JPH1026425A - Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor - Google Patents

Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor

Info

Publication number
JPH1026425A
JPH1026425A JP8182310A JP18231096A JPH1026425A JP H1026425 A JPH1026425 A JP H1026425A JP 8182310 A JP8182310 A JP 8182310A JP 18231096 A JP18231096 A JP 18231096A JP H1026425 A JPH1026425 A JP H1026425A
Authority
JP
Japan
Prior art keywords
frequency
compressor
refrigerant
refrigerant compressor
scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8182310A
Other languages
Japanese (ja)
Inventor
Minoru Ishii
稔 石井
Hiroshi Ogawa
博史 小川
Kazuyuki Akiyama
和之 穐山
Eiji Watanabe
英治 渡辺
Shin Sekiya
慎 関屋
Toshiyuki Nakamura
利之 中村
Kenji Suzuki
賢志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8182310A priority Critical patent/JPH1026425A/en
Priority to IT97MI001600A priority patent/IT1292487B1/en
Priority to KR1019970032022A priority patent/KR980010247A/en
Priority to GB9714547A priority patent/GB2315299B/en
Priority to CN97114523A priority patent/CN1174294A/en
Publication of JPH1026425A publication Critical patent/JPH1026425A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the ratio of leakage loss to motor loss against theoretical compression work of a refrigerant compressor and enhance the compression performance and execute fine control near room temperature by increasing the minimum value of a specified operation frequency zone during steady state operation except for starting time. SOLUTION: Except for starting time, a steady state operation frequency is transferred to a higher frequency side on the whole where a refrigerant compressor 100 is adapted to reduce its stroke volume so as to comply with a double-increased speed operation, thereby reducing the rate of leakage loss to theoretical compression work and enhancing dramatically the performance of the compressor 100 during a minimum frequency operation. The drive torque of a motor required for the compression of working refrigerant during the same refrigerating capacity is favorably half since the frequency is boubled. The operation at a low frequency less than a commercial power frequency, at which breakdown torque, is dramatically reduced, is not executed with in a steady state operation range. Therefore, motor loss is not generated and iron loss is reduced so that motor efficiency is enhanced and the performance of the compressor and period energy consumption efficiency of a refrigeration cycle device is improved, which makes it possible to execute sophisticated control near room temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は冷凍サイクル中で
使用され、インバ−タ等により駆動電源の周波数を変化
させることで可変速度駆動を行う冷媒圧縮機に関するも
のであり、またインバ−タ等により冷媒圧縮機の運転周
波数を制御し、冷媒圧縮機の可変速度駆動を行う冷凍サ
イクル装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant compressor which is used in a refrigeration cycle and performs variable speed driving by changing the frequency of a driving power supply by an inverter or the like. The present invention relates to a refrigeration cycle device that controls the operating frequency of a refrigerant compressor and performs variable speed driving of the refrigerant compressor.

【0002】[0002]

【従来の技術】従来、インバ−タ等により冷媒圧縮機の
可変速度駆動を行う冷凍サイクル装置に使用される冷媒
圧縮機の最低運転周波数は、特開平7−294030号
公報に記載されているように28Hz程度であり、商用
電源の周波数(日本国内においては60Hzまたは50
Hz)より低い周波数であった。
2. Description of the Related Art Conventionally, the minimum operating frequency of a refrigerant compressor used in a refrigeration cycle apparatus in which a refrigerant compressor is driven at a variable speed by an inverter or the like is disclosed in Japanese Patent Application Laid-Open No. 7-294030. Is about 28 Hz, which is the frequency of the commercial power supply (60 Hz or 50 Hz in Japan).
Hz).

【0003】また冷媒圧縮機の可変速度駆動を行う冷凍
サイクル装置に使用される冷媒圧縮機としては、図7に
示すようなロ−タリ圧縮機や近年では図10に示すよう
なスクロ−ル圧縮機が一般的である。
As a refrigerant compressor used in a refrigeration cycle apparatus that drives a refrigerant compressor at a variable speed, a rotary compressor as shown in FIG. 7 or a scroll compressor as shown in FIG. Machine is common.

【0004】図7はロ−タリ圧縮機の一例を示す縦断面
図であり、概略構造を示している。また図8は図7の圧
縮要素の横断面図である。密閉容器1内に圧縮要素2お
よび該圧縮要素2をクランク軸4を介して可変速度駆動
する可変速度対応の電動機3が内蔵されている。5は作
動冷媒を前記圧縮要素2に吸入するための吸入管であ
り、圧縮室11を形成するシリンダ6に連通されてい
る。シリンダ6には、図8に示されるように吸入管5と
シリンダ6の内部空間である圧縮室11の低圧室11a
とを連通する吸入孔7が設けられており、さらにシリン
ダ6内には、クランク軸4の回転により駆動されるロ−
リングピストン8がシリンダ6の内側面に沿って転動可
能に設けられている。9はロ−リングピストン8の外周
側面に常に圧接され、シリンダ6に形成されたベ−ン溝
10に半径方向に往復運動可能に取り付けられているベ
−ンで、圧縮室を高圧室11bと低圧室11aに分離し
ている。さらに吸入孔7と反対のベ−ン9の近傍に位置
するシリンダ部分には、高圧室11bと連通し、圧縮さ
れた作動冷媒を密閉容器1内に吐出する吐出孔12が形
成され、該吐出孔12は吐出弁13により開閉されるよ
うになっている。
FIG. 7 is a longitudinal sectional view showing an example of a rotary compressor, and shows a schematic structure. FIG. 8 is a cross-sectional view of the compression element of FIG. A compression element 2 and an electric motor 3 corresponding to a variable speed for driving the compression element 2 at a variable speed via a crankshaft 4 are built in a closed container 1. Reference numeral 5 denotes a suction pipe for sucking the working refrigerant into the compression element 2, and is connected to a cylinder 6 forming a compression chamber 11. As shown in FIG. 8, the low pressure chamber 11a of the compression chamber 11, which is the internal space of the suction pipe 5 and the cylinder 6, is provided in the cylinder 6.
The cylinder 6 is provided with a suction hole 7 communicating therewith.
A ring piston 8 is provided so as to roll along the inner surface of the cylinder 6. Reference numeral 9 denotes a vane which is always pressed against the outer peripheral side surface of the rolling piston 8 and is attached to a vane groove 10 formed in the cylinder 6 so as to be able to reciprocate in the radial direction. It is separated into a low pressure chamber 11a. Further, a discharge hole 12 is formed in a cylinder portion located near the vane 9 opposite to the suction hole 7 and communicates with the high-pressure chamber 11b and discharges the compressed working refrigerant into the closed container 1. The hole 12 is opened and closed by a discharge valve 13.

【0005】このように構成されるロ−タリ圧縮機にお
いて、吸入管5より吸入孔7を通って低圧室11aに吸
入された作動冷媒は、クランク軸4にて駆動されるロ−
リングピストン8の偏心回転運動により、徐々に所定圧
力まで圧縮され、高圧室11bから吐出孔12を通っ
て、吐出弁13を開いて、密閉容器1内に吐出される。
In the rotary compressor constructed as above, the working refrigerant sucked into the low-pressure chamber 11a from the suction pipe 5 through the suction hole 7 is driven by the crankshaft 4.
The ring piston 8 is gradually compressed to a predetermined pressure by the eccentric rotation of the ring piston 8, discharged from the high-pressure chamber 11 b through the discharge hole 12, opens the discharge valve 13, and is discharged into the sealed container 1.

【0006】図9は一方の渦巻状スクロ−ル歯を静止固
定し、他方の渦巻状スクロ−ル歯を静止固定させたスク
ロ−ル歯の中心まわりに自転しない公転運動させること
で、作動冷媒を圧縮する公転型のスクロ−ル圧縮機の基
本的な構成要素と圧縮原理を示している。図において2
1は空間に対して静止固定された固定スクロ−ルで、渦
巻状スクロ−ル歯21aを有している。22は公転運動
される旋回スクロ−ルで、固定スクロ−ル歯21aと巻
き方向が逆で、固定スクロ−ル歯21aに対して180
゜位相のずれた状態で組み合わされる渦巻状スクロ−ル
歯22aを有している。これらの渦巻状スクロ−ル歯2
1a,22aの形状は、インボリュ−ト曲線や円弧等を
組み合わせたものである。23は吸入室、24は吐出
孔、25は圧縮室である。
FIG. 9 shows a working refrigerant in which one spiral scroll tooth is stationary and the other spiral scroll tooth is revolved around the center of the stationary scroll tooth without rotating. 1 shows the basic components of a revolving type scroll compressor that compresses the pressure and the principle of compression. 2 in the figure
Reference numeral 1 denotes a fixed scroll fixedly fixed to a space and has spiral scroll teeth 21a. Reference numeral 22 denotes a revolving scroll having a winding direction opposite to that of the fixed scroll teeth 21a, and 180 degrees with respect to the fixed scroll teeth 21a.
゜ It has spiral scroll teeth 22a that are combined in a phase shifted state. These spiral scroll teeth 2
The shapes of 1a and 22a are a combination of involute curves and arcs. 23 is a suction chamber, 24 is a discharge hole, and 25 is a compression chamber.

【0007】次に図9の動作について説明する。旋回ス
クロ−ル22はその姿勢を変化させないで、すなわち自
転運動せずに固定スクロ−ル歯21aの中心まわりを回
転運動、すなわち公転運動を行い、図9の(a),
(b),(c),(d)に示す0゜、90゜、180
゜、270゜の作動位置のように順次運動する。図9の
(a)に示す0゜の状態で吸入室23の作動冷媒の閉じ
込みが完了し、固定スクロ−ル歯21aと旋回スクロ−
ル歯22a間に三日月状の圧縮室25が形成される。そ
して旋回スクロ−ル22の公転運動に伴って、圧縮室2
5は順次その容積を減じて、固定スクロ−ル21の中心
付近まで作動冷媒を圧縮して吐出孔24から吐出する。
Next, the operation of FIG. 9 will be described. The orbiting scroll 22 performs a rotation motion, that is, a revolving motion around the center of the fixed scroll teeth 21a without changing its posture, that is, without rotating, and FIG.
0 °, 90 °, 180 shown in (b), (c), and (d)
It moves sequentially like a working position of {270}. In the state of 0 ° shown in FIG. 9 (a), the closing of the working refrigerant in the suction chamber 23 is completed, and the fixed scroll teeth 21a and the swirl scroll are closed.
A crescent-shaped compression chamber 25 is formed between the teeth 22a. Then, with the revolving motion of the orbiting scroll 22, the compression chamber 2
Numeral 5 sequentially reduces the volume, compresses the working refrigerant to the vicinity of the center of the fixed scroll 21, and discharges it from the discharge hole 24.

【0008】続いてスクロ−ル圧縮機の具体的な構成お
よび動作について説明する。図10は公転型スクロ−ル
圧縮機の一例を示す縦断面図であり、同図において21
は台板21bに渦巻状スクロ−ル歯21aを設けた固定
スクロ−ルで、主フレ−ム26に固定されている。22
は台板22bに前記固定スクロ−ル21aと組み合わさ
れる渦巻状スクロ−ル歯22aを設けた旋回スクロ−ル
で、台板22bのスクロ−ル歯22aが設けられた側と
反対の端面には、旋回スクロ−ル22に作用する圧縮負
荷によるスラスト力を受けるスラスト面22cおよび旋
回スクロ−ル22に作用する圧縮負荷や公転運動により
派生する遠心力等のラジアル負荷を支承する揺動軸受2
2dが形成されている。前記主フレ−ム26は密閉容器
27に固定されており、主フレ−ム26にはスラスト軸
受26aが形成され、旋回スクロ−ル22のスラスト面
22cを摺動自在に軸方向に支持している。28は主軸
29を可変速度で回転駆動する可変速度対応の電動機で
固定子28aと回転子28bから構成される。電動機回
転子28bは主軸29に焼嵌め固定されていて、旋回ス
クロ−ル22の公転運動により派生する遠心力に対抗し
て回転系全体のバランシングを行うバランサ30a、3
0bが上部と下部に取り付けられている。主軸29は電
動機28によって回転駆動され、主フレ−ム26に形成
された主軸受26bおよび副フレ−ム31に形成された
副軸受31aとによって、電動機28を挟んだ両側でラ
ジラル方向に支持されている。32はオルダムリングで
旋回スクロ−ル22と主フレ−ム26の双方に、相対的
に往復直線運動を行う。主軸29の上端には偏心軸29
aが設けられており、主軸29の回転駆動によって、偏
心軸29aは揺動軸受22dを介して旋回スクロール2
2に回転駆動力を伝達し、旋回スクロ−ル22はオルダ
ムリング32の往復直線運動により自転を拘束されるた
め、固定スクロ−ル21に対して公転運動を行い、前述
の如く作動冷媒を圧縮するのである。また密閉容器27
の底部は潤滑油溜め33となっており、主軸29の下端
に取り付けられた容積型ポンプ34により潤滑油溜め3
3の潤滑油を主軸29に形成された油通路29bを通し
て各部軸受22d,26a,26b,31aやその他の
摺動部に供給している。
Next, a specific configuration and operation of the scroll compressor will be described. FIG. 10 is a longitudinal sectional view showing an example of a revolving type scroll compressor.
Is a fixed scroll provided with spiral scroll teeth 21a on a base plate 21b, which is fixed to the main frame 26. 22
Is a revolving scroll provided with spiral scroll teeth 22a combined with the fixed scroll 21a on the base plate 22b, and is provided on the end face of the base plate 22b opposite to the side on which the scroll teeth 22a are provided. A thrust surface 22c which receives a thrust force due to a compressive load acting on the orbiting scroll 22, and a oscillating bearing 2 which supports a radial load such as a compressive load acting on the orbiting scroll 22 and a centrifugal force generated by revolving motion.
2d is formed. The main frame 26 is fixed to a closed container 27, and a thrust bearing 26a is formed on the main frame 26 to support the thrust surface 22c of the revolving scroll 22 in the axial direction so as to be slidable. I have. Reference numeral 28 denotes a variable speed motor that drives the main shaft 29 to rotate at a variable speed, and includes a stator 28a and a rotor 28b. The motor rotor 28b is shrink-fitted and fixed to the main shaft 29, and balances the entire rotating system against the centrifugal force generated by the revolving motion of the orbiting scroll 22.
0b is attached to the upper part and the lower part. The main shaft 29 is rotationally driven by an electric motor 28, and is supported in a radial direction on both sides of the electric motor 28 by a main bearing 26b formed on the main frame 26 and a sub-bearing 31a formed on the sub-frame 31. ing. Numeral 32 denotes an Oldham ring which reciprocates linearly relative to both the revolving scroll 22 and the main frame 26. Eccentric shaft 29 at the upper end of main shaft 29
The eccentric shaft 29a is driven by the rotation of the main shaft 29 to rotate the eccentric shaft 29a through the swing bearing 22d.
2, the rotating scroll 22 is rotated by the reciprocating linear motion of the Oldham ring 32, so that the revolving scroll 22 revolves with respect to the fixed scroll 21 to compress the working refrigerant as described above. You do it. In addition, sealed container 27
Is formed with a lubricating oil reservoir 33, and a lubricating oil reservoir 3 is provided by a positive displacement pump 34 attached to the lower end of the main shaft 29.
The lubricating oil of No. 3 is supplied to bearings 22d, 26a, 26b, 31a and other sliding parts through oil passages 29b formed in the main shaft 29.

【0009】[0009]

【発明が解決しようとする課題】前記のようなロ−タリ
圧縮機やスクロ−ル圧縮機といった冷媒圧縮機を、起動
時を除く定常的な運転範囲内にて、特開平7−2940
30号公報に示されるが如く28Hz等の商用電源周波
数未満の低周波数で運転した場合、冷媒圧縮機の性能
は、商用電源周波数や商用電源周波数以上の高周波数で
運転した場合に比べ、著しく低下してしまう問題点があ
る。
SUMMARY OF THE INVENTION Refrigerant compressors such as the rotary compressor and the scroll compressor described above are disclosed in Japanese Patent Laid-Open No. 7-2940 in a steady operation range except at the time of starting.
As shown in Japanese Patent Publication No. 30, when the compressor is operated at a low frequency lower than the commercial power frequency such as 28 Hz, the performance of the refrigerant compressor is significantly reduced as compared with the case where the refrigerant compressor is operated at the commercial power frequency or a high frequency higher than the commercial power frequency. There is a problem.

【0010】その理由としてまず第1に、低速運転時は
洩れ損失の理論圧縮仕事に対する割合が増加するためで
ある。これは圧縮途中あるいは圧縮完了後の作動冷媒が
より低圧側の圧縮室へ各種すきまを通ってリ−クする単
位時間当たりの内部洩れ量は、回転数(すなわち運転周
波数)には無関係であるからである。よって低速運転ほ
ど1回転に要する時間が大きくなるため、1回転中の洩
れ量が多くなり同一圧力条件下では洩れ損失の理論圧縮
仕事に対する割合は増加し、成績係数は低下するのであ
る。洩れが生じる各種すきまとしては、ロ−タリ圧縮機
では一旦密閉容器内に吐出された吐出圧力の作動冷媒が
高圧室および低圧室の双方に洩れる経路としてベ−ンと
ベ−ン溝との側面すきままたロ−リングピストンの上端
面の軸方向すきまがあり、高圧室から低圧室への洩れ経
路としてロ−リングピストン外周面とシリンダ内周面の
半径方向すきままたベ−ン上端面の軸方向すきまがあ
る。スクロ−ル圧縮機では自身の圧縮室圧力より低圧な
隣の圧縮室への洩れ経路として、渦巻歯の歯先端面と相
手方スクロ−ルの台板端面間の軸方向すきままた双方の
渦巻歯の側面間の半径方向すきまがある。さらにスクロ
−ル圧縮機では、最外周に形成された圧縮室の作動冷媒
が圧縮行程初期に上記洩れ経路から最外周の圧縮室の外
部へ洩れることもあり、これにより低速運転時は体積効
率も著しく低下する。
The first reason is that the ratio of leakage loss to the theoretical compression work increases during low-speed operation. This is because the amount of internal leakage per unit time during which the working refrigerant leaks during compression or after completion of compression through various clearances to the compression chamber on the lower pressure side is independent of the rotation speed (that is, the operating frequency). It is. Therefore, the time required for one rotation increases as the operation speed decreases, so that the amount of leakage during one rotation increases, and the ratio of leakage loss to the theoretical compression work increases under the same pressure condition, and the coefficient of performance decreases. The various gaps where leakage occurs include, in a rotary compressor, the side surfaces of the vanes and the vane grooves as paths through which the working refrigerant at the discharge pressure once discharged into the closed vessel leaks into both the high-pressure chamber and the low-pressure chamber. There is an axial clearance at the upper end surface of the rolling piston that has been left, and as the leakage path from the high-pressure chamber to the low-pressure chamber, the axial direction of the upper end surface of the vane that has been left in the radial direction between the outer peripheral surface of the rolling piston and the inner peripheral surface of the cylinder. There is a gap. In a scroll compressor, as a leakage path to an adjacent compression chamber having a pressure lower than its own compression chamber pressure, both of the spiral teeth which are left axially between the tooth tip surface of the spiral tooth and the end face of the base plate of the other scroll are used. There is a radial clearance between the sides. Further, in the scroll compressor, the working refrigerant in the compression chamber formed at the outermost periphery may leak to the outside of the outermost compression chamber from the above-mentioned leakage path at an early stage of the compression stroke. It decreases significantly.

【0011】第2の理由としては、低速運転時は電動機
損失の理論圧縮仕事に対する割合が高いことが挙げられ
る。インバ−タ等により駆動電源の周波数を変化させる
ことで可変速度駆動を行う冷媒圧縮機の電動機は通常三
相かご形誘導電動機が使用される。三相かご形誘導電動
機では、固定子や回転子を構成する電磁鋼板の磁束密度
また固定子と回転子のすきまの磁束密度を周波数によら
ず一定にしようとした場合、電圧と周波数の関係を比例
させる必要があるが、この場合周波数が低いほど停動ト
ルクが小さくなり、特に商用電源周波数未満の低周波数
で急激に停動トルクが低下してしまうポイントが存在す
る。よって商用電源周波数以上の周波数と同等な圧力条
件で運転させようとした場合、低周波数(低速)ほど運
転トルクが停動トルクに近づくことになり、そのように
なると電流値が増加するため、銅損が増加(銅損は電流
値の2乗に比例)し電動機効率が低下する。すなわち電
動機損失の理論圧縮仕事に対する割合が高くなる。その
ため特に停動トルクの小さくなる商用電源周波数未満の
低周波数時では、停動トルクを増加させるために電圧を
前記比例関係で決まる電圧値より高くする方法が採ら
れ、これにより電動機効率は前記より増加するが、この
場合でも電圧を増加させたことで、固定子や回転子を構
成する電磁鋼板の磁束密度また固定子と回転子のすきま
の磁束密度が増加し、鉄損(鉄損は磁束密度の2乗に比
例)が増加してしまう。このように商用電源周波数より
低い周波数時は商用電源周波数以上の周波数時より電動
機効率は低下してしまい、電動機損失の理論圧縮仕事に
対する割合は高くなる。
The second reason is that during low-speed operation, the ratio of motor loss to the theoretical compression work is high. Usually, a three-phase squirrel-cage induction motor is used as the motor of the refrigerant compressor that performs variable speed driving by changing the frequency of the driving power supply with an inverter or the like. In a three-phase squirrel-cage induction motor, if the magnetic flux density of the magnetic steel sheet forming the stator or rotor or the magnetic flux density in the gap between the stator and rotor is to be constant regardless of frequency, the relationship between voltage and frequency is In this case, the stall torque becomes smaller as the frequency becomes lower. In this case, there is a point where the stall torque rapidly decreases particularly at a low frequency lower than the commercial power frequency. Therefore, when an attempt is made to operate under the same pressure condition as the frequency equal to or higher than the commercial power supply frequency, the operation torque approaches the stop torque as the frequency is lower (lower speed), and the current value increases in such a case. The loss increases (copper loss is proportional to the square of the current value), and the motor efficiency decreases. That is, the ratio of the motor loss to the theoretical compression work increases. Therefore, especially at a low frequency lower than the commercial power supply frequency at which the stall torque is reduced, a method is employed in which the voltage is higher than a voltage value determined by the proportional relationship in order to increase the stall torque, whereby the motor efficiency is higher than the above. However, even in this case, increasing the voltage increases the magnetic flux density of the magnetic steel sheets constituting the stator and the rotor, and the magnetic flux density in the clearance between the stator and the rotor. (Proportional to the square of the density). As described above, when the frequency is lower than the commercial power frequency, the motor efficiency is lower than when the frequency is higher than the commercial power frequency, and the ratio of the motor loss to the theoretical compression work increases.

【0012】また28Hz等の商用電源周波数未満の低
周波数で運転した場合、特に公転型スクロ−ル圧縮機の
スラスト軸受は公転運動という一般的な自転運動を支持
するスラスト軸受と異なる特異な運動であり、その回転
半径は公転半径となるため、主軸受等自転する軸のラジ
アル負荷を支持する軸受に比べて回転半径が小さく、そ
のため摺動速度が小さくなり、潤滑性能が低下し、冷媒
圧縮機の耐久性といった信頼性面でも悪影響がある。潤
滑性能の低下は流体潤滑状態による潤滑が維持できず、
境界潤滑状態になって摩耗等が増加したり、最悪の場合
焼き付いてロックしてしまい、運転不能になるという冷
媒圧縮機にとって致命的な問題を起こし兼ねない。また
境界潤滑状態では摩擦係数が増加するため軸受損失の増
加を招き性能面でも問題となる。
In addition, when operating at a low frequency, such as 28 Hz, which is lower than the commercial power frequency, the thrust bearing of the revolving type scroll compressor has a peculiar motion different from the thrust bearing which supports the general rotation motion called the revolving motion. Since the radius of rotation is the radius of revolution, the radius of rotation is smaller than that of a bearing that supports the radial load of the rotating shaft such as the main bearing, so the sliding speed is reduced, the lubrication performance is reduced, and the refrigerant compressor There is also an adverse effect on the reliability, such as the durability. The decrease in lubrication performance cannot maintain lubrication due to fluid lubrication,
A boundary lubrication state increases wear and the like, or, in the worst case, seizes and locks, which may cause a fatal problem for the refrigerant compressor that it becomes inoperable. Further, in the boundary lubrication state, the friction coefficient increases, which causes an increase in bearing loss, which is also a problem in performance.

【0013】以上のように期間を通じてみた場合比較的
運転時間の長い室温設定値付近の環境下では、より快適
性を得るために、冷媒圧縮機を商用電源未満の低周波数
で低速運転させることで、きめ細かく制御していた従来
の冷媒圧縮機の可変速度駆動を行う冷凍サイクル装置で
は、そのような低速運転時の冷媒圧縮機の性能(成績係
数)が商用電源以上の周波数時の性能より低いことか
ら、期間エネルギー消費効率(以降SEERと表記す
る;SEER=Seasonal Energy Efficiency Ratio)が
低かった。また商用電源未満の低周波数での運転時間が
長いと軸受性能の悪化から冷媒圧縮機の耐久性が低下す
るといった問題点があった。
As described above, in an environment near a room temperature set value where the operation time is relatively long when the refrigerant compressor is operated for a relatively long time, in order to obtain more comfort, the refrigerant compressor is operated at a low frequency lower than the commercial power supply at a low speed. In a refrigeration cycle device that performs variable-speed driving of a conventional refrigerant compressor that has been finely controlled, the performance (coefficient of performance) of the refrigerant compressor during such low-speed operation must be lower than the performance at frequencies higher than the commercial power supply. Therefore, the period energy consumption efficiency (hereinafter referred to as SEER; SEER = Seasonal Energy Efficiency Ratio) was low. Further, when the operation time at a low frequency lower than the commercial power supply is long, there is a problem that the durability of the refrigerant compressor is reduced due to the deterioration of the bearing performance.

【0014】この発明は上記のような問題点を解消する
ためになされたもので、SEERが高くさらに耐久性も
向上させることができる可変速度駆動を行う冷媒圧縮機
を提供すること、また十分な快適性を得ながらもSEE
Rが高く、かつ信頼性も高い冷媒圧縮機の可変速度駆動
を行う冷凍サイクル装置を提供すること、さらに、小型
軽量化された冷媒圧縮機とそれを備えた冷凍サイクル装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a refrigerant compressor that performs variable speed driving and has a high SEER and can further improve durability. SEE while gaining comfort
It is an object of the present invention to provide a refrigeration cycle apparatus that performs variable speed driving of a refrigerant compressor with high R and high reliability, and further provides a small and lightweight refrigerant compressor and a refrigeration cycle apparatus including the same. And

【0015】[0015]

【課題を解決するための手段】この発明の第1の発明に
おいては、冷凍サイクル中で使用され、駆動電源の周波
数を変化させることで可変速度駆動を行う冷媒圧縮機に
おいて、前記冷媒圧縮機は、起動時をのぞき、定常的な
運転時に所定の運転周波数域を有し、前記運転周波数域
の最低運転周波数を商用電源周波数近傍の周波数以上の
周波数としたものである。
According to a first aspect of the present invention, there is provided a refrigerant compressor used in a refrigeration cycle and performing variable speed driving by changing the frequency of a driving power supply, wherein the refrigerant compressor is Except at the time of start-up, it has a predetermined operating frequency range during a steady operation, and the lowest operating frequency in the operating frequency range is set to a frequency equal to or higher than a frequency near the commercial power supply frequency.

【0016】またこの発明の第2の発明においては、第
1の発明において、冷媒圧縮機が一対の渦巻状のスクロ
−ル歯が組合わされて作動冷媒を圧縮するスクロ−ル圧
縮機であるようにしたものである。
According to a second aspect of the present invention, in the first aspect, the refrigerant compressor is a scroll compressor in which a pair of spiral scroll teeth are combined to compress the working refrigerant. It was made.

【0017】またこの発明の第3の発明においては、第
1の発明または第2の発明において、作動冷媒としてジ
フルオロメタン(HFC32)とペンタフルオロエタン
(HFC125)とを混合してなる混合冷媒を用いたも
のである。
According to a third aspect of the present invention, in the first or second aspect, a mixed refrigerant obtained by mixing difluoromethane (HFC32) and pentafluoroethane (HFC125) is used as a working refrigerant. It was what was.

【0018】またこの発明の第4の発明においては、冷
媒圧縮機、熱交換器、膨張機構等を配管接続した冷凍サ
イクル装置において、前記冷媒圧縮機は、起動時をのぞ
き、定常的な運転時に所定の運転周波数域を有し、前記
運転周波数域の最低運転周波数を商用電源周波数近傍の
周波数以上の周波数とし、駆動電源の周波数を変化させ
ることで可変速度駆動されるようにしたものである。
According to a fourth aspect of the present invention, there is provided a refrigeration cycle apparatus in which a refrigerant compressor, a heat exchanger, an expansion mechanism, and the like are connected by piping. It has a predetermined operating frequency range, the lowest operating frequency in the operating frequency range is set to a frequency equal to or higher than the frequency near the commercial power supply frequency, and variable speed driving is performed by changing the frequency of the drive power supply.

【0019】またこの発明の第5の発明においては、第
4の発明において、冷媒圧縮機が一対の渦巻状のスクロ
−ル歯が組合わされて作動冷媒を圧縮するスクロ−ル圧
縮機であるようにしたものである。
According to a fifth aspect of the present invention, in the fourth aspect, the refrigerant compressor is a scroll compressor in which a pair of spiral scroll teeth are combined to compress the working refrigerant. It was made.

【0020】またこの発明の第6の発明においては、第
4の発明または第5の発明において、作動冷媒としてジ
フルオロメタン(HFC32)とペンタフルオロエタン
(HFC125)とを混合してなる混合冷媒を用いた冷
凍サイクル装置としたものである。
According to a sixth aspect of the present invention, in the fourth or fifth aspect, a mixed refrigerant obtained by mixing difluoromethane (HFC32) and pentafluoroethane (HFC125) is used as a working refrigerant. This was a refrigerating cycle device.

【0021】[0021]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下この発明の実施例を図について詳細
に説明する。図1はこの発明の一実施例を示す冷媒圧縮
機の可変速度駆動を行う冷凍サイクル装置の基本構成図
であり、図において、100は冷媒圧縮機、101は室
外熱交換器、102は室内熱交換器、103は四方弁、
104は室外膨張弁、105は室内膨張弁、106はア
キュ−ムレ−タであり、これらが連結されて冷凍サイク
ルが構成される。107は商用電源で、該商用電源10
7にインバ−タ回路等の周波数可変装置108が接続さ
れ、該周波数可変装置108の出力と冷媒圧縮機100
の電動機が接続される。商用電源107からの電流は周
波数可変装置108にて可変電圧可変周波数制御され、
冷媒圧縮機100が可変速度駆動される。
Embodiment 1 FIG. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a basic configuration diagram of a refrigeration cycle apparatus for performing variable speed driving of a refrigerant compressor according to an embodiment of the present invention. In the drawing, 100 is a refrigerant compressor, 101 is an outdoor heat exchanger, and 102 is indoor heat. Exchanger, 103 is a four-way valve,
104 is an outdoor expansion valve, 105 is an indoor expansion valve, and 106 is an accumulator, which are connected to form a refrigeration cycle. Reference numeral 107 denotes a commercial power supply.
7 is connected to a frequency variable device 108 such as an inverter circuit. The output of the frequency variable device 108 and the refrigerant compressor 100
Motors are connected. The current from the commercial power supply 107 is subjected to variable voltage variable frequency control by the frequency variable device 108,
The refrigerant compressor 100 is driven at a variable speed.

【0022】図2は図1における冷媒圧縮機100とし
てスクロ−ル圧縮機を示す断面図であり、一対の渦巻状
のスクロール歯が組み合わされて作動冷媒を圧縮する公
転型のスクロ−ル圧縮機で構成されている。この冷媒圧
縮機の基本的な構成および作用は従来例の図9、図10
で示したスクロ−ル圧縮機と同じであり、従来例と同一
符号を付して、その説明は省略する。
FIG. 2 is a sectional view showing a scroll compressor as the refrigerant compressor 100 in FIG. 1, and a revolving type scroll compressor in which a pair of spiral scroll teeth are combined to compress the working refrigerant. It is composed of The basic structure and operation of this refrigerant compressor are shown in FIGS.
Are the same as those of the scroll compressor shown in FIG.

【0023】上記のような構成において冷媒圧縮機10
0の起動時を除く定常的な運転周波数域での最低運転周
波数は、商用電源107の周波数(日本国内においては
60Hzまたは50Hz)近傍の周波数、または商用電
源107の周波数と同等以上の周波数としており、定常
的な運転周波数域を従来より全体的に高周波数側へ移行
させている。具体的にここでは起動時を除く定常的な運
転周波数域での最低運転周波数を60Hzとして、定常
的な運転周波数域を60Hz〜240Hzとしている。
これは従来定常的な運転周波数域を30Hz〜120H
zとしていた冷媒圧縮機に倍速運転で対応したものであ
り、同容量となるためには、冷媒圧縮機100の行程容
積を半減させることができ、これは両スクロ−ル歯21
a,22aの形状を小型化することができることにな
る。渦巻状スクロ−ル歯がインボリュ−ト曲線から形成
される場合、行程容積は次式で算出される。 Vst=(2N−1)πp(p−2t)h ここで、Vst:行程容積 N :巻数 p :ピッチ p=2πA A:インボリュ−ト
の基礎円半径 t :歯厚 h :歯高 巻数Nおよび歯厚tを変化させなければ、歯高hおよび
ピッチpを低減することができるわけである。30Hz
〜120Hzを運転範囲としていた従来の冷媒圧縮機に
対して、歯高hの低減は図3に示す両スクロ−ル歯の側
面間の半径方向すきまCにより形成される洩れ流路面積
の減少を、またピッチpの低減は同じく図3に示すスク
ロ−ル歯の歯先端面と相手方スクロ−ルの台板端面間の
軸方向すきまKにより形成される洩れ流路面積の減少を
図れるのである。これにより洩れ損失の理論圧縮仕事に
対する割合が高い最低周波数運転時、すなわち、30H
z〜120Hzを運転範囲としていた従来の冷媒圧縮機
の30Hz、そして60Hz〜240Hzを運転範囲と
する従来冷媒圧縮機の行程容積を上記のように半減させ
た実施の形態の冷媒圧縮機の最低周波数60Hzを同一
圧力条件で運転した場合、同容量(体積効率が同じであ
れば同一冷凍能力,同一理論圧縮仕事となる)であるに
もかかわらず、洩れ面積が小さい分実施例の方が洩れ損
失は小さくなる。さらに実施の形態では洩れ面積の減少
により、最外周に形成された圧縮室の作動冷媒が圧縮行
程初期に圧縮室外部へ洩れる量も小さくなり、かつ従来
例と単位時間当たりの理論吸込み量(周波数×行程容
積)は同じであるので、従来例より体積効率が上昇でき
る。そして体積効率が高い分理論圧縮仕事は増加し、前
述の通り洩れ損失は低下するので、実施例の洩れ損失の
理論圧縮仕事に対する割合は従来例より低減でき、洩れ
損失の割合が特に高かった従来例の最低周波数30Hz
運転時の圧縮機性能に比べ、実施の形態の最低周波数6
0Hz運転時の圧縮機性能は大幅に向上されるのであ
る。もちろん他の周波数時でも同様な理由により、同一
圧力条件で同容量となる周波数同士を比較すれば、実施
の形態の方が従来例より体積効率は高くなり、洩れ損失
の理論圧縮仕事に対する割合は低くできる。また両スク
ロ−ル歯21a,22aの形状小型化が可能であること
は、すなわち固定スクロ−ル21および旋回スクロ−ル
22の小型化を意味しており、これにより旋回スクロ−
ル22を収納し、かつ固定スクロ−ル21を固定する主
フレ−ム26の小型化も図れるのである。そしてこれら
両スクロ−ル21,22の小型化は、スラスト軸受26
aや主軸受26b等に作用する負荷も低下させることが
できる。
In the above configuration, the refrigerant compressor 10
The lowest operating frequency in the steady operating frequency range excluding the start-up of 0 is a frequency near the frequency of the commercial power supply 107 (60 Hz or 50 Hz in Japan) or a frequency equal to or higher than the frequency of the commercial power supply 107. In addition, the steady operation frequency range is shifted to a higher frequency side as a whole than before. Specifically, here, the lowest operating frequency in a steady operating frequency range excluding the time of starting is 60 Hz, and the steady operating frequency range is 60 Hz to 240 Hz.
This means that the conventional steady operating frequency range is 30 Hz to 120 H
In this case, the stroke capacity of the refrigerant compressor 100 can be reduced by half to achieve the same capacity.
The shapes of the a and 22a can be reduced in size. When the spiral scroll teeth are formed from the involute curve, the stroke volume is calculated by the following equation. Vst = (2N-1) πp (p−2t) h where Vst: stroke volume N: number of turns p: pitch p = 2πA A: base circle radius of involute t: tooth thickness h: tooth height Number of turns N and If the tooth thickness t is not changed, the tooth height h and the pitch p can be reduced. 30Hz
As compared with the conventional refrigerant compressor in which the operating range is up to 120 Hz, the reduction of the tooth height h reduces the leak passage area formed by the radial clearance C between the side surfaces of the scroll teeth shown in FIG. In addition, the reduction of the pitch p can reduce the area of the leakage flow path formed by the axial clearance K between the tooth tip surface of the scroll tooth and the end surface of the base plate of the other scroll similarly shown in FIG. As a result, at the lowest frequency operation where the ratio of leakage loss to the theoretical compression work is high, that is, 30H
The lowest frequency of the refrigerant compressor of the embodiment in which the stroke volume of the conventional refrigerant compressor whose operating range is z to 120 Hz and the stroke volume of the conventional refrigerant compressor whose operating range is 60 Hz to 240 Hz is halved as described above. When operated at the same pressure condition at 60 Hz, the leakage loss is smaller in the embodiment because of the smaller leakage area despite the same capacity (same refrigeration capacity and the same theoretical compression work if the volume efficiency is the same). Becomes smaller. Further, in the embodiment, the amount of the working refrigerant in the compression chamber formed at the outermost periphery leaks to the outside of the compression chamber in the early stage of the compression stroke due to the decrease in the leak area, and the theoretical suction amount per unit time (frequency X stroke volume) is the same, so that the volume efficiency can be increased as compared with the conventional example. Since the volumetric efficiency is higher, the theoretical compression work increases, and the leakage loss decreases as described above. Therefore, the ratio of the leakage loss to the theoretical compression work in the embodiment can be reduced as compared with the conventional example, and the ratio of the leakage loss is particularly high. Example minimum frequency 30Hz
Compared to the compressor performance during operation, the lowest frequency of the embodiment 6
The compressor performance at 0 Hz operation is greatly improved. Of course, even at other frequencies, for the same reason, comparing the frequencies having the same capacity under the same pressure condition, the embodiment has a higher volumetric efficiency than the conventional example, and the ratio of the leakage loss to the theoretical compression work is higher. Can be lowered. The fact that the shape of both scroll teeth 21a and 22a can be reduced means that the fixed scroll 21 and the swivel scroll 22 can be downsized.
The main frame 26 for storing the scroll 22 and fixing the fixed scroll 21 can be downsized. The size reduction of the scrolls 21 and 22 is achieved by the thrust bearing 26.
a and the load acting on the main bearing 26b and the like can also be reduced.

【0024】なお同一圧力条件において作動冷媒を圧縮
するのに必要な電動機28の駆動トルクは、理論圧縮仕
事を(2π×周波数)で除した値である。したがって本
実施の形態では、同一圧力条件において同一理論圧縮仕
事すなわち同一冷凍能力時の作動冷媒を圧縮するのに必
要な電動機28の駆動トルクは周波数が倍であるから従
来例に比べて半分でよいわけである。このため電動機2
8についても従来に比べて大幅な小型化が可能となる。
そして実施の形態では停動トルクが急激に低下してしま
うポイントとなる商用電源周波数未満の低周波数での運
転が定常的な運転範囲内では実施されないので、発明が
解決しようとする課題の欄で述べた電動機損失の問題は
発生しない。すなわち定常的な運転周波数域の最低周波
数運転時でも他の周波数時と同等な磁束密度で運転でき
るので、従来例の最低周波数運転時に比べ、鉄損が減少
でき電動機効率が向上できる。よって実施の形態の最低
周波数(60Hz)運転時は従来例の最低運転周波数
(30Hz)時に比べ電動機損失の理論圧縮仕事に対す
る割合は低くでき、圧縮機性能が向上される。ここで電
動機28の小型化を無視して従来と同様な電動機で対応
するとすれば、停動トルクに対する運転トルクの比は極
めて低くなり、大幅な電動機効率の上昇が図れるわけだ
が、電動機の過剰仕様となり、やはり小型化を図った方
がメリットが大きい。このように定常的な運転周波数域
の最低周波数を商用電源周波数近傍の周波数、または商
用電源の周波数と同等以上の周波数とすることで、定常
的な運転域にて電動機の停動トルクが急激に低下してし
まうポイントは存在しなくなり、そのため最低周波数運
転時にて、電流値が増加することで銅損が増加してしま
ったり、あるいは電圧を高く設定し鉄損が増加してしま
う等の電動機効率の低下要因が消滅できる。よって最低
周波数運転時の電動機効率は大幅に上昇させることがで
き、最低周波数運転時の圧縮機性能は大きく向上でき
る。
The driving torque of the electric motor 28 required to compress the working refrigerant under the same pressure condition is a value obtained by dividing the theoretical compression work by (2π × frequency). Therefore, in this embodiment, the driving torque of the electric motor 28 required to compress the working refrigerant at the same theoretical compression work, that is, at the same refrigeration capacity under the same pressure condition, is twice as high in frequency, so that it may be half that of the conventional example. That is. Therefore, the electric motor 2
8 also enables a significant reduction in size compared to the prior art.
In the embodiment, since the operation at a low frequency lower than the commercial power supply frequency, which is a point at which the stall torque sharply decreases, is not performed within the steady operation range, the problem to be solved by the invention is described in the section of the problem to be solved by the invention. The aforementioned problem of motor loss does not occur. That is, even at the lowest frequency operation in the steady operation frequency range, the operation can be performed with the same magnetic flux density as at other frequencies, so that the iron loss can be reduced and the motor efficiency can be improved as compared with the conventional lowest frequency operation. Therefore, the ratio of the motor loss to the theoretical compression work can be reduced during the lowest frequency (60 Hz) operation of the embodiment compared to the conventional lowest operation frequency (30 Hz), and the compressor performance is improved. Here, if the same motor as the conventional one is used, ignoring the downsizing of the motor 28, the ratio of the operating torque to the stop torque becomes extremely low, and the motor efficiency can be greatly increased. Therefore, it is more advantageous to reduce the size. By setting the lowest frequency in the steady operation frequency range to a frequency near the commercial power supply frequency or a frequency equal to or higher than the frequency of the commercial power supply, the stop torque of the motor suddenly increases in the steady operation range. There is no point of lowering, so at the lowest frequency operation, motor efficiency such as copper loss increases due to an increase in current value, or iron loss increases by setting a high voltage. Factor can be eliminated. Therefore, the motor efficiency during the lowest frequency operation can be greatly increased, and the compressor performance during the lowest frequency operation can be greatly improved.

【0025】続いてスラスト軸受26aについて述べ
る。実施の形態では上記のように行程容積の半減により
両スクロ−ル21,22の小型化が図れるため、周波数
に依存しない作動冷媒の圧縮により発生するスラスト方
向の圧縮負荷はピッチpを低減した分軽減される。この
ためスラスト軸受26aの小型化が可能となる。そして
定常的な運転域での最低周波数は従来例の倍になるの
で、摺動速度は増加する。旋回スクロール22の公転半
径は次式で算出されるが、 公転半径Rc=p/2−t ここで、 p:ピッチ p=2πA A:インボリ
ュートの基礎円半径 t:歯厚 行程容積半減による渦巻状スクロール歯21a,22a
の小型化を行う際、実施例ではピッチpだけを小さくし
ているわけではなく、歯高hも併せて小さくして対応し
ているので、公転半径まで半減するわけではなく、公転
半径は従来の半減の値よりは十分大きい。そのため最低
運転周波数時のスラスト軸受26aに対する摺動速度は
従来に比べ増加できる。したがってスラスト軸受26a
を小型化しながらも、期間を通してみた場合運転時間の
比較的長い最低運転周波数時のスラスト軸受26aの潤
滑性能は従来に比べ向上でき、流体潤滑状態が確実に保
証され冷媒圧縮機の耐久性は大きく向上される。なお流
体潤滑状態では摺動速度の増加は摺動損失の増加を招
き、高周波数運転するほどスラスト軸受摺動損失は増加
するため、従来例でも確実に流体潤滑されていた周波数
域では、それに対応する実施例の周波数域ではスラスト
軸受摺動損失の増加が懸念される。しかしもともとスラ
スト軸受は回転半径が公転半径と小さいことから、流体
潤滑されていれば、その摺動損失の理論圧縮仕事に対す
る割合は小さい。よって実施の形態の240Hz等の高
周波数では摺動速度が増加したことで、対応する従来例
の120Hz等の高周波数時に比べれば、スラスト軸受
26aの摺動損失は増加するものの、圧縮機性能の低下
はわずかで済む。一方で最低周波数時では確実な流体潤
滑状態の確保により、従来の境界潤滑状態に比べて摩擦
係数が軽減でき、信頼性向上だけでなく、摺動損失の低
減までも図れる。
Next, the thrust bearing 26a will be described. In the embodiment, since the scrolls 21 and 22 can be downsized by halving the stroke volume as described above, the compression load in the thrust direction generated by the compression of the working refrigerant independent of the frequency is reduced by the pitch p. It is reduced. For this reason, the size of the thrust bearing 26a can be reduced. Since the lowest frequency in the steady operation range is twice that of the conventional example, the sliding speed increases. The orbital radius of the orbiting scroll 22 is calculated by the following equation: orbital radius Rc = p / 2-t, where: p: pitch p = 2πA A: base circle radius of involute t: tooth thickness Spiral shape due to half reduction in stroke volume Scroll teeth 21a, 22a
When downsizing is performed, in the embodiment, not only the pitch p is reduced, but also the tooth height h is also reduced, so that the revolving radius is not halved to the revolving radius. It is much larger than the value of half. Therefore, the sliding speed with respect to the thrust bearing 26a at the lowest operation frequency can be increased as compared with the conventional case. Therefore, the thrust bearing 26a
The lubrication performance of the thrust bearing 26a at the lowest operation frequency where the operation time is relatively long when compared to the conventional one can be improved as compared with the conventional case, and the fluid lubrication state is reliably assured and the durability of the refrigerant compressor is large. Be improved. In the fluid lubrication state, an increase in the sliding speed causes an increase in the sliding loss, and the higher the frequency, the higher the sliding loss in the thrust bearing. In the frequency range of the embodiment, there is a concern about an increase in thrust bearing sliding loss. However, since the rotation radius of a thrust bearing is originally small, the ratio of the sliding loss to the theoretical compression work is small if it is fluid-lubricated. Therefore, the sliding speed is increased at a high frequency such as 240 Hz in the embodiment, and the sliding loss of the thrust bearing 26a is increased as compared with the corresponding conventional high frequency such as 120Hz, but the compressor performance is not improved. The decline is small. On the other hand, at the time of the lowest frequency, by ensuring the fluid lubrication state, the friction coefficient can be reduced as compared with the conventional boundary lubrication state, and not only the reliability can be improved but also the sliding loss can be reduced.

【0026】また主軸受26b,副軸受31a,揺動軸
受22dといった相対的に自転する軸のラジアル方向の
負荷を支持する軸受(まとめてラジアル軸受と呼ぶこと
にする)については、回転半径が軸受半径そのもので大
きく、摺動速度はスラスト軸受26aに比べ回転半径が
大きい分大きいので、従来例でも最低運転周波数時に十
分な潤滑性能が確保されている。そのため従来例の最低
運転周波数時の各ラジアル軸受部の最小油膜厚さと実施
の形態の最低周波数時の同圧力条件での対応する各軸受
部の最小油膜厚さが同等以上形成されていれば、実施の
形態でも十分な潤滑性能を確保できることになる。上記
同様実施の形態は従来例に対して行程容積の半減により
両スクロ−ル21,22の小型化が図れるため、周波数
に依存しない作動冷媒の圧縮により発生するラジアル方
向の圧縮負荷は特に歯高hを低減させたことが効いて軽
減される。これにはピッチpの減少も貢献する。また遠
心力を派生させる旋回スクロール22が小型化すなわち
軽量化され、さらに旋回スクロール22の公転半径も減
少されるので、公転運動によって派生する遠心力に対抗
して回転系全体のバランシングを行うバランサ30a、
30bの小型軽量化が図れる。また電動機28の小型化
により、主軸受26bと副軸受31a間の距離やバラン
サ30a、30b間の距離も短縮される。よって実施の
形態の最低運転周波数60Hz時の各ラジアル軸受の最
小油膜厚さを従来例の最低運転周波数30Hzと同等に
しようとすれば、遠心力は回転数すなわちここでは周波
数の二乗で増加するものの、上記のような理由および周
波数が低いので遠心力の影響が小さいということから、
作用するラジアル負荷は実施の形態の方が軽減され、し
かも周波数が倍となって摺動速度は増加されるので、各
ラジアル軸受は従来例より小型化できる。仮に軸受径を
半減するような小型化では、摺動速度は倍の周波数であ
っても変化しないことになるが、負荷が軽減されている
ので、そのような小型化をしても潤滑性能は従来例より
低下することはなく、十分な耐久性を有することができ
る。なお遠心力の影響が大きい高周波数側では、遠心力
は周波数の二乗で増加するので、上記のようなラジアル
負荷軽減要素があっても、低周波数側とは逆転し、各ラ
ジアル軸受に作用するラジアル負荷は対応する従来例の
高周波数側より増加することになる。しかし各ラジアル
軸受を小型化しているので、摩擦係数は減少される。そ
して実施の形態では軸受径の縮径化を主とした各ラジア
ル軸受の小型化を図っているので、回転半径は減少され
ており、周波数が倍になっていても摺動速度はほとんど
増加していない。このように対応することで、高周波数
側でのラジアル軸受の摺動損失は従来例の対応する周波
数での摺動損失と同等以下に抑えることができる。よっ
て従来より高周波数側で理論圧縮仕事に対する割合が高
いラジアル軸受の摺動損失は、実施の形態においてその
周波数が倍になっても高周波数側で理論圧縮仕事に対す
る割合は同等以下にすることができる。
For bearings that support the radial load of a relatively rotating shaft such as the main bearing 26b, the sub-bearing 31a, and the oscillating bearing 22d (collectively referred to as radial bearings), the radius of rotation is equal to the bearing radius. Since the radius itself is large, and the sliding speed is larger than that of the thrust bearing 26a by the rotation radius, sufficient lubrication performance is ensured even at the lowest operating frequency in the conventional example. Therefore, if the minimum oil film thickness of each radial bearing portion at the lowest operating frequency of the conventional example and the corresponding minimum oil film thickness of each bearing portion under the same pressure conditions at the lowest frequency of the embodiment are formed, Also in the embodiment, sufficient lubrication performance can be secured. In the same embodiment as described above, the scrolls 21 and 22 can be miniaturized by halving the stroke volume as compared with the conventional example. Therefore, the radial compression load generated by the compression of the working refrigerant independent of the frequency is particularly high in the tooth height. The effect of reducing h is reduced. The reduction in the pitch p also contributes to this. Further, since the orbiting scroll 22 for generating the centrifugal force is reduced in size or weight, and the orbital radius of the orbiting scroll 22 is reduced, the balancer 30a for balancing the entire rotating system against the centrifugal force generated by the orbital motion. ,
30b can be reduced in size and weight. In addition, the distance between the main bearing 26b and the sub-bearing 31a and the distance between the balancers 30a and 30b are reduced due to the miniaturization of the electric motor 28. Therefore, if the minimum oil film thickness of each radial bearing at the minimum operating frequency of 60 Hz in the embodiment is to be made equal to the minimum operating frequency of 30 Hz of the conventional example, the centrifugal force increases with the rotation speed, that is, the square of the frequency. , From the above reasons and because the frequency is low and the effect of centrifugal force is small,
The working radial load is reduced in the embodiment, and the frequency is doubled to increase the sliding speed, so that each radial bearing can be made smaller than the conventional example. If the bearing is reduced in size such that the bearing diameter is reduced by half, the sliding speed will not change even if the frequency is doubled, but since the load is reduced, the lubrication performance will be reduced even if such a reduction is made. There is no lowering than in the conventional example, and sufficient durability can be obtained. On the high frequency side where the influence of centrifugal force is large, the centrifugal force increases with the square of the frequency, so even if there is a radial load reducing element as described above, it is reversed from the low frequency side and acts on each radial bearing. The radial load will be higher than the corresponding conventional high frequency side. However, as each radial bearing is miniaturized, the coefficient of friction is reduced. In the embodiment, since each radial bearing is downsized mainly by reducing the diameter of the bearing, the radius of rotation is reduced, and even if the frequency is doubled, the sliding speed is almost increased. Not. By taking such measures, the sliding loss of the radial bearing on the high frequency side can be suppressed to be equal to or less than the sliding loss at the corresponding frequency in the conventional example. Therefore, the sliding loss of the radial bearing, which has a higher ratio to the theoretical compression work on the high frequency side than the conventional one, can be equal to or less than the ratio of the theoretical compression work on the high frequency side even if the frequency is doubled in the embodiment. it can.

【0027】図4に本実施の形態に用いた公転型のスク
ロール圧縮機と従来例として挙げた30〜120Hzを
定常的な運転周波数域としている公転型のスクロ−ル圧
縮機の同一条件下での圧縮機単体性能の比較を示す。同
図の縦軸は従来圧縮機の60Hzの成績係数COP(Co
efficient Of Performance)を1として、それに対する
比を表わしている。また横軸は周波数を表しており、従
来の形態と本実施例の対応する周波数(すなわち同容量
となる周波数同士)は同位置としている。図4に示すよ
うに上記の理由から最低周波数でのCOPは大きく向上
する。周波数が高くなるほど実施例の従来例に対するC
OPの優位性は低下していくが、これは対応する周波数
同士を比較した場合、実施の形態の洩れ損失の低減とい
うメリットが、上記したスラスト軸受26aの他にもオ
−バ−シュ−ト損失と呼ばれる吐出圧損や電動機28の
表皮効果による二次銅損の増加で相殺されていくからで
ある。しかし最高周波数時でもCOPは実施の形態の方
が高くなっている。オ−バ−シュ−ト損失については周
波数が高いほど理論圧縮仕事に対する割合が高くなる。
実施の形態は行程容積を半減していて吐出体積流量は半
減されているのだが、周波数の倍増の影響の方が大き
く、対応する周波数同士を比較した場合実施の形態の方
が理論圧縮仕事に対するオ−バ−シュ−ト損失の割合は
高くなり、高周波数側ほど実施の形態に比べその割合が
高くなってしまう。また表皮効果についてであるが、こ
れは回転子28bに流れる電流の不均一分布に起因した
二次抵抗や二次インダクタンスが変化する現象で、高周
波数になるほど特に二次銅損が増加するものである。
FIG. 4 shows the revolving type scroll compressor used in the present embodiment and the revolving type scroll compressor having a steady operating frequency range of 30 to 120 Hz, which is mentioned as a conventional example, under the same conditions. 3 shows a comparison of the performance of the compressor alone. The vertical axis in the figure indicates the coefficient of performance COP (CoP) of the conventional compressor at 60 Hz.
efficient of performance) as 1 and the ratio to it. Further, the horizontal axis represents the frequency, and the corresponding frequencies (that is, the frequencies having the same capacity) in the conventional embodiment and the present embodiment are at the same position. As shown in FIG. 4, the COP at the lowest frequency is greatly improved for the above reason. The higher the frequency, the higher the C of the embodiment compared to the conventional example.
The superiority of the OP decreases, but this is because, when the corresponding frequencies are compared with each other, the advantage of reducing the leakage loss of the embodiment is that overshooting other than the thrust bearing 26a described above. This is because the increase is offset by an increase in secondary copper loss due to a discharge pressure loss called a loss or a skin effect of the electric motor 28. However, even at the highest frequency, the COP is higher in the embodiment. As for the overshoot loss, the higher the frequency, the higher the ratio to the theoretical compression work.
Although the embodiment has halved the stroke volume and the discharge volume flow rate has been halved, the effect of doubling the frequency is greater, and when comparing the corresponding frequencies, the embodiment is more effective than the theoretical compression work. The ratio of the overshoot loss becomes higher, and the higher the frequency, the higher the ratio as compared with the embodiment. Regarding the skin effect, this is a phenomenon in which the secondary resistance and the secondary inductance change due to the uneven distribution of the current flowing through the rotor 28b. The higher the frequency becomes, the more the secondary copper loss particularly increases. is there.

【0028】以上のように高周波数側での圧縮機性能の
向上は小さいものの、起動時を除く定常的な運転周波数
域での最低運転周波数を60Hzとして、定常的な運転
周波数域を60Hz〜240Hzと高周波数側にシフト
させたことにより、期間を通じてみた場合比較的運転時
間の長い最低周波数運転時の冷媒圧縮機100の圧縮機
性能を大きく向上させることができるので、冷媒圧縮機
のSEERは向上し、それを搭載する可変速度駆動を行
う冷凍サイクル装置のSEERも向上できる。そして運
転周波数域での最低運転周波数での運転を実施すること
で、従来のように室温設定付近の環境下でのきめ細かい
制御を行うことも可能である。また最低周波数運転時の
スラスト軸受26aの潤滑性能を向上することができる
ので、冷媒圧縮機100の耐久性が向上し、信頼性も高
められる。さらに上記した通り各部品を小型化できるの
で、冷媒圧縮機100全体の小型軽量化ができ、そのコ
ストも低下できる。図4に用いたスクロ−ル圧縮機で
は、実施の形態は従来例に対して圧縮機外径が88%、
圧縮機高さが78%と小型化され、圧縮機重量も65%
と軽量化されている。またこれはこの冷媒圧縮機100
を搭載する冷凍サイクル装置の小型軽量化およびコスト
低減ができることも意味する。
As described above, although the improvement in the compressor performance on the high frequency side is small, the minimum operating frequency in the steady operating frequency range other than the start-up period is 60 Hz, and the steady operating frequency range is 60 Hz to 240 Hz. By shifting to a higher frequency side, the compressor performance of the refrigerant compressor 100 at the time of the lowest frequency operation having a relatively long operation time can be greatly improved over the period, so that the SEER of the refrigerant compressor is improved. In addition, the SEER of the refrigeration cycle device that carries the variable speed drive and has it improved. By performing the operation at the lowest operation frequency in the operation frequency range, it is possible to perform fine control in an environment near room temperature setting as in the related art. Further, since the lubrication performance of the thrust bearing 26a during the lowest frequency operation can be improved, the durability of the refrigerant compressor 100 is improved, and the reliability is also improved. Furthermore, as described above, since each component can be reduced in size, the overall size and weight of the refrigerant compressor 100 can be reduced, and the cost can be reduced. In the scroll compressor used in FIG. 4, the embodiment has a compressor outer diameter of 88%,
Compressor height is reduced to 78% and compressor weight is 65%
And lighter. This is also the refrigerant compressor 100
This also means that the refrigeration cycle device on which the device is mounted can be reduced in size and weight and cost can be reduced.

【0029】ここで冷媒圧縮機100としてスクロ−ル
圧縮機を用いた利点について述べる。スクロ−ル圧縮機
は吸入、圧縮、吐出の行程が同時にかつ連続的に進行
し、さらに中間圧の圧縮室が吸入と吐出の間に形成され
るので圧力上昇速度が遅く、そのためトルク変動がたい
へん小さい。そして吐出がほぼ連続流であるため吐出す
る作動冷媒の圧力変動もたいへん小さい。よって低振動
であるため、高周波数での運転に適しており、そのため
定常的な運転周波数域での最低周波数を商用電源107
の周波数近傍の周波数、または商用電源107の周波数
と同等以上の周波数として、定常的な運転周波数域を従
来より全体的に高周波数側へ移行させても、高周波数で
の運転が可能であるからである。また必ずしも吐出弁を
必要としないので、高周波数運転時吐出弁に起因する騒
音、破損、弁の追従性といった問題も生じないためであ
る。
The advantages of using a scroll compressor as the refrigerant compressor 100 will now be described. In a scroll compressor, the processes of suction, compression and discharge proceed simultaneously and continuously, and furthermore, a compression chamber of an intermediate pressure is formed between suction and discharge, so that the pressure rise speed is slow, so that torque fluctuation is very large. small. Since the discharge is a substantially continuous flow, the pressure fluctuation of the working refrigerant to be discharged is very small. Therefore, since the vibration is low, it is suitable for operation at a high frequency.
The operation at a high frequency is possible even if the steady operation frequency range is shifted to the higher frequency side as a whole as a frequency near the frequency of the above or a frequency equal to or higher than the frequency of the commercial power supply 107. It is. In addition, since a discharge valve is not necessarily required, problems such as noise, breakage, and valve followability due to the discharge valve during high-frequency operation do not occur.

【0030】上記実施の形態ではそのスクロ−ル圧縮機
として、一方のスクロ−ルを静止固定し、他方のスクロ
−ルを静止固定させたスクロ−ルの中心まわりに自転し
ない公転運動させる公転型のスクロ−ル圧縮機を用いた
が、スクロ−ル圧縮機には両スクロ−ルを偏心させて組
み合わせ、両スクロールを同一方向に自転させて作動冷
媒を圧縮する両回転型のスクロ−ル圧縮機がある。図5
はその両回転型のスクロ−ル圧縮機の縦断面図、図6は
両回転型のスクロ−ル圧縮機の圧縮原理を示す説明図で
あり、先の公転型のスクロ−ル圧縮機と同一または相当
部分には同一符号を付してその説明は省略する。同図に
おいて41は台板41bに渦巻状スクロ−ル歯41aが
立設され、その反対側の面に駆動軸42が連結されて成
る駆動スクロ−ルで、43は台板43bに渦巻状スクロ
ール歯43aが立設され、その反対側の面に従動軸44
が連結されて成る従動スクロ−ルで、両スクロール歯4
1a,43aは偏心して組み合わされている。電動機2
8によって駆動軸42が回転駆動され、それにより連結
されている駆動スクロ−ル41が自転する。駆動スクロ
−ル41が自転すると、駆動スクロ−ル41の台板41
bに立設された駆動ピン45が従動スクロ−ル43に形
成された径方向に延びる溝46に嵌合されていることか
ら、従動スクロ−ル43も駆動スクロ−ル41と同一方
向に自転する。このように偏心して組み合わされた両ス
クロ−ル41,43が同一方向に自転することで、図6
に示されるように、両スクロ−ル歯41a、43a間に
形成される三日月状の圧縮室25が順次その容積を減じ
て、作動冷媒を圧縮して吐出孔24から吐出する。駆動
スクロ−ル41の重心が駆動軸42と同心となるように
駆動スクロ−ル42を形成すれば、駆動軸42をラジア
ル方向に支持する駆動軸受47に対して偏心運動は行わ
れず、また従動スクロ−ル43の重心が従動軸44と同
心になるように従動スクロ−ル43を形成すれば、従動
軸44をラジアル方向に支持する従動軸受48に対して
偏心運動は行われないため、回転系全体の完全バランシ
ングが構築され、バランスウェイトの取り付けを必要と
しない。
In the above-described embodiment, the scroll compressor has a revolving type in which one scroll is stationary and the other scroll does not rotate around the center of the stationary scroll. Scroll compressors are used, but the scroll compressors are eccentrically combined, and both scrolls rotate in the same direction to compress the working refrigerant. There is a machine. FIG.
FIG. 6 is a longitudinal sectional view of the two-rotation type scroll compressor, and FIG. 6 is an explanatory view showing the compression principle of the two-rotation type scroll compressor, which is the same as the above-mentioned revolving type scroll compressor. Or, corresponding parts are denoted by the same reference numerals and description thereof will be omitted. In the drawing, reference numeral 41 denotes a drive scroll in which spiral scroll teeth 41a are erected on a base plate 41b, and a drive shaft 42 is connected to the opposite surface. Reference numeral 43 denotes a spiral scroll on a base plate 43b. The teeth 43a are erected, and the driven shaft 44
Are connected to each other to form a driven scroll.
1a and 43a are eccentrically combined. Electric motor 2
The drive shaft 42 is driven to rotate by 8, and the connected drive scroll 41 rotates by itself. When the driving scroll 41 rotates, the base plate 41 of the driving scroll 41 is rotated.
Since the drive pin 45 erected in b is fitted in the radially extending groove 46 formed in the driven scroll 43, the driven scroll 43 also rotates in the same direction as the drive scroll 41. I do. As the scrolls 41, 43 combined eccentrically rotate in the same direction as shown in FIG.
As shown in FIG. 3, a crescent-shaped compression chamber 25 formed between the scroll teeth 41a and 43a sequentially reduces the volume thereof, compresses the working refrigerant, and discharges it through the discharge hole 24. If the drive scroll 42 is formed so that the center of gravity of the drive scroll 41 is concentric with the drive shaft 42, no eccentric movement is performed on the drive bearing 47 that supports the drive shaft 42 in the radial direction, and the driven scroll is driven. If the driven scroll 43 is formed such that the center of gravity of the scroll 43 is concentric with the driven shaft 44, no eccentric movement is performed with respect to the driven bearing 48 that supports the driven shaft 44 in the radial direction, and thus the rotation is performed. Complete balancing of the entire system is built up and does not require the installation of balance weights.

【0031】このような両回転型のスクロ−ル圧縮機を
冷媒圧縮機100として使用し、起動時を除く定常的な
運転周波数域での最低運転周波数は、商用電源107の
周波数近傍の周波数、または商用電源107の周波数と
同等以上の周波数とし、定常的な運転周波数域を従来よ
り全体的に高周波数側へ移行させれば、先の実施の形態
と同様な効果が得られ、かつ回転系の完全バランスが構
築されるので、高周波数運転時、より低振動化が図れ
る。
Such a double-rotation type scroll compressor is used as the refrigerant compressor 100, and the lowest operating frequency in a steady operating frequency range except at the time of startup is a frequency near the frequency of the commercial power supply 107, Alternatively, if the frequency is equal to or higher than the frequency of the commercial power supply 107 and the steady operation frequency range is shifted to a higher frequency side as compared with the conventional one, the same effect as that of the above embodiment can be obtained, and Therefore, the vibration can be further reduced during high frequency operation.

【0032】冷媒圧縮機100は長期停止時に作動冷媒
が密閉容器27内で凝縮し、液状態で溜まってしまうい
わゆる寝込み現象が起こる。スクロール圧縮機では寝込
んだ液冷媒の量が多量である場合、圧縮室25内までも
液で満たされた状態が発生し、そのような状態から起動
されることもある。このときいきなり高周波数で起動す
ると、時間に対する圧縮室の容積変化率が大きいので、
特に中間圧力室で内圧の急激な上昇すなわち圧力パルス
が発生し、それにより渦巻状スクロ−ル歯が破損してし
まうという問題を起こし兼ねない。したがって本実施の
形態は定常的な運転周波数域での最低周波数は商用電源
107の周波数近傍の周波数、または商用電源107の
周波数と同等以上の周波数とするが、起動時は例えば1
0Hz等の低周波数からのスロ−スタ−トとし、ステッ
プ状に周波数を上昇させることで、寝込み起動時の圧力
パルスの発生を防止する。
When the refrigerant compressor 100 is stopped for a long period of time, a so-called stagnation phenomenon occurs in which the working refrigerant condenses in the closed container 27 and accumulates in a liquid state. In the case where the amount of the liquid refrigerant that has fallen in the scroll compressor is large, a state in which the liquid is filled even in the compression chamber 25 occurs, and the scroll compressor may be started from such a state. At this time, if it starts up at a high frequency, the volume change rate of the compression chamber with respect to time is large,
In particular, a sudden increase in the internal pressure, that is, a pressure pulse is generated in the intermediate pressure chamber, which may cause a problem that the spiral scroll teeth are damaged. Therefore, in this embodiment, the lowest frequency in the steady operation frequency range is a frequency near the frequency of the commercial power supply 107 or a frequency equal to or higher than the frequency of the commercial power supply 107.
A slow start from a low frequency such as 0 Hz is performed, and by increasing the frequency in a stepwise manner, generation of a pressure pulse at the time of start-up of sleep is prevented.

【0033】実施の形態2.冷媒圧縮機100としてロ
−タリ圧縮機の使用を考えた場合、最低周波数運転時に
はスクロ−ル圧縮機同様行程容積の減少により、特にベ
−ンとベ−ン溝との側面すきまやロ−リングピストン外
周面とシリンダ内周面の半径方向すきまにより形成され
る洩れ面積の減少によって洩れ損失の低減が図れ、また
電動機損失についても同様な効果が得られることにな
り、圧縮機性能は大きく向上できる。ただしロ−タリ圧
縮機はスクロ−ル圧縮機と異なり、1回転で吸入、圧
縮、吐出の行程を行うため、圧力上昇速度が大きく、そ
のためトルク変動がスクロ−ル圧縮機に比べ大きいとい
う点や吐出弁が必要であるという点等からスクロ−ル圧
縮機ほど高速運転には適さない圧縮機である。よってス
クロ−ル圧縮機に比べ高周波数側が制限されることとな
って運転周波数域がスクロ−ル圧縮機よりは狭められて
しまう。なおロ−タリ圧縮機の高速運転を阻害する最大
の要因はベ−ンとロ−リングピストン外周面の摺動であ
ると考えられ、この摺動部分が常に境界潤滑状態である
ことから、高周波数運転するとベ−ン先端やロ−リング
ピストンの外周面の摩耗が激しくなってしまうのであ
る。しかし近年はベ−ンとロ−リングピストンが一体的
に形成され、ベ−ンとロ−リングピストン外周面が非摺
動であるようなロ−タリ圧縮機が提案されており、この
部分の摩耗の問題は解消されている。
Embodiment 2 FIG. Considering the use of a rotary compressor as the refrigerant compressor 100, when the lowest frequency operation is performed, similar to the scroll compressor, the stroke volume is reduced, and especially the side clearance between the vane and the vane groove and the rolling are reduced. The reduction of the leakage area formed by the radial clearance between the outer peripheral surface of the piston and the inner peripheral surface of the cylinder can reduce the leakage loss, and the same effect can be obtained with respect to the motor loss, so that the compressor performance can be greatly improved. . However, unlike the scroll compressor, the rotary compressor performs the suction, compression and discharge strokes in one revolution, so that the pressure rise speed is large, and therefore the torque fluctuation is larger than that of the scroll compressor. Compressors are not as suitable for high-speed operation as scroll compressors because they require a discharge valve. Therefore, the high frequency side is restricted as compared with the scroll compressor, and the operating frequency range is narrowed as compared with the scroll compressor. It is considered that the greatest factor hindering the high-speed operation of the rotary compressor is the sliding of the vane and the outer peripheral surface of the rolling piston. When the frequency operation is performed, wear of the vane tip and the outer peripheral surface of the rolling piston becomes severe. However, recently, there has been proposed a rotary compressor in which a vane and a rolling piston are integrally formed and an outer peripheral surface of the vane and the rolling piston are non-sliding. The problem of wear has been eliminated.

【0034】実施の形態3.近年環境保護の観点から、
オゾン層を破壊する塩素原子を分子構造中に含まないハ
イドロフルオロカ−ボン系冷媒(以下HFC系冷媒と称
す)が、冷凍サイクル装置の作動冷媒として用いられつ
つあり、現在空調用で主として使用されているクロロジ
フルオロメタン(以下HCFC22と称す)も近い将来
の全廃が決定されている。このHCFC22の代替冷媒
として、ジフルオロメタン(以下HFC32と称す)、
ペンタフルオロエタン(以下HFC125と称す)、1,
1,1,2テトラフルオロエタン(以下HFC134aと称
す)、1,1,1トリフルオロエタン(以下HFC143a
と称す)、1,1ジフルオロエタン(以下HFC152a
と称す)等のHFC系冷媒を単独で、もしくは複数の混
合冷媒として使用することが挙げられている。空調用と
してはHFC32とHFC125とHFC134aの3
種を混合したHFC32/125/134a冷媒、また
はHFC32とHFC125の2種を混合したHFC3
2/125冷媒が最も有力視されている。とりわけHF
C32/125は高圧冷媒でHCFC22と比べると同
一温度に対する飽和圧力はかなり高い。そのため従来と
同じ温度条件下では高低圧力差がHCFC22に比べ、
極めて大きくなる。一方で密度がHCFC22に比べ大
きいので、HCFC22時と同等な冷凍能力を得るため
には行程容積はHCFC22時より小さくてよい。
Embodiment 3 In recent years, from the viewpoint of environmental protection,
Hydrofluorocarbon-based refrigerants (hereinafter referred to as HFC-based refrigerants) that do not contain chlorine atoms in the molecular structure that destroy the ozone layer are being used as working refrigerants for refrigeration cycle devices and are currently mainly used for air conditioning. Chlorodifluoromethane (hereinafter referred to as HCFC22) has been determined to be completely abolished in the near future. Difluoromethane (hereinafter, referred to as HFC32) as an alternative refrigerant to this HCFC22,
Pentafluoroethane (hereinafter referred to as HFC125), 1,
1,1,2 tetrafluoroethane (hereinafter referred to as HFC134a), 1,1,1 trifluoroethane (hereinafter HFC143a)
), 1,1 difluoroethane (hereinafter HFC152a)
HFC-based refrigerants such as a single refrigerant or a plurality of mixed refrigerants. HFC32, HFC125 and HFC134a for air conditioning
HFC32 / 125 / 134a refrigerant mixed with seeds, or HFC3 mixed with HFC32 and HFC125
The 2/125 refrigerant is considered the most promising. Especially HF
C32 / 125 is a high-pressure refrigerant and has a considerably higher saturation pressure at the same temperature than HCFC22. Therefore, under the same temperature conditions as before, the difference between the high and low pressures is higher than that of HCFC22.
Extremely large. On the other hand, since the density is higher than that of the HCFC 22, the stroke volume may be smaller than that of the HCFC 22 in order to obtain the same refrigerating capacity as that of the HCFC 22.

【0035】このHFC32/125を冷媒圧縮機の可
変速度駆動を行う冷凍サイクル装置の作動冷媒として使
用すると、上記したようにHCFC22時に比べ高低圧
力差が増大するため、洩れ損失が増加し、特に洩れ損失
の理論圧縮仕事に対する割合が高い従来の30Hz等の
最低周波数運転時の圧縮機性能は著しく低下する。その
ため本発明の適用すなわち冷媒圧縮機100をスクロ−
ル圧縮機で構成し、起動時を除く定常的な運転周波数域
での最低運転周波数を、商用電源107の周波数近傍の
周波数、または商用電源107の周波数と同等以上の周
波数とし、定常的な運転周波数域を従来より全体的に高
周波数側へ移行させれば、前述した通りの理由で特に洩
れ損失の低減効果が効いて最低周波数運転時の圧縮機性
能は大幅に改善される。またHCFC22時より行程容
積を減じられるので、高周波数運転時の吐出体積流量が
減少され、オ−バ−シュ−ト損失が低減できる。そのた
め高周波数側でも圧縮機性能の改善が図ることができ、
運転周波数全域にわたって圧縮機の性能言い換えるとC
OPがフラットに近づけることができる。よって冷媒圧
縮機100のSEERは向上し、それを搭載する可変速
度駆動を行う冷凍サイクル装置のSEERも向上でき
る。
When this HFC32 / 125 is used as a working refrigerant of a refrigeration cycle apparatus for performing variable speed driving of a refrigerant compressor, as described above, the pressure difference between the HCFC22 and the high and low pressures increases, so that the leakage loss increases, and especially the leakage loss increases. Compressor performance at the lowest frequency operation, such as the conventional 30 Hz where loss is high relative to theoretical compression work, is significantly reduced. Therefore, the application of the present invention, that is, the refrigerant compressor 100
The minimum operating frequency in a steady operating frequency range other than the start-up period is set to a frequency near the frequency of the commercial power supply 107 or a frequency equal to or higher than the frequency of the commercial power supply 107. If the frequency range is shifted to the higher frequency side as compared with the conventional one, the effect of reducing the leakage loss is particularly effective for the above-mentioned reason, and the compressor performance at the lowest frequency operation is greatly improved. Further, since the stroke volume can be reduced from the time of HCFC 22:00, the discharge volume flow rate at the time of high frequency operation is reduced, and the overshoot loss can be reduced. Therefore, the compressor performance can be improved even on the high frequency side,
Compressor performance over the entire operating frequency range In other words, C
The OP can be made almost flat. Therefore, the SEER of the refrigerant compressor 100 is improved, and the SEER of the refrigeration cycle device that carries the refrigerant compressor and performs variable speed driving can also be improved.

【0036】この発明の実施の形態では、定常的な運転
時における所定の運転周波数域を60Hz〜240Hz
とした例を記載しているが、この発明の定常的な運転時
における所定の運転周波数域はなにも60Hz〜240
Hzに限定するものではなく、最低運転周波数は、商用
電源周波数近傍の周波数以上の周波数、即ち、課題の欄
で記したように急激に停動トルクが低下してしまうポイ
ントより大きな周波数であることと、また、最大の運転
周波数は、高速における軸受部の摺動損失やオ−バ−シ
ュ−ト損失、あるいは電動機の表皮効果による二次銅損
などの損失増加により性能低下といった問題が生じるこ
とのない周波数とし、これらの両周波数間で、適宜選択
できるものである。この発明は、冷媒圧縮機の定常的な
運転時における所定の運転周波数域を上記のようにする
ことにより、小型軽量化され、かつ、SEERが高く、
さらに耐久性も向上させることができる可変速度駆動を
行う冷媒圧縮機を低コストで提供することができる。ま
た、小型軽量化され、かつ、十分な快適性を得ながらも
SEERが高く、さらに信頼性も高い冷媒圧縮機の可変
速度駆動を行う冷凍サイクル装置を低コストで提供する
ことができる。
In the embodiment of the present invention, the predetermined operating frequency range during steady operation is 60 Hz to 240 Hz.
However, the predetermined operating frequency range during steady operation of the present invention is 60 Hz to 240 Hz.
Hz, the minimum operating frequency must be a frequency higher than the frequency near the commercial power supply frequency, that is, a frequency higher than the point where the stall torque suddenly decreases as described in the subject column. Also, at the maximum operating frequency, there is a problem that performance is deteriorated due to an increase in loss such as sliding loss and overshoot loss of the bearing portion at high speed, or secondary copper loss due to the skin effect of the motor. , And can be appropriately selected between these two frequencies. According to the present invention, by setting the predetermined operating frequency range during the steady operation of the refrigerant compressor as described above, the size and weight are reduced, and the SEER is high.
Further, it is possible to provide a low-cost refrigerant compressor that performs variable speed driving and can also improve durability. In addition, a refrigeration cycle apparatus that can be reduced in size and weight and has a high SEER while obtaining sufficient comfort, and that performs variable speed driving of a refrigerant compressor with high reliability can be provided at low cost.

【0037】[0037]

【発明の効果】以上説明したとおり第1の発明において
は、駆動電源の周波数を変化させることで可変速度駆動
を行う冷媒圧縮機において、前記冷媒圧縮機は、起動時
をのぞき、定常的な運転時に所定の運転周波数域を有
し、前記運転周波数域の最低運転周波数を商用電源周波
数近傍の周波数以上の周波数としたので、定常的な運転
周波数域での最低周波数運転時の冷媒圧縮機の理論圧縮
仕事に対する洩れ損失および電動機損失の割合を小さく
することができ、期間を通じてみた場合比較的運転時間
の長い最低周波数運転時の冷媒圧縮機の圧縮機性能を大
きく向上させることができるので、冷媒圧縮機のSEE
Rが向上できる。そして運転周波数域での最低運転周波
数での冷媒圧縮機の運転を実施することで、従来のよう
に室温設定付近の環境下でのきめ細かい制御を行うこと
も可能となる。また、圧縮機の小型、軽量化ができ、コ
スト低下が図れる。
As described above, according to the first aspect of the present invention, in a refrigerant compressor that performs variable speed driving by changing the frequency of a driving power supply, the refrigerant compressor operates in a steady state except at startup. Sometimes has a predetermined operating frequency range, the lowest operating frequency of the operating frequency range is set to a frequency equal to or higher than the frequency near the commercial power supply frequency, the theory of the refrigerant compressor during the lowest frequency operation in the steady operating frequency range The ratio of the leakage loss and the motor loss to the compression work can be reduced, and the compressor performance of the refrigerant compressor during the lowest frequency operation, which has a relatively long operation time over a period, can be greatly improved, so that the refrigerant compression SEE
R can be improved. By performing the operation of the refrigerant compressor at the lowest operation frequency in the operation frequency range, fine control can be performed in an environment near room temperature setting as in the related art. Further, the size and weight of the compressor can be reduced, and the cost can be reduced.

【0038】また、第2の発明においては、第1の発明
において、冷媒圧縮機が一対の渦巻状のスクロ−ル歯が
組合わされて作動冷媒を圧縮するスクロ−ル圧縮機であ
るようにしたので、第1の発明の効果に加えて、最低周
波数運転時の圧縮機の軸受部の潤滑性能を向上すること
ができ、冷媒圧縮機の耐久性、信頼性が向上する。ま
た、高周波数運転においても圧力変動が小さく、低振動
の圧縮機が得られる。
According to a second aspect of the present invention, in the first aspect, the refrigerant compressor is a scroll compressor that compresses the working refrigerant by combining a pair of spiral scroll teeth. Therefore, in addition to the effects of the first invention, the lubrication performance of the bearing portion of the compressor during the lowest frequency operation can be improved, and the durability and reliability of the refrigerant compressor can be improved. Further, even in high frequency operation, a pressure fluctuation is small, and a compressor with low vibration can be obtained.

【0039】また、第3の発明においては、最低運転周
波数を商用電源周波数近傍の周波数以上の周波数とした
圧縮機に作動冷媒としてHFC32とHFC125の混
合冷媒を使用したので、特に、高圧冷媒使用による漏れ
損失の増大が緩和される。また、作動冷媒としてHFC
32とHFC125の混合冷媒を使用することで、高周
波数側での圧縮機性能の改善も図れ、周波数による冷媒
圧縮機の性能差を是正でき、運転周波数全域にわたって
圧縮機の性能をフラットに近づけることができ、冷媒圧
縮機のSEERはより向上できる。
In the third aspect of the present invention, a mixed refrigerant of HFC32 and HFC125 is used as the working refrigerant for the compressor whose minimum operating frequency is equal to or higher than the frequency near the commercial power supply frequency. The increase in leakage loss is reduced. In addition, HFC is used as the working refrigerant.
By using a refrigerant mixture of HFC32 and HFC125, the compressor performance on the high frequency side can be improved, the performance difference of the refrigerant compressor depending on the frequency can be corrected, and the performance of the compressor becomes almost flat over the entire operating frequency range. The SEER of the refrigerant compressor can be further improved.

【0040】また、第4の発明においては、冷凍サイク
ル装置において、冷媒圧縮機は、起動時をのぞき、定常
的な運転時に所定の運転周波数域を有し、前記運転周波
数域の最低運転周波数を商用電源周波数近傍の周波数以
上の周波数とし、駆動電源の周波数を変化させることで
可変速度駆動されるようにしたので、冷凍サイクル装置
のSEERが向上できる。また、小型軽量化した冷媒圧
縮機を搭載することで冷凍サイクル装置の小型軽量化お
よびコスト低減ができる。
According to a fourth aspect of the present invention, in the refrigeration cycle apparatus, the refrigerant compressor has a predetermined operating frequency range during a steady operation except for a start-up operation, and sets a minimum operating frequency of the operating frequency range to a minimum operating frequency. Since the frequency is set to a frequency equal to or higher than the frequency near the commercial power supply and the driving power supply is changed to perform variable speed driving, the SEER of the refrigeration cycle apparatus can be improved. Further, by mounting the compact and lightweight refrigerant compressor, the size and weight of the refrigeration cycle device and the cost can be reduced.

【0041】また、第5の発明においては、第4の発明
で、冷媒圧縮機をスクロ−ル圧縮機としたので、耐久
性、信頼性が向上した、また、高周波数運転においても
圧力変動が小さく、低振動の圧縮機を使うことにより、
信頼性の高い、性能の向上した冷凍サイクル装置が得ら
れる。
Further, in the fifth invention, since the scroll compressor is used as the refrigerant compressor in the fourth invention, the durability and the reliability are improved, and the pressure fluctuation even in high frequency operation. By using a small, low-vibration compressor,
A highly reliable refrigeration cycle device with improved performance can be obtained.

【0042】また、第6の発明においては、第4の発明
または第5の発明で、作動冷媒としてジフルオロメタン
(HFC32)とペンタフルオロエタン(HFC12
5)とを混合してなる混合冷媒を用いた冷凍サイクル装
置としたので、高圧冷媒使用による漏れ損失の増大が緩
和され、かつ、SEERの向上した冷媒圧縮機を使用す
ることにより、性能の向上した、SEERの向上した冷
凍サイクル装置が得られる。
According to a sixth aspect of the present invention, in the fourth or fifth aspect, difluoromethane (HFC32) and pentafluoroethane (HFC12) are used as working refrigerants.
Refrigeration cycle apparatus using a mixed refrigerant obtained by mixing 5) with the above. Therefore, the increase in leakage loss due to the use of high-pressure refrigerant is mitigated, and the performance is improved by using a refrigerant compressor with improved SEER. Thus, a refrigeration cycle apparatus with improved SEER can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一発明の実施の形態を示す冷媒圧縮
機の可変速度度駆動を行う冷凍サイクル装置の基本構成
図。
FIG. 1 is a basic configuration diagram of a refrigeration cycle apparatus that performs variable speed driving of a refrigerant compressor according to an embodiment of the present invention.

【図2】 本発明の一発明の実施の形態による冷媒圧縮
機(公転型スクロ−ル圧縮機)の構成を示す縦断面図。
FIG. 2 is a longitudinal sectional view showing a configuration of a refrigerant compressor (revolution type scroll compressor) according to an embodiment of the present invention.

【図3】 本発明の一発明の実施の形態によるスクロ−
ル圧縮機の圧縮室洩れすきまの説明図。
FIG. 3 shows a scroll according to an embodiment of the present invention.
FIG. 4 is an explanatory view of a compression chamber leakage clearance of a compressor.

【図4】 本発明の一発明の実施の形態と従来例の冷媒
圧縮機(公転型スクロ−ル圧縮機)の単体性能比較図。
FIG. 4 is a single unit performance comparison diagram of an embodiment of the present invention and a conventional refrigerant compressor (revolution type scroll compressor).

【図5】 本発明の一発明の実施の形態による冷媒圧縮
機(両回転型スクロ−ル圧縮機)の構成を示す縦断面
図。
FIG. 5 is a longitudinal sectional view showing a configuration of a refrigerant compressor (double-rotating scroll compressor) according to an embodiment of the present invention.

【図6】 両回転型スクロ−ル圧縮機の圧縮原理を示す
説明図。
FIG. 6 is an explanatory diagram showing the compression principle of a double-rotating scroll compressor.

【図7】 従来の冷媒圧縮機(ロ−タリ圧縮機)の構成
を示す縦断面図。
FIG. 7 is a longitudinal sectional view showing a configuration of a conventional refrigerant compressor (rotary compressor).

【図8】 ロ−タリ圧縮機の圧縮要素の横断面図。FIG. 8 is a cross-sectional view of a compression element of the rotary compressor.

【図9】 公転型スクロ−ル圧縮機の圧縮原理を示す説
明図。
FIG. 9 is an explanatory diagram showing the compression principle of a revolution type scroll compressor.

【図10】 従来の冷媒圧縮機(公転型スクロ−ル圧縮
機)の構成を示す縦断面図。
FIG. 10 is a longitudinal sectional view showing a configuration of a conventional refrigerant compressor (revolution type scroll compressor).

【符号の説明】[Explanation of symbols]

21a 渦巻状のスクロ−ル歯(固定スクロール歯)、
22a 渦巻状のスクロ−ル歯(旋回スクロール歯)、
100 冷媒圧縮機(スクロ−ル圧縮機)、101 熱
交換器、102 熱交換器、103 切換弁、104
膨張弁、105膨張弁、107 駆動電源。
21a spiral scroll teeth (fixed scroll teeth),
22a spiral scroll teeth (orbiting scroll teeth),
REFERENCE SIGNS LIST 100 refrigerant compressor (scroll compressor), 101 heat exchanger, 102 heat exchanger, 103 switching valve, 104
Expansion valve, 105 Expansion valve, 107 Drive power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 英治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 関屋 慎 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中村 利之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 鈴木 賢志 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Eiji Watanabe, 2-3-2 Marunouchi, Chiyoda-ku, Tokyo In-house Mitsui Electric Co., Ltd. (72) Inventor Shin Sekiya 2-3-2, Marunouchi, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd. (72) Inventor Toshiyuki Nakamura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Kenji Suzuki 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Inside the corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクル中で使用され、駆動電源の
周波数を変化させることで可変速度駆動を行う冷媒圧縮
機において、 前記冷媒圧縮機は、起動時をのぞき、定常的な運転時に
所定の運転周波数域を有し、前記運転周波数域の最低運
転周波数を商用電源周波数近傍の周波数以上の周波数と
したことを特徴とする冷媒圧縮機。
1. A refrigerant compressor used in a refrigeration cycle and performing variable speed driving by changing the frequency of a driving power supply, wherein the refrigerant compressor operates at a predetermined operation during a steady operation except for a start-up operation. A refrigerant compressor having a frequency range, wherein the lowest operating frequency in the operating frequency range is set to a frequency equal to or higher than a frequency near a commercial power frequency.
【請求項2】 冷媒圧縮機が一対の渦巻状のスクロ−ル
歯が組合わされて作動冷媒を圧縮するスクロ−ル圧縮機
であることを特徴とする請求項1記載の冷媒圧縮機。
2. The refrigerant compressor according to claim 1, wherein the refrigerant compressor is a scroll compressor in which a pair of spiral scroll teeth are combined to compress the working refrigerant.
【請求項3】 作動冷媒としてジフルオロメタン(HF
C32)とペンタフルオロエタン(HFC125)とを
混合してなる混合冷媒を用いたことを特徴とする請求項
1または請求項2記載の冷媒圧縮機。
3. The working refrigerant is difluoromethane (HF).
The refrigerant compressor according to claim 1 or 2, wherein a mixed refrigerant obtained by mixing C32) and pentafluoroethane (HFC125) is used.
【請求項4】 冷媒圧縮機、熱交換器、膨張機構等を配
管接続した冷凍サイクル装置において、前記冷媒圧縮機
は、起動時をのぞき、定常的な運転時に所定の運転周波
数域を有し、前記運転周波数域の最低運転周波数を商用
電源周波数近傍の周波数以上の周波数とし、駆動電源の
周波数を変化させることで可変速度駆動されることを特
徴とする冷凍サイクル装置。
4. In a refrigeration cycle apparatus in which a refrigerant compressor, a heat exchanger, an expansion mechanism, and the like are connected by piping, the refrigerant compressor has a predetermined operating frequency range during a steady operation except for a start-up operation. A refrigeration cycle apparatus characterized in that the refrigeration cycle apparatus is driven at a variable speed by setting the lowest operation frequency in the operation frequency range to a frequency equal to or higher than the frequency near the commercial power supply frequency and changing the frequency of the drive power supply.
【請求項5】 冷媒圧縮機が一対の渦巻状のスクロ−ル
歯が組合わされて作動冷媒を圧縮するスクロ−ル圧縮機
であることを特徴とする請求項4記載の冷凍サイクル装
置。
5. The refrigeration cycle apparatus according to claim 4, wherein the refrigerant compressor is a scroll compressor in which a pair of spiral scroll teeth are combined to compress the working refrigerant.
【請求項6】 作動冷媒としてジフルオロメタン(HF
C32)とペンタフルオロエタン(HFC125)とを
混合してなる混合冷媒を用いたことを特徴とする請求項
4または請求項5記載の冷凍サイクル装置。
6. Difluoromethane (HF) as a working refrigerant
The refrigeration cycle apparatus according to claim 4, wherein a mixed refrigerant obtained by mixing C32) with pentafluoroethane (HFC125) is used.
JP8182310A 1996-07-11 1996-07-11 Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor Pending JPH1026425A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8182310A JPH1026425A (en) 1996-07-11 1996-07-11 Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor
IT97MI001600A IT1292487B1 (en) 1996-07-11 1997-07-04 COMPRESSOR DRIVEN AT VARIABLE SPEED, AND APPARATUS OF THE COOLING CYCLE INCLUDING THE SAME
KR1019970032022A KR980010247A (en) 1996-07-11 1997-07-10 Variable speed drive refrigerant compressor and refrigeration cycle apparatus including the compressor
GB9714547A GB2315299B (en) 1996-07-11 1997-07-10 Varaible speed drive refrigerant compressor and refrigeration cycle apparatus including the same
CN97114523A CN1174294A (en) 1996-07-11 1997-07-10 Variable speed drive refrigerant compressor, and refrigeration cycle apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8182310A JPH1026425A (en) 1996-07-11 1996-07-11 Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor

Publications (1)

Publication Number Publication Date
JPH1026425A true JPH1026425A (en) 1998-01-27

Family

ID=16116070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8182310A Pending JPH1026425A (en) 1996-07-11 1996-07-11 Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor

Country Status (5)

Country Link
JP (1) JPH1026425A (en)
KR (1) KR980010247A (en)
CN (1) CN1174294A (en)
GB (1) GB2315299B (en)
IT (1) IT1292487B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103520A1 (en) * 2012-12-28 2014-07-03 ダイキン工業株式会社 Refrigeration device
WO2023223467A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Air conditioning device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245073A (en) * 2003-02-12 2004-09-02 Matsushita Electric Ind Co Ltd Electric compressor
KR101736861B1 (en) * 2010-05-12 2017-05-17 엘지전자 주식회사 Scorll compressor
JP6269756B1 (en) 2016-09-02 2018-01-31 ダイキン工業株式会社 Refrigeration equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683590B2 (en) * 1984-07-04 1994-10-19 株式会社東芝 Air conditioner
DE3642729C3 (en) * 1986-12-13 1997-05-07 Grundfos Int Pump unit for conveying liquids or gases
JPH02118362A (en) * 1988-10-26 1990-05-02 Hitachi Ltd Capacity control air conditioner
US5316074A (en) * 1990-10-12 1994-05-31 Nippondenso Co., Ltd. Automotive hair conditioner
JP3167372B2 (en) * 1991-10-11 2001-05-21 東芝キヤリア株式会社 Air conditioner
JPH05256299A (en) * 1992-03-13 1993-10-05 Toshiba Corp Blower

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103520A1 (en) * 2012-12-28 2014-07-03 ダイキン工業株式会社 Refrigeration device
JP2014129986A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
CN104903660A (en) * 2012-12-28 2015-09-09 大金工业株式会社 Refrigeration device
CN104903660B (en) * 2012-12-28 2016-08-31 大金工业株式会社 Refrigerating plant
WO2023223467A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
ITMI971600A1 (en) 1999-01-04
ITMI971600A0 (en) 1997-07-04
IT1292487B1 (en) 1999-02-08
GB2315299A (en) 1998-01-28
GB2315299B (en) 1999-02-17
KR980010247A (en) 1998-04-30
CN1174294A (en) 1998-02-25
GB9714547D0 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US8074471B2 (en) Refrigeration cycle apparatus and fluid machine used for the same
KR101576459B1 (en) Scoroll compressor and refrigsrator having the same
US8087260B2 (en) Fluid machine and refrigeration cycle apparatus
JP4837094B2 (en) Refrigeration cycle apparatus and fluid machine used therefor
JP6395846B2 (en) Scroll compressor
JP4969646B2 (en) Fluid machine and refrigeration cycle apparatus including the same
WO2008101387A1 (en) A controlling method of a rotary compressor
JP3924817B2 (en) Positive displacement fluid machine
JP2010156488A (en) Refrigerating device
JP2001323881A (en) Compressor
JP6066711B2 (en) Scroll compressor
JPH1026425A (en) Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor
WO2015114783A1 (en) Compressor and refrigeration cycle device
WO2021149180A1 (en) Compressor
JP2004324595A (en) Positive displacement fluid machine
JPH11264390A (en) Displacement fluid machine
WO2022149225A1 (en) Compressor
JPH1137065A (en) Displacement type fluid machine
JP7138807B2 (en) scroll compressor
JPH11264384A (en) Displacement fluid machine
KR100556408B1 (en) gear type compressor
KR100556409B1 (en) gear type compressor
KR101128791B1 (en) gear type compressor
KR100750303B1 (en) Scroll compressor
KR100556414B1 (en) gear type compressor