縮機を作動して冷房又は暖房運転を
開始すると、前記室外熱交温度センサ及び室内熱交温度
センサの検出する蒸発温度Teと凝縮温度Tcと、前記
検出された蒸発温度Teと凝縮温度Tcに対してモリエ
ル線図上で最適となるように設定した過熱度SHとにそ
れぞれ一定の係数a,b,cを乗算して加算することに
より、理論サイクル時の吐出温度Trdを算出し、同理
論サイクル時の吐出温度Trdを目標吐出温度Tmdと
して、前記圧縮機の吐出温度Tdが同目標吐出温度Tm
dに近づくように、前記電子膨張弁の開度を調節するよ
うにしたことを特徴とする空気調和機の制御方法。
1. A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, and by switching the four-way valve, a cooling operation is performed. The high-pressure refrigerant compressed by the compressor flows in the order of the outdoor heat exchanger, the electric expansion valve, and the indoor heat exchanger, and during the heating operation, the indoor heat exchanger, the electric expansion valve, and the outdoor heat exchanger in that order. In an air conditioner that adjusts the opening degree of the electronic expansion valve so as to be a refrigeration cycle, an outdoor heat exchange temperature sensor that detects an intermediate temperature of the outdoor heat exchanger, and an intermediate temperature of the indoor heat exchanger An indoor heat exchange temperature sensor for detecting and a discharge temperature sensor for detecting the discharge temperature of the compressor are provided, and when the compressor is operated at a predetermined rotation speed N to start cooling or heating operation, the outdoor heat exchange temperature is detected. Sensor and indoor heat exchange temperature sensor The evaporating temperature Te and the condensing temperature Tc, and the superheat degree SH set to be optimum on the Mollier diagram with respect to the detected evaporating temperature Te and condensing temperature Tc, have constant coefficients a, b, and The discharge temperature Trd in the theoretical cycle is calculated by multiplying and adding c, and the discharge temperature Td in the theoretical cycle is set as the target discharge temperature Tmd, and the discharge temperature Td of the compressor is the target discharge temperature Tm.
An air conditioner control method, wherein the opening of the electronic expansion valve is adjusted so as to approach d.
【請求項2】 前記圧縮機の回転数Nと凝縮温度Tcと
に一定の係数d,eを乗算し、これらを加算することに
より算出した補正値Thdを、前記理論サイクル時の吐
出温度Trdに加算した値を目標吐出温度Tmdとして
なることを特徴とする請求項1記載の空気調和機の制御
方法。
2. A correction value Thd calculated by multiplying the number of revolutions N of the compressor and the condensing temperature Tc by constant coefficients d and e, and adding them, is used as the discharge temperature Trd in the theoretical cycle. The method for controlling an air conditioner according to claim 1, wherein the added value is used as the target discharge temperature Tmd.
JP2001354150A 2001-11-20 2001-11-20 Control method for air-conditioner Pending JP2003156244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354150A JP2003156244A (en) 2001-11-20 2001-11-20 Control method for air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354150A JP2003156244A (en) 2001-11-20 2001-11-20 Control method for air-conditioner

Publications (1)

Publication Number Publication Date
JP2003156244A true JP2003156244A (en) 2003-05-30

Family

ID=19166049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354150A Pending JP2003156244A (en) 2001-11-20 2001-11-20 Control method for air-conditioner

Country Status (1)

Country Link
JP (1) JP2003156244A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635211B1 (en) 2005-10-28 2006-10-16 엘지전자 주식회사 Method for controlling linear expansion valve in air conditioner
WO2009048566A3 (en) * 2007-10-08 2009-05-28 Emerson Climate Technologies System and method for monitoring overheat of a compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
CN101089494B (en) * 2006-06-16 2011-07-06 乐金电子(天津)电器有限公司 Control method for electronic expansion valve of air conditioner
KR101182759B1 (en) 2007-10-08 2012-09-14 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
EP2326841A4 (en) * 2008-09-26 2014-12-31 Carrier Corp Compressor discharge control on a transport refrigeration system
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
WO2018216131A1 (en) 2017-05-24 2018-11-29 東芝キヤリア株式会社 Air conditioner
KR20200007415A (en) * 2018-07-13 2020-01-22 엘지전자 주식회사 Air conditioner and operating method for the same
JP2020133998A (en) * 2019-02-19 2020-08-31 ダイキン工業株式会社 Freezing device
CN112503811A (en) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 Control method of electronic expansion valve and heat pump system
CN113048618A (en) * 2021-04-25 2021-06-29 宁波奥克斯电气股份有限公司 Exhaust temperature obtaining method and device, electronic equipment and air conditioner
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635211B1 (en) 2005-10-28 2006-10-16 엘지전자 주식회사 Method for controlling linear expansion valve in air conditioner
CN101089494B (en) * 2006-06-16 2011-07-06 乐金电子(天津)电器有限公司 Control method for electronic expansion valve of air conditioner
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
CN104964496A (en) * 2007-10-08 2015-10-07 艾默生环境优化技术有限公司 System and method for monitoring overheat of a compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
US8448459B2 (en) 2007-10-08 2013-05-28 Emerson Climate Technologies, Inc. System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US10962009B2 (en) 2007-10-08 2021-03-30 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
KR101182759B1 (en) 2007-10-08 2012-09-14 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
CN101821507B (en) * 2007-10-08 2015-08-05 艾默生环境优化技术有限公司 For the system and method for monitoring overheat of compressor
CN101821507A (en) * 2007-10-08 2010-09-01 艾默生环境优化技术有限公司 System and method for monitoring overheat of compressor
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
WO2009048566A3 (en) * 2007-10-08 2009-05-28 Emerson Climate Technologies System and method for monitoring overheat of a compressor
CN104964496B (en) * 2007-10-08 2017-09-12 艾默生环境优化技术有限公司 System and method for monitoring overheat of compressor
US9599384B2 (en) 2008-09-26 2017-03-21 Carrier Corporation Compressor discharge control on a transport refrigeration system
EP2326841A4 (en) * 2008-09-26 2014-12-31 Carrier Corp Compressor discharge control on a transport refrigeration system
WO2018216131A1 (en) 2017-05-24 2018-11-29 東芝キヤリア株式会社 Air conditioner
KR20200007415A (en) * 2018-07-13 2020-01-22 엘지전자 주식회사 Air conditioner and operating method for the same
KR102104446B1 (en) * 2018-07-13 2020-04-24 엘지전자 주식회사 Air conditioner and operating method for the same
JP2020133998A (en) * 2019-02-19 2020-08-31 ダイキン工業株式会社 Freezing device
JP7284381B2 (en) 2019-02-19 2023-05-31 ダイキン工業株式会社 refrigeration equipment
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
US11706899B2 (en) 2019-07-25 2023-07-18 Emerson Climate Technologies, Inc. Electronics enclosure with heat-transfer element
CN112503811A (en) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 Control method of electronic expansion valve and heat pump system
CN113048618A (en) * 2021-04-25 2021-06-29 宁波奥克斯电气股份有限公司 Exhaust temperature obtaining method and device, electronic equipment and air conditioner

Similar Documents

Publication Publication Date Title
KR100540808B1 (en) Control method for Superheating of heat pump system
JP3972860B2 (en) Refrigeration equipment
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
EP2175213B1 (en) Freezing apparatus
JP2003156244A (en) Control method for air-conditioner
JP2008064439A (en) Air conditioner
EP1956323A2 (en) Air conditioner and method of controlling electronic expansion valve thereof
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP2002054836A (en) Indoor multi-air conditioner
JP2018141599A (en) Air conditioning device
JP2018146208A (en) Air conditioner
CN111981654B (en) Control method for optimizing energy efficiency of air conditioner
WO2016098645A1 (en) Air-conditioning device
JP2005016782A (en) Method for controlling expansion valve for multi-room type air conditioner
JP3668750B2 (en) Air conditioner
JP2001194017A (en) Supercritical vapor compressor type freezing cycle
JP2001272149A (en) Show case cooling device
JP2003156260A (en) Control method for air-conditioner
KR20210026645A (en) Air conditioner and control method thereof
JP2001147052A (en) Air conditioner
JP3558788B2 (en) Air conditioner and control method thereof
JP2001201198A (en) Method for controlling air conditioner
JP2004116978A (en) Controller for multi-room air conditioner
KR100535687B1 (en) A Multi-type Air Conditioner
JP4809208B2 (en) Refrigeration air conditioning system