WO2014103520A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2014103520A1
WO2014103520A1 PCT/JP2013/080020 JP2013080020W WO2014103520A1 WO 2014103520 A1 WO2014103520 A1 WO 2014103520A1 JP 2013080020 W JP2013080020 W JP 2013080020W WO 2014103520 A1 WO2014103520 A1 WO 2014103520A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
compressor
lower limit
refrigerant
temperature
Prior art date
Application number
PCT/JP2013/080020
Other languages
French (fr)
Japanese (ja)
Inventor
大介 豊田
敦 小倉
正志 一桐
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201380068262.5A priority Critical patent/CN104903660B/en
Publication of WO2014103520A1 publication Critical patent/WO2014103520A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-194015 discloses an air conditioner using R32.
  • refrigeration apparatuses are required to operate a compressor in a lower rotational speed range than before in order to cope with a wide range of loads with a single compressor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-194015
  • it is required to operate the compressor in a low rotational speed range.
  • An object of the present invention is a refrigeration apparatus that uses R32 as a refrigerant, and when the compressor is operated in a low speed range and the pressure difference between the high pressure side and the low pressure side of the compressor is large, An object of the present invention is to provide a refrigeration apparatus capable of improving COP.
  • the refrigeration apparatus is a refrigeration apparatus that uses R32 as a refrigerant.
  • the refrigeration apparatus includes a compressor, a condenser, an expansion mechanism, an evaporator, a determination unit, and a lower limit changing unit.
  • the compressor sucks low-pressure refrigerant from the suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant.
  • the condenser condenses the high-pressure refrigerant discharged from the compressor.
  • the expansion mechanism expands the high-pressure refrigerant that has exited the condenser.
  • the evaporator evaporates the refrigerant expanded by the expansion mechanism.
  • the determination unit determines whether the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor is equal to or greater than a predetermined value. Determine.
  • the lower limit changing unit changes the lower limit rotation speed of the compressor from the first lower limit value to a second lower limit value larger than the first lower limit value when the determination unit determines that the differential pressure state is present.
  • the compressor Is changed to a large value.
  • the amount of refrigeration oil supplied to the compressor's compression mechanism can be easily secured even when the compressor is operated in a low rotational speed range. It becomes possible to suppress the gap of the mechanism to be small. As a result, even when R32 is used as the refrigerant, leakage of the refrigerant in the compression mechanism of the compressor can be suppressed and the COP of the refrigeration apparatus can be improved in the low speed range.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect, further comprising a condensation temperature detection unit and an evaporation temperature detection unit.
  • the condensation temperature detector detects the condensation temperature of the condenser.
  • the evaporation temperature detector detects the evaporation temperature of the evaporator.
  • a determination part determines whether it is in a differential pressure state using condensation temperature and evaporation temperature.
  • the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor becomes a predetermined value or more. It is determined whether or not there is a differential pressure state.
  • the refrigeration apparatus is the refrigeration apparatus according to the second aspect, and the determination unit converts the condensation temperature and the evaporation temperature into a condensation pressure and an evaporation pressure, respectively.
  • a determination part determines whether it is in a differential pressure state using the converted condensing pressure and evaporation pressure.
  • it is determined whether or not there is a differential pressure state by converting the condensation temperature into the condensation pressure and the evaporation temperature into the evaporation pressure, and using the condensation pressure and the evaporation pressure. Therefore, when the compressor is operated in a low speed range, the refrigerant leakage of the compressor compression mechanism is suppressed while suppressing the cost of the refrigeration apparatus without using the pressure sensor for measuring the pressure.
  • the COP of the refrigeration apparatus can be improved.
  • the refrigeration apparatus is the refrigeration apparatus according to the second aspect, and the determination unit determines whether or not the differential pressure state is established using a temperature difference between the condensation temperature and the evaporation temperature. To do. Here, it is determined from the temperature difference between the condensation temperature and the evaporation temperature whether or not a differential pressure state exists. Therefore, when the compressor is operated in a low speed range, the refrigerant leakage of the compressor compression mechanism is suppressed while suppressing the cost of the refrigeration apparatus without using the pressure sensor for measuring the pressure.
  • the COP of the refrigeration apparatus can be improved.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect, further comprising a discharge pressure detection unit and a suction pressure detection unit.
  • the discharge pressure detection unit detects the pressure of the high-pressure refrigerant discharged from the compressor.
  • the suction pressure detection unit detects the pressure of the low-pressure refrigerant sucked into the compressor.
  • a determination part determines whether it is in a differential pressure state using the detection result of a discharge pressure detection part and a suction pressure detection part.
  • the differential pressure state can be accurately determined by actually measuring the discharge pressure and the suction pressure. Therefore, it is easy to improve the COP of the refrigeration apparatus by suppressing the leakage of the refrigerant of the compressor compression mechanism in the low rotation speed range.
  • the difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor is a predetermined value or more.
  • the lower limit rotational speed of the compressor is changed to a large value.
  • the refrigerant leakage of the compression mechanism of the compressor is suppressed when the compressor is operated in a low speed range while suppressing the cost of the refrigeration apparatus.
  • the COP of the refrigeration apparatus can be improved.
  • FIG. 1 It is a schematic block diagram of the air conditioning apparatus as a freezing apparatus which concerns on 1st Embodiment of this invention. It is a block diagram of the air conditioning apparatus of FIG. It is a flowchart of the determination process of a differential pressure state of the air conditioning apparatus of FIG. 1, and the change process of the minimum rotation speed of a compressor.
  • the air conditioning apparatus of FIG. 1 it is an image figure for demonstrating the effect of changing a minimum rotation speed from a 1st lower limit to a 2nd lower limit (> 1st lower limit).
  • a graph when the compressor is operated at the first lower limit value is shown on the left side, and a graph when the compressor is operated at the second lower limit value is shown on the right side.
  • the graph shows that when the pressure difference between the discharge pressure and the suction pressure of the compressor is a predetermined value, how much of the energy consumption (power consumption of the compressor) is used effectively (for air conditioning) It shows how much energy was wasted due to leakage of refrigerant from the gap of the compression mechanism.
  • It is a flowchart of the determination process of the differential pressure state concerning the modification A, and the change process of the minimum rotation speed of a compressor.
  • the temperature difference between the temperature detected by the outdoor heat exchanger sensor and the temperature detected by the indoor heat exchanger sensor is converted into a pressure difference, and the pressure difference is determined using the pressure difference.
  • It is a flowchart of the determination process of the differential pressure state concerning the modification A, and the change process of the minimum rotation speed of a compressor.
  • the differential pressure state is determined using the temperature difference between the temperature detected by the outdoor heat exchanger sensor and the temperature detected by the indoor heat exchanger sensor. It is a schematic block diagram of the air conditioning apparatus as a freezing apparatus which concerns on 2nd Embodiment of this invention. It is a block diagram of the air conditioning apparatus of FIG. It is a flowchart of the determination process of a differential pressure state of the air conditioning apparatus of FIG. 7, and the change process of the minimum rotation speed of a compressor.
  • the air conditioner 10 as a refrigeration apparatus is an air conditioner that can be operated by switching between a cooling operation and a heating operation.
  • the air conditioner 10 may not be operable by switching between the cooling operation and the heating operation, and may be an air conditioner capable of performing only the cooling operation or the heating operation.
  • the air conditioner 10 mainly includes an indoor unit 20, an outdoor unit 30, and a control unit 40.
  • the number of indoor units 20 is one, but a plurality of units may be used.
  • the air conditioner 10 has a refrigerant circuit 1 filled with R32 as a refrigerant.
  • the refrigerant circuit 1 has an indoor circuit 1 a accommodated in the indoor unit 20 and an outdoor circuit 1 b accommodated in the outdoor unit 30.
  • the indoor side circuit 1a and the outdoor side circuit 1b are connected by a liquid refrigerant communication pipe 71 and a gas refrigerant communication pipe 72.
  • (2) Detailed Configuration (2-1) Indoor Unit The indoor unit 20 is installed in a room that is subject to air conditioning.
  • the indoor unit 20 includes an indoor heat exchanger 21, an indoor fan 22, an indoor expansion valve 23, and an indoor heat exchange temperature sensor 24.
  • the indoor heat exchanger 21 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. During the cooling operation, the indoor heat exchanger 21 functions as an evaporator that evaporates refrigerant expanded by an outdoor expansion valve 36 and an indoor expansion valve 23 described later, and cools indoor air.
  • the indoor heat exchanger 21 functions as a condenser that condenses high-pressure refrigerant discharged from a compressor 31 described later during heating operation, and heats indoor air.
  • the liquid side of the indoor heat exchanger 21 is connected to the liquid refrigerant communication pipe 71, and the gas side of the indoor heat exchanger 21 is connected to the gas refrigerant communication pipe 72.
  • the indoor fan 22 is rotated by a fan motor, takes in indoor air, blows it to the indoor heat exchanger 21, and promotes heat exchange between the refrigerant flowing through the indoor heat exchanger 21 and the indoor air.
  • the indoor expansion valve 23 is an example of an expansion mechanism, and is an electric expansion valve with a variable opening provided for adjusting the pressure and flow rate of the refrigerant flowing in the indoor circuit 1a. During the cooling operation, the indoor expansion valve 23 expands (depressurizes) the refrigerant flowing from the outdoor heat exchanger 34 of the outdoor unit 30 described later, which functions as a condenser, to the indoor heat exchanger 21 that functions as an evaporator. .
  • the indoor expansion valve 23 expands (depressurizes) the refrigerant flowing from the indoor heat exchanger 21 that functions as a condenser to the outdoor heat exchanger 34 that functions as an evaporator.
  • the indoor heat exchanger temperature sensor 24 is a thermistor that measures the temperature of the indoor heat exchanger 21.
  • the indoor heat exchanger temperature sensor 24 is attached to the indoor heat exchanger 21.
  • the indoor heat exchanger temperature sensor 24 functions as a condensing temperature detector that detects the condensing temperature Tc.
  • the indoor heat exchanger temperature sensor 24 functions as an evaporation temperature detection unit that detects the evaporation temperature Te.
  • the outdoor unit 30 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor fan 35, an outdoor expansion valve 36, an outdoor heat exchanger temperature sensor 37, and a discharge.
  • a temperature sensor 51 is provided.
  • the compressor 31, the four-way switching valve 33, the outdoor heat exchanger 34, and the outdoor expansion valve 36 are connected by refrigerant piping.
  • (2-2-1) Connection of Components by Refrigerant Piping Connection of components by the refrigerant piping of the outdoor unit 30 will be described.
  • the suction port of the compressor 31 and the four-way switching valve 33 are connected by a suction pipe 81.
  • the discharge port of the compressor 31 and the four-way switching valve 33 are connected by a discharge pipe 82.
  • the four-way switching valve 33 and the gas side of the outdoor heat exchanger 34 are connected by a first gas refrigerant pipe 83.
  • the outdoor heat exchanger 34 and the liquid refrigerant communication pipe 71 are connected by a liquid refrigerant pipe 84.
  • the liquid refrigerant pipe 84 is provided with an outdoor expansion valve 36.
  • the four-way switching valve 33 and the gas refrigerant communication pipe 72 are connected by a second gas refrigerant pipe 85.
  • the compressor 31 drives the compression mechanism with a motor, thereby sucking low-pressure gas refrigerant from the suction pipe 81 and supplying the high-pressure gas refrigerant compressed by the compression mechanism to the discharge pipe 82. Discharge.
  • the compressor 31 is a rotary compressor, it is not limited to this, For example, a scroll compressor may be sufficient.
  • the compressor 31 is an inverter type compressor capable of changing the rotational speed N (the rotational speed of the motor of the compressor 31).
  • the movement of the compressor 31 is controlled by a compressor control unit 41b described later.
  • the compressor control unit 41b controls the rotational speed N of the compressor 31 according to the degree of divergence between the temperature (room temperature) of the air conditioning target space and the set temperature.
  • the four-way switching valve 33 switches the flow direction of the refrigerant when the air-conditioning apparatus 10 is switched between the cooling operation and the heating operation.
  • the discharge pipe 82 and the first gas refrigerant pipe 83 are connected, and the suction pipe 81 and the second gas refrigerant pipe 85 are connected (see the solid line in FIG. 1).
  • the discharge pipe 82 and the second gas refrigerant pipe 85 are connected, and the suction pipe 81 and the first gas refrigerant pipe 83 are connected (see the broken line in FIG. 1).
  • the outdoor heat exchanger 34 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins.
  • the outdoor heat exchanger 34 functions as a condenser that condenses the high-pressure refrigerant discharged from the compressor 31 by exchanging heat between the outdoor air and the refrigerant during the cooling operation.
  • the outdoor heat exchanger 34 functions as an evaporator that evaporates the refrigerant expanded by the indoor expansion valve 23 and the outdoor expansion valve 36 by exchanging heat between the outdoor air and the refrigerant during heating operation.
  • Outdoor Fan The outdoor fan 35 is rotated by a fan motor and takes outdoor air into the outdoor unit 30. The taken outdoor air passes through the outdoor heat exchanger 34 and is finally discharged out of the outdoor unit 30.
  • the outdoor fan 35 promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 34 and outdoor air.
  • the outdoor expansion valve 36 is an example of an expansion mechanism, and an electric expansion with variable opening provided for adjusting the pressure and flow rate of the refrigerant flowing in the outdoor circuit 1b. It is a valve.
  • the outdoor expansion valve 36 expands (depressurizes) the refrigerant flowing from the outdoor heat exchanger 34 functioning as a condenser to the indoor heat exchanger 21 functioning as an evaporator.
  • the outdoor expansion valve 36 expands (depressurizes) the refrigerant flowing from the indoor heat exchanger 21 that functions as a condenser to the outdoor heat exchanger 34 that functions as an evaporator.
  • the outdoor heat exchange temperature sensor 37 is a thermistor that measures the temperature of the outdoor heat exchanger 34.
  • the outdoor heat exchange temperature sensor 37 is attached to the outdoor heat exchanger 34.
  • the outdoor heat exchanger temperature sensor 37 functions as a condensing temperature detector that detects the condensing temperature Tc.
  • the outdoor heat exchanger temperature sensor 37 functions as an evaporation temperature detection unit that detects the evaporation temperature Te when the outdoor heat exchanger 34 functions as an evaporator.
  • the discharge temperature sensor 51 is a thermistor for detecting the temperature of the refrigerant discharged from the compressor 31.
  • the discharge temperature sensor 51 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82.
  • the temperature detected by the discharge temperature sensor 51 is used for control of the compressor 31 (including protection control of the compressor 31).
  • (2-3) Control Unit The control unit 40 controls the movement of the air conditioner 10. In FIG. 2, the block diagram of the air conditioning apparatus 10 containing the control unit 40 is shown.
  • the control unit 40 includes a control unit 41 made up of a microcomputer or the like, a storage unit 42 made up of a memory such as RAM or ROM, and an input unit 43 (remote control).
  • the control unit 40 includes each configuration of the indoor unit 20 and the outdoor unit 30, a compressor 31, a four-way switching valve 33, an outdoor fan 35, an outdoor expansion valve 36, an indoor fan 22, an indoor expansion valve 23, a discharge temperature sensor 51, an outdoor The heat exchange temperature sensor 37, the indoor heat exchange temperature sensor 24, and the like are electrically connected.
  • the control unit 41 controls the air conditioner 10 by reading and executing the program stored in the storage unit 42.
  • the control unit 41 exchanges control signals with the input unit 43 in order to operate the indoor unit 20.
  • the control part 41 controls the driving
  • the control unit 41 controls various devices of the indoor unit 20 and the outdoor unit 30 according to operating conditions (for example, according to the degree of deviation between the temperature (room temperature) of the air-conditioning target space and the set temperature).
  • the control part 41 has the determination part 41a, the compressor control part 41b, and the lower limit change part 41c as a function part. The determination unit 41a, the compressor control unit 41b, and the lower limit changing unit 41c will be described later.
  • the storage unit 42 stores a program to be executed by the control unit 41 and various information.
  • the storage unit 42 includes a conversion information storage area 42 a that stores temperature-pressure conversion information, and an upper and lower limit storage area 42 b that stores the lower limit rotation speed NL and the upper limit rotation speed NH of the compressor 31.
  • the conversion information storage area 42a and the upper / lower limit storage area 42b will be described later.
  • the determination unit 41a includes the pressure of the high-pressure refrigerant discharged from the compressor (discharge pressure Po) and the low pressure sucked into the compressor.
  • the determination unit 41a includes the condensation temperature Tc (measured value of the indoor heat exchanger temperature sensor 24 or the measured value of the outdoor heat exchanger temperature sensor 37) and the evaporation temperature Te (measured value of the outdoor heat exchanger temperature sensor 37 or The measured value of the indoor heat exchanger temperature sensor 24) is used to determine whether or not it is in a differential pressure state.
  • the compressor control unit 41b starts / stops the compressor 31 and controls the compressor 31 according to the operating conditions of the air conditioner 10, various control signals, and the like.
  • the rotational speed N (the rotational speed of the motor of the compressor 31) is determined and controlled.
  • the compressor control unit 41b controls the rotation speed N of the motor of the compressor 31 according to the degree of deviation between the temperature (room temperature) of the space that is the air-conditioning target of the air conditioner 10 and the set temperature.
  • the rotation speed N of the compressor 31 is controlled by a value between a lower limit rotation speed NL and an upper limit rotation speed NH stored in an upper / lower limit storage area 42b described later.
  • (2-3-1-3) Lower Limit Changing Unit The lower limit changing unit 41c changes the lower limit rotational speed NL of the compressor 31 by rewriting the value of the lower limit rotational speed NL stored in the upper / lower limit storage area 42b.
  • the lower limit change unit 41c changes (sets) the lower limit rotation speed NL of the compressor to the second lower limit value N2.
  • the lower limit changing unit 41c changes (sets) the lower limit rotation speed NL of the compressor to the first lower limit value N1 when the determination unit 41a determines that the differential pressure state is not present.
  • the change of the lower limit rotational speed NL by the lower limit changing unit 41c will be described later.
  • the conversion information storage area 42a may store a relational expression between the condensation temperature (evaporation temperature) and the condensation pressure (evaporation pressure) as temperature pressure conversion information. . (2-3-2-2) Upper / Lower Limit Storage Area
  • the upper / lower limit storage area 42b stores an upper limit (upper limit rotational speed NH) and a lower limit (lower limit rotational speed NL) of the rotational speed N of the compressor 31.
  • the determination part 41a determines that it is not in the differential pressure state
  • the first lower limit value N1 is stored as the lower limit rotation speed NL in the upper and lower limit storage area 42b.
  • the upper and lower limit storage area 42b stores the second lower limit value N2 as the lower limit rotation speed NL.
  • the second lower limit value N2 is larger than the first lower limit value N1.
  • the first lower limit value N1 is 4 rps
  • the second lower limit value N2 is 6 rps.
  • the lower limit rotation speed NL in the upper / lower limit storage area 42b is set to the first lower limit value N1 or the second lower limit value N2 by being changed by the lower limit changing unit 41c.
  • the input unit 43 is a remote controller for the air conditioning apparatus 10.
  • the input unit 43 receives various inputs from the user of the air conditioning apparatus 10.
  • Various inputs received from the user by the input unit 43 include an operation / stop command for the air conditioner 10, an operation mode (heating mode / cooling mode) of the air conditioner 10, a set temperature of the air conditioner 10, and the like.
  • (3) Differential Pressure State Determination Process and Compressor Lower Limit Rotation Speed Change Process Hereinafter, the differential pressure state determination process and the lower limit rotation speed NL change process of the compressor 31 will be described with reference to the flowchart of FIG. To do.
  • step S ⁇ b> 1 the determination unit 41 a acquires measurement values of the indoor heat exchange temperature sensor 24 and the outdoor heat exchange temperature sensor 37. If the air conditioner 10 is in the cooling operation, the measured value of the outdoor heat exchanger temperature sensor 37 is acquired as the condensation temperature Tc, and the measured value of the indoor heat exchanger temperature sensor 24 is acquired as the evaporation temperature Te. If the air conditioner 10 is in the heating operation, the measured value of the indoor heat exchanger temperature sensor 24 is acquired as the condensation temperature Tc, and the measured value of the outdoor heat exchanger temperature sensor 37 is acquired as the evaporation temperature Te. Thereafter, the process proceeds to step S2.
  • step S2 the determination unit 41a converts the aggregation temperature Tc obtained in step S1 into the aggregation pressure Pc using the temperature / pressure conversion information stored in the conversion information storage area 42a, and converts the evaporation temperature Te into the evaporation pressure Pe. Convert to. Thereafter, the process proceeds to step S3.
  • step S3 the determination unit 41a calculates a pressure difference ⁇ P between the condensation pressure Pc obtained in step S2 and the evaporation pressure Pe.
  • the pressure difference ⁇ P is calculated by subtracting the evaporation pressure Pe from the condensation pressure Pc. Note that the pressure difference ⁇ P between the condensation pressure Pc and the evaporation pressure Pe approximates the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31.
  • step S4 the determination unit 41a determines whether or not the pressure difference ⁇ P is equal to or greater than a predetermined value A. If the pressure difference ⁇ P is determined to be greater than or equal to the predetermined value A, it is determined that the pressure difference is present (the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is greater than or equal to the predetermined value A), and step Proceed to S5. When it is determined that the pressure difference ⁇ P is smaller than the predetermined value A, it is determined that the pressure difference state is not established, and the process proceeds to step S7.
  • step S5 the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the first lower limit value N1.
  • the process proceeds to step S6.
  • the lower limit changing unit 41c changes the lower limit rotation speed NL to the second lower limit value N2. Thereafter, the process ends.
  • step S7 the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the second lower limit value N2. If it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is the second lower limit value N2, the process proceeds to step S8. On the other hand, if it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is not the second lower limit value N2 (is the first lower limit value N1), the process ends.
  • step S8 the lower limit changing unit 41c changes the lower limit rotation speed NL to the first lower limit value N1. Thereafter, the process ends.
  • the determination unit 41a determines that the air conditioner 10 is in the differential pressure state
  • the lower limit rotation speed NL of the compressor 31 is set to the second lower limit value N2 (change).
  • the determination unit 41a determines that the air conditioner 10 is not in the differential pressure state
  • the lower limit rotation speed NL of the compressor 31 is set (changed) to the first lower limit value N1.
  • the lower limit rotational speed NL of the compressor 31 is variable between the first lower limit value N1 and the second lower limit value N2, and the lower limit rotational speed NL of the compressor 31 is set to the first lower limit value N1 when in the differential pressure state.
  • the second lower limit value N2 By setting the second lower limit value N2 to be larger, the following effects can be obtained. It is desirable that the compressor 31 can be operated at the lowest possible rotation speed NL as much as possible in order to meet a wide range of air conditioning capabilities with a single compressor 31. Therefore, it is desirable that the lower limit rotation speed NL of the compressor 31 is basically a small value (first lower limit value N1).
  • the compressor 31 in order to prevent the refrigerant from leaking from the high pressure side to the low pressure side through the gap of the compression mechanism, refrigeration oil is supplied to the compression mechanism and an oil film is formed in the gap of the compression mechanism. is doing.
  • the clearance of the compression mechanism is, for example, a clearance between a roller and a cylinder in the case of a rotary compressor as in this embodiment.
  • the supply of the refrigerating machine oil to the compression mechanism of the compressor 31 uses a centrifugal force or the like generated by the rotation of the motor as a driving force.
  • the region where the rotational speed N of the compressor 31 is small, particularly the rotational speed N is In the state where the lower limit rotational speed NL is reached, the supply amount of refrigerating machine oil tends to decrease. Therefore, when the rotation speed N of the compressor 31 reaches the lower limit rotation speed NL, the refrigerant is likely to leak from the gap of the compression mechanism. In particular, in a differential pressure state where the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is greater than or equal to a predetermined value A, the refrigerant is likely to leak. Moreover, in this embodiment, since R32 is used as a refrigerant, the refrigerant is more likely to leak from the gap of the compression mechanism than when R410A is used as the refrigerant.
  • the proportion increases. That is, in the air conditioning apparatus 10 of the present embodiment, it is possible to improve the efficiency of the compressor 31 when the compressor 31 is operated in the differential pressure state and in the low rotation speed region. As a result, the COP of the air conditioner 10 is improved, and energy can be effectively used.
  • the air conditioning apparatus 10 of the present embodiment is a refrigeration apparatus that uses R32 as a refrigerant.
  • the air conditioner 10 includes a compressor 31, a condenser (indoor heat exchanger 21 or outdoor heat exchanger 34), an indoor expansion valve 23 and an outdoor expansion valve 36 as an expansion mechanism, and an evaporator (outdoor heat exchanger).
  • the compressor 31 sucks low-pressure refrigerant from a suction pipe 81 serving as a suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant.
  • the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) condenses the high-pressure refrigerant discharged from the compressor 31.
  • the indoor expansion valve 23 and the outdoor expansion valve 36 expand the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34).
  • the evaporator (the outdoor heat exchanger 34 or the indoor heat exchanger 21) evaporates the refrigerant expanded by the indoor expansion valve 23 and the outdoor expansion valve 36.
  • the determination unit 41a is in a differential pressure state in which the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor 31 is equal to or greater than a predetermined value A. It is determined whether or not there is.
  • the lower limit changing unit 41c changes the lower limit rotation speed NL of the compressor 31 from the first lower limit value N1 to a second lower limit value that is larger than the first lower limit value N1. Change to N2.
  • the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor 31 is equal to or greater than a predetermined value A.
  • the lower limit rotational speed NL of the compressor 31 is changed to a large value (second lower limit value N2).
  • second lower limit value N2 By changing the lower limit rotational speed NL of the compressor 31 to a large value, the amount of refrigerating machine oil supplied to the compression mechanism of the compressor 31 is ensured even when the compressor 31 is operated in a low rotational speed range. It becomes easy and it becomes possible to suppress the clearance gap of a compression mechanism small.
  • the condensation temperature detection unit (the indoor heat exchange temperature sensor 24 or the outdoor heat exchange temperature sensor 37) and the evaporation temperature detection unit (the outdoor heat exchange temperature sensor 37 or the indoor heat exchange temperature sensor 24). And prepare.
  • the condensation temperature detector (the indoor heat exchanger temperature sensor 24 or the outdoor heat exchanger temperature sensor 37) detects the condensation temperature Tc of the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34).
  • the evaporation temperature detection unit (outdoor heat exchange temperature sensor 37 or indoor heat exchange temperature sensor 24) detects the evaporation temperature Te of the evaporator (outdoor heat exchanger 34 or indoor heat exchanger 21).
  • the determination part 41a determines whether it is in a differential pressure state using the condensation temperature Tc and the evaporation temperature Te.
  • the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor using the condensation temperature Tc and the evaporation temperature Te is equal to or greater than a predetermined value A. It is determined whether or not the differential pressure state is as follows. It is possible to determine whether or not there is a differential pressure state without using a pressure sensor that measures the pressure of the high-pressure refrigerant and the pressure of the low-pressure refrigerant, and while reducing the cost of the air conditioner 10, the compressor When 31 is operated in a low rotation speed range, leakage of the refrigerant of the compression mechanism of the compressor 31 can be suppressed, and the COP of the air conditioner 10 can be improved.
  • the determination unit 41a converts the condensation temperature Tc and the evaporation temperature Te into a condensation pressure Pc and an evaporation pressure Pe, respectively.
  • the determination part 41a determines whether it is in a differential pressure state using the converted condensing pressure Pc and evaporation pressure Pe.
  • the condensing temperature Tc is converted into the condensing pressure Pc
  • the evaporating temperature Te is converted into the evaporating pressure Pe
  • the condensing pressure Pc and the evaporating pressure Pe are used to determine whether or not there is a differential pressure state. Is called. Therefore, when the compressor 31 is operated in a low speed range while suppressing the cost of the air conditioner 10 without using a pressure sensor for measuring pressure, the refrigerant of the compression mechanism of the compressor 31 is reduced. Leakage can be suppressed and the COP of the air conditioner 10 can be improved. (5) Modifications Modifications of the present embodiment are shown below. A plurality of modified examples may be appropriately combined.
  • the determination unit 41a converts the condensation temperature Tc and the evaporation temperature Te into the condensation pressure Pc and the evaporation pressure Pe, respectively, and is in a differential pressure state using the converted condensation pressure Pc and the evaporation pressure Pe.
  • the present invention is not limited to this.
  • step S12 for calculating the temperature difference ⁇ T between the condensation temperature Tc and the evaporation temperature Te is performed instead of step S2, as in the flowchart of FIG.
  • Step S13 is executed instead of step S3, in which a pressure difference ⁇ P between the condensation pressure Pc and the evaporation pressure Pe is calculated from the temperature difference ⁇ T.
  • the condensation temperature Tc and the evaporation temperature Te are highly likely to be in a differential pressure state, that is, the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is likely to be a predetermined value A or higher.
  • the reference value C of the temperature difference ⁇ T is stored in the storage unit 42 in advance, and the determination unit 41a determines whether or not the temperature difference ⁇ T is greater than or equal to the reference value C to determine whether or not the differential pressure state exists. May be.
  • step S12 for calculating the temperature difference ⁇ T between the condensation temperature Tc and the evaporation temperature Te is performed instead of step S2, as in the flowchart of FIG.
  • the differential pressure state is determined based on whether or not the temperature difference ⁇ T is greater than or equal to the reference value C in step S14.
  • the determination unit 41a considers that the calculated ⁇ P of the condensation pressure Pc and the evaporation pressure Pe is equal to the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31, and ⁇ P is equal to or greater than the predetermined value A.
  • differential pressure state a state in which the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is equal to or greater than a predetermined value A
  • a differential pressure state a state in which the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is equal to or greater than a predetermined value A
  • the differential pressure state is present when ⁇ P is equal to or greater than the product of the predetermined value A and the predetermined coefficient.
  • the determination unit 41a determines whether or not the differential pressure state is present using the condensation temperature Tc and the evaporation temperature Te, but the determination method for the differential pressure state is not limited to this. . For example, it may be determined whether or not the pressure is in a differential pressure state using the opening degree of the indoor expansion valve 23 and / or the outdoor expansion valve 36 and the rotational speed N of the compressor 31. Moreover, in addition to the condensation temperature Tc or the evaporation temperature Te, it may be determined whether or not a differential pressure state is established using room temperature or an outside air temperature.
  • one differential pressure such that the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor 31 is equal to or greater than a predetermined value A.
  • the lower limit rotational speed NL is set to one of the first lower limit value N1 and the second lower limit value N2 depending on whether or not the state is determined and the differential pressure state, but the present invention is not limited to this. It is not something.
  • a first differential pressure state in which the pressure difference is greater than or equal to the predetermined value A1 a second differential pressure state in which the pressure difference is greater than or equal to the predetermined value A2, and so on are determined.
  • the lower limit rotational speed NL may be set (changed) to a plurality of values depending on whether the state is in effect.
  • the air conditioning apparatus 110 is a refrigeration apparatus that uses R32 as a refrigerant.
  • the air conditioner 110 mainly includes an indoor unit 20, an outdoor unit 130, and a control unit 140. Since the air conditioner 10 of the first embodiment and the indoor unit 20 are the same, only the outdoor unit 130 and the control unit 140 will be described here.
  • the outdoor unit 130 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor fan 35, an outdoor expansion valve 36, and an outdoor heat exchange temperature sensor. 37, a discharge temperature sensor 51, a discharge pressure sensor 61, and a suction pressure sensor 62.
  • the outdoor unit 130 is the same as the outdoor unit 30 of the first embodiment except that the outdoor unit 130 has a discharge pressure sensor 61 and a suction pressure sensor 62. Therefore, only the discharge pressure sensor 61 and the suction pressure sensor 62 will be described here. To do.
  • the discharge pressure sensor 61 is an example of a discharge pressure detection unit that detects the pressure of the high-pressure refrigerant discharged from the compressor 31 (discharge pressure Po).
  • the discharge pressure sensor 61 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82.
  • the suction pressure sensor 62 is an example of a suction pressure detector that detects the pressure (suction pressure Pi) of the low-pressure refrigerant sucked into the compressor 31.
  • the suction pressure sensor 62 is provided outside the compressor 31, more specifically, near the suction port of the compressor 31 in the suction pipe 81.
  • Control Unit The control unit 140 controls the air conditioner 110.
  • FIG. 8 shows a block diagram of the air conditioner 110 including the control unit 140.
  • the control unit 140 uses the control unit 40 according to the first embodiment, the point where the discharge pressure sensor 61 and the suction pressure sensor 62 are electrically connected, and the determination values 141a using the measured values of the pressure sensors 61 and 62. Is different in that it determines the differential pressure state. Since the other points are the same, only the determination unit 141a will be described here. In addition, since the conversion information storage area 42a of the storage unit 42 is not used for the determination of the differential pressure state by the determination unit 141a, it may not be provided.
  • the determination unit 41a includes the pressure of the high-pressure refrigerant discharged from the compressor (discharge pressure Po), the pressure of the low-pressure refrigerant sucked into the compressor (intake pressure Pi), It is determined whether or not the pressure difference is equal to or greater than a predetermined value A. Specifically, the determination unit 41a determines whether or not a differential pressure state exists using the discharge pressure Po measured by the discharge pressure sensor 61 and the suction pressure Pi measured by the suction pressure sensor 62. To do.
  • step S101 the determination unit 141a acquires the measurement values of the discharge pressure sensor 61 and the suction pressure sensor 62 as the discharge pressure Po and the suction pressure Pi. Thereafter, the process proceeds to step S102.
  • step S102 the determination unit 141a calculates a pressure difference ⁇ P1 between the discharge pressure Po obtained in step S101 and the suction pressure Pi.
  • the pressure difference ⁇ P1 is calculated by subtracting the suction pressure Pi from the discharge pressure Po. Thereafter, the process proceeds to step S103.
  • step S103 the determination unit 141a determines whether or not the pressure difference ⁇ P1 is equal to or greater than a predetermined value A. If it is determined that the pressure difference ⁇ P1 is greater than or equal to the predetermined value A, it is determined that the pressure difference is present, and the process proceeds to step S104. If it is determined that the pressure difference ⁇ P1 is smaller than the predetermined value A, it is determined that the pressure difference state is not established, and the process proceeds to step S106.
  • step S104 the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the first lower limit value N1.
  • step S105 When it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is the first lower limit value N1, the process proceeds to step S105. On the other hand, when it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is not the first lower limit value N1 (the second lower limit value N2), the process is terminated. In step S105, the lower limit changing unit 41c changes the lower limit rotation speed NL to the second lower limit value N2. Thereafter, the process ends.
  • step S106 the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the second lower limit value N2.
  • the process proceeds to step S107.
  • the lower limit changing unit 41c changes the lower limit rotation speed NL to the first lower limit value N1. Thereafter, the process ends.
  • the air conditioning apparatus 110 includes a discharge pressure sensor 61 as a discharge pressure detection unit, and a suction pressure sensor 62 as a suction pressure detection unit.
  • the discharge pressure sensor 61 detects the pressure of the high-pressure refrigerant discharged from the compressor 31.
  • the suction pressure sensor 62 detects the pressure of the low-pressure refrigerant sucked into the compressor 31.
  • the determination unit 141a determines whether or not a differential pressure state exists using the detection results of the discharge pressure sensor 61 and the suction pressure sensor 62.
  • the differential pressure state can be accurately determined by actually measuring the discharge pressure Po and the suction pressure Pi.
  • the discharge pressure sensor 61 and the suction pressure sensor 62 are provided, but the present invention is not limited to this.
  • only one of the discharge pressure sensor 61 or the suction pressure sensor 62 may be provided.
  • the condensation pressure Pc or the evaporation pressure Pe is calculated using the condensation temperature Tc or the evaporation temperature Te, and the value is not detected by the pressure sensor.
  • the evaporation pressure Pe is calculated by converting the evaporation temperature Te detected by the indoor heat exchange temperature sensor 24 or the outdoor heat exchange temperature sensor 37, and the value is calculated as the suction pressure Pi. It may be used as
  • one differential pressure state is determined such that the pressure difference ⁇ P1 between the discharge pressure Po and the suction pressure Pi of the compressor 31 is greater than or equal to the predetermined value A, and depending on whether or not the differential pressure state is present.
  • the lower limit rotational speed NL is set to one of the first lower limit value N1 and the second lower limit value N2, but is not limited to this. For example, by providing a plurality of predetermined values, a first differential pressure state in which the pressure difference is greater than or equal to the predetermined value A1, a second differential pressure state in which the pressure difference is greater than or equal to the predetermined value A2, and so on are determined.
  • the lower limit rotational speed NL may be set (changed) to a plurality of values depending on whether the state is in effect.
  • 5-3 Modification 2C In the said embodiment, although the indoor expansion valve 23 and the outdoor expansion valve 36 are provided as an expansion mechanism, it is not limited to this.
  • the expansion mechanism may be only the outdoor expansion valve 36.
  • the COP of the refrigeration apparatus Improvements can be made.
  • Air conditioning equipment 21 Indoor heat exchanger (condenser, evaporator) 23 Indoor expansion valve (expansion mechanism) 24 Indoor heat exchange temperature sensor (condensation temperature detector, evaporating temperature detector) 31 Compressor 34 Outdoor heat exchanger (evaporator, condenser) 36 Outdoor expansion valve (expansion mechanism) 37 Outdoor heat exchange temperature sensor (evaporation temperature detection unit, condensation temperature detection unit) 41a, 141a determination unit 41c lower limit change unit 61 discharge pressure sensor (discharge pressure detection unit) 62 Suction pressure sensor (suction pressure detector) 81 Suction pipe (suction channel)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is a refrigeration device using R32 as a coolant, and capable of improving the COP of the refrigeration device when the compressor thereof operates in a low-rotational-speed region, and the pressure difference between the high-pressure side of the compressor and the low-pressure side thereof is large. An air-conditioning device (10) using R32 as a coolant is equipped with a compressor (31), an outside heat exchanger, expansion valves (23, 36), an inside heat exchanger, a determination unit (41a), and a lower-limit-changing unit (41c). The compressor intakes low-pressure coolant from an intake pipe, and discharges high-pressure coolant by compressing the coolant. The determination unit determines whether the pressure difference between the pressure of the high-pressure coolant discharged from the compressor and the pressure of the low-pressure coolant introduced into the compressor is a pressure-difference state which yields a prescribed value or higher. The lower-limit-changing unit changes the lower-limit rotational speed of the compressor from a first lower-limit value to a second lower-limit value which is larger than the first lower-limit value, when the determination unit determines the pressure difference to be in the pressure difference state.

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置に関する。 The present invention relates to a refrigeration apparatus.
 従来、冷媒としてR32を使用する冷凍装置が知られている。例えば、特許文献1(特開2001-194015号公報)には、R32を使用する空気調和機が開示されている。
 ところで、現在、冷凍装置には、1台の圧縮機で幅広い負荷に対応することを目的として、従来よりも低回転数域で圧縮機を運転することが求められつつある。特許文献1(特開2001-194015号公報)のような、冷媒としてR32を使用する空気調和機においても、圧縮機を低回転数域で運転することが求められている。
Conventionally, a refrigeration apparatus using R32 as a refrigerant is known. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-194015) discloses an air conditioner using R32.
By the way, at present, refrigeration apparatuses are required to operate a compressor in a lower rotational speed range than before in order to cope with a wide range of loads with a single compressor. Even in an air conditioner using R32 as a refrigerant, as in Patent Document 1 (Japanese Patent Laid-Open No. 2001-194015), it is required to operate the compressor in a low rotational speed range.
 ところが、低回転数域で圧縮機が運転される場合、圧縮機構に対する冷凍機油の供給が不足しやすく、圧縮機構内の隙間から冷媒が漏れやすいという問題がある。このような問題は、圧縮機の高圧側と低圧側の圧力差が大きい場合に顕著である。更に、冷媒としてR32が使用される場合には、R410Aが使用される場合に比べ、圧縮機構内の隙間から冷媒が漏れやすく、冷凍装置のCOPが悪化しやすい。
 本発明の課題は、冷媒としてR32を使用する冷凍装置であって、圧縮機が低回転数域で運転され、かつ、圧縮機の高圧側と低圧側の圧力差が大きい場合に、冷凍装置のCOPの改善を図ることが可能な冷凍装置を提供することにある。
However, when the compressor is operated in a low rotation speed range, there is a problem that the supply of refrigeration oil to the compression mechanism is likely to be insufficient, and the refrigerant is likely to leak from the gap in the compression mechanism. Such a problem is remarkable when the pressure difference between the high pressure side and the low pressure side of the compressor is large. Furthermore, when R32 is used as the refrigerant, the refrigerant is liable to leak from the gap in the compression mechanism, and the COP of the refrigeration apparatus is likely to be deteriorated, compared to the case where R410A is used.
An object of the present invention is a refrigeration apparatus that uses R32 as a refrigerant, and when the compressor is operated in a low speed range and the pressure difference between the high pressure side and the low pressure side of the compressor is large, An object of the present invention is to provide a refrigeration apparatus capable of improving COP.
 本発明の第1観点に係る冷凍装置は、冷媒としてR32を使う冷凍装置である。冷凍装置は、圧縮機と、凝縮器と、膨張機構と、蒸発器と、判定部と、下限変更部と、を備える。圧縮機は、吸入流路から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器は、圧縮機から吐出された高圧の冷媒を凝縮させる。膨張機構は、凝縮器を出た高圧冷媒を膨張させる。蒸発器は、膨張機構で膨張した冷媒を蒸発させる。判定部は、圧縮機から吐出される高圧の冷媒の圧力と、圧縮機に吸入される低圧の冷媒の圧力と、の圧力差が、所定値以上になるような差圧状態にあるか否かを判定する。下限変更部は、判定部が、差圧状態にあると判定した時に、圧縮機の下限回転数を、第1下限値から、第1下限値よりも大きな第2下限値に変更する。
 ここでは、圧縮機から吐出された高圧の冷媒の圧力と、圧縮機に吸入される低圧の冷媒の圧力と、の圧力差が所定値以上になるような差圧状態にある場合に、圧縮機の下限回転数が大きな値に変更される。圧縮機の下限回転数が大きな値に変更されることで、圧縮機が低回転数域で運転される場合にも、圧縮機の圧縮機構への冷凍機油の給油量が確保されやすくなり、圧縮機構の隙間を小さく抑制することが可能になる。その結果、冷媒としてR32が使用される場合にも、低回転数域において、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることができる。
The refrigeration apparatus according to the first aspect of the present invention is a refrigeration apparatus that uses R32 as a refrigerant. The refrigeration apparatus includes a compressor, a condenser, an expansion mechanism, an evaporator, a determination unit, and a lower limit changing unit. The compressor sucks low-pressure refrigerant from the suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant. The condenser condenses the high-pressure refrigerant discharged from the compressor. The expansion mechanism expands the high-pressure refrigerant that has exited the condenser. The evaporator evaporates the refrigerant expanded by the expansion mechanism. The determination unit determines whether the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor is equal to or greater than a predetermined value. Determine. The lower limit changing unit changes the lower limit rotation speed of the compressor from the first lower limit value to a second lower limit value larger than the first lower limit value when the determination unit determines that the differential pressure state is present.
Here, when the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor is equal to or greater than a predetermined value, the compressor Is changed to a large value. By changing the lower limit rotational speed of the compressor to a large value, the amount of refrigeration oil supplied to the compressor's compression mechanism can be easily secured even when the compressor is operated in a low rotational speed range. It becomes possible to suppress the gap of the mechanism to be small. As a result, even when R32 is used as the refrigerant, leakage of the refrigerant in the compression mechanism of the compressor can be suppressed and the COP of the refrigeration apparatus can be improved in the low speed range.
 本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、凝縮温度検出部と、蒸発温度検出部と、を更に備える。凝縮温度検出部は、凝縮器の凝縮温度を検出する。蒸発温度検出部は、蒸発器の蒸発温度を検出する。判定部は、凝縮温度と、蒸発温度とを用いて、差圧状態にあるか否かを判定する。
 ここでは、凝縮温度と蒸発温度とを用いて、圧縮機から吐出された高圧の冷媒の圧力と、圧縮機に吸入される低圧の冷媒の圧力と、の圧力差が所定値以上になるような差圧状態にあるか否かが判定される。高圧の冷媒の圧力と、低圧の冷媒の圧力とを計測する圧力センサを用いなくても差圧状態にあるか否かを判定可能であり、冷凍装置のコストを抑制しながら、圧縮機が低回転数域で運転される場合に、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることができる。
The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, further comprising a condensation temperature detection unit and an evaporation temperature detection unit. The condensation temperature detector detects the condensation temperature of the condenser. The evaporation temperature detector detects the evaporation temperature of the evaporator. A determination part determines whether it is in a differential pressure state using condensation temperature and evaporation temperature.
Here, using the condensation temperature and the evaporation temperature, the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor becomes a predetermined value or more. It is determined whether or not there is a differential pressure state. It is possible to determine whether or not there is a differential pressure state without using a pressure sensor that measures the pressure of the high-pressure refrigerant and the pressure of the low-pressure refrigerant. When operated in the rotational speed range, the refrigerant leakage of the compressor compression mechanism can be suppressed, and the COP of the refrigeration apparatus can be improved.
 本発明の第3観点に係る冷凍装置は、第2観点に係る冷凍装置であって、判定部は、凝縮温度及び蒸発温度を、それぞれ凝縮圧力及び蒸発圧力に換算する。判定部は、換算された凝縮圧力及び蒸発圧力を用いて、差圧状態にあるか否かを判定する。
 ここでは、凝縮温度を凝縮圧力に、蒸発温度を蒸発圧力に、それぞれ換算し、凝縮圧力と蒸発圧力とを用いることで、差圧状態にあるか否かの判定が行われる。そのため、圧力を計測するための圧力センサを用いずに、冷凍装置のコストを抑制しながら、圧縮機が低回転数域で運転される場合に、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることができる。
The refrigeration apparatus according to the third aspect of the present invention is the refrigeration apparatus according to the second aspect, and the determination unit converts the condensation temperature and the evaporation temperature into a condensation pressure and an evaporation pressure, respectively. A determination part determines whether it is in a differential pressure state using the converted condensing pressure and evaporation pressure.
Here, it is determined whether or not there is a differential pressure state by converting the condensation temperature into the condensation pressure and the evaporation temperature into the evaporation pressure, and using the condensation pressure and the evaporation pressure. Therefore, when the compressor is operated in a low speed range, the refrigerant leakage of the compressor compression mechanism is suppressed while suppressing the cost of the refrigeration apparatus without using the pressure sensor for measuring the pressure. The COP of the refrigeration apparatus can be improved.
 本発明の第4観点に係る冷凍装置は、第2観点に係る冷凍装置であって、判定部は、凝縮温度と蒸発温度との温度差を用いて、差圧状態にあるか否かを判定する。
 ここでは、凝縮温度と蒸発温度との温度差から、差圧状態にあるか否かの判定が行われる。そのため、圧力を計測するための圧力センサを用いずに、冷凍装置のコストを抑制しながら、圧縮機が低回転数域で運転される場合に、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることができる。
The refrigeration apparatus according to the fourth aspect of the present invention is the refrigeration apparatus according to the second aspect, and the determination unit determines whether or not the differential pressure state is established using a temperature difference between the condensation temperature and the evaporation temperature. To do.
Here, it is determined from the temperature difference between the condensation temperature and the evaporation temperature whether or not a differential pressure state exists. Therefore, when the compressor is operated in a low speed range, the refrigerant leakage of the compressor compression mechanism is suppressed while suppressing the cost of the refrigeration apparatus without using the pressure sensor for measuring the pressure. The COP of the refrigeration apparatus can be improved.
 本発明の第5観点に係る冷凍装置は、第1観点に係る冷凍装置であって、吐出圧力検出部と、吸入圧力検出部と、を更に備える。吐出圧力検出部は、圧縮機から吐出される高圧の冷媒の圧力を検出する。吸入圧力検出部は、圧縮機に吸入される低圧の冷媒の圧力を検出する。判定部は、吐出圧力検出部及び吸入圧力検出部の検出結果を用いて、差圧状態にあるか否かを判定する。
 ここでは、吐出圧力及び吸入圧力を実際に計測することで、差圧状態を正確に判定できる。そのため、低回転数域において、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることが容易である。
A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to the first aspect, further comprising a discharge pressure detection unit and a suction pressure detection unit. The discharge pressure detection unit detects the pressure of the high-pressure refrigerant discharged from the compressor. The suction pressure detection unit detects the pressure of the low-pressure refrigerant sucked into the compressor. A determination part determines whether it is in a differential pressure state using the detection result of a discharge pressure detection part and a suction pressure detection part.
Here, the differential pressure state can be accurately determined by actually measuring the discharge pressure and the suction pressure. Therefore, it is easy to improve the COP of the refrigeration apparatus by suppressing the leakage of the refrigerant of the compressor compression mechanism in the low rotation speed range.
 本発明の第1観点に係る冷凍装置では、圧縮機から吐出された高圧の冷媒の圧力と、圧縮機に吸入される低圧の冷媒の圧力と、の圧力差が所定値以上になるような差圧状態にある場合に、圧縮機の下限回転数が大きな値に変更される。圧縮機の下限回転数が大きな値に変更されることで、圧縮機が低回転数域で運転される場合にも、圧縮機の圧縮機構への冷凍機油の給油量が確保されやすくなり、圧縮機構の隙間を小さく抑制することが可能になる。その結果、冷媒としてR32が使用される場合にも、低回転数域において、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることができる。
 本発明の第2観点から第4観点に係る冷凍装置では、冷凍装置のコストを抑制しながら、圧縮機が低回転数域で運転される場合に、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることができる。
In the refrigeration apparatus according to the first aspect of the present invention, the difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor is a predetermined value or more. When in the pressure state, the lower limit rotational speed of the compressor is changed to a large value. By changing the lower limit rotational speed of the compressor to a large value, the amount of refrigeration oil supplied to the compressor's compression mechanism can be easily secured even when the compressor is operated in a low rotational speed range. It becomes possible to suppress the gap of the mechanism to be small. As a result, even when R32 is used as the refrigerant, leakage of the refrigerant in the compression mechanism of the compressor can be suppressed and the COP of the refrigeration apparatus can be improved in the low speed range.
In the refrigeration apparatus according to the second to fourth aspects of the present invention, the refrigerant leakage of the compression mechanism of the compressor is suppressed when the compressor is operated in a low speed range while suppressing the cost of the refrigeration apparatus. In addition, the COP of the refrigeration apparatus can be improved.
 本発明の第5観点に係る冷凍装置では、低回転数域において、圧縮機の圧縮機構の冷媒の漏れを抑制し、冷凍装置のCOPを改善させることが容易である。 In the refrigeration apparatus according to the fifth aspect of the present invention, it is easy to suppress the leakage of refrigerant in the compression mechanism of the compressor and improve the COP of the refrigeration apparatus in the low speed range.
本発明の第1実施形態に係る冷凍装置としての空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus as a freezing apparatus which concerns on 1st Embodiment of this invention. 図1の空気調和装置のブロック図である。It is a block diagram of the air conditioning apparatus of FIG. 図1の空気調和装置の、差圧状態の判定処理、及び、圧縮機の下限回転数の変更処理のフローチャートである。It is a flowchart of the determination process of a differential pressure state of the air conditioning apparatus of FIG. 1, and the change process of the minimum rotation speed of a compressor. 図1の空気調和装置において、下限回転数を第1下限値から第2下限値(>第1下限値)に変更することの効果について説明するためのイメージ図である。圧縮機を第1下限値で運転した場合のグラフを左側に、圧縮機を第2下限値で運転した場合のグラフを右側に示している。グラフは、圧縮機の吐出圧力と吸入圧力との圧力差が所定の値である場合に、消費エネルギー(圧縮機の消費電力)のうち、どれだけのエネルギーが有効に(空調に)使用され、どれだけのエネルギーが圧縮機構の隙間からの冷媒が漏れることで浪費されたかを示している。In the air conditioning apparatus of FIG. 1, it is an image figure for demonstrating the effect of changing a minimum rotation speed from a 1st lower limit to a 2nd lower limit (> 1st lower limit). A graph when the compressor is operated at the first lower limit value is shown on the left side, and a graph when the compressor is operated at the second lower limit value is shown on the right side. The graph shows that when the pressure difference between the discharge pressure and the suction pressure of the compressor is a predetermined value, how much of the energy consumption (power consumption of the compressor) is used effectively (for air conditioning) It shows how much energy was wasted due to leakage of refrigerant from the gap of the compression mechanism. 変形例Aにかかる、差圧状態の判定処理、及び、圧縮機の下限回転数の変更処理のフローチャートである。室外熱交センサの検出温度と室内熱交センサの検出温度との温度差が圧力差に換算され、その圧力差を用いて差圧状態の判定が行われる。It is a flowchart of the determination process of the differential pressure state concerning the modification A, and the change process of the minimum rotation speed of a compressor. The temperature difference between the temperature detected by the outdoor heat exchanger sensor and the temperature detected by the indoor heat exchanger sensor is converted into a pressure difference, and the pressure difference is determined using the pressure difference. 変形例Aにかかる、差圧状態の判定処理、及び、圧縮機の下限回転数の変更処理のフローチャートである。室外熱交センサの検出温度と室内熱交センサの検出温度との温度差を用いて、差圧状態の判定が行われる。It is a flowchart of the determination process of the differential pressure state concerning the modification A, and the change process of the minimum rotation speed of a compressor. The differential pressure state is determined using the temperature difference between the temperature detected by the outdoor heat exchanger sensor and the temperature detected by the indoor heat exchanger sensor. 本発明の第2実施形態に係る冷凍装置としての空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus as a freezing apparatus which concerns on 2nd Embodiment of this invention. 図7の空気調和装置のブロック図である。It is a block diagram of the air conditioning apparatus of FIG. 図7の空気調和装置の、差圧状態の判定処理、及び、圧縮機の下限回転数の変更処理のフローチャートである。It is a flowchart of the determination process of a differential pressure state of the air conditioning apparatus of FIG. 7, and the change process of the minimum rotation speed of a compressor.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、下記の本発明の実施形態は、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 <第1実施形態>
 (1)全体構成
 本発明の第1実施形態に係る冷凍装置としての空気調和装置10は、冷房運転と暖房運転とを切り替えて運転可能な空気調和装置である。ただし、空気調和装置10は、冷房運転と暖房運転とを切り替えて運転可能でなくてもよく、冷房運転又は暖房運転のいずれかだけを実施可能な空気調和装置であってもよい。
 空気調和装置10は、図1及び図2に示すように、主に、室内ユニット20と、室外ユニット30と、制御ユニット40と、を有する。なお、本実施形態では、室内ユニット20は1台であるが、複数台であっても構わない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment of this invention can be suitably changed in the range which does not deviate from the meaning of this invention.
<First Embodiment>
(1) Overall Configuration The air conditioner 10 as a refrigeration apparatus according to the first embodiment of the present invention is an air conditioner that can be operated by switching between a cooling operation and a heating operation. However, the air conditioner 10 may not be operable by switching between the cooling operation and the heating operation, and may be an air conditioner capable of performing only the cooling operation or the heating operation.
As shown in FIGS. 1 and 2, the air conditioner 10 mainly includes an indoor unit 20, an outdoor unit 30, and a control unit 40. In the present embodiment, the number of indoor units 20 is one, but a plurality of units may be used.
 空気調和装置10は、R32が冷媒として充填された冷媒回路1を有する。冷媒回路1は、室内ユニット20に収容される室内側回路1aと、室外ユニット30に収容される室外側回路1bとを有する。室内側回路1aと室外側回路1bとは、液冷媒連絡配管71とガス冷媒連絡配管72とによって接続される。
 (2)詳細構成
 (2-1)室内ユニット
 室内ユニット20は、空気調和の対象である室内に設置される。室内ユニット20は、室内熱交換器21と、室内ファン22と、室内膨張弁23と、室内熱交温度センサ24と、を有する。
 室内熱交換器21は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器21は、冷房運転時には、後述する室外膨張弁36及び室内膨張弁23で膨張した冷媒を蒸発させる蒸発器として機能し、室内空気を冷却する。室内熱交換器21は、暖房運転時には、後述する圧縮機31から吐出された高圧の冷媒を凝縮させる凝縮器として機能し、室内空気を加熱する。室内熱交換器21の液側は液冷媒連絡配管71に接続され、室内熱交換器21のガス側はガス冷媒連絡配管72に接続される。
The air conditioner 10 has a refrigerant circuit 1 filled with R32 as a refrigerant. The refrigerant circuit 1 has an indoor circuit 1 a accommodated in the indoor unit 20 and an outdoor circuit 1 b accommodated in the outdoor unit 30. The indoor side circuit 1a and the outdoor side circuit 1b are connected by a liquid refrigerant communication pipe 71 and a gas refrigerant communication pipe 72.
(2) Detailed Configuration (2-1) Indoor Unit The indoor unit 20 is installed in a room that is subject to air conditioning. The indoor unit 20 includes an indoor heat exchanger 21, an indoor fan 22, an indoor expansion valve 23, and an indoor heat exchange temperature sensor 24.
The indoor heat exchanger 21 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. During the cooling operation, the indoor heat exchanger 21 functions as an evaporator that evaporates refrigerant expanded by an outdoor expansion valve 36 and an indoor expansion valve 23 described later, and cools indoor air. The indoor heat exchanger 21 functions as a condenser that condenses high-pressure refrigerant discharged from a compressor 31 described later during heating operation, and heats indoor air. The liquid side of the indoor heat exchanger 21 is connected to the liquid refrigerant communication pipe 71, and the gas side of the indoor heat exchanger 21 is connected to the gas refrigerant communication pipe 72.
 室内ファン22は、ファンモータにより回転され、室内空気を取り込んで室内熱交換器21に送風し、室内熱交換器21を流れる冷媒と、室内空気との熱交換を促進する。
 室内膨張弁23は、膨張機構の一例であり、室内側回路1a内を流れる冷媒の、圧力や流量の調節を行うために設けられた開度可変の電動膨張弁である。冷房運転時には、室内膨張弁23は、凝縮器として機能する、後述する室外ユニット30の室外熱交換器34から、蒸発器として機能する室内熱交換器21へと流れる冷媒を膨張させる(減圧する)。暖房運転時には、室内膨張弁23は、凝縮器として機能する室内熱交換器21から、蒸発器として機能する室外熱交換器34へと流れる冷媒を膨張させる(減圧する)。
 室内熱交温度センサ24は、室内熱交換器21の温度を測定するサーミスタである。室内熱交温度センサ24は、室内熱交換器21に取り付けられている。室内熱交温度センサ24は、室内熱交換器21が凝縮器として機能する時には、凝縮温度Tcを検出する凝縮温度検出部として機能する。室内熱交温度センサ24は、室内熱交換器21が蒸発器として機能する時には、蒸発温度Teを検出する蒸発温度検出部として機能する。
The indoor fan 22 is rotated by a fan motor, takes in indoor air, blows it to the indoor heat exchanger 21, and promotes heat exchange between the refrigerant flowing through the indoor heat exchanger 21 and the indoor air.
The indoor expansion valve 23 is an example of an expansion mechanism, and is an electric expansion valve with a variable opening provided for adjusting the pressure and flow rate of the refrigerant flowing in the indoor circuit 1a. During the cooling operation, the indoor expansion valve 23 expands (depressurizes) the refrigerant flowing from the outdoor heat exchanger 34 of the outdoor unit 30 described later, which functions as a condenser, to the indoor heat exchanger 21 that functions as an evaporator. . During the heating operation, the indoor expansion valve 23 expands (depressurizes) the refrigerant flowing from the indoor heat exchanger 21 that functions as a condenser to the outdoor heat exchanger 34 that functions as an evaporator.
The indoor heat exchanger temperature sensor 24 is a thermistor that measures the temperature of the indoor heat exchanger 21. The indoor heat exchanger temperature sensor 24 is attached to the indoor heat exchanger 21. When the indoor heat exchanger 21 functions as a condenser, the indoor heat exchanger temperature sensor 24 functions as a condensing temperature detector that detects the condensing temperature Tc. When the indoor heat exchanger 21 functions as an evaporator, the indoor heat exchanger temperature sensor 24 functions as an evaporation temperature detection unit that detects the evaporation temperature Te.
 (2-2)室外ユニット
 室外ユニット30は、主に、圧縮機31,四路切換弁33、室外熱交換器34、室外ファン35、室外膨張弁36、室外熱交温度センサ37、及び、吐出温度センサ51を有する。圧縮機31、四路切換弁33、室外熱交換器34、及び、室外膨張弁36は、冷媒配管により接続される。
 (2-2-1)冷媒配管による構成機器の接続
 室外ユニット30の構成機器の冷媒配管による接続について説明する。
 圧縮機31の吸入口と四路切換弁33とは、吸入管81によって接続される。圧縮機31の吐出口と四路切換弁33とは、吐出管82によって接続される。四路切換弁33と室外熱交換器34のガス側とは、第1ガス冷媒管83によって接続される。室外熱交換器34と液冷媒連絡配管71とは、液冷媒管84によって接続される。液冷媒管84には、室外膨張弁36が設けられる。四路切換弁33とガス冷媒連絡配管72とは、第2ガス冷媒管85によって接続される。
(2-2) Outdoor unit The outdoor unit 30 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor fan 35, an outdoor expansion valve 36, an outdoor heat exchanger temperature sensor 37, and a discharge. A temperature sensor 51 is provided. The compressor 31, the four-way switching valve 33, the outdoor heat exchanger 34, and the outdoor expansion valve 36 are connected by refrigerant piping.
(2-2-1) Connection of Components by Refrigerant Piping Connection of components by the refrigerant piping of the outdoor unit 30 will be described.
The suction port of the compressor 31 and the four-way switching valve 33 are connected by a suction pipe 81. The discharge port of the compressor 31 and the four-way switching valve 33 are connected by a discharge pipe 82. The four-way switching valve 33 and the gas side of the outdoor heat exchanger 34 are connected by a first gas refrigerant pipe 83. The outdoor heat exchanger 34 and the liquid refrigerant communication pipe 71 are connected by a liquid refrigerant pipe 84. The liquid refrigerant pipe 84 is provided with an outdoor expansion valve 36. The four-way switching valve 33 and the gas refrigerant communication pipe 72 are connected by a second gas refrigerant pipe 85.
 (2-2-2)圧縮機
 圧縮機31は、モータで圧縮機構を駆動することで、吸入管81から低圧のガス冷媒を吸入し、圧縮機構で圧縮した高圧のガス冷媒を吐出管82に吐出する。圧縮機31は、ロータリ圧縮機であるが、これに限定されるものではなく、例えばスクロール圧縮機であってもよい。
 圧縮機31は、回転数N(圧縮機31のモータの回転数)を変更可能なインバータ式の圧縮機である。圧縮機31の動きは、後述する圧縮機制御部41bにより制御されている。圧縮機制御部41bは、空気調和の対象空間の温度(室温)と設定温度との乖離度等に応じて、圧縮機31の回転数Nを制御する。
 (2-2-3)四路切換弁
 四路切換弁33は、空気調和装置10の冷房運転と暖房運転との切換時に、冷媒の流れ方向を切り換える。冷房運転時には吐出管82と第1ガス冷媒管83とを接続するとともに吸入管81と第2ガス冷媒管85とを接続する(図1の実線参照)。一方、暖房運転時には吐出管82と第2ガス冷媒管85とを接続するとともに吸入管81と第1ガス冷媒管83とを接続する(図1の破線参照)。
(2-2-2) Compressor The compressor 31 drives the compression mechanism with a motor, thereby sucking low-pressure gas refrigerant from the suction pipe 81 and supplying the high-pressure gas refrigerant compressed by the compression mechanism to the discharge pipe 82. Discharge. Although the compressor 31 is a rotary compressor, it is not limited to this, For example, a scroll compressor may be sufficient.
The compressor 31 is an inverter type compressor capable of changing the rotational speed N (the rotational speed of the motor of the compressor 31). The movement of the compressor 31 is controlled by a compressor control unit 41b described later. The compressor control unit 41b controls the rotational speed N of the compressor 31 according to the degree of divergence between the temperature (room temperature) of the air conditioning target space and the set temperature.
(2-2-3) Four-way switching valve The four-way switching valve 33 switches the flow direction of the refrigerant when the air-conditioning apparatus 10 is switched between the cooling operation and the heating operation. During the cooling operation, the discharge pipe 82 and the first gas refrigerant pipe 83 are connected, and the suction pipe 81 and the second gas refrigerant pipe 85 are connected (see the solid line in FIG. 1). On the other hand, during the heating operation, the discharge pipe 82 and the second gas refrigerant pipe 85 are connected, and the suction pipe 81 and the first gas refrigerant pipe 83 are connected (see the broken line in FIG. 1).
 (2-2-4)室外熱交換器
 室外熱交換器34は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室外熱交換器34は、冷房運転時には、室外空気と冷媒の熱交換を行うことで、圧縮機31から吐出された高圧の冷媒を凝縮させる凝縮器として機能する。室外熱交換器34は、暖房運転時には、室外空気と冷媒の熱交換を行うことで、室内膨張弁23及び室外膨張弁36で膨張した冷媒を蒸発させる蒸発器として機能する。
 (2-2-5)室外ファン
 室外ファン35は、ファンモータにより回転され、室外ユニット30内に室外空気を取り込む。取り込まれた室外空気は、室外熱交換器34を通過し、最終的に室外ユニット30外へ排出される。室外ファン35は、室外熱交換器34内を流れる冷媒と、室外空気との熱交換を促進する。
(2-2-4) Outdoor Heat Exchanger The outdoor heat exchanger 34 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. The outdoor heat exchanger 34 functions as a condenser that condenses the high-pressure refrigerant discharged from the compressor 31 by exchanging heat between the outdoor air and the refrigerant during the cooling operation. The outdoor heat exchanger 34 functions as an evaporator that evaporates the refrigerant expanded by the indoor expansion valve 23 and the outdoor expansion valve 36 by exchanging heat between the outdoor air and the refrigerant during heating operation.
(2-2-5) Outdoor Fan The outdoor fan 35 is rotated by a fan motor and takes outdoor air into the outdoor unit 30. The taken outdoor air passes through the outdoor heat exchanger 34 and is finally discharged out of the outdoor unit 30. The outdoor fan 35 promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 34 and outdoor air.
 (2-2-6)室外膨張弁
 室外膨張弁36は、膨張機構の一例であり、室外側回路1b内を流れる冷媒の圧力や流量の調節を行うために設けられた開度可変の電動膨張弁である。冷房運転時には、室外膨張弁36は、凝縮器として機能する室外熱交換器34から、蒸発器として機能する室内熱交換器21へと流れる冷媒を膨張させる(減圧する)。暖房運転時には、室外膨張弁36は、凝縮器として機能する室内熱交換器21から、蒸発器として機能する室外熱交換器34へと流れる冷媒を膨張させる(減圧する)。
 (2-2-7)室外熱交温度センサ
 室外熱交温度センサ37は、室外熱交換器34の温度を測定するサーミスタである。室外熱交温度センサ37は、室外熱交換器34に取り付けられている。室外熱交温度センサ37は、室外熱交換器34が凝縮器として機能する時には、凝縮温度Tcを検出する凝縮温度検出部として機能する。室外熱交温度センサ37は、室外熱交換器34が蒸発器として機能する時には、蒸発温度Teを検出する蒸発温度検出部として機能する。
(2-2-6) Outdoor Expansion Valve The outdoor expansion valve 36 is an example of an expansion mechanism, and an electric expansion with variable opening provided for adjusting the pressure and flow rate of the refrigerant flowing in the outdoor circuit 1b. It is a valve. During the cooling operation, the outdoor expansion valve 36 expands (depressurizes) the refrigerant flowing from the outdoor heat exchanger 34 functioning as a condenser to the indoor heat exchanger 21 functioning as an evaporator. During the heating operation, the outdoor expansion valve 36 expands (depressurizes) the refrigerant flowing from the indoor heat exchanger 21 that functions as a condenser to the outdoor heat exchanger 34 that functions as an evaporator.
(2-2-7) Outdoor Heat Exchange Temperature Sensor The outdoor heat exchange temperature sensor 37 is a thermistor that measures the temperature of the outdoor heat exchanger 34. The outdoor heat exchange temperature sensor 37 is attached to the outdoor heat exchanger 34. When the outdoor heat exchanger 34 functions as a condenser, the outdoor heat exchanger temperature sensor 37 functions as a condensing temperature detector that detects the condensing temperature Tc. The outdoor heat exchanger temperature sensor 37 functions as an evaporation temperature detection unit that detects the evaporation temperature Te when the outdoor heat exchanger 34 functions as an evaporator.
 (2-2-8)吐出管温度センサ
 吐出温度センサ51は、圧縮機31から吐出される冷媒の温度を検出するためのサーミスタである。吐出温度センサ51は、圧縮機31の外部、より具体的には、吐出管82の、圧縮機31の吐出口付近に設けられる。吐出温度センサ51で検出された温度は、圧縮機31の制御(圧縮機31の保護制御を含む)のために利用される。
 (2-3)制御ユニット
 制御ユニット40は、空気調和装置10の動きを制御する。図2に、制御ユニット40を含む空気調和装置10のブロック図を示す。
 制御ユニット40は、マイクロコンピュータ等からなる制御部41と、RAMやROM等のメモリから成る記憶部42と、入力部43(リモコン)と、を有する。制御ユニット40は、室内ユニット20及び室外ユニット30の各構成、圧縮機31、四路切替弁33、室外ファン35、室外膨張弁36、室内ファン22、室内膨張弁23、吐出温度センサ51、室外熱交温度センサ37、室内熱交温度センサ24等と電気的に接続されている。
(2-2-8) Discharge Pipe Temperature Sensor The discharge temperature sensor 51 is a thermistor for detecting the temperature of the refrigerant discharged from the compressor 31. The discharge temperature sensor 51 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82. The temperature detected by the discharge temperature sensor 51 is used for control of the compressor 31 (including protection control of the compressor 31).
(2-3) Control Unit The control unit 40 controls the movement of the air conditioner 10. In FIG. 2, the block diagram of the air conditioning apparatus 10 containing the control unit 40 is shown.
The control unit 40 includes a control unit 41 made up of a microcomputer or the like, a storage unit 42 made up of a memory such as RAM or ROM, and an input unit 43 (remote control). The control unit 40 includes each configuration of the indoor unit 20 and the outdoor unit 30, a compressor 31, a four-way switching valve 33, an outdoor fan 35, an outdoor expansion valve 36, an indoor fan 22, an indoor expansion valve 23, a discharge temperature sensor 51, an outdoor The heat exchange temperature sensor 37, the indoor heat exchange temperature sensor 24, and the like are electrically connected.
 制御部41は、記憶部42に記憶されたプログラムを読み出して実行することで、空気調和装置10の制御を行う。制御部41は、室内ユニット20の操作を行うために、入力部43との間で制御信号のやり取りを行う。そして、制御部41は、入力部43への入力(空気調和装置10の運転/停止、運転モード(冷房モード/暖房モード)、設定温度等)に応じて、空気調和装置10の運転を制御する。制御部41は、運転条件に応じて(例えば、空気調和の対象空間の温度(室温)と設定温度との乖離度等に応じて)、室内ユニット20及び室外ユニット30の各種機器を制御する。
 なお、制御部41は、機能部として、判定部41a、圧縮機制御部41b、及び下限変更部41cを有する。判定部41a、圧縮機制御部41b、及び下限変更部41cについては、後述する。
The control unit 41 controls the air conditioner 10 by reading and executing the program stored in the storage unit 42. The control unit 41 exchanges control signals with the input unit 43 in order to operate the indoor unit 20. And the control part 41 controls the driving | operation of the air conditioning apparatus 10 according to the input (The operation / stop of the air conditioning apparatus 10, an operation mode (cooling mode / heating mode), preset temperature, etc.) to the input part 43. . The control unit 41 controls various devices of the indoor unit 20 and the outdoor unit 30 according to operating conditions (for example, according to the degree of deviation between the temperature (room temperature) of the air-conditioning target space and the set temperature).
In addition, the control part 41 has the determination part 41a, the compressor control part 41b, and the lower limit change part 41c as a function part. The determination unit 41a, the compressor control unit 41b, and the lower limit changing unit 41c will be described later.
 記憶部42には、制御部41で実行されるためのプログラムや各種情報が記憶される。記憶部42は、温度圧力換算情報を記憶する換算情報記憶領域42aと、圧縮機31の、下限回転数NL及び上限回転数NHを記憶する上下限記憶領域42bと、を有する。換算情報記憶領域42a及び上下限記憶領域42bについては、後述する。
 (2-3-1)制御部
 (2-3-1-1)判定部
 判定部41aは、圧縮機から吐出される高圧の冷媒の圧力(吐出圧力Po)と、圧縮機に吸入される低圧の冷媒の圧力(吸入圧力Pi)と、の圧力差が、所定値A(例えば、0.3MPa)以上になるような差圧状態にあるか否かを判定する。判定部41aは、具体的には、凝縮温度Tc(室内熱交温度センサ24の計測値又は室外熱交温度センサ37の計測値)と、蒸発温度Te(室外熱交温度センサ37の計測値又は室内熱交温度センサ24の計測値)と、を用いて、差圧状態にあるか否かを判定する。
The storage unit 42 stores a program to be executed by the control unit 41 and various information. The storage unit 42 includes a conversion information storage area 42 a that stores temperature-pressure conversion information, and an upper and lower limit storage area 42 b that stores the lower limit rotation speed NL and the upper limit rotation speed NH of the compressor 31. The conversion information storage area 42a and the upper / lower limit storage area 42b will be described later.
(2-3-1) Control Unit (2-3-1-1) Determination Unit The determination unit 41a includes the pressure of the high-pressure refrigerant discharged from the compressor (discharge pressure Po) and the low pressure sucked into the compressor. It is determined whether or not the pressure difference between the refrigerant and the refrigerant pressure (suction pressure Pi) is in a differential pressure state such that the pressure difference is equal to or greater than a predetermined value A (for example, 0.3 MPa). Specifically, the determination unit 41a includes the condensation temperature Tc (measured value of the indoor heat exchanger temperature sensor 24 or the measured value of the outdoor heat exchanger temperature sensor 37) and the evaporation temperature Te (measured value of the outdoor heat exchanger temperature sensor 37 or The measured value of the indoor heat exchanger temperature sensor 24) is used to determine whether or not it is in a differential pressure state.
 判定部41aによる差圧状態の判定については後述する。
 (2-3-1-2)圧縮機制御部
 圧縮機制御部41bは、空気調和装置10の運転条件や、各種制御信号等に応じて、圧縮機31の起動/停止と、圧縮機31の回転数N(圧縮機31のモータの回転数)を決定し、制御する。圧縮機制御部41bは、例えば、空気調和装置10の空調対象である空間の温度(室温)と設定温度との乖離度に応じて、圧縮機31のモータの回転数Nを制御する。なお、圧縮機31の回転数Nは、後述する上下限記憶領域42bに記憶される下限回転数NLと上限回転数NHとの間の値で制御される。
 (2-3-1-3)下限変更部
 下限変更部41cは、上下限記憶領域42bに記憶された下限回転数NLの値を書き換えることで、圧縮機31の下限回転数NLを変更する。
The determination of the differential pressure state by the determination unit 41a will be described later.
(2-3-1-2) Compressor Control Unit The compressor control unit 41b starts / stops the compressor 31 and controls the compressor 31 according to the operating conditions of the air conditioner 10, various control signals, and the like. The rotational speed N (the rotational speed of the motor of the compressor 31) is determined and controlled. For example, the compressor control unit 41b controls the rotation speed N of the motor of the compressor 31 according to the degree of deviation between the temperature (room temperature) of the space that is the air-conditioning target of the air conditioner 10 and the set temperature. The rotation speed N of the compressor 31 is controlled by a value between a lower limit rotation speed NL and an upper limit rotation speed NH stored in an upper / lower limit storage area 42b described later.
(2-3-1-3) Lower Limit Changing Unit The lower limit changing unit 41c changes the lower limit rotational speed NL of the compressor 31 by rewriting the value of the lower limit rotational speed NL stored in the upper / lower limit storage area 42b.
 下限変更部41cは、判定部41aが差圧状態にあると判定した時に、圧縮機の下限回転数NLを、第2下限値N2に変更する(設定する)。下限変更部41cは、判定部41aが差圧状態にないと判定した時に、圧縮機の下限回転数NLを、第1下限値N1に変更する(設定する)。
 下限変更部41cによる下限回転数NLの変更については後述する。
 (2-3-2)記憶部
 (2-3-2-1)換算情報記憶領域
 換算情報記憶領域42aには、冷媒であるR32の凝縮温度(蒸発温度)と、凝縮圧力(蒸発圧力)との関係に関する温度圧力換算情報が記憶されている。換算情報記憶領域42aには、具体的には、温度圧力換算情報として、凝縮温度(蒸発温度)毎に凝縮圧力(蒸発圧力)が記憶されている。
When the determination unit 41a determines that the differential pressure state is in the differential pressure state, the lower limit change unit 41c changes (sets) the lower limit rotation speed NL of the compressor to the second lower limit value N2. The lower limit changing unit 41c changes (sets) the lower limit rotation speed NL of the compressor to the first lower limit value N1 when the determination unit 41a determines that the differential pressure state is not present.
The change of the lower limit rotational speed NL by the lower limit changing unit 41c will be described later.
(2-3-2) Storage Unit (2-3-2-1) Conversion Information Storage Area In the conversion information storage area 42a, the condensation temperature (evaporation temperature) of R32 as a refrigerant, the condensation pressure (evaporation pressure), and Temperature pressure conversion information related to the relationship is stored. Specifically, the conversion information storage area 42a stores the condensation pressure (evaporation pressure) for each condensation temperature (evaporation temperature) as temperature-pressure conversion information.
 ただし、これに限定されるものではなく、例えば、換算情報記憶領域42aには、温度圧力換算情報として、凝縮温度(蒸発温度)と凝縮圧力(蒸発圧力)との関係式が記憶されてもよい。
 (2-3-2-2)上下限記憶領域
 上下限記憶領域42bには、圧縮機31の回転数Nの上限(上限回転数NH)と下限(下限回転数NL)とが記憶されている。
 判定部41aが差圧状態ではないと判定した時には、上下限記憶領域42bには、下限回転数NLとして第1下限値N1が記憶される。一方、判定部41aが差圧状態であると判定した時には、上下限記憶領域42bには、下限回転数NLとして第2下限値N2が記憶される。第2下限値N2は、第1下限値N1よりも大きい。例えば、第1下限値N1は4rpsで、第2下限値N2は6rpsである。なお、上下限記憶領域42bの下限回転数NLは、下限変更部41cにより変更されることで、第1下限値N1又は第2下限値N2に設定される。
However, the present invention is not limited to this. For example, the conversion information storage area 42a may store a relational expression between the condensation temperature (evaporation temperature) and the condensation pressure (evaporation pressure) as temperature pressure conversion information. .
(2-3-2-2) Upper / Lower Limit Storage Area The upper / lower limit storage area 42b stores an upper limit (upper limit rotational speed NH) and a lower limit (lower limit rotational speed NL) of the rotational speed N of the compressor 31. .
When the determination part 41a determines that it is not in the differential pressure state, the first lower limit value N1 is stored as the lower limit rotation speed NL in the upper and lower limit storage area 42b. On the other hand, when the determination unit 41a determines that the pressure difference is present, the upper and lower limit storage area 42b stores the second lower limit value N2 as the lower limit rotation speed NL. The second lower limit value N2 is larger than the first lower limit value N1. For example, the first lower limit value N1 is 4 rps, and the second lower limit value N2 is 6 rps. The lower limit rotation speed NL in the upper / lower limit storage area 42b is set to the first lower limit value N1 or the second lower limit value N2 by being changed by the lower limit changing unit 41c.
 (2-3-3)入力部
 入力部43は、空気調和装置10のリモコンである。入力部43は、空気調和装置10のユーザから各種入力を受け付ける。入力部43がユーザから受け付ける各種入力には、空気調和装置10の運転/停止命令、空気調和装置10の運転モード(暖房モード/冷房モード)、空気調和装置10の設定温度等が含まれる。
 (3)差圧状態の判定処理及び圧縮機の下限回転数の変更処理
 以下に、差圧状態の判定処理及び圧縮機31の下限回転数NLの変更処理について、図3のフローチャートを用いて説明する。差圧状態の判定処理及び下限回転数NLの変更処理は、空気調和装置10の運転中、定期的に(例えば、30秒間隔で)実行される。
 ステップS1では、判定部41aは、室内熱交温度センサ24及び室外熱交温度センサ37の計測値を取得する。空気調和装置10が冷房運転中であれば、室外熱交温度センサ37の計測値が凝縮温度Tcとして、室内熱交温度センサ24の計測値が蒸発温度Teとして取得される。空気調和装置10が暖房運転中であれば、室内熱交温度センサ24の計測値が凝縮温度Tcとして、室外熱交温度センサ37の計測値が蒸発温度Teとして取得される。その後ステップS2に進む。
(2-3-3) Input Unit The input unit 43 is a remote controller for the air conditioning apparatus 10. The input unit 43 receives various inputs from the user of the air conditioning apparatus 10. Various inputs received from the user by the input unit 43 include an operation / stop command for the air conditioner 10, an operation mode (heating mode / cooling mode) of the air conditioner 10, a set temperature of the air conditioner 10, and the like.
(3) Differential Pressure State Determination Process and Compressor Lower Limit Rotation Speed Change Process Hereinafter, the differential pressure state determination process and the lower limit rotation speed NL change process of the compressor 31 will be described with reference to the flowchart of FIG. To do. The process for determining the differential pressure state and the process for changing the lower limit rotational speed NL are performed periodically (for example, at intervals of 30 seconds) while the air conditioner 10 is in operation.
In step S <b> 1, the determination unit 41 a acquires measurement values of the indoor heat exchange temperature sensor 24 and the outdoor heat exchange temperature sensor 37. If the air conditioner 10 is in the cooling operation, the measured value of the outdoor heat exchanger temperature sensor 37 is acquired as the condensation temperature Tc, and the measured value of the indoor heat exchanger temperature sensor 24 is acquired as the evaporation temperature Te. If the air conditioner 10 is in the heating operation, the measured value of the indoor heat exchanger temperature sensor 24 is acquired as the condensation temperature Tc, and the measured value of the outdoor heat exchanger temperature sensor 37 is acquired as the evaporation temperature Te. Thereafter, the process proceeds to step S2.
 ステップS2では、判定部41aは、換算情報記憶領域42aに記憶された温度圧力換算情報を用いて、ステップS1で得られた凝集温度Tcを凝集圧力Pcに換算し、蒸発温度Teを蒸発圧力Peに換算する。その後ステップS3に進む。
 ステップS3では、判定部41aは、ステップS2で得られた凝縮圧力Pcと、蒸発圧力Peとの圧力差ΔPを算出する。圧力差ΔPは、凝縮圧力Pcから蒸発圧力Peを差し引くことで算出される。なお、凝縮圧力Pcと蒸発圧力Peとの圧力差ΔPは、圧縮機31の、吐出圧力Poと吸入圧力Piとの圧力差と近似する。その後ステップS4へと進む。
 ステップS4では、判定部41aは、圧力差ΔPが所定値A以上か否かを判定する。圧力差ΔPが所定値A以上と判定された場合には、差圧状態にある(圧縮機31の吐出圧力Poと吸入圧力Piとの圧力差が所定値A以上になる)と判定し、ステップS5に進む。圧力差ΔPが所定値Aより小さいと判定された場合には、差圧状態ではないと判定し、ステップS7に進む。
In step S2, the determination unit 41a converts the aggregation temperature Tc obtained in step S1 into the aggregation pressure Pc using the temperature / pressure conversion information stored in the conversion information storage area 42a, and converts the evaporation temperature Te into the evaporation pressure Pe. Convert to. Thereafter, the process proceeds to step S3.
In step S3, the determination unit 41a calculates a pressure difference ΔP between the condensation pressure Pc obtained in step S2 and the evaporation pressure Pe. The pressure difference ΔP is calculated by subtracting the evaporation pressure Pe from the condensation pressure Pc. Note that the pressure difference ΔP between the condensation pressure Pc and the evaporation pressure Pe approximates the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31. Thereafter, the process proceeds to step S4.
In step S4, the determination unit 41a determines whether or not the pressure difference ΔP is equal to or greater than a predetermined value A. If the pressure difference ΔP is determined to be greater than or equal to the predetermined value A, it is determined that the pressure difference is present (the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is greater than or equal to the predetermined value A), and step Proceed to S5. When it is determined that the pressure difference ΔP is smaller than the predetermined value A, it is determined that the pressure difference state is not established, and the process proceeds to step S7.
 ステップS5では、下限変更部41cは、上下限記憶領域42bに記憶されている下限回転数NLが第1下限値N1であるか否かを判定する。上下限記憶領域42bに記憶されている下限回転数NLが、第1下限値N1であると判定された場合には、ステップS6へと進む。一方、上下限記憶領域42bに記憶されている下限回転数NLが、第1下限値N1ではない(第2下限値N2である)と判定された場合には、処理を終了する。
 ステップS6では、下限変更部41cは、下限回転数NLを第2下限値N2に変更する。その後、処理を終了する。
 ステップS7では、下限変更部41cは、上下限記憶領域42bに記憶されている下限回転数NLが第2下限値N2であるか否かを判定する。上下限記憶領域42bに記憶されている下限回転数NLが、第2下限値N2であると判定された場合には、ステップS8へと進む。一方、上下限記憶領域42bに記憶されている下限回転数NLが、第2下限値N2ではない(第1下限値N1である)と判定された場合には、処理を終了する。
In step S5, the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the first lower limit value N1. When it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is the first lower limit value N1, the process proceeds to step S6. On the other hand, if it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is not the first lower limit value N1 (the second lower limit value N2), the process is terminated.
In step S6, the lower limit changing unit 41c changes the lower limit rotation speed NL to the second lower limit value N2. Thereafter, the process ends.
In step S7, the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the second lower limit value N2. If it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is the second lower limit value N2, the process proceeds to step S8. On the other hand, if it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is not the second lower limit value N2 (is the first lower limit value N1), the process ends.
 ステップS8では、下限変更部41cは、下限回転数NLを第1下限値N1に変更する。その後、処理を終了する。
 以上の処理を行うことで、判定部41aが、空気調和装置10が差圧状態にあると判定した場合には、圧縮機31の下限回転数NLが第2下限値N2に設定される(変更される)。一方、判定部41aが、空気調和装置10が差圧状態にないと判定した場合には、圧縮機31の下限回転数NLが第1下限値N1に設定される(変更される)。
 以上のように、圧縮機31の下限回転数NLを第1下限値N1と第2下限値N2とで可変とし、差圧状態にある時に圧縮機31の下限回転数NLを第1下限値N1より大きな第2下限値N2とすることで、以下の様な効果が得られる。
 圧縮機31は、1台の圧縮機31で幅広い空調能力に応じるために、できるだけ小さな下限回転数NLで運転可能であることが望ましい。従って、圧縮機31の下限回転数NLは、基本的には小さな値(第1下限値N1)であることが望ましい。
In step S8, the lower limit changing unit 41c changes the lower limit rotation speed NL to the first lower limit value N1. Thereafter, the process ends.
By performing the above processing, when the determination unit 41a determines that the air conditioner 10 is in the differential pressure state, the lower limit rotation speed NL of the compressor 31 is set to the second lower limit value N2 (change). ) On the other hand, when the determination unit 41a determines that the air conditioner 10 is not in the differential pressure state, the lower limit rotation speed NL of the compressor 31 is set (changed) to the first lower limit value N1.
As described above, the lower limit rotational speed NL of the compressor 31 is variable between the first lower limit value N1 and the second lower limit value N2, and the lower limit rotational speed NL of the compressor 31 is set to the first lower limit value N1 when in the differential pressure state. By setting the second lower limit value N2 to be larger, the following effects can be obtained.
It is desirable that the compressor 31 can be operated at the lowest possible rotation speed NL as much as possible in order to meet a wide range of air conditioning capabilities with a single compressor 31. Therefore, it is desirable that the lower limit rotation speed NL of the compressor 31 is basically a small value (first lower limit value N1).
 ところで、圧縮機31においては、圧縮機構の隙間を通って、高圧側から低圧側に向かって冷媒が漏れることを防止するため、圧縮機構に冷凍機油を供給し、圧縮機構の隙間に油膜を形成している。圧縮機構の隙間とは、例えば、本実施形態のようにロータリ圧縮機であれば、ローラとシリンダとの隙間等である。圧縮機31の圧縮機構への冷凍機油の供給は、モータが回転することで発生する遠心力等を駆動力として用いているため、圧縮機31の回転数Nが小さな領域、特に回転数Nが下限回転数NLとなった状態では、冷凍機油の供給量が減少しやすい。そのため、圧縮機31の回転数Nが下限回転数NLとなると、圧縮機構の隙間から冷媒が漏れやすい状態になる。特に、圧縮機31の吐出圧力Poと吸入圧力Piとの差が所定値A以上になるような差圧状態では、冷媒が漏れやすい状態となる。また、本実施形態では、R32が冷媒として使用されているため、R410Aを冷媒として使用されている場合に比べ、圧縮機構の隙間から冷媒が漏れやすい。 By the way, in the compressor 31, in order to prevent the refrigerant from leaking from the high pressure side to the low pressure side through the gap of the compression mechanism, refrigeration oil is supplied to the compression mechanism and an oil film is formed in the gap of the compression mechanism. is doing. The clearance of the compression mechanism is, for example, a clearance between a roller and a cylinder in the case of a rotary compressor as in this embodiment. The supply of the refrigerating machine oil to the compression mechanism of the compressor 31 uses a centrifugal force or the like generated by the rotation of the motor as a driving force. Therefore, the region where the rotational speed N of the compressor 31 is small, particularly the rotational speed N is In the state where the lower limit rotational speed NL is reached, the supply amount of refrigerating machine oil tends to decrease. Therefore, when the rotation speed N of the compressor 31 reaches the lower limit rotation speed NL, the refrigerant is likely to leak from the gap of the compression mechanism. In particular, in a differential pressure state where the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is greater than or equal to a predetermined value A, the refrigerant is likely to leak. Moreover, in this embodiment, since R32 is used as a refrigerant, the refrigerant is more likely to leak from the gap of the compression mechanism than when R410A is used as the refrigerant.
 その結果、圧縮機31の吐出圧力Poと吸入圧力Piとの圧力差が、ある値B(値B≧差圧状態の基準値である所定値A)である時に、圧縮機31の下限回転数NLを第1下限値N1とすると、例えば図4の左側のグラフのように、消費エネルギー(消費電力)に対して、圧縮機構の隙間から冷媒が漏れるために浪費されるエネルギーの割合が大きくなりやすい。言い換えれば、消費エネルギー(消費電力)に対して、実際に空調に寄与するエネルギー(図4の斜線部)の割合が小さくなりやすい。
 これに対し、圧縮機31の回転数Nの下限回転数NLを、第1下限値N1より大きな第2下限値N2に変化させると、下限回転数NLにおける圧縮機31の圧縮機構への給油量が増大する。その結果、圧縮機構の隙間に油膜が形成され、漏れる冷媒の量は減少する。その結果、例えば図4の右側のグラフのように、圧縮機構の隙間から冷媒が漏れることで浪費されるエネルギーが小さくなる。言い換えれば、下限回転数NLを第1下限値N1から第2下限値N2に変更することで、消費エネルギー(消費電力)に対して、実際に空調に寄与するエネルギー(図4の斜線部)の割合が大きくなる。つまり、本実施形態の空気調和装置10では、差圧状態で、かつ、圧縮機31が低回転数領域で運転される場合の、圧縮機31の効率を改善することが可能である。その結果、空気調和装置10のCOPが改善され、エネルギーの有効活用を図ることができる。
As a result, when the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is a certain value B (value B ≧ predetermined value A which is a reference value of the differential pressure state), the lower limit rotation speed of the compressor 31 is reached. Assuming that NL is the first lower limit value N1, for example, as shown in the graph on the left side of FIG. 4, the proportion of energy wasted due to refrigerant leaking from the gap of the compression mechanism with respect to energy consumption (power consumption). Cheap. In other words, the ratio of energy (shaded area in FIG. 4) that actually contributes to air conditioning tends to be small with respect to energy consumption (power consumption).
On the other hand, when the lower limit rotational speed NL of the rotational speed N of the compressor 31 is changed to the second lower limit value N2 larger than the first lower limit value N1, the amount of oil supplied to the compression mechanism of the compressor 31 at the lower limit rotational speed NL. Will increase. As a result, an oil film is formed in the gap of the compression mechanism, and the amount of refrigerant leaking is reduced. As a result, for example, as shown in the graph on the right side of FIG. 4, less energy is wasted due to refrigerant leaking from the gaps in the compression mechanism. In other words, by changing the lower limit rotational speed NL from the first lower limit value N1 to the second lower limit value N2, energy actually consumed for air conditioning (hatched portion in FIG. 4) with respect to energy consumption (power consumption). The proportion increases. That is, in the air conditioning apparatus 10 of the present embodiment, it is possible to improve the efficiency of the compressor 31 when the compressor 31 is operated in the differential pressure state and in the low rotation speed region. As a result, the COP of the air conditioner 10 is improved, and energy can be effectively used.
 なお、差圧状態にあるか否かの判定は、上記のように圧縮機構の隙間から冷媒が漏れて、空気調和装置10のCOPが過度に悪化することを避けるために行われるものであることから、差圧状態にあるか否かの基準値(所定値A)は、圧縮機31の特性等に応じて適切に決められればよい。
 (4)特徴
 (4-1)
 本実施形態の空気調和装置10は、冷媒としてR32を使う冷凍装置である。空気調和装置10は、圧縮機31と、凝縮器(室内熱交換器21又は室外熱交換器34)と、膨張機構としての室内膨張弁23及び室外膨張弁36と、蒸発器(室外熱交換器34又は室内熱交換器21)と、判定部41aと、下限変更部41cと、を備える。圧縮機31は、吸入流路としての吸入管81から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器(室内熱交換器21又は室外熱交換器34)は、圧縮機31から吐出された高圧の冷媒を凝縮させる。室内膨張弁23及び室外膨張弁36は、凝縮器(室内熱交換器21又は室外熱交換器34)を出た高圧冷媒を膨張させる。蒸発器(室外熱交換器34又は室内熱交換器21)は、室内膨張弁23及び室外膨張弁36で膨張した冷媒を蒸発させる。判定部41aは、圧縮機31から吐出される高圧の冷媒の圧力と、圧縮機31に吸入される低圧の冷媒の圧力と、の圧力差が、所定値A以上になるような差圧状態にあるか否かを判定する。下限変更部41cは、判定部41aが、差圧状態にあると判定した時に、圧縮機31の下限回転数NLを、第1下限値N1から、第1下限値N1よりも大きな第2下限値N2に変更する。
Note that the determination of whether or not the differential pressure state is present is made in order to prevent the refrigerant from leaking from the gap of the compression mechanism as described above and the COP of the air conditioner 10 from being excessively deteriorated. Therefore, the reference value (predetermined value A) as to whether or not the differential pressure state exists may be appropriately determined according to the characteristics of the compressor 31 and the like.
(4) Features (4-1)
The air conditioning apparatus 10 of the present embodiment is a refrigeration apparatus that uses R32 as a refrigerant. The air conditioner 10 includes a compressor 31, a condenser (indoor heat exchanger 21 or outdoor heat exchanger 34), an indoor expansion valve 23 and an outdoor expansion valve 36 as an expansion mechanism, and an evaporator (outdoor heat exchanger). 34 or the indoor heat exchanger 21), a determination unit 41a, and a lower limit changing unit 41c. The compressor 31 sucks low-pressure refrigerant from a suction pipe 81 serving as a suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant. The condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) condenses the high-pressure refrigerant discharged from the compressor 31. The indoor expansion valve 23 and the outdoor expansion valve 36 expand the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34). The evaporator (the outdoor heat exchanger 34 or the indoor heat exchanger 21) evaporates the refrigerant expanded by the indoor expansion valve 23 and the outdoor expansion valve 36. The determination unit 41a is in a differential pressure state in which the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor 31 is equal to or greater than a predetermined value A. It is determined whether or not there is. When the determination unit 41a determines that the differential pressure state exists, the lower limit changing unit 41c changes the lower limit rotation speed NL of the compressor 31 from the first lower limit value N1 to a second lower limit value that is larger than the first lower limit value N1. Change to N2.
 ここでは、圧縮機31から吐出された高圧の冷媒の圧力と、圧縮機31に吸入される低圧の冷媒の圧力と、の圧力差が所定値A以上になるような差圧状態にある場合に、圧縮機31の下限回転数NLが大きな値(第2下限値N2)に変更される。圧縮機31の下限回転数NLが大きな値に変更されることで、圧縮機31が低回転数域で運転される場合にも、圧縮機31の圧縮機構への冷凍機油の給油量が確保されやすくなり、圧縮機構の隙間を小さく抑制することが可能になる。その結果、冷媒としてR32が使用される場合にも、低回転数域において、圧縮機31の圧縮機構の冷媒の漏れを抑制し、空気調和装置10のCOPを改善させることができる。
 (4-2)
 本実施形態の空気調和装置10では、凝縮温度検出部(室内熱交温度センサ24又は室外熱交温度センサ37)と、蒸発温度検出部(室外熱交温度センサ37又は室内熱交温度センサ24)と、備える。凝縮温度検出部(室内熱交温度センサ24又は室外熱交温度センサ37)は、凝縮器(室内熱交換器21又は室外熱交換器34)の凝縮温度Tcを検出する。蒸発温度検出部(室外熱交温度センサ37又は室内熱交温度センサ24)は、蒸発器(室外熱交換器34又は室内熱交換器21)の蒸発温度Teを検出する。判定部41aは、凝縮温度Tcと、蒸発温度Teとを用いて、差圧状態にあるか否かを判定する。
Here, when the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor 31 is equal to or greater than a predetermined value A. The lower limit rotational speed NL of the compressor 31 is changed to a large value (second lower limit value N2). By changing the lower limit rotational speed NL of the compressor 31 to a large value, the amount of refrigerating machine oil supplied to the compression mechanism of the compressor 31 is ensured even when the compressor 31 is operated in a low rotational speed range. It becomes easy and it becomes possible to suppress the clearance gap of a compression mechanism small. As a result, even when R32 is used as the refrigerant, leakage of the refrigerant in the compression mechanism of the compressor 31 can be suppressed and the COP of the air conditioner 10 can be improved in the low speed range.
(4-2)
In the air conditioning apparatus 10 of the present embodiment, the condensation temperature detection unit (the indoor heat exchange temperature sensor 24 or the outdoor heat exchange temperature sensor 37) and the evaporation temperature detection unit (the outdoor heat exchange temperature sensor 37 or the indoor heat exchange temperature sensor 24). And prepare. The condensation temperature detector (the indoor heat exchanger temperature sensor 24 or the outdoor heat exchanger temperature sensor 37) detects the condensation temperature Tc of the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34). The evaporation temperature detection unit (outdoor heat exchange temperature sensor 37 or indoor heat exchange temperature sensor 24) detects the evaporation temperature Te of the evaporator (outdoor heat exchanger 34 or indoor heat exchanger 21). The determination part 41a determines whether it is in a differential pressure state using the condensation temperature Tc and the evaporation temperature Te.
 ここでは、凝縮温度Tcと蒸発温度Teとを用いて、圧縮機31から吐出された高圧の冷媒の圧力と、圧縮機に吸入される低圧の冷媒の圧力と、の圧力差が所定値A以上になるような差圧状態にあるか否かが判定される。高圧の冷媒の圧力と、低圧の冷媒の圧力とを計測する圧力センサを用いなくても差圧状態にあるか否かを判定可能であり、空気調和装置10のコストを抑制しながら、圧縮機31が低回転数域で運転される場合に、圧縮機31の圧縮機構の冷媒の漏れを抑制し、空気調和装置10のCOPを改善させることができる。
 (4-3)
 本実施形態の空気調和装置10では、判定部41aは、凝縮温度Tc及び蒸発温度Teを、それぞれ凝縮圧力Pc及び蒸発圧力Peに換算する。判定部41aは、換算された凝縮圧力Pc及び蒸発圧力Peを用いて、差圧状態にあるか否かを判定する。
Here, the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor using the condensation temperature Tc and the evaporation temperature Te is equal to or greater than a predetermined value A. It is determined whether or not the differential pressure state is as follows. It is possible to determine whether or not there is a differential pressure state without using a pressure sensor that measures the pressure of the high-pressure refrigerant and the pressure of the low-pressure refrigerant, and while reducing the cost of the air conditioner 10, the compressor When 31 is operated in a low rotation speed range, leakage of the refrigerant of the compression mechanism of the compressor 31 can be suppressed, and the COP of the air conditioner 10 can be improved.
(4-3)
In the air conditioning apparatus 10 of the present embodiment, the determination unit 41a converts the condensation temperature Tc and the evaporation temperature Te into a condensation pressure Pc and an evaporation pressure Pe, respectively. The determination part 41a determines whether it is in a differential pressure state using the converted condensing pressure Pc and evaporation pressure Pe.
 ここでは、凝縮温度Tcを凝縮圧力Pcに、蒸発温度Teを蒸発圧力Peに、それぞれ換算し、凝縮圧力Pcと蒸発圧力Peとを用いることで、差圧状態にあるか否かの判定が行われる。そのため、圧力を計測するための圧力センサを用いずに、空気調和装置10のコストを抑制しながら、圧縮機31が低回転数域で運転される場合に、圧縮機31の圧縮機構の冷媒の漏れを抑制し、空気調和装置10のCOPを改善させることができる。
 (5)変形例
 以下に本実施形態の変形例を示す。なお、複数の変形例を適宜組み合わせてもよい。
 (5-1)変形例1A
 上記実施形態では、判定部41aは、凝縮温度Tc及び蒸発温度Teを、それぞれ凝縮圧力Pc及び蒸発圧力Peに換算し、換算された凝縮圧力Pc及び蒸発圧力Peを用いて、差圧状態にあるか否かを判定するが、これに限定されるものではない。
Here, the condensing temperature Tc is converted into the condensing pressure Pc, the evaporating temperature Te is converted into the evaporating pressure Pe, and the condensing pressure Pc and the evaporating pressure Pe are used to determine whether or not there is a differential pressure state. Is called. Therefore, when the compressor 31 is operated in a low speed range while suppressing the cost of the air conditioner 10 without using a pressure sensor for measuring pressure, the refrigerant of the compression mechanism of the compressor 31 is reduced. Leakage can be suppressed and the COP of the air conditioner 10 can be improved.
(5) Modifications Modifications of the present embodiment are shown below. A plurality of modified examples may be appropriately combined.
(5-1) Modification 1A
In the above embodiment, the determination unit 41a converts the condensation temperature Tc and the evaporation temperature Te into the condensation pressure Pc and the evaporation pressure Pe, respectively, and is in a differential pressure state using the converted condensation pressure Pc and the evaporation pressure Pe. However, the present invention is not limited to this.
 例えば、換算情報記憶領域42aに、凝縮温度Tcと蒸発温度Teとの温度差ΔTを、凝縮圧力Pcと蒸発圧力Peとの圧力差ΔPに換算する情報(例えば数式等)を記憶させ、判定部41aは、その情報を利用することで、差圧状態にあるか否かを判定してもよい。
 この場合には、上記実施形態のフローチャート(図3参照)と異なり、図5のフローチャートのように、ステップS2の代わりに、凝縮温度Tcと蒸発温度Teとの温度差ΔTを算出するステップS12が実行され、ステップS3の代わりに、温度差ΔTから凝縮圧力Pcと蒸発圧力Peとの圧力差ΔPを算出するステップS13が実行される。
 また、例えば、差圧状態になる可能性の高い、すなわち圧縮機31の吐出圧力Poと吸入圧力Piとの圧力差が所定値A以上になる可能性が高い、凝縮温度Tcと蒸発温度Teとの温度差ΔTの基準値Cを予め記憶部42に記憶させておき、判定部41aは、温度差ΔTが基準値C以上になるか否かで、差圧状態にあるか否かを判定してもよい。
For example, in the conversion information storage area 42a, information (for example, a mathematical expression) for converting the temperature difference ΔT between the condensation temperature Tc and the evaporation temperature Te into the pressure difference ΔP between the condensation pressure Pc and the evaporation pressure Pe is stored. 41a may determine whether or not it is in a differential pressure state by using the information.
In this case, unlike the flowchart of the above-described embodiment (see FIG. 3), step S12 for calculating the temperature difference ΔT between the condensation temperature Tc and the evaporation temperature Te is performed instead of step S2, as in the flowchart of FIG. Step S13 is executed instead of step S3, in which a pressure difference ΔP between the condensation pressure Pc and the evaporation pressure Pe is calculated from the temperature difference ΔT.
In addition, for example, the condensation temperature Tc and the evaporation temperature Te are highly likely to be in a differential pressure state, that is, the pressure difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is likely to be a predetermined value A or higher. The reference value C of the temperature difference ΔT is stored in the storage unit 42 in advance, and the determination unit 41a determines whether or not the temperature difference ΔT is greater than or equal to the reference value C to determine whether or not the differential pressure state exists. May be.
 この場合には、上記実施形態のフローチャート(図3参照)と異なり、図6のフローチャートのように、ステップS2の代わりに、凝縮温度Tcと蒸発温度Teとの温度差ΔTを算出するステップS12が実行され、その後、ステップS14で温度差ΔTが基準値C以上か否かで差圧状態の判定が行われる。
 (5-2)変形例1B
 上記実施形態では、判定部41aは、算出された凝縮圧力Pc及び蒸発圧力PeのΔPが、圧縮機31の吐出圧力Poと吸入圧力Piとの差と等しいとみなして、ΔPが所定値A以上の時に差圧状態(圧縮機31の吐出圧力Poと吸入圧力Piとの差が所定値A以上になるような状態)にあると判定しているが、これに限定されるものではない。例えば、ΔPが、所定値Aと所定の係数との積以上の時に差圧状態にあると判定してもよい。
In this case, unlike the flowchart of the above-described embodiment (see FIG. 3), step S12 for calculating the temperature difference ΔT between the condensation temperature Tc and the evaporation temperature Te is performed instead of step S2, as in the flowchart of FIG. After that, the differential pressure state is determined based on whether or not the temperature difference ΔT is greater than or equal to the reference value C in step S14.
(5-2) Modification 1B
In the above embodiment, the determination unit 41a considers that the calculated ΔP of the condensation pressure Pc and the evaporation pressure Pe is equal to the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31, and ΔP is equal to or greater than the predetermined value A. At this time, it is determined that there is a differential pressure state (a state in which the difference between the discharge pressure Po and the suction pressure Pi of the compressor 31 is equal to or greater than a predetermined value A), but is not limited thereto. For example, it may be determined that the differential pressure state is present when ΔP is equal to or greater than the product of the predetermined value A and the predetermined coefficient.
 (5-3)変形例1C
 上記実施形態では、判定部41aは、凝縮温度Tc及び蒸発温度Teを用いて差圧状態にあるか否かを判定しているが、差圧状態の判定方法はこれに限定されるものではない。例えば、室内膨張弁23及び/又は室外膨張弁36の開度と、圧縮機31の回転数Nとを用いて、差圧状態にあるか否かを判定するものであってもよい。また、凝縮温度Tc又は蒸発温度Teに加えて、室温や外気温を用いて、差圧状態にあるか否かを判定するものであってもよい。
 (5-4)変形例1D
 上記実施形態では、圧縮機31から吐出される高圧の冷媒の圧力と、圧縮機31に吸入される低圧の冷媒の圧力と、の圧力差が、所定値A以上になるような1つの差圧状態が判定され、差圧状態であるか否かに応じて、下限回転数NLが、第1下限値N1と第2下限値N2とのいずれかの値に設定されるが、これに限定されるものではない。例えば、所定値を複数設けることで、圧力差が所定値A1以上になる第1差圧状態、圧力差が所定値A2以上になる第2差圧状態、・・等を判定し、どの差圧状態にあるかに応じ、下限回転数NLが複数の値に設定(変更)されてもよい。
(5-3) Modification 1C
In the above embodiment, the determination unit 41a determines whether or not the differential pressure state is present using the condensation temperature Tc and the evaporation temperature Te, but the determination method for the differential pressure state is not limited to this. . For example, it may be determined whether or not the pressure is in a differential pressure state using the opening degree of the indoor expansion valve 23 and / or the outdoor expansion valve 36 and the rotational speed N of the compressor 31. Moreover, in addition to the condensation temperature Tc or the evaporation temperature Te, it may be determined whether or not a differential pressure state is established using room temperature or an outside air temperature.
(5-4) Modification 1D
In the above embodiment, one differential pressure such that the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor 31 and the pressure of the low-pressure refrigerant sucked into the compressor 31 is equal to or greater than a predetermined value A. The lower limit rotational speed NL is set to one of the first lower limit value N1 and the second lower limit value N2 depending on whether or not the state is determined and the differential pressure state, but the present invention is not limited to this. It is not something. For example, by providing a plurality of predetermined values, a first differential pressure state in which the pressure difference is greater than or equal to the predetermined value A1, a second differential pressure state in which the pressure difference is greater than or equal to the predetermined value A2, and so on are determined. The lower limit rotational speed NL may be set (changed) to a plurality of values depending on whether the state is in effect.
 (5-5)変形例1E
 上記実施形態では、室内膨張弁23及び室外膨張弁36が膨張機構として設けられているが、これに限定されるものではない。例えば、膨張機構は、室外膨張弁36だけであってもよい。
 <第2実施形態>
 本発明の第2実施形態に係る冷凍装置としての空気調和装置110について説明する。なお、本実施形態の空気調和装置110は、第1実施形態と共通する点も多いため、主に相違点について説明する。なお、第2実施形態の説明において、第1実施形態と同じ符号を用いる場合があるが、同じ符号を用いた構成は、第1実施形態の構成と同様であることを意味する。
(5-5) Modification 1E
In the said embodiment, although the indoor expansion valve 23 and the outdoor expansion valve 36 are provided as an expansion mechanism, it is not limited to this. For example, the expansion mechanism may be only the outdoor expansion valve 36.
Second Embodiment
An air conditioner 110 as a refrigeration apparatus according to a second embodiment of the present invention will be described. In addition, since the air conditioning apparatus 110 of this embodiment has many points in common with 1st Embodiment, it mainly demonstrates a different point. In the description of the second embodiment, the same reference numerals as those in the first embodiment may be used, but the configuration using the same reference numerals means the same as the configuration in the first embodiment.
 (1)全体構成
 空気調和装置110は、R32を冷媒として使用する冷凍装置である。空気調和装置110は、図1に示すように、主に、室内ユニット20と、室外ユニット130と、制御ユニット140と、を有する。第1実施形態の空気調和装置10と、室内ユニット20については同様であるので、ここでは、室外ユニット130及び制御ユニット140についてのみ説明する。
 (2)詳細構成
 (2-1)室外ユニット
 室外ユニット130は、主に、圧縮機31,四路切換弁33、室外熱交換器34、室外ファン35、室外膨張弁36、室外熱交温度センサ37、吐出温度センサ51、吐出圧力センサ61、及び、吸入圧力センサ62を有する。室外ユニット130は、吐出圧力センサ61と吸入圧力センサ62とを有する点を除き、第1実施形態の室外ユニット30と同様であるので、ここでは、吐出圧力センサ61及び吸入圧力センサ62についてのみ説明する。
(1) Overall Configuration The air conditioning apparatus 110 is a refrigeration apparatus that uses R32 as a refrigerant. As shown in FIG. 1, the air conditioner 110 mainly includes an indoor unit 20, an outdoor unit 130, and a control unit 140. Since the air conditioner 10 of the first embodiment and the indoor unit 20 are the same, only the outdoor unit 130 and the control unit 140 will be described here.
(2) Detailed configuration (2-1) Outdoor unit The outdoor unit 130 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor fan 35, an outdoor expansion valve 36, and an outdoor heat exchange temperature sensor. 37, a discharge temperature sensor 51, a discharge pressure sensor 61, and a suction pressure sensor 62. The outdoor unit 130 is the same as the outdoor unit 30 of the first embodiment except that the outdoor unit 130 has a discharge pressure sensor 61 and a suction pressure sensor 62. Therefore, only the discharge pressure sensor 61 and the suction pressure sensor 62 will be described here. To do.
 (2-1-1)吐出圧力センサ
 吐出圧力センサ61は、圧縮機31から吐出される高圧の冷媒の圧力(吐出圧力Po)を検出する吐出圧力検知部の一例である。吐出圧力センサ61は、圧縮機31の外部、より具体的には、吐出管82の、圧縮機31の吐出口付近に設けられる。
 (2-1-2)吸入圧力センサ
 吸入圧力センサ62は、圧縮機31に吸入される低圧の冷媒の圧力(吸入圧力Pi)を検出する吸入圧力検知部の一例である。吸入圧力センサ62は、圧縮機31の外部、より具体的には、吸入管81の、圧縮機31の吸入口付近に設けられる。
 (2-2)制御ユニット
 制御ユニット140は、空気調和装置110を制御する。図8に、制御ユニット140を含む空気調和装置110のブロック図を示す。
(2-1-1) Discharge Pressure Sensor The discharge pressure sensor 61 is an example of a discharge pressure detection unit that detects the pressure of the high-pressure refrigerant discharged from the compressor 31 (discharge pressure Po). The discharge pressure sensor 61 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82.
(2-1-2) Suction Pressure Sensor The suction pressure sensor 62 is an example of a suction pressure detector that detects the pressure (suction pressure Pi) of the low-pressure refrigerant sucked into the compressor 31. The suction pressure sensor 62 is provided outside the compressor 31, more specifically, near the suction port of the compressor 31 in the suction pipe 81.
(2-2) Control Unit The control unit 140 controls the air conditioner 110. FIG. 8 shows a block diagram of the air conditioner 110 including the control unit 140.
 制御ユニット140は、第1実施形態に係る制御ユニット40と、吐出圧力センサ61及び吸入圧力センサ62が電気的に接続されている点と、圧力センサ61,62の計測値を用いて判定部141aが差圧状態の判定を行う点が異なる。その他の点は同様であるので、ここでは、判定部141aについてのみ説明する。なお、記憶部42の換算情報記憶領域42aは、判定部141aによる差圧状態の判定には用いられないため、設けられていなくてもよい。
 (2-2-1)判定部
 判定部41aは、圧縮機から吐出される高圧の冷媒の圧力(吐出圧力Po)と、圧縮機に吸入される低圧の冷媒の圧力(吸入圧力Pi)と、の圧力差が、所定値A以上になるような差圧状態にあるか否かを判定する。判定部41aは、具体的には、吐出圧力センサ61により計測された吐出圧力Poと、吸入圧力センサ62により計測された吸入圧力Piと、を用いて、差圧状態にあるか否かを判定する。
The control unit 140 uses the control unit 40 according to the first embodiment, the point where the discharge pressure sensor 61 and the suction pressure sensor 62 are electrically connected, and the determination values 141a using the measured values of the pressure sensors 61 and 62. Is different in that it determines the differential pressure state. Since the other points are the same, only the determination unit 141a will be described here. In addition, since the conversion information storage area 42a of the storage unit 42 is not used for the determination of the differential pressure state by the determination unit 141a, it may not be provided.
(2-2-1) Determination Unit The determination unit 41a includes the pressure of the high-pressure refrigerant discharged from the compressor (discharge pressure Po), the pressure of the low-pressure refrigerant sucked into the compressor (intake pressure Pi), It is determined whether or not the pressure difference is equal to or greater than a predetermined value A. Specifically, the determination unit 41a determines whether or not a differential pressure state exists using the discharge pressure Po measured by the discharge pressure sensor 61 and the suction pressure Pi measured by the suction pressure sensor 62. To do.
 (3)差圧状態の判定処理及び圧縮機の下限回転数の変更処理
 以下に、差圧状態の判定処理及び圧縮機31の下限回転数NLの変更処理について、図9のフローチャートを用いて説明する。差圧状態の判定処理及び下限回転数NLの変更処理は、空気調和装置110の運転中、定期的に(例えば、30秒間隔で)実行される。
 ステップS101では、判定部141aは、吐出圧力センサ61及び吸入圧力センサ62の計測値を、吐出圧力Po及び吸入圧力Piとして取得する。その後ステップS102に進む。
 ステップS102では、判定部141aは、ステップS101で得られた吐出圧力Poと、吸入圧力Piとの圧力差ΔP1を算出する。圧力差ΔP1は、吐出圧力Poから吸入圧力Piを差し引くことで算出される。その後ステップS103へと進む。
(3) Differential Pressure State Determination Process and Compressor Lower Limit Rotation Speed Change Process Hereinafter, the differential pressure state determination process and the lower limit rotation speed NL change process of the compressor 31 will be described with reference to the flowchart of FIG. To do. The process for determining the differential pressure state and the process for changing the lower limit rotational speed NL are performed periodically (for example, at intervals of 30 seconds) while the air conditioner 110 is in operation.
In step S101, the determination unit 141a acquires the measurement values of the discharge pressure sensor 61 and the suction pressure sensor 62 as the discharge pressure Po and the suction pressure Pi. Thereafter, the process proceeds to step S102.
In step S102, the determination unit 141a calculates a pressure difference ΔP1 between the discharge pressure Po obtained in step S101 and the suction pressure Pi. The pressure difference ΔP1 is calculated by subtracting the suction pressure Pi from the discharge pressure Po. Thereafter, the process proceeds to step S103.
 ステップS103では、判定部141aは、圧力差ΔP1が所定値A以上か否かを判定する。圧力差ΔP1が所定値A以上と判定された場合には、差圧状態にあると判定し、ステップS104に進む。圧力差ΔP1が所定値Aより小さいと判定された場合には、差圧状態ではないと判定し、ステップS106に進む。
 ステップS104では、下限変更部41cは、上下限記憶領域42bに記憶されている下限回転数NLが第1下限値N1であるか否かを判定する。上下限記憶領域42bに記憶されている下限回転数NLが、第1下限値N1であると判定された場合には、ステップS105へと進む。一方、上下限記憶領域42bに記憶されている下限回転数NLが、第1下限値N1でない(第2下限値N2である)と判定された場合には、処理を終了する。
 ステップS105では、下限変更部41cは、下限回転数NLを第2下限値N2に変更する。その後、処理を終了する。
In step S103, the determination unit 141a determines whether or not the pressure difference ΔP1 is equal to or greater than a predetermined value A. If it is determined that the pressure difference ΔP1 is greater than or equal to the predetermined value A, it is determined that the pressure difference is present, and the process proceeds to step S104. If it is determined that the pressure difference ΔP1 is smaller than the predetermined value A, it is determined that the pressure difference state is not established, and the process proceeds to step S106.
In step S104, the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the first lower limit value N1. When it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is the first lower limit value N1, the process proceeds to step S105. On the other hand, when it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is not the first lower limit value N1 (the second lower limit value N2), the process is terminated.
In step S105, the lower limit changing unit 41c changes the lower limit rotation speed NL to the second lower limit value N2. Thereafter, the process ends.
 ステップS106では、下限変更部41cは、上下限記憶領域42bに記憶されている下限回転数NLが第2下限値N2であるか否かを判定する。上下限記憶領域42bに記憶されている下限回転数NLが、第2下限値N2であると判定された場合には、ステップS107へと進む。一方、上下限記憶領域42bに記憶されている下限回転数NLが、第2下限値N2でない(第1下限値N1である)と判定された場合には、処理を終了する。
 ステップS107では、下限変更部41cは、下限回転数NLを第1下限値N1に変更する。その後、処理を終了する。
 (4)特徴
 第2実施形態の空気調和装置110は、第1実施形態の(4-1)の特徴に加え、以下の特徴を有する。
In step S106, the lower limit changing unit 41c determines whether or not the lower limit rotational speed NL stored in the upper and lower limit storage area 42b is the second lower limit value N2. When it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is the second lower limit value N2, the process proceeds to step S107. On the other hand, if it is determined that the lower limit rotational speed NL stored in the upper / lower limit storage area 42b is not the second lower limit value N2 (is the first lower limit value N1), the process ends.
In step S107, the lower limit changing unit 41c changes the lower limit rotation speed NL to the first lower limit value N1. Thereafter, the process ends.
(4) Features The air conditioner 110 of the second embodiment has the following features in addition to the features of (4-1) of the first embodiment.
 (4-1)
 本実施形態の空気調和装置110は、吐出圧力検出部としての吐出圧力センサ61と、吸入圧力検出部としての吸入圧力センサ62と、を備える。吐出圧力センサ61は、圧縮機31から吐出される高圧の冷媒の圧力を検出する。吸入圧力センサ62は、圧縮機31に吸入される低圧の冷媒の圧力を検出する。判定部141aは、吐出圧力センサ61及び吸入圧力センサ62の検出結果を用いて、差圧状態にあるか否かを判定する。
 ここでは、吐出圧力Po及び吸入圧力Piを実際に計測することで、差圧状態を正確に判定できる。そのため、低回転数域において、圧縮機31の圧縮機構の冷媒の漏れを抑制し、空気調和装置110のCOPを改善させることが容易である。
 (5)変形例
 以下に本実施形態の変形例を示す。なお、複数の変形例を適宜組み合わせてもよい。
(4-1)
The air conditioning apparatus 110 according to the present embodiment includes a discharge pressure sensor 61 as a discharge pressure detection unit, and a suction pressure sensor 62 as a suction pressure detection unit. The discharge pressure sensor 61 detects the pressure of the high-pressure refrigerant discharged from the compressor 31. The suction pressure sensor 62 detects the pressure of the low-pressure refrigerant sucked into the compressor 31. The determination unit 141a determines whether or not a differential pressure state exists using the detection results of the discharge pressure sensor 61 and the suction pressure sensor 62.
Here, the differential pressure state can be accurately determined by actually measuring the discharge pressure Po and the suction pressure Pi. Therefore, it is easy to improve the COP of the air conditioner 110 by suppressing the leakage of the refrigerant of the compression mechanism of the compressor 31 in the low rotation speed range.
(5) Modifications Modifications of the present embodiment are shown below. A plurality of modified examples may be appropriately combined.
 (5-1)変形例2A
 上記実施形態では、吐出圧力センサ61及び吸入圧力センサ62が設けられているが、これに限定されるものではない。
 例えば、吐出圧力センサ61又は吸入圧力センサ62の一方だけが設けられていてもよい。そして、圧力センサで検出しない圧力については、第1実施形態のように、凝縮温度Tc又は蒸発温度Teを用いて、凝縮圧力Pc又は蒸発圧力Peを算出し、その値を圧力センサで検出しない圧力として代用してもよい。例えば、吸入圧力センサ62を設けない場合には、室内熱交温度センサ24又は室外熱交温度センサ37により検出した蒸発温度Teを換算することで蒸発圧力Peを算出し、その値を吸入圧力Piとして用いてもよい。
(5-1) Modification 2A
In the above embodiment, the discharge pressure sensor 61 and the suction pressure sensor 62 are provided, but the present invention is not limited to this.
For example, only one of the discharge pressure sensor 61 or the suction pressure sensor 62 may be provided. For the pressure not detected by the pressure sensor, as in the first embodiment, the condensation pressure Pc or the evaporation pressure Pe is calculated using the condensation temperature Tc or the evaporation temperature Te, and the value is not detected by the pressure sensor. As a substitute. For example, when the suction pressure sensor 62 is not provided, the evaporation pressure Pe is calculated by converting the evaporation temperature Te detected by the indoor heat exchange temperature sensor 24 or the outdoor heat exchange temperature sensor 37, and the value is calculated as the suction pressure Pi. It may be used as
 (5-2)変形例2B
 上記実施形態では、圧縮機31の吐出圧力Poと吸入圧力Piとの圧力差ΔP1が、所定値A以上になるような1つの差圧状態が判定され、差圧状態であるか否かに応じて、下限回転数NLが、第1下限値N1と第2下限値N2とのいずれかの値に設定されるが、これに限定されるものではない。例えば、所定値を複数設けることで、圧力差が所定値A1以上になる第1差圧状態、圧力差が所定値A2以上になる第2差圧状態、・・等を判定し、どの差圧状態にあるかに応じ、下限回転数NLが複数の値に設定(変更)されてもよい。
 (5-3)変形例2C
 上記実施形態では、室内膨張弁23及び室外膨張弁36が膨張機構として設けられているが、これに限定されるものではない。例えば、膨張機構は、室外膨張弁36だけであってもよい。
(5-2) Modification 2B
In the above embodiment, one differential pressure state is determined such that the pressure difference ΔP1 between the discharge pressure Po and the suction pressure Pi of the compressor 31 is greater than or equal to the predetermined value A, and depending on whether or not the differential pressure state is present. The lower limit rotational speed NL is set to one of the first lower limit value N1 and the second lower limit value N2, but is not limited to this. For example, by providing a plurality of predetermined values, a first differential pressure state in which the pressure difference is greater than or equal to the predetermined value A1, a second differential pressure state in which the pressure difference is greater than or equal to the predetermined value A2, and so on are determined. The lower limit rotational speed NL may be set (changed) to a plurality of values depending on whether the state is in effect.
(5-3) Modification 2C
In the said embodiment, although the indoor expansion valve 23 and the outdoor expansion valve 36 are provided as an expansion mechanism, it is not limited to this. For example, the expansion mechanism may be only the outdoor expansion valve 36.
 本発明によれば、冷媒としてR32を使用する冷凍装置において、圧縮機が低回転数域で運転され、かつ、圧縮機の高圧側と低圧側の圧力差が大きい場合に、冷凍装置のCOPの改善を図ることが可能である。 According to the present invention, in a refrigeration apparatus that uses R32 as a refrigerant, when the compressor is operated in a low rotation speed range and the pressure difference between the high pressure side and the low pressure side of the compressor is large, the COP of the refrigeration apparatus Improvements can be made.
10,110 空気調和装置(冷凍装置)
21 室内熱交換器(凝縮器、蒸発器)
23 室内膨張弁(膨張機構)
24 室内熱交温度センサ(凝縮温度検出部、蒸発温度検出部)
31 圧縮機
34 室外熱交換器(蒸発器、凝縮器)
36 室外膨張弁(膨張機構)
37 室外熱交温度センサ(蒸発温度検出部、凝縮温度検出部)
41a,141a 判定部
41c 下限変更部
61 吐出圧力センサ(吐出圧力検出部)
62 吸入圧力センサ(吸入圧力検出部)
81 吸入管(吸入流路)
10,110 Air conditioning equipment (refrigeration equipment)
21 Indoor heat exchanger (condenser, evaporator)
23 Indoor expansion valve (expansion mechanism)
24 Indoor heat exchange temperature sensor (condensation temperature detector, evaporating temperature detector)
31 Compressor 34 Outdoor heat exchanger (evaporator, condenser)
36 Outdoor expansion valve (expansion mechanism)
37 Outdoor heat exchange temperature sensor (evaporation temperature detection unit, condensation temperature detection unit)
41a, 141a determination unit 41c lower limit change unit 61 discharge pressure sensor (discharge pressure detection unit)
62 Suction pressure sensor (suction pressure detector)
81 Suction pipe (suction channel)
特開2001-194015号公報JP 2001-194015 A

Claims (5)

  1.  冷媒としてR32を使う冷凍装置(10,110)であって、
     吸入流路(81)から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する、圧縮機(31)と、
     前記圧縮機から吐出された高圧の冷媒を凝縮させる、凝縮器(21,34)と、
     前記凝縮器を出た高圧冷媒を膨張させる、膨張機構(23,36)と、
     前記膨張機構で膨張した冷媒を蒸発させる、蒸発器(34,21)と、
     前記圧縮機から吐出される高圧の冷媒の圧力と、前記圧縮機に吸入される低圧の冷媒の圧力と、の圧力差が、所定値以上になるような差圧状態にあるか否かを判定する判定部(41a,141a)と、
     前記判定部が、前記差圧状態にあると判定した時に、前記圧縮機の下限回転数を、第1下限値から、前記第1下限値よりも大きな第2下限値に変更する下限変更部(41c)と、
    を備えた、冷凍装置。
    A refrigeration apparatus (10, 110) using R32 as a refrigerant,
    A compressor (31) for sucking low-pressure refrigerant from the suction flow path (81), compressing the refrigerant and discharging high-pressure refrigerant;
    A condenser (21, 34) for condensing the high-pressure refrigerant discharged from the compressor;
    An expansion mechanism (23, 36) for expanding the high-pressure refrigerant exiting the condenser;
    An evaporator (34, 21) for evaporating the refrigerant expanded by the expansion mechanism;
    Determining whether or not the pressure difference between the pressure of the high-pressure refrigerant discharged from the compressor and the pressure of the low-pressure refrigerant sucked into the compressor is equal to or greater than a predetermined value. A determination unit (41a, 141a) to perform,
    When the determination unit determines that the differential pressure state exists, a lower limit change unit that changes the lower limit rotational speed of the compressor from a first lower limit value to a second lower limit value that is larger than the first lower limit value ( 41c)
    A refrigeration apparatus comprising:
  2.  前記凝縮器の凝縮温度を検出する凝縮温度検出部(24,37)と、
     前記蒸発器の蒸発温度を検出する蒸発温度検出部(37,24)と、
    を更に備え、
     前記判定部(41a)は、前記凝縮温度と、前記蒸発温度とを用いて、前記差圧状態にあるか否かを判定する、
    請求項1に記載の冷凍装置(10)。
    A condensation temperature detector (24, 37) for detecting the condensation temperature of the condenser;
    An evaporation temperature detecting section (37, 24) for detecting the evaporation temperature of the evaporator;
    Further comprising
    The determination unit (41a) uses the condensation temperature and the evaporation temperature to determine whether or not the differential pressure state exists.
    The refrigeration apparatus (10) according to claim 1.
  3.  前記判定部は、
     前記凝縮温度及び前記蒸発温度を、それぞれ凝縮圧力及び蒸発圧力に換算し、
     換算された前記凝縮圧力及び前記蒸発圧力を用いて、前記差圧状態にあるか否かを判定する、
    請求項2に記載の冷凍装置。
    The determination unit
    The condensation temperature and the evaporation temperature are converted into a condensation pressure and an evaporation pressure, respectively.
    Using the converted condensing pressure and the evaporation pressure, it is determined whether or not the differential pressure state.
    The refrigeration apparatus according to claim 2.
  4.  前記判定部は、前記凝縮温度と前記蒸発温度との温度差を用いて、前記差圧状態にあるか否かを判定する、
    請求項2に記載の冷凍装置。
    The determination unit determines whether or not the differential pressure state is present using a temperature difference between the condensation temperature and the evaporation temperature.
    The refrigeration apparatus according to claim 2.
  5.  前記圧縮機から吐出される高圧の冷媒の圧力を検出する吐出圧力検出部(61)と、
     前記圧縮機に吸入される低圧の冷媒の圧力を検出する吸入圧力検出部(62)と、
    を更に備え、
     前記判定部(141a)は、前記吐出圧力検出部及び前記吸入圧力検出部の検出結果を用いて、前記差圧状態にあるか否かを判定する、
    請求項1に記載の冷凍装置(110)。
    A discharge pressure detector (61) for detecting the pressure of the high-pressure refrigerant discharged from the compressor;
    A suction pressure detector (62) for detecting the pressure of the low-pressure refrigerant sucked into the compressor;
    Further comprising
    The determination unit (141a) determines whether or not the differential pressure state exists using detection results of the discharge pressure detection unit and the suction pressure detection unit.
    The refrigeration apparatus (110) of claim 1.
PCT/JP2013/080020 2012-12-28 2013-11-06 Refrigeration device WO2014103520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380068262.5A CN104903660B (en) 2012-12-28 2013-11-06 Refrigerating plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-289089 2012-12-28
JP2012289089A JP5772811B2 (en) 2012-12-28 2012-12-28 Refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2014103520A1 true WO2014103520A1 (en) 2014-07-03

Family

ID=51020619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080020 WO2014103520A1 (en) 2012-12-28 2013-11-06 Refrigeration device

Country Status (3)

Country Link
JP (1) JP5772811B2 (en)
CN (1) CN104903660B (en)
WO (1) WO2014103520A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780753A (en) * 2019-03-19 2019-05-21 常州工学院 A kind of refrigerated air-conditioning system of LNG car

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926046B2 (en) * 2018-09-28 2021-08-25 ダイキン工業株式会社 Abnormality judgment device, refrigerating device equipped with this abnormality judgment device, and abnormality judgment method of compressor
EP3892940B1 (en) * 2018-12-06 2022-09-07 Mitsubishi Electric Corporation Refrigeration cycle device
CN113446704A (en) * 2020-03-25 2021-09-28 广东美的制冷设备有限公司 Air conditioner, air leakage detection method of four-way valve and storage medium
CN115355640B (en) * 2022-08-26 2024-03-22 青岛海尔中央空调有限公司 Method and device for controlling water chilling unit, water chilling unit and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152200A (en) * 1995-12-01 1997-06-10 Matsushita Refrig Co Ltd Controller of refrigerator
JPH1026425A (en) * 1996-07-11 1998-01-27 Mitsubishi Electric Corp Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor
JP2000249413A (en) * 1999-03-01 2000-09-14 Daikin Ind Ltd Refrigeration unit
JP2003201963A (en) * 2002-01-07 2003-07-18 Hitachi Ltd Hermetically sealed compressor
JP2006200465A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Refrigeration device
JP2011132886A (en) * 2009-12-24 2011-07-07 Daikin Industries Ltd Screw compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149790A (en) * 1988-12-01 1990-06-08 Daikin Ind Ltd Protection device for rotary compressor
JP3428207B2 (en) * 1995-02-09 2003-07-22 ダイキン工業株式会社 Air conditioner
JPH1114125A (en) * 1997-06-20 1999-01-22 Matsushita Refrig Co Ltd Multichamber type air conditioner
JP3956589B2 (en) * 1999-10-18 2007-08-08 ダイキン工業株式会社 Refrigeration equipment
JP4560879B2 (en) * 2000-04-13 2010-10-13 ダイキン工業株式会社 Compressor and refrigeration system
JP4250320B2 (en) * 2000-10-06 2009-04-08 株式会社神戸製鋼所 Operation method of oil-cooled compression refrigerator
CN1283960C (en) * 2002-03-29 2006-11-08 大金工业株式会社 Air conditioner
JP3978080B2 (en) * 2002-05-23 2007-09-19 東芝キヤリア株式会社 Air conditioner
JP5308214B2 (en) * 2009-03-31 2013-10-09 三菱重工業株式会社 Turbo refrigerator and control method thereof
JP5277283B2 (en) * 2011-05-13 2013-08-28 日立アプライアンス株式会社 Scroll compressor and refrigeration cycle equipped with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152200A (en) * 1995-12-01 1997-06-10 Matsushita Refrig Co Ltd Controller of refrigerator
JPH1026425A (en) * 1996-07-11 1998-01-27 Mitsubishi Electric Corp Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor
JP2000249413A (en) * 1999-03-01 2000-09-14 Daikin Ind Ltd Refrigeration unit
JP2003201963A (en) * 2002-01-07 2003-07-18 Hitachi Ltd Hermetically sealed compressor
JP2006200465A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Refrigeration device
JP2011132886A (en) * 2009-12-24 2011-07-07 Daikin Industries Ltd Screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780753A (en) * 2019-03-19 2019-05-21 常州工学院 A kind of refrigerated air-conditioning system of LNG car

Also Published As

Publication number Publication date
CN104903660A (en) 2015-09-09
CN104903660B (en) 2016-08-31
JP5772811B2 (en) 2015-09-02
JP2014129986A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP4968373B2 (en) Air conditioner
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP5228023B2 (en) Refrigeration cycle equipment
JP5674572B2 (en) Air conditioner
JP5447499B2 (en) Refrigeration equipment
JP5077414B2 (en) Refrigeration unit outdoor unit
WO2009157191A1 (en) Air conditioner and method for determining the amount of refrigerant therein
WO2013031218A1 (en) Refrigeration device
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP2008064439A (en) Air conditioner
JP5772811B2 (en) Refrigeration equipment
WO2019064332A1 (en) Refrigeration cycle device
JP2011099591A (en) Refrigerating device
WO2014103620A1 (en) Refrigeration device
JP5171022B2 (en) Air conditioner
JP2018159520A (en) Air conditioner
JP2010101569A (en) Multi-chamber type air conditioner
JP2011242097A (en) Refrigerating apparatus
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
WO2020189693A1 (en) Device evaluation system and device evaluation method
WO2017094172A1 (en) Air conditioning device
JP2010007993A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
JP4910577B2 (en) Reverse phase detection device, air conditioner including the same, and reverse phase detection method
JP6271011B2 (en) Refrigeration air conditioner
JP7488478B2 (en) Refrigeration cycle device and method for determining refrigerant leakage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868707

Country of ref document: EP

Kind code of ref document: A1