JP2003156260A - Control method for air-conditioner - Google Patents

Control method for air-conditioner

Info

Publication number
JP2003156260A
JP2003156260A JP2001354151A JP2001354151A JP2003156260A JP 2003156260 A JP2003156260 A JP 2003156260A JP 2001354151 A JP2001354151 A JP 2001354151A JP 2001354151 A JP2001354151 A JP 2001354151A JP 2003156260 A JP2003156260 A JP 2003156260A
Authority
JP
Japan
Prior art keywords
temperature
compressor
heat exchanger
discharge temperature
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354151A
Other languages
Japanese (ja)
Inventor
Motoyoshi Fujishiro
基芳 藤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2001354151A priority Critical patent/JP2003156260A/en
Publication of JP2003156260A publication Critical patent/JP2003156260A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for an air-conditioner allowing the operation while maintaining always best refrigerating cycles without using additional sensors. SOLUTION: An ambient temperature sensor 9 for detecting an ambient temperature To, an indoor heat exchange temperature sensor 10 for detecting an intermediate temperature of the indoor heat exchanger 5 and a discharge temperature sensor 8 for detecting a discharge temperature Td of a compressor 1 are provided so that a condensation temperature Tc during cooling operation is calculated from a rotating speed N of the compressor, an evaporation temperature Te during cooling operation detected by the indoor heat exchange temperature sensor, a best degree of superheat SH is set corresponding to the evaporation temperature Te and the condensation temperature Tc and a target discharge temperature Tmd is calculated therefrom. The opening of an electronic expansion valve 4 is controlled so that the discharge temperature Td approaches the target discharge temperature Tmd. The operation is thus allowed in the best refrigerating cycles without using an intermediate point temperature sensor for an outdoor heat exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機の制御
方法に係わり、とくに、最適な冷凍サイクルを保った運
転を可能とする制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for an air conditioner, and more particularly to a control method that enables operation while maintaining an optimum refrigeration cycle.

【0002】[0002]

【従来の技術】従来、圧縮機、四方弁及び、室外熱交換
器、電子膨張弁、室内熱交換器とを順次配管して冷凍サ
イクルを構成してなり、前記四方弁を切換えることによ
り、冷房運転時は前記圧縮機により圧縮した高圧冷媒
を、室外熱交換器、電子膨張弁、室内熱交換器の順に、
暖房運転時は室内熱交換器、電子膨張弁、室外熱交換器
の順に流通し、最適な冷凍サイクルを保って運転を行な
う空気調和機は、前記冷凍サイクルの蒸発温度と圧縮吸
入管温度を検出し、運転中の過熱度を算出し、同過熱度
が最適な過熱度となるように、前記電子膨張弁の開度を
調節するように制御していた。しかし、この制御方法で
は正確な過熱度を検出しなければならず、正確な過熱度
を検出するには通常保護制御用に用いる室内熱交中間温
度センサと、室外熱交温度センサの他に、室内熱交入口
管温度と圧縮機吸入管温度を検出するセンサが必要とな
り、コストアップの要因となるという問題があった。ま
た、上記問題を解決するため、各運転モードに応じた圧
縮機の吐出管温度の基準温度を予め求めておき、運転時
に前記吐出管温度が前記基準温度となるように前記電子
膨張弁の開度を調節するように制御する方法も用いられ
ている。しかし、この方法の場合、室温条件の変化に対
応できず、一定の室温条件では良いが、常に最適な冷凍
サクルを保って運転することはできないという問題があ
った。
2. Description of the Related Art Conventionally, a refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, and an indoor heat exchanger. By switching the four-way valve, cooling is performed. During operation, the high-pressure refrigerant compressed by the compressor, the outdoor heat exchanger, the electronic expansion valve, the indoor heat exchanger in this order,
During heating operation, the air conditioner that flows through the indoor heat exchanger, the electronic expansion valve, and the outdoor heat exchanger in this order and operates while maintaining an optimal refrigeration cycle detects the evaporation temperature and compression suction pipe temperature of the refrigeration cycle. Then, the degree of superheat during operation is calculated, and the opening degree of the electronic expansion valve is controlled so that the degree of superheat becomes the optimum degree of superheat. However, in this control method, it is necessary to detect an accurate superheat degree, and in order to detect an accurate superheat degree, in addition to the indoor heat exchange intermediate temperature sensor normally used for protection control and the outdoor heat exchange temperature sensor, There is a problem that a sensor for detecting the indoor heat exchange inlet pipe temperature and the compressor suction pipe temperature is required, which causes a cost increase. Further, in order to solve the above problem, a reference temperature of the discharge pipe temperature of the compressor corresponding to each operation mode is obtained in advance, and the electronic expansion valve is opened so that the discharge pipe temperature becomes the reference temperature during operation. A method of controlling so as to adjust the degree is also used. However, in the case of this method, it is not possible to cope with changes in room temperature conditions, and there is a problem in that it is not possible to always maintain and operate an optimum refrigeration cycle, although it is possible under constant room temperature conditions.

【0003】[0003]

【発明が解決しようとする課題】本発明は以上述べた問
題点を解決し、センサを追加しなくとも、常に最適な冷
凍サイクルを保った運転を可能とした空気調和機の制御
方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for controlling an air conditioner that enables operation that always maintains an optimum refrigeration cycle without adding a sensor. Is intended.

【0004】[0004]

【課題を解決するための手段】本発明は上述の課題を解
決するため、圧縮機、四方弁及び、室外熱交換器、電子
膨張弁、室内熱交換器とを順次配管して冷凍サイクルを
構成してなり、前記四方弁を切換えることにより、冷房
運転時は前記圧縮機により圧縮した高圧冷媒を、室外熱
交換器、電子膨張弁、室内熱交換器の順に、暖房運転時
は室内熱交換器、電子膨張弁、室外熱交換器の順に流通
し、最適冷凍サイクルとなるように前記電子膨張弁の開
度を調節してなる空気調和機において、外気温度Toを
検出する外気温度センサと、前記室内熱交換器の中間温
度を検出する室内熱交温度センサと、前記圧縮機の吐出
温度を検出する吐出温度センサとを設け、所定の回転数
Nで圧縮機を作動して冷房運転を開始すると、前記外気
温度センサの検出する外気温度Toと、前記室内熱交温
度センサの検出する蒸発温度Teと、前記圧縮機の回転
数Nと前記外気温度Toと前記蒸発温度Teとにそれぞ
れ一定の係数a,b,cを乗算し、これらを加算して算
出した凝縮温度Tcと、前記検出された蒸発温度Teと
凝縮温度Tcに対してモリエル線図上で最適となるよう
に設定した過熱度SHとにそれぞれ一定の係数d,e,
fを乗算して加算することにより、理論サイクル時の吐
出温度Trdを算出し、同理論サイクル時の吐出温度T
rdを目標吐出温度Tmdとして、前記圧縮機の吐出温
度Tdが同目標吐出温度Tmdに近づくように、前記電
子膨張弁の開度を調節するようにした空気調和機の制御
方法としている。
In order to solve the above problems, the present invention constitutes a refrigeration cycle by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, and an indoor heat exchanger. By switching the four-way valve, the high-pressure refrigerant compressed by the compressor during the cooling operation is the outdoor heat exchanger, the electronic expansion valve, the indoor heat exchanger in this order, and the indoor heat exchanger during the heating operation. , An electronic expansion valve, an outdoor heat exchanger, and an air conditioner that adjusts the opening degree of the electronic expansion valve so as to achieve an optimum refrigeration cycle, and an outside air temperature sensor that detects an outside air temperature To; An indoor heat exchange temperature sensor for detecting the intermediate temperature of the indoor heat exchanger and a discharge temperature sensor for detecting the discharge temperature of the compressor are provided, and the compressor is operated at a predetermined rotation speed N to start the cooling operation. , Detection of the outside air temperature sensor The outside air temperature To, the evaporation temperature Te detected by the indoor heat exchange temperature sensor, the rotation speed N of the compressor, the outside air temperature To and the evaporation temperature Te are multiplied by constant coefficients a, b and c, respectively. Then, a constant coefficient d is calculated for each of the condensing temperature Tc calculated by adding these and the superheat degree SH set to be optimum on the Mollier diagram for the detected evaporation temperature Te and condensing temperature Tc. , E,
The discharge temperature Trd in the theoretical cycle is calculated by multiplying and adding f, and the discharge temperature T in the theoretical cycle is calculated.
The target discharge temperature Tmd is set to rd, and the opening degree of the electronic expansion valve is adjusted so that the discharge temperature Td of the compressor approaches the target discharge temperature Tmd.

【0005】前記圧縮機の回転数Nと凝縮温度Tcとに
一定の係数g,hを乗算し、これらを加算して算出した
補正値Thdを、前記理論サイクル時の吐出温度Trd
に加算した値を目標吐出温度Tmdとしてなる空気調和
機の制御方法としている。
A correction value Thd calculated by multiplying the number of revolutions N of the compressor and the condensing temperature Tc by constant coefficients g and h and adding them together is used as the discharge temperature Trd in the theoretical cycle.
Is used as the target discharge temperature Tmd.

【0006】[0006]

【発明の実施の形態】以下、図面に基づいて本発明によ
る空気調和機の制御方法を詳細に説明する。図1は本発
明による空気調和機の制御方法の一実施例を示す概略構
成図である。図1において、1はガス冷媒を圧縮する圧
縮機、2は冷媒の方向を切換える四方弁、3は冷媒と外
気と熱交換する室外熱交換器、4はその開度を調節して
圧縮された冷媒を減圧する電子膨張弁、5は冷媒と室内
空気と熱交換する室内熱交換器であり、これらを順次配
管して冷凍サイクルを構成している。そして、前記四方
弁2を切換えることにより、冷房運転と暖房運転とを切
換えて、前記圧縮機1で圧縮された圧縮冷媒を、冷房運
転時は室外熱交換器3、電子膨張弁4、室内熱交換器5
の順に、暖房運転時は室内熱交換器5、電子膨張弁4、
室外熱交換器3の順に流通して圧縮機1に循環するよう
にしている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a control method for an air conditioner according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a control method for an air conditioner according to the present invention. In FIG. 1, 1 is a compressor for compressing a gas refrigerant, 2 is a four-way valve for switching the direction of the refrigerant, 3 is an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, and 4 is compressed by adjusting its opening degree. Electronic expansion valves 5 for reducing the pressure of the refrigerant are indoor heat exchangers for exchanging heat between the refrigerant and the indoor air, and these are sequentially piped to form a refrigeration cycle. Then, by switching the four-way valve 2, the cooling operation and the heating operation are switched, and the compressed refrigerant compressed by the compressor 1 is transferred to the outdoor heat exchanger 3, the electronic expansion valve 4, and the indoor heat during the cooling operation. Exchanger 5
In this order, during the heating operation, the indoor heat exchanger 5, the electronic expansion valve 4,
The outdoor heat exchanger 3 is circulated in this order and circulated to the compressor 1.

【0007】また、6は室外機に設けられる室外機制御
部、7は室内機に設けられる室内機制御部、8は圧縮機
1の吐出温度Tdを検出する吐出温度センサ、9は外気
温度を検出する外気温度センサ、10は室内熱交換器の
中間温度を検出する室内熱交温度センサであり、前記吐
出温度センサ8と外気温度センサ9は直接前記室外機制
御部6に接続され、室内熱交温度センサ10は室内機制
御部7を介して前記室外機制御部6に接続されている。
前記室内熱交温度センサ10は、冷房運転時に冷媒の蒸
発温度Teを検出する。
Further, 6 is an outdoor unit controller provided in the outdoor unit, 7 is an indoor unit controller provided in the indoor unit, 8 is a discharge temperature sensor for detecting a discharge temperature Td of the compressor 1, and 9 is an outside air temperature. An outdoor air temperature sensor 10 for detecting is an indoor heat exchange temperature sensor for detecting an intermediate temperature of the indoor heat exchanger, and the discharge temperature sensor 8 and the outdoor air temperature sensor 9 are directly connected to the outdoor unit control unit 6 to provide indoor heat. The cross temperature sensor 10 is connected to the outdoor unit controller 6 via the indoor unit controller 7.
The indoor heat exchange temperature sensor 10 detects the evaporation temperature Te of the refrigerant during the cooling operation.

【0008】図2は本発明の空気調和機の制御方法を説
明するためのフローチャート、図3はモリエル線図上に
理論サイクルを示した図,図4は冷房時の凝縮温度Tc
と外気温度、圧縮機の回転数N及び蒸発温度Teとの関
係を示す図である。以下、図2〜図4を参照して冷房時
の制御方法を説明する。前記四方弁2を冷房側に切換え
て圧縮機1を設定温度、室内温度等から決まる所定の回
転数Nで作動することにより、冷房運転が開始される。
冷房運転が開始されると、前記圧縮機1の回転数Nと、
前記外気温度センサ9により検出される外気温度To
と、前記室内熱交温度センサ10により検出される蒸発
温度Teとが前記室外機制御部6に入力される(ST
1)。図4に示すように、凝縮温度Tcは外気温度T
o、圧縮機の回転数N、蒸発温度Teにそれぞれ比例し
ていることから、前記回転数Nと外気温度Toと蒸発温
度Teとにそれぞれ一定の係数a,b,cを乗算し、こ
れらを加算して凝縮温度Tcを Tc=a×N+b×To+c×Te (a,b,cは係数)・・・式1 として算出する(ST2)。このようにして求められた
凝縮温度Tcと、前記蒸発温度Teとから、図3に示す
モリエル線図上で、冷凍サイクルが最適となる過熱度S
Hを入力し(ST3)図3のA点を求め、この蒸発温度
Teと凝縮温度Tcと過熱度SHにそれぞれ一定の係数
d,e,fを乗算し、これらを加算することにより、理
論サイクル時の吐出温度Trdを、 Trd=d×Te+e×Tc+f×SH (d,e,fは係数)・・・式2 として算出する(ST4)。されに、前記圧縮機1の回
転数Nと凝縮温度Tcとにそれぞれ一定の係数g,hを
乗算し、これらを加算することにより補正値Thdを、 Thd=g×N+h×Tc (g,hは係数)・・・式3 として算出する(ST5)。そして、前記理論サイクル
時の吐出温度Trdに補正値Thdをを加算して、図3
に示す吐出温度の目標値Tmdを、 Tmd=Trd+Thd ・・・式4 として算出する(ST6)。つぎに、前記吐出温度セン
サ8の検出する吐出温度Tdを前記室外機制御部6に入
力し、同吐出温度Tdが吐出温度の目標値Tmdに近づ
くように(ST7)前記電子膨張弁4の開度を調節する
(ST8)。
FIG. 2 is a flow chart for explaining the control method of the air conditioner of the present invention, FIG. 3 is a diagram showing a theoretical cycle on the Mollier diagram, and FIG. 4 is a condensing temperature Tc during cooling.
It is a figure which shows the relationship between the outside temperature, the rotation speed N of a compressor, and evaporation temperature Te. Hereinafter, a control method during cooling will be described with reference to FIGS. The cooling operation is started by switching the four-way valve 2 to the cooling side and operating the compressor 1 at a predetermined rotation speed N determined by the set temperature, the room temperature and the like.
When the cooling operation is started, the rotation speed N of the compressor 1 and
Outside air temperature To detected by the outside air temperature sensor 9
And the evaporation temperature Te detected by the indoor heat exchange temperature sensor 10 are input to the outdoor unit controller 6 (ST
1). As shown in FIG. 4, the condensation temperature Tc is the outside air temperature T.
o, the rotation speed N of the compressor, and the evaporation temperature Te, which are proportional to each other. Therefore, the rotation speed N, the outside air temperature To, and the evaporation temperature Te are multiplied by constant coefficients a, b, and c, respectively. The condensing temperature Tc is calculated by adding Tc = a × N + b × To + c × Te (a, b, and c are coefficients) ... Equation 1 (ST2). From the condensation temperature Tc thus obtained and the evaporation temperature Te, the superheat degree S at which the refrigeration cycle becomes optimum on the Mollier diagram shown in FIG.
By inputting H (ST3), the point A in FIG. 3 is obtained, and the evaporation temperature Te, the condensation temperature Tc, and the superheat degree SH are multiplied by constant coefficients d, e, f, respectively, and these are added to obtain the theoretical cycle. The discharge temperature Trd at this time is calculated as Trd = d × Te + e × Tc + f × SH (d, e, f are coefficients) ... Equation 2 (ST4). In addition, the rotational speed N of the compressor 1 and the condensing temperature Tc are respectively multiplied by constant coefficients g and h, and the correction values Thd are calculated by adding these, Thd = g × N + h × Tc (g, h Is a coefficient) ... Calculated as Equation 3 (ST5). Then, the correction value Thd is added to the discharge temperature Trd during the theoretical cycle, and
The target value Tmd of the discharge temperature shown in is calculated as Tmd = Trd + Thd (Equation 4) (ST6). Next, the discharge temperature Td detected by the discharge temperature sensor 8 is input to the outdoor unit control unit 6 so that the discharge temperature Td approaches the target value Tmd of the discharge temperature (ST7) to open the electronic expansion valve 4. Adjust the degree (ST8).

【0009】以上説明したように、吐出温度Tdが最適
な冷凍サイクルとなるように、室内温度条件に関わる圧
縮機の回転数N、蒸発温度Te、外気温度や圧縮機の性
能に関わる凝縮温度Tc及び、圧縮機固有の性能に関わ
る補正値を基に算出した吐出温度の目標値Tmdに近づ
くように電子膨張弁4の開度を調節するので、室内温度
条件、外気温度条件及び圧縮機の性能条件が変わっても
最適な冷凍サイクルで運転することが可能な空気調和機
の制御方法を提供することができる。
As described above, the number of revolutions N of the compressor relating to the indoor temperature conditions, the evaporation temperature Te, the outside air temperature, and the condensing temperature Tc relating to the performance of the compressor so that the discharge temperature Td becomes the optimum refrigeration cycle. Also, since the opening of the electronic expansion valve 4 is adjusted so as to approach the target value Tmd of the discharge temperature calculated based on the correction value related to the performance peculiar to the compressor, the indoor temperature condition, the outside air temperature condition, and the performance of the compressor. It is possible to provide a control method for an air conditioner that can operate in an optimum refrigeration cycle even if conditions change.

【0010】[0010]

【発明の効果】以上説明したように、本発明による空気
調和機によれば、冷房運転時に、外気温度Toと、蒸発
温度Teとを検出し、圧縮機の回転数Nと前記外気温度
Toと前記蒸発温度Teとから凝縮温度Tcを算出し、
前記検出された蒸発温度Teと算出された凝縮温度Tc
とモリエル線図上で最適となるように設定した過熱度S
Hとにそれぞれ一定の係数d,e,fを乗算して加算す
ることにより、理論サイクル時の吐出温度Trdを算出
し、同理論サイクル時の吐出温度Trdを目標吐出温度
Tmdとして、前記圧縮機の吐出温度Tdが同目標吐出
温度Tmdに近づくように、前記電子膨張弁の開度を調
節するようにしたので、凝縮温度検出用の温度サンサを
設けなくとも、冷房運転時に、常に最適な冷凍サイクル
となる過熱度を保つことができる。
As described above, according to the air conditioner of the present invention, the outside air temperature To and the evaporation temperature Te are detected during the cooling operation, and the rotation speed N of the compressor and the outside air temperature To are detected. Calculating the condensation temperature Tc from the evaporation temperature Te,
The detected evaporation temperature Te and the calculated condensation temperature Tc
And superheat degree S set to be optimum on the Mollier diagram
The discharge temperature Trd in the theoretical cycle is calculated by multiplying H and a constant coefficient d, e, f and adding them, and the discharge temperature Trd in the theoretical cycle is set as the target discharge temperature Tmd. Since the opening temperature of the electronic expansion valve is adjusted so that the discharge temperature Td of the battery is close to the target discharge temperature Tmd, even if the temperature sensor for detecting the condensation temperature is not provided, the optimum refrigeration is always performed during the cooling operation. It is possible to maintain a cycle of superheat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空気調和機の制御方法の一実施例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a control method for an air conditioner according to the present invention.

【図2】本発明による空気調和機の制御方法の動作を説
明するフローチャートである。
FIG. 2 is a flowchart illustrating the operation of the control method for an air conditioner according to the present invention.

【図3】本発明による空気調和機の制御方法の動作を説
明するモリエル線図である。
FIG. 3 is a Mollier diagram for explaining the operation of the control method for an air conditioner according to the present invention.

【図4】冷房時の凝縮温度Tcと外気温度、圧縮機の回
転数N及び蒸発温度Teとの関係を示す図である。
FIG. 4 is a diagram showing a relationship between a condensation temperature Tc during cooling, an outside air temperature, a rotation speed N of a compressor, and an evaporation temperature Te.

【図5】従来の空気調和機の制御方法を示す概略構成図
である。
FIG. 5 is a schematic configuration diagram showing a control method of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 電子膨張弁 5 室内熱交換器 6 室外機制御部 7 室内機制御部 8 吐出温度センサ 9 外気温度センサ 10 室内熱交温度センサ 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 Electronic expansion valve 5 Indoor heat exchanger 6 Outdoor unit control unit 7 Indoor unit controller 8 Discharge temperature sensor 9 Outside air temperature sensor 10 Indoor heat exchange temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁及び、室外熱交換器、電
子膨張弁、室内熱交換器とを順次配管して冷凍サイクル
を構成してなり、前記四方弁を切換えることにより、冷
房運転時は前記圧縮機により圧縮した高圧冷媒を、室外
熱交換器、電子膨張弁、室内熱交換器の順に、暖房運転
時は室内熱交換器、電子膨張弁、室外熱交換器の順に流
通し、最適冷凍サイクルとなるように前記電子膨張弁の
開度を調節してなる空気調和機において、 外気温度Toを検出する外気温度センサと、前記室内熱
交換器の中間温度を検出する室内熱交温度センサと、前
記圧縮機の吐出温度を検出する吐出温度センサとを設
け、 所定の回転数Nで圧縮機を作動して冷房運転を開始する
と、前記外気温度センサの検出する外気温度Toと、前
記室内熱交温度センサの検出する蒸発温度Teと、前記
圧縮機の回転数Nと前記外気温度Toと前記蒸発温度T
eとにそれぞれ一定の係数a,b,cを乗算し、これら
を加算して算出した凝縮温度Tcと、前記検出された蒸
発温度Teと凝縮温度Tcに対してモリエル線図上で最
適となるように設定した過熱度SHとにそれぞれ一定の
係数d,e,fを乗算して加算することにより、理論サ
イクル時の吐出温度Trdを算出し、同理論サイクル時
の吐出温度Trdを目標吐出温度Tmdとして、前記圧
縮機の吐出温度Tdが同目標吐出温度Tmdに近づくよ
うに、前記電子膨張弁の開度を調節するようにしたこと
を特徴とする空気調和機の制御方法。
1. A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, and an indoor heat exchanger, and by switching the four-way valve, a cooling operation is performed. The high-pressure refrigerant compressed by the compressor flows in the order of the outdoor heat exchanger, the electronic expansion valve, and the indoor heat exchanger, and in the heating operation, the indoor heat exchanger, the electronic expansion valve, and the outdoor heat exchanger in that order, which is optimal. In an air conditioner in which the opening degree of the electronic expansion valve is adjusted to form a refrigeration cycle, an outside air temperature sensor that detects an outside air temperature To and an indoor heat exchange temperature sensor that detects an intermediate temperature of the indoor heat exchanger And a discharge temperature sensor for detecting the discharge temperature of the compressor. When the compressor is operated at a predetermined rotation speed N to start the cooling operation, the outside air temperature To detected by the outside air temperature sensor and the indoor temperature Detection of heat exchanger temperature sensor That the evaporation temperature Te and, wherein the rotational speed N of the compressor and the outside air temperature To evaporation temperature T
e is multiplied by constant coefficients a, b and c, respectively, and these are added together to obtain the optimum condensation temperature Tc and the detected evaporation temperature Te and condensation temperature Tc on the Mollier diagram. The superheat degree SH set as above is multiplied by constant coefficients d, e, and f, respectively, and added to calculate the discharge temperature Trd during the theoretical cycle, and the discharge temperature Trd during the theoretical cycle is calculated as the target discharge temperature. A control method for an air conditioner, wherein the opening degree of the electronic expansion valve is adjusted so that the discharge temperature Td of the compressor approaches the target discharge temperature Tmd as Tmd.
【請求項2】 前記圧縮機の回転数Nと凝縮温度Tcと
に一定の係数g,hを乗算し、これらを加算して算出し
た補正値Thdを、前記理論サイクル時の吐出温度Tr
dに加算した値を目標吐出温度Tmdとしてなることを
特徴とする請求項1記載の空気調和機の制御方法。
2. A correction value Thd calculated by multiplying the number of revolutions N of the compressor and the condensing temperature Tc by constant coefficients g and h, and adding them to obtain a discharge temperature Tr during the theoretical cycle.
The method for controlling an air conditioner according to claim 1, wherein a value added to d is used as the target discharge temperature Tmd.
JP2001354151A 2001-11-20 2001-11-20 Control method for air-conditioner Pending JP2003156260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354151A JP2003156260A (en) 2001-11-20 2001-11-20 Control method for air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354151A JP2003156260A (en) 2001-11-20 2001-11-20 Control method for air-conditioner

Publications (1)

Publication Number Publication Date
JP2003156260A true JP2003156260A (en) 2003-05-30

Family

ID=19166050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354151A Pending JP2003156260A (en) 2001-11-20 2001-11-20 Control method for air-conditioner

Country Status (1)

Country Link
JP (1) JP2003156260A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212078A (en) * 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
WO2018221875A1 (en) * 2017-05-31 2018-12-06 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
CN108981101A (en) * 2018-06-28 2018-12-11 珠海格力电器股份有限公司 A kind of control method of electric expansion valve, control device and a kind of unit
CN114234466A (en) * 2021-11-03 2022-03-25 浙江大学杭州国际科创中心 Electronic expansion valve control method for optimizing operation of water source carbon dioxide heat pump system
WO2023098589A1 (en) * 2021-12-01 2023-06-08 Qingdao Haier Air Conditioner General Corp., Ltd. Method of operating an electronic expansion valve in an air conditioner unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212078A (en) * 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
WO2018221875A1 (en) * 2017-05-31 2018-12-06 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
KR20180131150A (en) * 2017-05-31 2018-12-10 삼성전자주식회사 Air conditioner and control method thereof
CN110945301A (en) * 2017-05-31 2020-03-31 三星电子株式会社 Air conditioner and method for controlling the same
US10976086B2 (en) 2017-05-31 2021-04-13 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
KR102354891B1 (en) * 2017-05-31 2022-01-25 삼성전자주식회사 Air conditioner and control method thereof
CN110945301B (en) * 2017-05-31 2022-05-17 三星电子株式会社 Air conditioner and method for controlling the same
CN108981101A (en) * 2018-06-28 2018-12-11 珠海格力电器股份有限公司 A kind of control method of electric expansion valve, control device and a kind of unit
CN108981101B (en) * 2018-06-28 2020-06-05 珠海格力电器股份有限公司 Control method and control device of electronic expansion valve and unit
CN114234466A (en) * 2021-11-03 2022-03-25 浙江大学杭州国际科创中心 Electronic expansion valve control method for optimizing operation of water source carbon dioxide heat pump system
WO2023098589A1 (en) * 2021-12-01 2023-06-08 Qingdao Haier Air Conditioner General Corp., Ltd. Method of operating an electronic expansion valve in an air conditioner unit

Similar Documents

Publication Publication Date Title
KR100540808B1 (en) Control method for Superheating of heat pump system
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
JP2008064439A (en) Air conditioner
EP3587948B1 (en) Air conditioner
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
JP2003156244A (en) Control method for air-conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP2016138666A (en) Air conditioner
JP3985092B2 (en) Air conditioner
US7921670B2 (en) Refrigeration apparatus
WO2014103520A1 (en) Refrigeration device
JP3497438B2 (en) Showcase cooling system
JP2003156260A (en) Control method for air-conditioner
JP2001194017A (en) Supercritical vapor compressor type freezing cycle
JP2001147052A (en) Air conditioner
JP2002147819A (en) Refrigeration unit
JP3661014B2 (en) Refrigeration equipment
JP2001201198A (en) Method for controlling air conditioner
JP2004116978A (en) Controller for multi-room air conditioner
KR100535687B1 (en) A Multi-type Air Conditioner
JP7284421B2 (en) air conditioner
JPH10160273A (en) Air conditioner
JP3719366B2 (en) Air conditioner
JP7139813B2 (en) air conditioner
JP2009115385A (en) Refrigerating device