JP3558788B2 - Air conditioner and control method thereof - Google Patents

Air conditioner and control method thereof Download PDF

Info

Publication number
JP3558788B2
JP3558788B2 JP19634896A JP19634896A JP3558788B2 JP 3558788 B2 JP3558788 B2 JP 3558788B2 JP 19634896 A JP19634896 A JP 19634896A JP 19634896 A JP19634896 A JP 19634896A JP 3558788 B2 JP3558788 B2 JP 3558788B2
Authority
JP
Japan
Prior art keywords
temperature
superheat
degree
indoor
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19634896A
Other languages
Japanese (ja)
Other versions
JPH1038350A (en
Inventor
常雄 植草
至誠 藁谷
和夫 千葉
武夫 植野
雅章 竹上
茂一 北野
慎一 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Daikin Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Daikin Industries Ltd
Priority to JP19634896A priority Critical patent/JP3558788B2/en
Publication of JPH1038350A publication Critical patent/JPH1038350A/en
Application granted granted Critical
Publication of JP3558788B2 publication Critical patent/JP3558788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、圧縮機の容量制御、送風機の風量制御、膨張弁の開度制御、を行う空気調和機に関する。
【0002】
【従来の技術】
一般的に空調機では、圧縮機での液圧縮や過熱を防止するとともに蒸発器で効率よく熱交換できるように、膨張弁により圧縮機吸入口または蒸発器出口の過熱度が5〜10[℃]程度となるように制御している。膨張弁としては機械式と電気式があるが、小型の空調機では、電気式膨張弁の方が圧縮機の容量制御等に対応し精度よく制御できるため一般的になっている。
【0003】
一方、室内の温湿度の制御を行うために、圧縮機の容量制御、送風機の風量制御が行われている。圧縮機の容量制御、送風機の風量制御の例としては特願昭62−287560 号や特願昭60−267201 号がある。
【0004】
【発明が解決しようとする課題】
特願昭62−287560 号や特願昭60−267201 号に示された方法は、温度および湿度の検出値と設定値との差に応じて圧縮機の容量または送風機の風量どちらか一方を操作するもので、両方を同時に操作する場合と比べて目標値に達する時間が遅く、しかも膨張弁による過熱度制御との相関関係については何も考慮していないので、圧縮機容量または送風機風量を変化させた場合に過渡的に過熱度が変動し、圧縮機での液圧縮や吐出温度の上昇を引き起こす可能性がある。
【0005】
この発明は、上記の事情を考慮したもので、
第1および第2の発明の空気調和機は、室内温度制御、吹出空気温度制御、および過熱度制御を相互への影響を修正しつつ適切に行うことができ、これによりハンチング現象のない安定した制御と冷凍サイクル運転を可能として圧縮機の液圧縮や吐出温度上昇等の不具合を解消できることを目的とする。
【0006】
第3の発明の空気調和機の制御方法は、室内温度制御、吹出空気温度制御、および過熱度制御を相互への影響を修正しつつ適切に行うことができ、これによりハンチング現象のない安定した制御と冷凍サイクル運転を可能として圧縮機の液圧縮や吐出温度上昇等の不具合を解消できることを目的とする。
【0007】
【課題を解決するための手段】
第1の発明の空気調和機は、圧縮機、室外熱交換器、膨張弁、室内熱交換器を配管で接続した冷凍サイクルと、室外熱交換器用の室外側送風機と、室内熱交換器用の室内側送風機と、室内温度を検出する室内温度検出手段と、この室内温度検出手段で検出される室内温度と室内温度設定値との差に応じて圧縮機の容量を操作し、室内温度を制御する第1制御手段と、室内への吹出空気温度を検出する吹出温度検出手段と、この吹出温度検出手段で検出される吹出空気温度と吹出空気温度設定値との差に応じて室内側送風機の風量を操作し、吹出空気温度を制御する第2制御手段と、冷凍サイクル中の冷媒の過熱度を検出する過熱度検出手段と、この過熱度検出手段で検出される過熱度と過熱度設定値との差に応じて膨張弁の開度を操作し、過熱度を制御する第3制御手段と、この第1、第2、および第3制御手段のうち、優先順位の高い方の制御手段の操作によって優先順位の低い方の制御手段の制御対象に生じるであろう変化量を求め、その変化量に応じて、優先順位の低い方の制御手段の操作量を修正する第4制御手段と、を備えている。
【0008】
第2の発明の空気調和機は、圧縮機、室外熱交換器、膨張弁、室内熱交換器を配管で接続した冷凍サイクルと、室外熱交換器用の室外側送風機と、室内熱交換器用の室内側送風機と、室内温度を検出する室内温度検出手段と、この室内温度検出手段で検出される室内温度と室内温度設定値との差に応じて圧縮機の容量を操作し、室内温度を制御する第1制御手段と、室内への吹出空気温度を検出する吹出温度検出手段と、この吹出温度検出手段で検出される吹出空気温度と吹出空気温度設定値との差に応じて室内側送風機の風量を操作し、吹出空気温度を制御する第2制御手段と、冷凍サイクル中の冷媒の過熱度を検出する過熱度検出手段と、この過熱度検出手段で検出される過熱度と過熱度設定値との差に応じて膨張弁の開度を操作し、過熱度を制御する第3制御手段と、第1制御手段の容量操作によって第2制御手段の制御対象である吹出空気温度に生じるであろう温度変化量および第3制御手段の制御対象である過熱度に生じるであろう第1過熱度変化量を求め、そのうちの温度変化量に応じて第2制御手段の風量操作量を修正するとともに、この第2制御手段の操作によって第3制御手段の制御対象である過熱度に生じるであろう第2過熱度変化量を求め、この第2過熱度変化量と第1過熱度変化量とに応じて第3制御手段の過熱度操作量を修正する第4制御手段と、を備えている。
【0009】
第3の発明の空気調和機の制御方法は、圧縮機、室外熱交換器、膨張弁、室内熱交換器を配管で接続した冷凍サイクルと、室外熱交換器用の室外側送風機と、室内熱交換器用の室内側送風機と、室内温度を検出する室内温度検出手段と、この室内温度検出手段で検出される室内温度と室内温度設定値との差に応じて圧縮機の容量を操作し室内温度を制御する第1制御手段と、室内への吹出空気温度を検出する吹出温度検出手段と、この吹出温度検出手段で検出される吹出空気温度と吹出空気温度設定値との差に応じて室内側送風機の風量を操作し吹出空気温度を制御する第2制御手段と、冷凍サイクル中の冷媒の過熱度を検出する過熱度検出手段と、この過熱度検出手段で検出される過熱度と過熱度設定値との差に応じて膨張弁の開度を操作し過熱度を制御する第3制御手段と、を備えたものにおいて、第1、第2、および第3制御手段のうち、優先順位の高い方の制御手段の操作によって優先順位の低い方の制御手段の制御対象に生じるであろう変化量を求め、その変化量に応じて、優先順位の低い方の制御手段の操作量を修正する。
【0010】
【発明の実施の形態】
以下、この発明の一実施例について図面を参照して説明する。
図1に示すように、圧縮機1、油分離器2、室外熱交換器3、受液器4、電気式膨張弁5、室内熱交換器6、アキュームレータ7が配管により接続され、冷凍サイクルが構成される。
【0011】
圧縮機1は、圧縮機容量制御装置11から供給される電力により容量可変動作し、矢印方向に高温高圧のガス冷媒を吐出する。このガス冷媒は室外熱交換器(凝縮器)3に導かれ、外気と熱交換して凝縮し、高圧の液冷媒となる。液冷媒は膨張弁5に導かれ、そこで減圧され、低圧の液ガス混合冷媒となる。さらに、この液ガス混合冷媒が室内熱交換器(蒸発器)6に導かれ、室内空気と熱交換することで蒸発し、低圧ガスとなって再び圧縮機1に吸入される。以下、同様のサイクルを繰り返すことにより、室内を冷房し、室内から奪った熱を凝縮器を通して外気へ放出することができる。
【0012】
室外熱交換器3に対し、室外空気供給用の室外側送風機12が設けられる。
室内熱交換器6に対し、室内空気供給用の室内側送風機13が設けられる。室内側送風機13は、送風量制御装置14から供給される電力により風量可変動作する。この室内側送風機13の風量を変化させることにより、室内熱交換器6における冷媒と室内空気との間の熱伝達率を調節することができ、ひいては室内への吹出空気温度を制御することができる。
【0013】
室内側送風機13によって吸込まれる室内空気の風路に、室内温度検出手段として室内温度センサ15が設けられる。
室内熱交換器6を経て室内に吹出される吹出空気の風路に、吹出空気温度検出手段として吹出空気温度センサ16が設けられる。
【0014】
アキュームレータ7から圧縮機1の冷媒吸入口にかけての配管に、過熱度検出手段として過熱度センサ17が設けられる。過熱度センサ17は、冷凍サイクル中の冷媒の過熱度、つまり蒸発器として機能する室内熱交換器6における冷媒の過熱度を検出する。
【0015】
制御装置20は、室内温度センサ15で検出される室内温度と室内温度設定値との差に応じて圧縮機1の容量(=圧縮機容量制御装置11から出力される駆動電力の周波数)を操作し、室内温度を制御する第1制御手段と、吹出温度センサ16で検出される吹出空気温度と吹出空気温度設定値との差に応じて室内側送風機13の風量(=送風量制御装置14から出力される駆動電力の周波数)を操作し、吹出空気温度を制御する第2制御手段と、過熱度センサ17で検出される過熱度と過熱度設定値との差に応じて膨張弁5の開度を操作し、過熱度を制御する開度制御手段と、この第1、第2、および第3制御手段のうち、優先順位の高い方の制御手段の操作によって優先順位の低い方の制御手段の制御対象に生じるであろう変化量を求め、その変化量に応じて、優先順位の低い方の制御手段の操作量を修正する第4制御手段と、を有する。
【0016】
優先順位としては、高い方から、第1制御手段、第2制御手段、第3制御手段の順を予め定めている。
つぎに、上記の構成の作用を図2のフローチャートを参照して説明する。
【0017】
室内温度センサ15で検出される室内温度と予め定められている室内温度設定値との差が求められ、その温度差に応じて圧縮機周波数つまり圧縮機容量が決定される。
【0018】
たとえば、室内温度の検出値が室内温度設定値より高くてその温度差が大きいほど、圧縮機周波数(圧縮機1への出力周波数)として高い値が決定される。圧縮機周波数が高いと、圧縮機1の容量が増大して冷媒循環量が増え、室内熱交換器(蒸発器)6における冷媒圧力が低下するとともに冷房能力が増加する。そして、室内温度の検出値が下降して室内温度設定値に近付くほど、圧縮機周波数が低減されていく。これにより、圧縮機1の容量が低減されて冷媒循環量が減り、室内熱交換器(蒸発器)6における冷媒圧力が上昇するとともに冷房能力が減少する。
【0019】
この圧縮機周波数の決定に際しては、その圧縮機周波数に基づく実際の容量操作によって第2制御手段の制御対象である吹出空気温度に生じるであろう温度変化量および第3制御手段の制御対象である過熱度に生じるであろう第1過熱度変化量が演算により求められ、その温度変化量と第1過熱度変化量とが制御装置 20内のメモリに記憶される。
【0020】
一方、吹出空気温度センサ16で検出される吹出空気温度と予め定められている吹出空気温度設定値との差が求められ、その温度差に応じて室内側送風機13の風量が決定される。
【0021】
たとえば、吹出空気温度の検出値が吹出空気温度設定値より高い場合には、風量として小さい値が決定される。室内側送風機13の風量が少ないと、吸込・吹出温度差が大きくなり、室内への吹出空気温度が低下する。吹出空気温度の検出値が吹出空気温度設定値より低い場合には、風量として大きい値が決定される。室内側送風機13の風量が多いと、吸込・吹出温度差が小さくなり、室内への吹出空気温度が上昇する。
【0022】
この風量の決定に際しては、実際の風量操作によって第3制御手段の制御対象である過熱度に生じるであろう第2過熱度変化量が演算により求められ、その第2過熱度変化量が制御装置20内のメモリに記憶される。
【0023】
また、過熱度センサ17で検出される過熱度と予め定められている過熱度設定値との差が求められ、その過熱度差に応じて膨張弁5の開度が決定される。
たとえば、過熱度の検出値が過熱度設定値より高い場合には、開度として大きい値が決定される。膨張弁5の開度が大きくなると、冷凍サイクル中の冷媒の循環量が増え、過熱度が低下する。過熱度の検出値が過熱度設定値より低い場合には、開度として小さい値が決定される。膨張弁5の開度が小さくなると、冷凍サイクル中の冷媒の循環量が減り、過熱度が上昇する。
【0024】
こうして、圧縮機周波数(圧縮機容量)、風量、および開度が決定されると、その圧縮機周波数、風量、および開度に至るのに必要な周波数操作量、風量操作量、および開度操作量が求められる。
【0025】
この場合、周波数操作量は修正なく設定されるが、風量操作量については、周波数操作との相関関係を考慮し、上記記憶された温度変化量を加味した分の修正が加えられる。また、開度操作量については、風量操作との相関関係を考慮し、上記記憶された第1過熱度変化量と第2過熱度変化量とを加味した分の修正が加えられる。
【0026】
そして、設定された周波数操作量に従って実際に圧縮機周波数が操作されるとともに、修正設定された風量操作量に従って室内側送風機13の風量が操作され、かつ修正設定された開度操作量に従って膨張弁5の開度が操作される。
【0027】
室内側送風機13の風量変化による室内温度の変化量は小さく、膨張弁5の開度変化による吹出空気温度の変化量および室内温度の変化量も小さいことから、圧縮機周波数の操作に基づく室内温度制御の優先順位がもっとも高く、風量操作に基づく吹出空気温度制御の優先順位が次に高く、開度操作に基づく過熱度制御の優先順位が一番低い形となっている。
【0028】
このように、複数の制御が互いに影響を及ぼし合うことを考慮して各制御に優先順位を定め、その優先順位に従って各制御の操作量を適宜に修正することにより、室内温度制御、吹出空気温度制御、および過熱度制御を相互への影響を修正しつつ適切に行うことができる。したがって、ハンチング現象のない安定した制御および冷凍サイクル運転が可能となり、圧縮機の液圧縮や吐出温度上昇等の不具合を解消できる。
【0029】
なお、上記の実施例では、空冷のパッケージ空調機への適用について説明したが、凝縮器を水で冷却する水冷型のパッケージ空調機にも同様に適用することができる。
【0030】
【発明の効果】
以上述べたようにこの発明によれば、
第1および第2の発明の空気調和機は、複数の制御が互いに影響を及ぼし合うことを考慮して各制御に優先順位を定め、その優先順位に従って各制御の操作量を適宜に修正する構成としたので、室内温度制御、吹出空気温度制御、および過熱度制御を相互への影響を修正しつつ適切に行うことができ、これによりハンチング現象のない安定した制御と冷凍サイクル運転を可能として圧縮機の液圧縮や吐出温度上昇等の不具合を解消できる。
【0031】
第3の発明の空気調和機の制御方法は、複数の制御が互いに影響を及ぼし合うことを考慮して各制御に優先順位を定め、その優先順位に従って各制御の操作量を適宜に修正するようにしたので、室内温度制御、吹出空気温度制御、および過熱度制御を相互への影響を修正しつつ適切に行うことができ、これによりハンチング現象のない安定した制御と冷凍サイクル運転を可能として圧縮機の液圧縮や吐出温度上昇等の不具合を解消できる。
【図面の簡単な説明】
【図1】一実施例の冷凍サイクルおよび制御ブロックの構成を示す図。
【図2】同実施例の作用を説明するためのフローチャート。
【符号の説明】
1…圧縮機
3…室外熱交換器
5…電気式膨張弁
6…室内熱交換器
11…圧縮機容量制御装置
12…室外側送風機
13…室内側送風機
14…送風量制御装置
15…室内温度センサ
16…吹出空気温度センサ
17…過熱度センサ
20…制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner that controls the capacity of a compressor, the air volume of a blower, and the opening of an expansion valve.
[0002]
[Prior art]
In general, in an air conditioner, the degree of superheat at the compressor inlet or the evaporator outlet is 5 to 10 [° C. by an expansion valve so as to prevent liquid compression and overheating in the compressor and efficiently exchange heat with the evaporator. ]. There are two types of expansion valves: mechanical type and electric type. In a small air conditioner, an electric type expansion valve is generally used because it can be controlled with high accuracy in response to control of the capacity of a compressor and the like.
[0003]
On the other hand, in order to control indoor temperature and humidity, capacity control of a compressor and air volume control of a blower are performed. Japanese Patent Application No. 62-287560 and Japanese Patent Application No. 60-267201 disclose examples of controlling the capacity of a compressor and controlling the air volume of a blower.
[0004]
[Problems to be solved by the invention]
The method disclosed in Japanese Patent Application No. 62-287560 or Japanese Patent Application No. 60-267201 operates either the capacity of the compressor or the air volume of the blower according to the difference between the detected value of temperature and humidity and the set value. Since the time to reach the target value is slower than when both are operated at the same time and the correlation with the superheat control by the expansion valve is not considered at all, the compressor capacity or blower air volume changes. In this case, the degree of superheat fluctuates transiently, which may cause liquid compression in the compressor and an increase in discharge temperature.
[0005]
The present invention has been made in view of the above circumstances,
The air conditioners of the first and second inventions can perform the indoor temperature control, the blow-off air temperature control, and the superheat degree control appropriately while correcting their mutual influences, thereby providing a stable hunting-free phenomenon. It is an object of the present invention to enable control and refrigeration cycle operation to eliminate problems such as compressor liquid compression and discharge temperature rise.
[0006]
According to the control method of the air conditioner of the third invention, the indoor temperature control, the blow-off air temperature control, and the superheat degree control can be appropriately performed while correcting mutual influences, and thereby, a stable hunting phenomenon is prevented. It is an object of the present invention to enable control and refrigeration cycle operation to eliminate problems such as compressor liquid compression and discharge temperature rise.
[0007]
[Means for Solving the Problems]
An air conditioner according to a first aspect of the present invention includes a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping, an outdoor blower for an outdoor heat exchanger, and a room for an indoor heat exchanger. An inner blower, an indoor temperature detecting means for detecting an indoor temperature, and controlling a capacity of the compressor in accordance with a difference between the indoor temperature detected by the indoor temperature detecting means and the indoor temperature set value to control the indoor temperature. First control means, blow-out temperature detecting means for detecting the temperature of the air blown into the room, and the air volume of the indoor-side blower according to the difference between the blow-out air temperature detected by the blow-out temperature detecting means and the set value of the blow-out air temperature , A second control means for controlling the temperature of the blown air, a superheat degree detection means for detecting the degree of superheat of the refrigerant in the refrigeration cycle, and a superheat degree and a superheat degree set value detected by the superheat degree detection means Operate the opening of the expansion valve according to the The third control means for controlling the degree, and among the first, second, and third control means, the operation of the control means with the higher priority gives rise to the control target of the control means with the lower priority. And a fourth control means for determining an amount of change which is likely to occur and correcting the operation amount of the control means having the lower priority in accordance with the amount of change.
[0008]
An air conditioner according to a second aspect of the present invention includes a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping, an outdoor blower for an outdoor heat exchanger, and a room for an indoor heat exchanger. An inner blower, an indoor temperature detecting means for detecting an indoor temperature, and controlling a capacity of the compressor in accordance with a difference between the indoor temperature detected by the indoor temperature detecting means and the indoor temperature set value to control the indoor temperature. First control means, blow-out temperature detecting means for detecting the temperature of the air blown into the room, and the air volume of the indoor-side blower according to the difference between the blow-out air temperature detected by the blow-out temperature detecting means and the set value of the blow-out air temperature , A second control means for controlling the temperature of the blown air, a superheat degree detection means for detecting the degree of superheat of the refrigerant in the refrigeration cycle, and a superheat degree and a superheat degree set value detected by the superheat degree detection means Operate the opening of the expansion valve according to the A third control means for controlling the temperature, an amount of change in the temperature of the blown air which is to be controlled by the second control means due to the capacity operation of the first control means, and a degree of superheat which is to be controlled by the third control means. The amount of change in the degree of superheat which is likely to occur in the second control means is determined, the amount of operation of the air flow of the second control means is corrected in accordance with the amount of change in temperature, and the operation of the third control means is controlled by the operation of the second control means. A fourth superheat degree change amount which will occur in the superheat degree is obtained, and the fourth superheat degree operation amount of the third control means is corrected according to the second superheat degree change amount and the first superheat degree change amount. Control means.
[0009]
A control method for an air conditioner according to a third aspect of the present invention includes: a refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping; an outdoor blower for the outdoor heat exchanger; Indoor air blower, indoor temperature detecting means for detecting the indoor temperature, and operating the capacity of the compressor in accordance with the difference between the indoor temperature detected by the indoor temperature detecting means and the indoor temperature set value to adjust the indoor temperature. First control means for controlling, blow-off temperature detecting means for detecting a temperature of blow-out air into a room, and an indoor-side blower according to a difference between the blow-off air temperature detected by the blow-out temperature detecting means and a set value of blow-out air temperature Second control means for controlling the blown air temperature by controlling the air flow of the air, superheat degree detection means for detecting the superheat degree of the refrigerant in the refrigeration cycle, and the superheat degree and the superheat degree set value detected by the superheat degree detection means Operates expansion valve opening according to the difference And a third control means for controlling the degree of superheat, wherein the control means having the lower priority by operating the control means having the higher priority among the first, second and third control means. Is obtained, and the operation amount of the control means having the lower priority is corrected according to the change amount.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a compressor 1, an oil separator 2, an outdoor heat exchanger 3, a liquid receiver 4, an electric expansion valve 5, an indoor heat exchanger 6, and an accumulator 7 are connected by piping, and a refrigeration cycle is performed. Be composed.
[0011]
The compressor 1 performs a capacity variable operation by electric power supplied from the compressor capacity control device 11, and discharges a high-temperature and high-pressure gas refrigerant in the direction of the arrow. This gas refrigerant is guided to the outdoor heat exchanger (condenser) 3, exchanges heat with the outside air, and condenses to become a high-pressure liquid refrigerant. The liquid refrigerant is led to the expansion valve 5, where it is decompressed and becomes a low-pressure liquid-gas mixed refrigerant. Further, the liquid-gas mixed refrigerant is guided to the indoor heat exchanger (evaporator) 6, evaporates by exchanging heat with indoor air, becomes a low-pressure gas, and is sucked into the compressor 1 again. Hereinafter, by repeating the same cycle, the room can be cooled and the heat taken from the room can be released to the outside air through the condenser.
[0012]
An outdoor blower 12 for supplying outdoor air is provided for the outdoor heat exchanger 3.
An indoor blower 13 for supplying indoor air is provided for the indoor heat exchanger 6. The indoor-side blower 13 performs an air volume variable operation by electric power supplied from the air volume control device 14. By changing the air volume of the indoor blower 13, the heat transfer coefficient between the refrigerant and the indoor air in the indoor heat exchanger 6 can be adjusted, and the temperature of the air blown into the room can be controlled. .
[0013]
An indoor temperature sensor 15 is provided in the air passage of the indoor air sucked by the indoor blower 13 as indoor temperature detecting means.
A blow-out air temperature sensor 16 is provided as blow-out air temperature detection means in a flow path of blow-out air blown into the room through the indoor heat exchanger 6.
[0014]
A superheat degree sensor 17 is provided as a superheat degree detection means in a pipe extending from the accumulator 7 to the refrigerant suction port of the compressor 1. The superheat degree sensor 17 detects the degree of superheat of the refrigerant in the refrigeration cycle, that is, the degree of superheat of the refrigerant in the indoor heat exchanger 6 functioning as an evaporator.
[0015]
The control device 20 operates the capacity of the compressor 1 (= the frequency of the driving power output from the compressor capacity control device 11) in accordance with the difference between the indoor temperature detected by the indoor temperature sensor 15 and the indoor temperature set value. The first control means for controlling the indoor temperature, and the air volume of the indoor air blower 13 (= from the air volume control device 14) according to the difference between the air temperature detected by the air temperature sensor 16 and the air temperature set value. (The frequency of the output drive power) to control the blow-out air temperature, and to open the expansion valve 5 according to the difference between the superheat detected by the superheat sensor 17 and the superheat set value. Opening degree control means for controlling the degree of superheat by controlling the degree of superheat, and the control means having the lower priority by operating the higher priority control means among the first, second and third control means. The amount of change that will occur in the controlled object of Depending on the amount of change has a fourth control means for correcting an operation amount of the control means having the lower priority, the.
[0016]
As the priority order, the order of the first control means, the second control means, and the third control means is determined in advance from the highest priority.
Next, the operation of the above configuration will be described with reference to the flowchart of FIG.
[0017]
A difference between the room temperature detected by the room temperature sensor 15 and a predetermined room temperature set value is obtained, and a compressor frequency, that is, a compressor capacity is determined according to the temperature difference.
[0018]
For example, as the detected value of the indoor temperature is higher than the indoor temperature set value and the temperature difference is larger, a higher value is determined as the compressor frequency (output frequency to the compressor 1). When the compressor frequency is high, the capacity of the compressor 1 increases, the refrigerant circulation amount increases, the refrigerant pressure in the indoor heat exchanger (evaporator) 6 decreases, and the cooling capacity increases. Then, as the detected value of the room temperature decreases and approaches the room temperature set value, the compressor frequency is reduced. As a result, the capacity of the compressor 1 is reduced, the amount of circulating refrigerant is reduced, the refrigerant pressure in the indoor heat exchanger (evaporator) 6 is increased, and the cooling capacity is reduced.
[0019]
In determining the compressor frequency, the amount of temperature change that will occur in the blown air temperature, which is the control target of the second control means, due to the actual displacement operation based on the compressor frequency, and the control target of the third control means. A first superheat change amount that will occur in the superheat degree is obtained by calculation, and the temperature change amount and the first superheat change amount are stored in a memory in the control device 20.
[0020]
On the other hand, a difference between the blown air temperature detected by the blown air temperature sensor 16 and a predetermined blown air temperature set value is obtained, and the air volume of the indoor blower 13 is determined according to the temperature difference.
[0021]
For example, when the detected value of the outlet air temperature is higher than the outlet air temperature set value, a smaller value is determined as the air volume. When the air volume of the indoor side blower 13 is small, the difference between the suction and the outlet temperature increases, and the temperature of the air blown into the room decreases. If the detected value of the blown air temperature is lower than the blown air temperature set value, a large value is determined as the air flow. If the air volume of the indoor side blower 13 is large, the difference between the suction and the outlet temperature becomes smaller, and the temperature of the air blown into the room increases.
[0022]
In determining the air volume, a second superheat degree change amount that will occur in the superheat degree controlled by the third control means by an actual air volume operation is obtained by calculation, and the second superheat degree change amount is calculated by the control device. 20 is stored in the memory.
[0023]
Further, a difference between the degree of superheat detected by the superheat degree sensor 17 and a predetermined superheat degree set value is obtained, and the opening degree of the expansion valve 5 is determined according to the superheat degree difference.
For example, when the detected value of the superheat degree is higher than the set value of the superheat degree, a large value is determined as the opening degree. When the opening degree of the expansion valve 5 increases, the amount of circulation of the refrigerant in the refrigeration cycle increases, and the degree of superheat decreases. When the detected value of the superheat degree is lower than the superheat degree set value, a small value is determined as the opening degree. When the degree of opening of the expansion valve 5 decreases, the amount of circulation of the refrigerant in the refrigeration cycle decreases, and the degree of superheat increases.
[0024]
When the compressor frequency (compressor capacity), air volume, and opening are determined in this way, the frequency operation amount, air volume operation amount, and opening operation required to reach the compressor frequency, air volume, and opening are determined. The quantity is required.
[0025]
In this case, the frequency operation amount is set without correction, but the air volume operation amount is corrected in consideration of the stored temperature change amount in consideration of the correlation with the frequency operation. In addition, the opening degree operation amount is corrected in consideration of the correlation between the first superheat degree change amount and the second superheat degree change amount stored in consideration of the correlation with the air volume operation.
[0026]
Then, the compressor frequency is actually operated according to the set frequency operation amount, the air volume of the indoor blower 13 is operated according to the corrected air volume operation amount, and the expansion valve is operated according to the corrected opening operation amount. The opening degree of 5 is operated.
[0027]
Since the amount of change in the indoor temperature due to the change in the air volume of the indoor side blower 13 is small, and the amount of change in the blow-out air temperature and the amount of change in the indoor temperature due to the change in the opening degree of the expansion valve 5 are small, the indoor temperature based on the operation of the compressor frequency is small. The control has the highest priority, the blowout air temperature control based on the air volume operation has the next highest priority, and the superheat control based on the opening operation has the lowest priority.
[0028]
As described above, the priorities are set for the respective controls in consideration of the fact that a plurality of controls affect each other, and the operation amounts of the respective controls are appropriately corrected in accordance with the priorities. The control and the superheat control can be appropriately performed while correcting the mutual influence. Therefore, stable control and refrigeration cycle operation without hunting phenomenon can be performed, and problems such as liquid compression of the compressor and rise in discharge temperature can be solved.
[0029]
In the above embodiment, application to an air-cooled package air conditioner has been described. However, the present invention can be similarly applied to a water-cooled package air conditioner that cools a condenser with water.
[0030]
【The invention's effect】
According to the present invention as described above,
The air conditioner according to the first and second aspects of the present invention determines the priority of each control in consideration of the fact that a plurality of controls affect each other, and appropriately corrects the operation amount of each control according to the priority. Therefore, room temperature control, blow-out air temperature control, and superheat control can be performed appropriately while correcting their mutual influences, thereby enabling stable control without hunting phenomenon and refrigeration cycle operation to enable compression. Problems such as liquid compression and discharge temperature rise of the machine can be eliminated.
[0031]
In the control method for an air conditioner according to a third aspect of the present invention, a priority order is set for each control in consideration of the fact that a plurality of controls affect each other, and an operation amount of each control is appropriately corrected according to the priority order. As a result, indoor temperature control, blown air temperature control, and superheat control can be performed appropriately while correcting their mutual influences, thereby enabling stable control without hunting phenomenon and refrigeration cycle operation to enable compression. Problems such as liquid compression and discharge temperature rise of the machine can be eliminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a refrigeration cycle and a control block according to one embodiment.
FIG. 2 is a flowchart for explaining the operation of the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 3 ... Outdoor heat exchanger 5 ... Electrical expansion valve 6 ... Indoor heat exchanger 11 ... Compressor capacity control device 12 ... Outdoor blower 13 ... Indoor blower 14 ... Blow volume control device 15 ... Indoor temperature sensor 16 ... Blow-out air temperature sensor 17 ... Superheat degree sensor 20 ... Control device

Claims (3)

圧縮機、室外熱交換器、膨張弁、室内熱交換器を配管で接続した冷凍サイクルと、
前記室外熱交換器用の室外側送風機と、
前記室内熱交換器用の室内側送風機と、
室内温度を検出する室内温度検出手段と、
この室内温度検出手段で検出される室内温度と室内温度設定値との差に応じて前記圧縮機の容量を操作し、室内温度を制御する第1制御手段と、
室内への吹出空気温度を検出する吹出温度検出手段と、
この吹出温度検出手段で検出される吹出空気温度と吹出空気温度設定値との差に応じて前記室内側送風機の風量を操作し、吹出空気温度を制御する第2制御手段と、
前記冷凍サイクル中の冷媒の過熱度を検出する過熱度検出手段と、
この過熱度検出手段で検出される過熱度と過熱度設定値との差に応じて前記膨張弁の開度を操作し、過熱度を制御する第3制御手段と、
この第1、第2、および第3制御手段のうち、優先順位の高い方の制御手段の操作によって優先順位の低い方の制御手段の制御対象に生じるであろう変化量を求め、その変化量に応じて、優先順位の低い方の制御手段の操作量を修正する第4制御手段と、
を具備したことを特徴とする空気調和機。
A refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping;
An outdoor blower for the outdoor heat exchanger,
An indoor-side blower for the indoor heat exchanger,
Indoor temperature detecting means for detecting the indoor temperature;
First control means for operating the capacity of the compressor in accordance with the difference between the indoor temperature detected by the indoor temperature detection means and the indoor temperature set value to control the indoor temperature;
Blow-out temperature detecting means for detecting a temperature of blow-out air into the room;
Second control means for controlling the air flow rate of the indoor-side blower in accordance with a difference between the blow-off air temperature detected by the blow-off temperature detection means and the blow-off air temperature set value, and controlling the blow-off air temperature;
Superheat degree detection means for detecting the degree of superheat of the refrigerant in the refrigeration cycle,
Third control means for controlling the degree of superheat by operating the degree of opening of the expansion valve according to the difference between the degree of superheat detected by the degree of superheat detection and the set value of the degree of superheat;
Of the first, second, and third control means, the amount of change that would occur in the control target of the lower priority control means due to the operation of the higher priority control means is determined, and the change amount is calculated. A fourth control unit that corrects the operation amount of the control unit with the lower priority according to
An air conditioner comprising:
圧縮機、室外熱交換器、膨張弁、室内熱交換器を配管で接続した冷凍サイクルと、
前記室外熱交換器用の室外側送風機と、
前記室内熱交換器用の室内側送風機と、
室内温度を検出する室内温度検出手段と、
この室内温度検出手段で検出される室内温度と室内温度設定値との差に応じて前記圧縮機の容量を操作し、室内温度を制御する第1制御手段と、
室内への吹出空気温度を検出する吹出温度検出手段と、
この吹出温度検出手段で検出される吹出空気温度と吹出空気温度設定値との差に応じて前記室内側送風機の風量を操作し、吹出空気温度を制御する第2制御手段と、
前記冷凍サイクル中の冷媒の過熱度を検出する過熱度検出手段と、
この過熱度検出手段で検出される過熱度と過熱度設定値との差に応じて前記膨張弁の開度を操作し、過熱度を制御する第3制御手段と、
前記第1制御手段の容量操作によって第2制御手段の制御対象である吹出空気温度に生じるであろう温度変化量および第3制御手段の制御対象である過熱度に生じるであろう第1過熱度変化量を求め、そのうちの温度変化量に応じて第2制御手段の風量操作量を修正するとともに、この第2制御手段の操作によって第3制御手段の制御対象である過熱度に生じるであろう第2過熱度変化量を求め、この第2過熱度変化量と前記第1過熱度変化量とに応じて第3制御手段の過熱度操作量を修正する第4制御手段と、
を具備したことを特徴とする空気調和機。
A refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping;
An outdoor blower for the outdoor heat exchanger,
An indoor-side blower for the indoor heat exchanger,
Indoor temperature detecting means for detecting the indoor temperature;
First control means for operating the capacity of the compressor in accordance with the difference between the indoor temperature detected by the indoor temperature detection means and the indoor temperature set value to control the indoor temperature;
Blow-out temperature detecting means for detecting a temperature of blow-out air into the room;
Second control means for controlling the air flow rate of the indoor-side blower in accordance with a difference between the blow-off air temperature detected by the blow-off temperature detection means and the blow-off air temperature set value, and controlling the blow-off air temperature;
Superheat degree detection means for detecting the degree of superheat of the refrigerant in the refrigeration cycle,
Third control means for controlling the degree of superheat by operating the degree of opening of the expansion valve according to the difference between the degree of superheat detected by the degree of superheat detection and the set value of the degree of superheat;
The amount of temperature change that will occur in the blow-off air temperature that is the control target of the second control means and the first degree of superheat that will occur in the degree of superheat that is the control target of the third control means due to the capacity operation of the first control means The amount of change is determined, the amount of operation of the air flow of the second control means is corrected in accordance with the amount of change in temperature, and the operation of the second control means will cause the degree of superheat to be controlled by the third control means. A fourth control means for obtaining a second superheat change amount, and correcting the superheat degree operation amount of the third control means according to the second superheat change amount and the first superheat change amount;
An air conditioner comprising:
圧縮機、室外熱交換器、膨張弁、室内熱交換器を配管で接続した冷凍サイクルと、室外熱交換器用の室外側送風機と、室内熱交換器用の室内側送風機と、室内温度を検出する室内温度検出手段と、この室内温度検出手段で検出される室内温度と室内温度設定値との差に応じて圧縮機の容量を操作し室内温度を制御する第1制御手段と、室内への吹出空気温度を検出する吹出温度検出手段と、この吹出温度検出手段で検出される吹出空気温度と吹出空気温度設定値との差に応じて室内側送風機の風量を操作し吹出空気温度を制御する第2制御手段と、冷凍サイクル中の冷媒の過熱度を検出する過熱度検出手段と、この過熱度検出手段で検出される過熱度と過熱度設定値との差に応じて膨張弁の開度を操作し過熱度を制御する第3制御手段と、を備えた空気調和機において、
第1、第2、および第3制御手段のうち、優先順位の高い方の制御手段の操作によって優先順位の低い方の制御手段の制御対象に生じるであろう変化量を求め、その変化量に応じて、優先順位の低い方の制御手段の操作量を修正すること、を特徴とする空気調和機の制御方法。
A refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping, an outdoor blower for an outdoor heat exchanger, an indoor blower for an indoor heat exchanger, and an indoor room for detecting indoor temperature Temperature detection means; first control means for controlling the indoor temperature by operating the capacity of the compressor in accordance with a difference between the indoor temperature detected by the indoor temperature detection means and the indoor temperature set value; A blow-out temperature detecting means for detecting the temperature, and a second controlling the blow-out air temperature by operating the air volume of the indoor blower in accordance with a difference between the blow-out air temperature detected by the blow-out temperature detecting means and the blow-out air temperature set value. Control means, superheat degree detection means for detecting the degree of superheat of the refrigerant in the refrigeration cycle, and operating the degree of opening of the expansion valve according to the difference between the degree of superheat detected by the degree of superheat detection and the set value of the degree of superheat. And third control means for controlling the degree of superheat. In the example was the air conditioner,
Of the first, second, and third control means, the amount of change that will occur in the control target of the lower priority control means due to the operation of the higher priority control means is determined. A method of controlling an air conditioner, comprising: modifying an operation amount of a control means having a lower priority in response thereto.
JP19634896A 1996-07-25 1996-07-25 Air conditioner and control method thereof Expired - Lifetime JP3558788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19634896A JP3558788B2 (en) 1996-07-25 1996-07-25 Air conditioner and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19634896A JP3558788B2 (en) 1996-07-25 1996-07-25 Air conditioner and control method thereof

Publications (2)

Publication Number Publication Date
JPH1038350A JPH1038350A (en) 1998-02-13
JP3558788B2 true JP3558788B2 (en) 2004-08-25

Family

ID=16356353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19634896A Expired - Lifetime JP3558788B2 (en) 1996-07-25 1996-07-25 Air conditioner and control method thereof

Country Status (1)

Country Link
JP (1) JP3558788B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108278A (en) * 1999-10-05 2001-04-20 Daikin Ind Ltd Air conditioner
JP4910577B2 (en) * 2006-09-05 2012-04-04 ダイキン工業株式会社 Reverse phase detection device, air conditioner including the same, and reverse phase detection method
JP5602556B2 (en) * 2010-09-22 2014-10-08 株式会社Nttファシリティーズ Air conditioner indoor unit blowout temperature control method
US20200232683A1 (en) 2017-03-29 2020-07-23 Mitsubishi Electric Corporation Air-conditioning device, railway vehicle air-conditioning device, and method for controlling air-conditioning device
CN112944560A (en) * 2021-02-05 2021-06-11 青岛海尔空调电子有限公司 Fresh air ventilation system and ventilation control method and device thereof at night in winter

Also Published As

Publication number Publication date
JPH1038350A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
KR100540808B1 (en) Control method for Superheating of heat pump system
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
EP2270405B1 (en) Refrigerating device
US8522568B2 (en) Refrigeration system
JP4779791B2 (en) Air conditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
JP3835453B2 (en) Air conditioner
JP4418936B2 (en) Air conditioner
JP4389917B2 (en) Air conditioner
JP2004020064A (en) Method for controlling multi-chamber type air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
JP3558788B2 (en) Air conditioner and control method thereof
JP2005016782A (en) Method for controlling expansion valve for multi-room type air conditioner
KR101911256B1 (en) Gas heat pump system and Method for controlling it
JP2002174463A (en) Refrigerating apparatus
JP2006194526A (en) Air conditioner
KR100625568B1 (en) Multi type air conditioner
JP3555575B2 (en) Refrigeration equipment
JP2003028519A (en) Air conditioner
JP3627101B2 (en) Air conditioner
JP3661014B2 (en) Refrigeration equipment
KR100535687B1 (en) A Multi-type Air Conditioner
US20230131781A1 (en) Refrigeration cycle apparatus
JP2794853B2 (en) Separate type air conditioner for multiple rooms
KR100592672B1 (en) Multi type air conditioner and control method thereof it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term