JP2004245073A - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
JP2004245073A
JP2004245073A JP2003033377A JP2003033377A JP2004245073A JP 2004245073 A JP2004245073 A JP 2004245073A JP 2003033377 A JP2003033377 A JP 2003033377A JP 2003033377 A JP2003033377 A JP 2003033377A JP 2004245073 A JP2004245073 A JP 2004245073A
Authority
JP
Japan
Prior art keywords
shaft
rotor
shaft portion
bearing
electric compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033377A
Other languages
Japanese (ja)
Inventor
Takeshi Kojima
健 小島
Takashi Kakiuchi
隆志 垣内
Junta Kawabata
淳太 川端
Takahide Nagao
崇秀 長尾
Kosuke Tsuboi
康祐 坪井
Hironari Akashi
浩業 明石
Makoto Katayama
誠 片山
Akihiko Kubota
昭彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003033377A priority Critical patent/JP2004245073A/en
Priority to CNB2003101223403A priority patent/CN100335782C/en
Priority to US10/742,609 priority patent/US20040191094A1/en
Priority to KR1020030096671A priority patent/KR20040073268A/en
Publication of JP2004245073A publication Critical patent/JP2004245073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric compressor which is high in efficiency and reliability with respect to the electric compressor. <P>SOLUTION: When a shaft 104 receives an unbalanced load owing to a magnetic attraction generated between a rotor 114 and a stator 113, it receives the unbalanced load as the fulcrum at the end of a counter-main bearing side of an auxiliary bearing inner wall in the diagonal direction with respect to a center axis of the end of a counter-auxiliary bearing side and the shaft 104 in the main bearing inner wall so that the shaft 104 is made small in the inclined angle in the bearing on the extension of the distance between the fulcrums. As a result, it is hard to generate a partial contact between the bearing and the shaft 104 so as to avoid a sliding loss owing to the partial contact, enabling the maintenance of the stable efficiency. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍冷蔵機器や空調機器等に使用される電動圧縮機に関するものである。
【0002】
【従来の技術】
近年、家庭用冷凍冷蔵庫等の冷凍装置に使用される電動圧縮機については、消費電力の低減のため、潤滑油の低粘度化や、インバーター駆動、同期モータの採用による高効率化が進んできている。また、冷凍冷蔵庫の容積効率を上げるため、よりコンパクトな圧縮機が望まれている。
【0003】
従来の電動圧縮機としては、効率を改善するため、固定子と主軸受を改善したものがある(例えば、特許文献1参照。)。
【0004】
以下、図面を参照しながら上記従来の電動圧縮機を説明する。
【0005】
図7は、従来の電動圧縮機の縦断面図である。図7において、電動圧縮機の密閉容器1は底部に潤滑油12を貯留するとともに、固定子13および回転子14からなる電動機部3とこれによって駆動される圧縮機構部2を収容している。
【0006】
次に圧縮機構部2の詳細を以下に説明する。
【0007】
圧縮機構部2を構成する略円筒形のシリンダ7を形成したシリンダブロック5には、シャフト4を軸支するとともにシリンダ7とほぼ直角に形成された、非磁性体材料であるアルミ系材料からなる軸受部6が設けてある。偏心部4aを備えるシャフト4は軸受部6に嵌装されるとともに回転子14が固定されている。
【0008】
シリンダ7内を摺動するピストン9は、圧縮室10を形成し偏心部4aと連結手段であるコネクティングロッド8を介して連結されている。偏心部4aの先端には給油管11が取付けられている。
【0009】
次に電動機部3の詳細を以下に説明する。
【0010】
電動機部3は、積層電磁鋼板よりなる固定子鉄心に巻線を巻装した固定子13と、積層電磁鋼板よりなる回転子鉄心15に永久磁石15bを内臓した回転子14とから構成される2極の誘導電動機である。また、回転子鉄心15の圧縮機構部2に対向する側の端部には中空のボア部16が設けられており、この中空のボア部16の内側には軸受部6が延在している。
【0011】
以上のように構成された従来の往復動型電動圧縮機について、次に動作の説明をする。
【0012】
電動機部3の回転子14の回転に伴い、シャフト4は回転し、シャフト4の偏心部4aの回転運動がコネクティングロッド8を介してピストン9に伝えられることでピストン9は圧縮室10内を往復運動する。これにより、冷却システム(図示せず。)からの冷媒ガスは圧縮室10内へ吸入・圧縮された後、再び冷凍冷蔵機器や空調機器等の冷却システムへと連続的に吐出される。
【0013】
またシャフト4の回転に伴い、シャフト4の下端に装着された給油管11が回転し、その遠心力によるポンプ作用によって潤滑油12は上方へと汲み上げられ、圧縮機構部2の軸受部6、シリンダ7,コネクティングロッド8およびピストン9等の各摺動部へ給油される。
【0014】
【特許文献1】
特開2001−73948号公報
【0015】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、回転子14と固定子13との空間距離に片寄りが有ると、空間距離の小さい方に回転子14が引き寄せられる力、つまり磁気吸引力が発生する。この磁気吸引力は特に回転子鉄心15に内臓した永久磁石15bを希土類等の磁力の強い永久磁石15bとした場合には、前記空間距離の片寄りが大きいと大きな力となって働く。
【0016】
その結果、回転子14に固定され軸受部6の中に嵌装されるシャフト4は軸受部6の中で傾斜し、軸受部6とシャフト4との間に片当りが発生する。こうした片当りの状態のままシャフト4が軸受部6の中で回転摺動すると、軸受部6とシャフト4の双方の摺動面に磨耗が発生することがあった。
【0017】
また、上記従来の技術に記載されている別の従来例においては、鉄系材料の主軸受端面と回転子鉄心の圧縮機構部側端面が重なり合わない構造が開示されているが、この場合、片持ち軸受タイプの軸受部6の必要軸受長を維持するとシャフト4の全長が長くなり、それに伴って回転子14の重心と軸受部6の距離も長くなるため、回転子14と固定子13との間に発生した磁気吸引力が軸受部6内に強いモーメントとして働くため、軸受部6とシャフト4との間に生じる片当りの力がさらに大きくなり、軸受部6とシャフト4双方の摺動面に磨耗が発生してしまう可能性があるといった欠点があった。
【0018】
本発明は効率が高くかつ信頼性の高い電動圧縮機を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、密閉容器内に潤滑油を貯溜するとともに、固定子と回転子鉄心に永久磁石を内蔵した回転子とからなる電動要素と、前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、圧縮室を備えたシリンダブロックと、前記シリンダブロックに前記圧縮室の軸心と略直交するように配設され前記シャフトの前記主軸部を軸支し前記回転子鉄心の前記圧縮機構部側端部を含んで前記主軸部軸心と略直交する平面と交わらない主軸受と、前記シリンダブロックに配設され前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸とを連結する連結手段とを備えたものであり、軸受けが磁性体であるも回転子と主軸受けが交わらないように配設されるため、主軸受けでの渦電流損の発生がほとんど無く、また軸受部の中でシャフトが傾斜する角度が小さくなるため、軸受部とシャフトとの間で片当りが発生しにくくなるという作用を有する。
【0020】
請求項2に記載の発明は、密閉容器内に潤滑油を貯溜するとともに、固定子と回転子鉄心に永久磁石を内蔵した回転子とからなる電動要素と、前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、圧縮室を備えたシリンダブロックと、前記シリンダブロックに前記圧縮室の軸心と略直交するように配設され前記シャフトの前記主軸部を軸支する主軸受と、前記シリンダブロックに配設され前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸とを連結する連結手段とを備えており、前記回転子は、前記回転子鉄心の前記圧縮機構部側の端部に中空のボア部を設け、前記主軸受は非磁性体材料からなるとともに、前記回転子鉄心のボア部の内側に延在した構成としたものであり、軸受部が非磁性体であるため、永久磁石からの磁束は鉄損(特に渦電流損)を発生せず高効率化が図れ、また主軸受の軸受長が長くできる事で面圧が下がり、信頼性を高める事が出来、また両持ち軸受のため支点間距離が長くなり、軸受部の中でシャフトが傾斜する角度が小さくなることで軸受部とシャフトとの間で片当りが発生しにくくなるという作用を有する。
【0021】
請求項3に記載の発明は、請求項1または請求項2記載のいずれかの発明に、更に、回転子鉄心に内蔵された永久磁石は希土類からなるものであり、請求項1または請求項2に記載の発明の作用によって強い磁力を得る永久磁石を用いることが出来、高いエネルギー効率を実現できるという作用を有する。
【0022】
請求項4に記載の発明は、請求項1から請求項3記載のいずれかの発明に、更に、商用電源周波数以上の回転数を含む複数の運転周波数で駆動されるインバーター駆動としたものであり、請求項1から請求項3に記載の発明の作用によってより高い回転数で運転する事ができるという作用を有する。
【0023】
請求項5に記載の発明は請求項4記載の発明に、更に、固定子は放射状に形成された複数のティース部を鉄心に有するとともに、前記ティース部に、絶縁部材を介して直接巻線を施こしたものであり、請求項4に記載の発明の作用に加えて、固定子の全高が低くなるため、電動圧縮機の全高が小さくなり、さらに回転子と固定子間の空間距離の均一化が図り易く、磁気吸引力を小さく抑えることができるという作用を有する。
【0024】
請求項6に記載の発明は請求項1から請求項3記載のいずれかの発明に、更に、電動要素が始動時に誘導電動機として始動し、同期回転数近くで同期引込みを行い同期運転をする同期モータを構成するものであり、請求項1から請求項3記載の発明の作用によって高い効率が得られる同期モータが採用出来、高いエネルギー効率を得る事ができるという作用を有する。
【0025】
【発明の実施の形態】
以下、本発明による電動圧縮機の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。
【0026】
(実施の形態1)
図1は、本発明の実施の形態1による電動圧縮機の縦断面図である。
【0027】
図1において、密閉容器101には圧縮機構部102と、この圧縮機構部を駆動する電動機部103とを収容している。
【0028】
密閉容器101に封入される冷媒はオゾン破壊係数がゼロのR134aや、R600aに代表される温暖化係数の低い炭化水素系冷媒等である。そして密閉容器101内には冷媒と相溶性のある粘度5〜10[cts]である潤滑油112が貯留している。
【0029】
次に圧縮機構部102の詳細を以下に説明する。
【0030】
シャフト104は、偏心軸部117を挟んで上下に同軸状に設けた副軸部118および主軸部116とを有する。シャフト104に形成した給油機構111は、一端が潤滑油112中に連通し他端がシャフト104の上端部へ連通開口している。
【0031】
シリンダブロック105は鋳鉄からなり、略円筒形の圧縮室110および主軸部116を軸支する主軸受120が一体に形成されており、また副軸部118を軸支する副軸受121が固定されている。ピストン109は圧縮室110に往復摺動自在に挿入され、連結手段であるコネクティングロッド108によってピストン109と偏心軸部117は連結されている。
【0032】
次に電動機部103の詳細を以下に説明する。
【0033】
電動機部103は、固定子113と回転子114とからなり、30[HZ]、50[HZ]、70[HZ]、80[HZ]といった任意の複数の運転周波数で駆動されるインバーター駆動式モータである。固定子113は放射状に形成された複数のティース部113bを鉄心113aに有するとともに、ティース部113bに、絶縁部材113cを介して直接巻線113dを施こしたもので、集中巻きモータを形成している。回転子114はシャフト104の主軸部116に固定され、回転子鉄心115に内蔵される永久磁石115aを備える。
【0034】
永久磁石115aは例えば希土類磁石のネオジウム、鉄、ボロン系の強磁性体からなっている。そして、回転子鉄心115の圧縮機要素側端部115bを含み、かつ圧縮室110の軸心と略直行する仮想の平面に対して、主軸受120はこれと交わらない構成となっている。
【0035】
以上のように構成された電動圧縮機について、以下その動作を説明する。
【0036】
固定子113に通電が行われると回転子114はシャフト104を回転させ、偏心軸部117の偏心運動がコネクティングロッド108を介してピストン109に伝えられる事でピストン109は圧縮室110内を往復運動する。それにより、冷媒ガスは冷却システム(図示せず。)から圧縮室110内へ吸入・圧縮された後、再び冷却システムへと吐出される。
【0037】
またシャフト104に形成した給油機構111によって潤滑油112は汲み上げられ、シャフト104の上端部から排出される。
【0038】
ここで、回転子鉄心115に内蔵される永久磁石115aは希土類等磁力が強い材料で構成されているため特に磁力が強く、回転子114と固定子113との距離が小さい部分に極めて強い磁気吸引力が発生する。
【0039】
しかしながらこの回転子114と固定子113との間に発生した磁気吸引力による偏荷重をシャフト104が受けた場合、従来の片持軸受では主軸受内壁のシャフト104の中心軸に対して対角方向の上下端を支点として偏荷重を受けていたのに対し、この両持軸受の構成は、主軸受内壁の反副軸受側端部とシャフト104の中心軸に対して対角方向の副軸受内壁の反主軸受側端部を支点として偏荷重を受けることとなり、その支点間距離は約2倍程度に長くなる。
【0040】
この支点間距離の延長は軸受部の中でシャフト104が傾斜する角度が小さくなるということであり、その結果、軸受部とシャフト104との間での片当りが発生しにくくなり、片当りによる摺動ロスが回避され、安定した効率を維持することができる。同時に片当りによって発生する摺動音を抑えることができ、騒音の低い電動圧縮機を実現できる。また、圧縮機運転中にかかるシャフト104への荷重は、ピストン109からの圧縮荷重のかかる偏心軸部117(支点)を中心にして上下両方で保持している事から、支点(偏心軸部117)に対してほぼ均等な荷重配分が可能となり、片側の軸受部だけに荷重が集中する片持ちタイプに比べてシャフト104摺動部の信頼性を高める事ができる。
【0041】
更に、圧縮機運転中にかかるシャフト104の荷重はこじりが少なく広い面積で荷重を受けているため、主軸受120、副軸受121の面圧が下がり片持ち軸受と比べて主軸受120の長さを短くする事ができ、圧縮機の全高を小さくする事ができるとともに摺動長の減少に伴って摺動部での粘性抵抗を減らすことができ、その結果高い効率を実現できる。
【0042】
そして主軸受120はシリンダブロック105と一体に形成されているため、鉄系材料である鋳鉄からなるが、回転子鉄心115と主軸受120が交わらないよう配接したため、回転子鉄心115に内臓した永久磁石115aの磁力線は主軸受120とほとんど干渉しないため、主軸受部での渦電流損が殆ど発生せず、高い効率が得られる。
【0043】
また、電動機部103はインバータ駆動され、負荷に応じて70〜80HZといった高回転数運転が行われる際に磁気吸引力が強くなり、シャフト104を傾ける力が強くなっても、シャフト104を主軸受120と副軸受121の両方の軸受で軸支する両持ち軸受構成のため傾きが防止でき、摺動ロスの低減が図れ高い効率が維持されると共に、シャフトの傾きによる片当りを防止でき、信頼性が向上する。
【0044】
また、電動機部103がインバータ駆動によって30HZといった低回転運転が行われた際にはシャフト104を主軸受120と副軸受121の両方の軸受で軸支する両持ち軸受構成のため傾きが防止でき、摺動ロスの低減が図れるため、潤滑油112の粘度を5〜10[cts]といった低粘度の潤滑油においても十分な信頼性を得ることができる。
【0045】
更に、固定子113は放射状に形成された複数のティース部113bを鉄心113aに有するとともに、前記ティース部113bに、絶縁部材113cを介して直接巻線113dを施した構成とすることで、分布巻きで必要なコイルエンドが無く、また前記ティース部113bに、絶縁部材113cを介して直接巻線113dを施すことで固定子113と回転子114の全高が低くでき、電動圧縮機の全高をさらに低く抑えることが可能である。そして固定子113および回転子114の全高が低いため、固定子113と回転子114の隙間寸法の均一化が図りやすく、その結果磁気吸引力が発生しにくいため、変化中が発生しにくく、こじりによる入力や騒音の増加を回避することができる。
【0046】
尚、本実施の形態においてはピストンと偏心軸を連結する連結手段であるはコネクティングロットに代わってボールジョイントやスコッチヨーク等の連結手段を適用しても良い。
【0047】
(実施の形態2)
図2は、本発明の実施の形態2による電動圧縮機の縦断面図である。
【0048】
なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
【0049】
図2において電動機部203は、積層電磁鋼板よりなる固定子鉄心に巻線を巻装した固定子213と、積層電磁鋼板よりなる回転子鉄心215に2次導体を設けてなる回転子214とから構成される2極の同期モータである。回転子鉄心215には例えば希土類磁石のネオジウム、鉄、ボロン系の強磁性体からなる永久磁石215aを内臓している。そしてその他の構成は実施の形態1と同じである。
【0050】
以上のように構成された電動圧縮機について、次に動作を説明する。
【0051】
電動要素は始動時に誘導電動機として始動し、同期回転数近くで同期引込みを行い同期運転をする。
【0052】
ここで、回転子鉄心215に内蔵される永久磁石215aは希土類等磁力が強い材料で構成されているため特に磁力が強く、回転子214と固定子213との距離が小さい部分に極めて強い磁気吸引力が発生する。しかしながら、実施の形態3と同様の構成によって強い磁気吸引力による問題点は回避され、その結果同期モータの高い効率を有効に生かすことができ、高いエネルギー効率を得ることができると共に、シャフトの傾きによる片当りを防止でき、信頼性が向上する。
【0053】
(実施の形態3)
図3は、本発明の実施の形態3による電動圧縮機の縦断面図である。
【0054】
なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
【0055】
図3において、密閉容器101には圧縮機構部302と、この圧縮機構部を駆動する電動機部303とを収容している。
【0056】
圧縮機構部302を構成するシリンダブロック305は鋳鉄からなり、略円筒形の圧縮室110を形成するとともに、シャフト104の主軸部116を軸支する主軸受320および副軸部118を軸支する副軸受121がシリンダブロック305に固定されている。
【0057】
電動機部303は、固定子113と回転子314とからなり、複数の運転の運転周波数で駆動されるインバーター駆動式モータである。回転子314はシャフト104の主軸部116に固定され、回転子鉄心315に内蔵される永久磁石315aを備える。永久磁石315aは例えば希土類磁石のネオジウム、鉄、ボロン系の強磁性体からなっている。また、回転子鉄心315は圧縮機構部302側の端面部には中空のボア部306が形成されている。
【0058】
主軸受320は非磁性体材料であるアルミニウム合金からなるとともに、回転子鉄心315のボア部306の内側に延在した構成となっている。
【0059】
以上のように構成された電動圧縮機について、以下その動作を説明する。
【0060】
固定子113に通電が行われると回転子314はシャフト104を回転させ、偏心軸部117の偏心運動がコネクティングロッド108を介してピストン109に伝えられる事でピストン109は圧縮室110内を往復運動する。それにより、冷媒ガスは冷却システム(図示せず。)から圧縮室110内へ吸入・圧縮された後、再び冷却システムへと吐出される。またシャフト104に形成した給油機構111によって潤滑油112は汲み上げられ、シャフト104の上端部から排出される。
【0061】
ここで、回転子鉄心315に内蔵される永久磁石315aは希土類等磁力が強い材料で構成されているため特に磁力が強く、回転子314と固定子113との距離が小さい部分に極めて強い磁気吸引力が発生する。
【0062】
この回転子314と固定子113との間に発生した磁気吸引力による偏荷重をシャフト104が受けると、従来の片持軸受では主軸受内壁のシャフト104の中心軸に対して対角方向の上下端を支点として偏荷重を受けていたのに対し、この両持軸受の構成は、主軸受内壁の反副軸受側端部とシャフト104の中心軸に対して対角方向の副軸受内壁の反主軸受側端部を支点として偏荷重を受けることとなるが、この支点間距離は従来の片持ち軸受けに対して遥かに長くなる。しかも、ボア部106内側に主軸受120が延在する事でその支点間距離はさらに長くなる。
【0063】
この支点間距離の延長は軸受部の中でシャフト104が傾斜する角度が小さくなるということであり、その結果、軸受部とシャフト104との間での片当りが発生しにくくなり、片当りによる摺動ロスが回避され、安定した効率を維持することができる。同時に片当りによって発生する摺動音を抑えることができ、騒音の低い電動圧縮機を実現できる。
【0064】
また、圧縮機運転中にかかるシャフト104への荷重は、ピストン109からの圧縮荷重のかかる偏心軸部117(支点)を中心にして上下両方で保持している事から、支点(偏心軸部117)に対してほぼ均等な荷重配分が可能となり、片側の軸受部だけに荷重が集中する片持ちタイプに比べてシャフト104摺動部の信頼性を高める事ができる。
【0065】
この際、主軸受120はアルミニウム合金の非磁性体材料からなるので、回転子鉄心315に内臓した永久磁石315aの磁力線は主軸受120内で渦電流を発生させないため、渦電流損はほとんど生じず、高効率化が図れる。
【0066】
また、電動機部303はインバータ駆動され、負荷に応じて高回転数運転が行われる際に磁気吸引力が強くなり、シャフト104を傾ける力が強くなっても、シャフト104を主軸受120と副軸受121の両方の軸受で軸支する両持ち軸受構成のため傾きが防止でき、摺動ロスの低減が図れ高い効率が維持されると共に、シャフトの傾きによる片当りを防止でき、信頼性が向上する。
【0067】
更に、固定子113は放射状に形成された複数のティース部113bを鉄心113aに有するとともに、前記ティース部113bに、絶縁部材113cを介して直接巻線113dを施した構成とすることで、分布巻きで必要なコイルエンドが無く、また前記ティース部113bに、絶縁部材113cを介して直接巻線113dを施すことで固定子113と回転子314の全高が低くでき、電動圧縮機の全高をさらに低く抑えることが可能である。そして固定子113および回転子314の全高が低いため、固定子113と回転子314の隙間寸法の均一化が図りやすく、その結果磁気吸引力が発生しにくいため、こじりによる入力や騒音の増加を回避することができる。
【0068】
(実施の形態4)
図4は、本発明の実施の形態2による電動圧縮機の縦断面図である。
【0069】
なお、実施の形態3と同一構成については、同一符号を付して詳細な説明を省略する。
【0070】
図4において電動機部403は、積層電磁鋼板よりなる固定子鉄心に巻線を巻装した固定子213と、積層電磁鋼板よりなる回転子鉄心415に2次導体を設けてなる回転子414とから構成される2極の同期モータである。回転子鉄心415には例えば希土類磁石のネオジウム、鉄、ボロン系の強磁性体からなる永久磁石415aを内蔵している。そしてその他の構成は実施の形態3と同じである。
【0071】
以上のように構成された電動圧縮機について、次に動作を説明する。
【0072】
電動要素は始動時に誘導電動機として始動し、同期回転数近くで同期引込みを行い同期運転をする。ここで、回転子鉄心415に内蔵される永久磁石415aは希土類等磁力が強い材料で構成されているため特に磁力が強く、回転子414と固定子213との距離が小さい部分に極めて強い磁気吸引力が発生する。
【0073】
しかしながら、実施の形態3と同様の構成によって強い磁気吸引力による問題点は回避され、その結果同期モータの高い効率を有効に生かすことができ、高いエネルギー効率を得ることができると共に、シャフトの傾きによる片当りを防止でき、信頼性が向上する。
【0074】
【発明の効果】
以上説明したように請求項1に記載の発明は、効率が高くかつ信頼性の高い電動圧縮機が得られるという効果が有る。
【0075】
また、請求項2に記載の発明は、効率が高くかつ信頼性の高い電動圧縮機が得られるという効果が有る。
【0076】
また、請求項3に記載の発明は、請求項1および請求項2の効果に加えて、さらに効率が高い電動圧縮機が得られるという効果が有る。
【0077】
また、請求項4に記載の発明は、請求項1から3のいずれか1項の効果に加えて、さらに効率が高くかつ信頼性の高いインバーター駆動式の電動圧縮機が得られるという効果が有る。
【0078】
また、請求項5に記載の発明は、請求項4の効果に加えて、さらに信頼性の高い電動圧縮機が得られるという効果が有る。
【0079】
また、請求項6に記載の発明は、請求項1から3のいずれか1項の効果に加えて、さらに効率が高くかつ信頼性の高い同期モータ駆動式の電動圧縮機が得られるという効果が有る。
【図面の簡単な説明】
【図1】本発明による実施の形態1による電動圧縮機の縦断面図
【図2】本発明による実施の形態2による電動圧縮機の縦断面図
【図3】本発明による実施の形態3による電動圧縮機の縦断面図
【図4】本発明による実施の形態4による電動圧縮機の縦断面図
【図5】従来の電動圧縮機の縦断面図
【符号の説明】
101 密閉容器
102,302 圧縮機構部
103,203,303,403 電動機部
104 シャフト
117 偏心軸部
105,305 シリンダブロック
106,306 ボア部
107 シリンダ
108 コネクティングロッド
109 ピストン
110 圧縮室
111 給油機構
112 潤滑油
113,213 固定子
113a 鉄心
113b ティース部
113c 絶縁部材
113d 直接巻線
114,214,314,414 回転子
115,215,315,415 回転子鉄心
115a,215a,315a,415a 永久磁石
115b 回転子鉄心の圧縮機要素側端部
116 主軸部
118 副軸部
120,320 主軸受
121 副軸受
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electric compressor used for a refrigerator or an air conditioner.
[0002]
[Prior art]
In recent years, for electric compressors used in refrigeration systems such as home refrigerators and the like, in order to reduce power consumption, the viscosity of lubricating oil has been reduced, and the efficiency has been improved by using inverter drives and synchronous motors. I have. Further, in order to increase the volumetric efficiency of the refrigerator, a more compact compressor is desired.
[0003]
As a conventional electric compressor, there is one in which a stator and a main bearing are improved in order to improve efficiency (for example, see Patent Document 1).
[0004]
Hereinafter, the conventional electric compressor will be described with reference to the drawings.
[0005]
FIG. 7 is a longitudinal sectional view of a conventional electric compressor. In FIG. 7, a hermetic container 1 of the electric compressor stores a lubricating oil 12 at a bottom portion, and accommodates an electric motor portion 3 including a stator 13 and a rotor 14 and a compression mechanism portion 2 driven by the electric motor portion 3.
[0006]
Next, details of the compression mechanism 2 will be described below.
[0007]
A cylinder block 5 having a substantially cylindrical cylinder 7 constituting the compression mechanism 2 is made of an aluminum-based material, which is a non-magnetic material and is formed substantially perpendicular to the cylinder 7 while supporting the shaft 4. A bearing 6 is provided. The shaft 4 having the eccentric portion 4a is fitted to the bearing portion 6 and the rotor 14 is fixed.
[0008]
A piston 9 that slides in the cylinder 7 forms a compression chamber 10 and is connected to the eccentric portion 4a via a connecting rod 8 as connecting means. An oil supply pipe 11 is attached to the tip of the eccentric part 4a.
[0009]
Next, details of the motor unit 3 will be described below.
[0010]
The motor unit 3 includes a stator 13 in which a winding is wound around a stator core made of laminated electromagnetic steel sheets, and a rotor 14 having a permanent magnet 15b built in a rotor core 15 made of laminated electromagnetic steel sheets. It is a pole induction motor. A hollow bore 16 is provided at an end of the rotor core 15 on the side facing the compression mechanism 2, and the bearing 6 extends inside the hollow bore 16. .
[0011]
Next, the operation of the conventional reciprocating electric compressor configured as described above will be described.
[0012]
The shaft 4 rotates with the rotation of the rotor 14 of the motor unit 3, and the rotational motion of the eccentric part 4 a of the shaft 4 is transmitted to the piston 9 via the connecting rod 8, so that the piston 9 reciprocates in the compression chamber 10. Exercise. As a result, the refrigerant gas from the cooling system (not shown) is sucked and compressed into the compression chamber 10, and then continuously discharged again to the cooling system such as the freezing and refrigeration equipment and the air conditioning equipment.
[0013]
In addition, with the rotation of the shaft 4, the oil supply pipe 11 attached to the lower end of the shaft 4 rotates, and the lubricating oil 12 is pumped upward by the centrifugal pumping action. 7, lubricated to sliding parts such as connecting rod 8 and piston 9.
[0014]
[Patent Document 1]
JP 2001-73948 A
[Problems to be solved by the invention]
However, in the above-described conventional configuration, if there is a deviation in the spatial distance between the rotor 14 and the stator 13, a force for attracting the rotor 14 to a smaller spatial distance, that is, a magnetic attraction force is generated. In particular, when the permanent magnet 15b incorporated in the rotor core 15 is a permanent magnet 15b having a strong magnetic force such as a rare earth element, the magnetic attractive force acts as a large force when the deviation of the space distance is large.
[0016]
As a result, the shaft 4 fixed to the rotor 14 and fitted in the bearing portion 6 is inclined in the bearing portion 6, and a one-side contact occurs between the bearing portion 6 and the shaft 4. If the shaft 4 rotates and slides in the bearing portion 6 in such a one-sided contact state, the sliding surfaces of both the bearing portion 6 and the shaft 4 may be worn.
[0017]
Further, in another conventional example described in the above prior art, a structure is disclosed in which the main bearing end face of the iron-based material and the end face of the compression mechanism side of the rotor core do not overlap. If the required bearing length of the cantilever bearing type bearing portion 6 is maintained, the overall length of the shaft 4 becomes longer, and accordingly the distance between the center of gravity of the rotor 14 and the bearing portion 6 becomes longer. The magnetic attraction generated between the bearings 6 acts as a strong moment in the bearing 6, so that the force per piece generated between the bearing 6 and the shaft 4 is further increased, and the sliding of both the bearing 6 and the shaft 4 is performed. There is a disadvantage that the surface may be worn.
[0018]
An object of the present invention is to provide an electric compressor with high efficiency and high reliability.
[0019]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is configured such that a lubricating oil is stored in a sealed container, and an electric element including a stator and a rotor having a permanent magnet incorporated in a rotor core, and the electric element is driven by the electric element. A shaft having an eccentric shaft portion and a sub shaft portion and a main shaft portion provided coaxially vertically with the eccentric shaft portion interposed therebetween, and a cylinder block having a compression chamber. The main shaft portion axis, which is disposed in the cylinder block so as to be substantially perpendicular to the axis of the compression chamber, supports the main shaft portion of the shaft, and includes an end of the rotor core on the side of the compression mechanism. A main bearing that does not intersect with a plane substantially orthogonal to the axis, a sub-bearing disposed on the cylinder block and supporting the sub-shaft, a piston reciprocating in the compression chamber, and connecting the piston and the eccentric shaft. Connecting means Even though the bearing is a magnetic material, it is arranged so that the rotor and the main bearing do not intersect, so there is almost no eddy current loss in the main bearing, and the angle at which the shaft tilts in the bearing part Has an effect that it is difficult to generate one-sided contact between the bearing portion and the shaft.
[0020]
The invention according to claim 2 is an electric element comprising a stator and a rotor having a permanent magnet incorporated in a rotor core while storing lubricating oil in a closed container, and a compression element driven by the electric element. A shaft having an eccentric shaft portion and a sub shaft portion and a main shaft portion provided coaxially up and down with the eccentric shaft portion interposed therebetween, a cylinder block including a compression chamber, and the cylinder A main bearing disposed on the block so as to be substantially perpendicular to the axis of the compression chamber and supporting the main shaft of the shaft; and a sub-bearing disposed on the cylinder block and supporting the sub-shaft. A piston that reciprocates in the compression chamber, and coupling means for coupling the piston and the eccentric shaft, wherein the rotor has a hollow bore at an end of the rotor core on the compression mechanism side. Part, the main bearing is The rotor is made of a magnetic material and extends inside the bore of the rotor core. Since the bearing is a non-magnetic material, the magnetic flux from the permanent magnet causes iron loss (particularly eddy current loss). ) Does not occur, high efficiency can be achieved, and the longer bearing length of the main bearing reduces the surface pressure and improves reliability. In addition, the distance between fulcrum points is increased due to the double-sided bearing, and the bearing part In this configuration, the angle at which the shaft is inclined becomes smaller, so that the shaft has a function of making it less likely to cause a contact between the bearing portion and the shaft.
[0021]
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, the permanent magnet incorporated in the rotor core is made of a rare earth element. The permanent magnet that obtains a strong magnetic force by the operation of the invention described in (1) can be used, and has the effect of realizing high energy efficiency.
[0022]
According to a fourth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, an inverter drive driven at a plurality of operating frequencies including a rotational frequency equal to or higher than the commercial power supply frequency is provided. According to the first to third aspects of the present invention, it is possible to operate at a higher rotation speed.
[0023]
According to a fifth aspect of the present invention, in addition to the fourth aspect, the stator has a plurality of radially formed teeth portions on an iron core, and a winding is directly wound on the teeth portions via an insulating member. In addition to the effect of the invention according to claim 4, the overall height of the stator is reduced, so that the overall height of the electric compressor is reduced, and the spatial distance between the rotor and the stator is uniform. It has an effect that the magnetic attraction force can be suppressed small.
[0024]
According to a sixth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, the electric element is started as an induction motor at the time of starting, and the synchronous operation is performed by performing the synchronous pull-in near the synchronous rotational speed to perform the synchronous operation. The motor according to the present invention has a function of achieving high energy efficiency by employing a synchronous motor capable of obtaining high efficiency by the operation of the inventions of claims 1 to 3.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electric compressor according to the present invention will be described with reference to the drawings. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0026]
(Embodiment 1)
FIG. 1 is a vertical sectional view of the electric compressor according to Embodiment 1 of the present invention.
[0027]
In FIG. 1, a closed casing 101 houses a compression mechanism section 102 and an electric motor section 103 for driving the compression mechanism section.
[0028]
The refrigerant sealed in the closed vessel 101 is R134a having an ozone depletion potential of zero, a hydrocarbon-based refrigerant having a low global warming potential represented by R600a, or the like. A lubricating oil 112 having a viscosity of 5 to 10 [cts] compatible with the refrigerant is stored in the closed container 101.
[0029]
Next, details of the compression mechanism 102 will be described below.
[0030]
The shaft 104 has a sub-shaft portion 118 and a main-shaft portion 116 provided coaxially up and down with the eccentric shaft portion 117 interposed therebetween. The lubrication mechanism 111 formed on the shaft 104 has one end communicating with the lubricating oil 112 and the other end communicating with the upper end of the shaft 104.
[0031]
The cylinder block 105 is made of cast iron, and a substantially cylindrical compression chamber 110 and a main bearing 120 that supports the main shaft portion 116 are integrally formed, and a sub bearing 121 that supports the sub shaft portion 118 is fixed. I have. The piston 109 is reciprocally slidably inserted into the compression chamber 110, and the piston 109 and the eccentric shaft 117 are connected by a connecting rod 108 as connecting means.
[0032]
Next, details of the motor unit 103 will be described below.
[0033]
The motor unit 103 includes a stator 113 and a rotor 114, and is driven by an arbitrary plurality of operating frequencies such as 30 [HZ], 50 [HZ], 70 [HZ], and 80 [HZ]. It is. The stator 113 has a plurality of radially formed teeth portions 113b on an iron core 113a, and the teeth portions 113b are directly provided with windings 113d via insulating members 113c to form a concentrated winding motor. I have. The rotor 114 is fixed to the main shaft portion 116 of the shaft 104 and includes a permanent magnet 115 a built in the rotor core 115.
[0034]
The permanent magnet 115a is made of, for example, a rare earth magnet such as neodymium, iron, or boron-based ferromagnetic material. The main bearing 120 does not intersect a virtual plane that includes the compressor element side end 115b of the rotor core 115 and that is substantially perpendicular to the axis of the compression chamber 110.
[0035]
The operation of the electric compressor configured as described above will be described below.
[0036]
When the stator 113 is energized, the rotor 114 rotates the shaft 104, and the eccentric movement of the eccentric shaft 117 is transmitted to the piston 109 via the connecting rod 108, so that the piston 109 reciprocates in the compression chamber 110. I do. Thereby, the refrigerant gas is sucked and compressed into the compression chamber 110 from the cooling system (not shown), and is then discharged again to the cooling system.
[0037]
The lubricating oil 112 is pumped up by an oil supply mechanism 111 formed on the shaft 104 and discharged from the upper end of the shaft 104.
[0038]
Here, the permanent magnet 115a incorporated in the rotor core 115 is made of a material having a strong magnetic force, such as a rare earth element, and therefore has a particularly strong magnetic force, and an extremely strong magnetic attraction in a portion where the distance between the rotor 114 and the stator 113 is small. Force is generated.
[0039]
However, when the shaft 104 receives an eccentric load due to the magnetic attraction generated between the rotor 114 and the stator 113, the conventional cantilever bearing has a diagonal direction with respect to the central axis of the shaft 104 on the inner wall of the main bearing. In contrast, the two-sided bearing has an eccentric load with its upper and lower ends serving as fulcrums. The eccentric load is received with the end of the side opposite to the main bearing as a fulcrum, and the distance between the fulcrums becomes about twice as long.
[0040]
The extension of the distance between the fulcrums means that the angle of inclination of the shaft 104 in the bearing portion is reduced, and as a result, a one-sided contact between the bearing portion and the shaft 104 is less likely to occur. Sliding loss is avoided, and stable efficiency can be maintained. At the same time, it is possible to suppress the sliding noise generated by the one-side contact, and to realize an electric compressor with low noise. Further, since the load applied to the shaft 104 during the operation of the compressor is held at both the upper and lower positions around the eccentric shaft portion 117 (fulcrum) to which the compression load from the piston 109 is applied, the fulcrum (the eccentric shaft portion 117) is held. 2), the load can be distributed substantially evenly, and the reliability of the sliding portion of the shaft 104 can be improved as compared with the cantilever type in which the load is concentrated only on one bearing portion.
[0041]
Further, since the load on the shaft 104 applied during the operation of the compressor is small in the amount of twisting and is applied over a wide area, the surface pressure of the main bearing 120 and the sub-bearing 121 is reduced, and the length of the main bearing 120 is shorter than that of the cantilever bearing. Can be shortened, the overall height of the compressor can be reduced, and the viscous resistance at the sliding portion can be reduced with a decrease in the sliding length. As a result, high efficiency can be realized.
[0042]
Since the main bearing 120 is formed integrally with the cylinder block 105, the main bearing 120 is made of cast iron which is an iron-based material. However, since the rotor core 115 and the main bearing 120 are disposed so as not to intersect with each other, the main bearing 120 is incorporated in the rotor core 115. Since the lines of magnetic force of the permanent magnet 115a hardly interfere with the main bearing 120, eddy current loss hardly occurs in the main bearing portion, and high efficiency can be obtained.
[0043]
Further, the motor unit 103 is driven by an inverter, and when a high rotation speed operation such as 70 to 80 HZ is performed depending on the load, the magnetic attraction force is increased, and even if the force for tilting the shaft 104 is increased, the shaft 104 is supported by the main bearing. The structure can be prevented from tilting due to the double-sided bearing configuration in which both bearings 120 and the auxiliary bearing 121 support the shaft. Sliding loss can be reduced, high efficiency can be maintained, and one-side contact due to shaft tilt can be prevented. The performance is improved.
[0044]
In addition, when the motor unit 103 is driven at a low rotation speed of 30 HZ by the inverter drive, the shaft 104 is supported by both the main bearing 120 and the sub-bearing 121, so that the bearing can be prevented from tilting. Since the sliding loss can be reduced, sufficient reliability can be obtained even with a lubricating oil 112 having a low viscosity of 5 to 10 [cts].
[0045]
Furthermore, the stator 113 has a plurality of radially formed teeth portions 113b on the iron core 113a, and the windings 113d are directly applied to the teeth portions 113b via insulating members 113c, so that the distributed winding is performed. In addition, there is no necessary coil end, and the total height of the stator 113 and the rotor 114 can be reduced by directly applying the winding 113d to the teeth portion 113b via the insulating member 113c, so that the total height of the electric compressor is further reduced. It is possible to suppress. Since the total height of the stator 113 and the rotor 114 is low, the gap size between the stator 113 and the rotor 114 can be easily made uniform. As a result, magnetic attraction is hardly generated, so that the change is less likely to occur. Input and noise increase can be avoided.
[0046]
In the present embodiment, as a connecting means for connecting the piston and the eccentric shaft, a connecting means such as a ball joint or a Scotch yoke may be applied instead of the connecting lot.
[0047]
(Embodiment 2)
FIG. 2 is a longitudinal sectional view of the electric compressor according to Embodiment 2 of the present invention.
[0048]
The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0049]
In FIG. 2, the motor unit 203 includes a stator 213 in which a winding is wound around a stator core made of laminated electromagnetic steel sheets, and a rotor 214 in which a secondary conductor is provided on a rotor core 215 made of laminated electromagnetic steel sheets. It is a two-pole synchronous motor configured. The rotor core 215 contains a permanent magnet 215a made of, for example, a rare earth magnet such as neodymium, iron, or a boron-based ferromagnetic material. Other configurations are the same as those of the first embodiment.
[0050]
Next, the operation of the electric compressor configured as described above will be described.
[0051]
The electric element starts as an induction motor at the time of starting, and performs the synchronous operation by pulling in the synchronous near the synchronous rotational speed.
[0052]
Here, since the permanent magnet 215a built in the rotor core 215 is made of a material having a strong magnetic force such as a rare earth element, the magnetic force is particularly strong, and extremely strong magnetic attraction is applied to a portion where the distance between the rotor 214 and the stator 213 is small. Force is generated. However, with the same configuration as in the third embodiment, problems due to strong magnetic attraction can be avoided, and as a result, the high efficiency of the synchronous motor can be effectively utilized, high energy efficiency can be obtained, and the inclination of the shaft can be improved. Can be prevented, and the reliability is improved.
[0053]
(Embodiment 3)
FIG. 3 is a longitudinal sectional view of the electric compressor according to Embodiment 3 of the present invention.
[0054]
The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0055]
In FIG. 3, a closed casing 101 accommodates a compression mechanism 302 and an electric motor 303 for driving the compression mechanism.
[0056]
A cylinder block 305 constituting the compression mechanism 302 is made of cast iron, forms a substantially cylindrical compression chamber 110, and has a main bearing 320 that supports the main shaft 116 of the shaft 104 and a sub bearing that supports the sub shaft 118. The bearing 121 is fixed to the cylinder block 305.
[0057]
The motor unit 303 is an inverter-driven motor that includes the stator 113 and the rotor 314 and is driven at a plurality of operating frequencies. The rotor 314 is fixed to the main shaft portion 116 of the shaft 104 and includes a permanent magnet 315 a built in the rotor core 315. The permanent magnet 315a is made of, for example, a rare earth magnet such as neodymium, iron, or a boron-based ferromagnetic material. The rotor core 315 has a hollow bore 306 formed at the end face on the compression mechanism 302 side.
[0058]
The main bearing 320 is made of an aluminum alloy, which is a non-magnetic material, and extends inside the bore 306 of the rotor core 315.
[0059]
The operation of the electric compressor configured as described above will be described below.
[0060]
When the stator 113 is energized, the rotor 314 rotates the shaft 104, and the eccentric motion of the eccentric shaft 117 is transmitted to the piston 109 via the connecting rod 108, so that the piston 109 reciprocates in the compression chamber 110. I do. Thereby, the refrigerant gas is sucked and compressed into the compression chamber 110 from the cooling system (not shown), and is then discharged again to the cooling system. The lubricating oil 112 is pumped up by an oil supply mechanism 111 formed on the shaft 104 and discharged from the upper end of the shaft 104.
[0061]
Here, since the permanent magnet 315a built in the rotor core 315 is made of a material having a strong magnetic force such as a rare earth element, the magnetic force is particularly strong, and extremely strong magnetic attraction is applied to a portion where the distance between the rotor 314 and the stator 113 is small. Force is generated.
[0062]
When the shaft 104 receives an eccentric load due to the magnetic attraction generated between the rotor 314 and the stator 113, the conventional cantilever bearing moves up and down diagonally with respect to the center axis of the shaft 104 on the inner wall of the main bearing. While the eccentric load is received with the end as a fulcrum, the structure of this doubly supported bearing is such that the opposite end of the inner wall of the main bearing opposite to the side of the auxiliary bearing and the inner wall of the auxiliary bearing which is diagonal to the center axis of the shaft 104 are opposed. An eccentric load is applied with the end on the main bearing side as a fulcrum, but the distance between the fulcrum is much longer than that of a conventional cantilever bearing. Moreover, since the main bearing 120 extends inside the bore portion 106, the distance between the fulcrums becomes further longer.
[0063]
The extension of the distance between the fulcrums means that the angle of inclination of the shaft 104 in the bearing portion is reduced, and as a result, a one-sided contact between the bearing portion and the shaft 104 is less likely to occur. Sliding loss is avoided, and stable efficiency can be maintained. At the same time, it is possible to suppress the sliding noise generated by the one-side contact, and to realize an electric compressor with low noise.
[0064]
Further, since the load applied to the shaft 104 during the operation of the compressor is held at both the upper and lower positions around the eccentric shaft portion 117 (fulcrum) to which the compression load from the piston 109 is applied, the fulcrum (the eccentric shaft portion 117) is held. 2), the load can be distributed substantially evenly, and the reliability of the sliding portion of the shaft 104 can be improved as compared with the cantilever type in which the load is concentrated only on one bearing portion.
[0065]
At this time, since the main bearing 120 is made of a non-magnetic material of an aluminum alloy, the magnetic lines of force of the permanent magnets 315a incorporated in the rotor core 315 generate no eddy current in the main bearing 120, so that eddy current loss hardly occurs. And high efficiency can be achieved.
[0066]
Further, the motor unit 303 is driven by an inverter, and when the high-speed operation is performed in accordance with the load, the magnetic attraction force increases, and even if the force for tilting the shaft 104 increases, the shaft 104 is connected to the main bearing 120 and the auxiliary bearing. Since the two-sided bearing structure supports both bearings 121, inclination can be prevented, sliding loss can be reduced, high efficiency can be maintained, and one-sided contact due to shaft inclination can be prevented, improving reliability. .
[0067]
Furthermore, the stator 113 has a plurality of radially formed teeth portions 113b on the iron core 113a, and the windings 113d are directly applied to the teeth portions 113b via insulating members 113c, so that the distributed winding is performed. In addition, there is no necessary coil end, and by applying the winding 113d directly to the teeth portion 113b via the insulating member 113c, the overall height of the stator 113 and the rotor 314 can be reduced, and the overall height of the electric compressor can be further reduced. It is possible to suppress. Since the total height of the stator 113 and the rotor 314 is low, it is easy to make the gap size between the stator 113 and the rotor 314 uniform, and as a result, magnetic attraction is hardly generated. Can be avoided.
[0068]
(Embodiment 4)
FIG. 4 is a longitudinal sectional view of the electric compressor according to Embodiment 2 of the present invention.
[0069]
The same components as those in the third embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0070]
In FIG. 4, the motor unit 403 includes a stator 213 in which a winding is wound around a stator core made of laminated electromagnetic steel sheets, and a rotor 414 in which a secondary conductor is provided on a rotor core 415 made of laminated electromagnetic steel sheets. It is a two-pole synchronous motor configured. The rotor core 415 contains a permanent magnet 415a made of, for example, a rare earth magnet such as neodymium, iron, or a boron-based ferromagnetic material. Other configurations are the same as those of the third embodiment.
[0071]
Next, the operation of the electric compressor configured as described above will be described.
[0072]
The electric element starts as an induction motor at the time of starting, and performs the synchronous operation by pulling in the synchronous near the synchronous rotational speed. Here, since the permanent magnet 415a built in the rotor core 415 is made of a material having a strong magnetic force such as a rare earth element, the magnetic force is particularly strong, and an extremely strong magnetic attraction is applied to a portion where the distance between the rotor 414 and the stator 213 is small. Force is generated.
[0073]
However, with the same configuration as in the third embodiment, problems due to strong magnetic attraction can be avoided, and as a result, the high efficiency of the synchronous motor can be effectively utilized, high energy efficiency can be obtained, and the inclination of the shaft can be improved. Can be prevented, and the reliability is improved.
[0074]
【The invention's effect】
As described above, the invention described in claim 1 has an effect that an electric compressor with high efficiency and high reliability can be obtained.
[0075]
Further, the invention according to claim 2 has an effect that an electric compressor with high efficiency and high reliability can be obtained.
[0076]
The invention according to claim 3 has an effect that an electric compressor with higher efficiency can be obtained in addition to the effects of claim 1 and claim 2.
[0077]
The invention described in claim 4 has an effect that, in addition to the effect of any one of claims 1 to 3, an inverter-driven electric compressor with higher efficiency and higher reliability can be obtained. .
[0078]
Further, the invention according to claim 5 has an effect that a more reliable electric compressor can be obtained in addition to the effect of claim 4.
[0079]
According to the invention described in claim 6, in addition to the effect of any one of claims 1 to 3, an effect that a synchronous motor driven electric compressor with higher efficiency and higher reliability can be obtained. Yes.
[Brief description of the drawings]
1 is a longitudinal sectional view of an electric compressor according to a first embodiment of the present invention; FIG. 2 is a longitudinal sectional view of an electric compressor according to a second embodiment of the present invention; FIG. 3 is a third embodiment of the present invention; FIG. 4 is a longitudinal sectional view of an electric compressor according to a fourth embodiment of the present invention. FIG. 5 is a longitudinal sectional view of a conventional electric compressor.
101 Closed container 102, 302 Compression mechanism 103, 203, 303, 403 Electric motor 104 Shaft 117 Eccentric shaft 105, 305 Cylinder block 106, 306 Bore 107 Cylinder 108 Connecting rod 109 Piston 110 Compression chamber 111 Oil supply mechanism 112 Lubricating oil 113, 213 Stator 113a Iron core 113b Teeth portion 113c Insulating member 113d Direct winding 114, 214, 314, 414 Rotor 115, 215, 315, 415 Rotor core 115a, 215a, 315a, 415a Permanent magnet 115b Rotor core Compressor element side end 116 Main shaft 118 Sub shaft 120, 320 Main bearing 121 Sub bearing

Claims (6)

密閉容器内に潤滑油を貯溜するとともに、固定子と回転子鉄心に永久磁石を内蔵した回転子とからなる電動要素と、前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、圧縮室を備えたシリンダブロックと、前記シリンダブロックに前記圧縮室の軸心と略直交するように配設され前記シャフトの前記主軸部を軸支し前記回転子鉄心の前記圧縮機構部側端部を含んで前記主軸部軸心と略直交する平面と交わらない主軸受と、前記シリンダブロックに配設され前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸とを連結する連結手段とを備えた電動圧縮機。A lubricating oil is stored in the closed container, and an electric element including a stator and a rotor having a permanent magnet incorporated in a rotor iron core, and a compression element driven by the electric element are housed therein, and the compression element is eccentric. A shaft having a sub shaft portion and a main shaft portion provided vertically and coaxially with a shaft portion and the eccentric shaft portion interposed therebetween, a cylinder block having a compression chamber, and an axis of the compression chamber in the cylinder block. A main bearing that is disposed substantially orthogonal to the shaft, supports the main shaft portion of the shaft, includes a compression mechanism side end of the rotor core, and does not intersect with a plane substantially orthogonal to the main shaft axis. An electric compressor comprising: a sub-bearing disposed on the cylinder block to support the sub-shaft portion; a piston reciprocating in the compression chamber; and connecting means for connecting the piston and the eccentric shaft. 密閉容器内に潤滑油を貯溜するとともに、固定子と回転子鉄心に永久磁石を内蔵した回転子とからなる電動要素と、前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、圧縮室を備えたシリンダブロックと、前記シリンダブロックに前記圧縮室の軸心と略直交するように配設され前記シャフトの前記主軸部を軸支する主軸受と、前記シリンダブロックに配設され前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸とを連結する連結手段とを備えており、前記回転子は、前記回転子鉄心の前記圧縮機構部側の端部に中空のボア部を設け、前記主軸受は非磁性体材料からなるとともに、前記回転子鉄心のボア部の内側に延在した電動圧縮機。A lubricating oil is stored in the closed container, and an electric element including a stator and a rotor having a permanent magnet incorporated in a rotor iron core, and a compression element driven by the electric element are housed therein, and the compression element is eccentric. A shaft having a sub shaft portion and a main shaft portion provided vertically and coaxially with a shaft portion and the eccentric shaft portion interposed therebetween, a cylinder block having a compression chamber, and an axis of the compression chamber in the cylinder block. A main bearing disposed substantially orthogonally and supporting the main shaft portion of the shaft, a sub-bearing disposed on the cylinder block and supporting the sub-shaft portion, and a piston reciprocating in the compression chamber; Connecting means for connecting the piston and the eccentric shaft, wherein the rotor is provided with a hollow bore at an end of the rotor core on the compression mechanism side, and the main bearing is non-conductive. When made of magnetic material The electric compressor extending inside the bore of the rotor core. 回転子鉄心に内蔵された永久磁石は希土類からなる請求項1または請求項2のいずれか1項に記載の電動圧縮機。The electric compressor according to claim 1, wherein the permanent magnet incorporated in the rotor core is made of a rare earth. 商用電源周波数以上の回転数を含む複数の運転周波数で駆動されるインバーター駆動式である請求項1から請求項3のいずれか1項に記載の電動圧縮機。The electric compressor according to any one of claims 1 to 3, wherein the electric compressor is an inverter-driven type that is driven at a plurality of operating frequencies including a rotation speed equal to or higher than a commercial power supply frequency. 固定子は放射状に形成された複数のティース部を鉄心に有するとともに、前記ティース部に、絶縁部材を介して直接巻線を施こした請求項4に記載の電動圧縮機。5. The electric compressor according to claim 4, wherein the stator has a plurality of radially formed teeth portions on an iron core, and the teeth portions are directly wound through an insulating member. 電動要素が始動時に誘導電動機として始動し、同期回転数近くで同期引込みを行い同期運転をする同期モータを構成する請求項1から請求項3のいずれか1項に記載の電動圧縮機。The electric compressor according to any one of claims 1 to 3, wherein the electric element starts as an induction motor at the time of starting, and constitutes a synchronous motor that performs synchronous operation by performing a synchronous pull-in operation near a synchronous rotational speed.
JP2003033377A 2003-02-12 2003-02-12 Electric compressor Pending JP2004245073A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003033377A JP2004245073A (en) 2003-02-12 2003-02-12 Electric compressor
CNB2003101223403A CN100335782C (en) 2003-02-12 2003-12-17 Electric compressor
US10/742,609 US20040191094A1 (en) 2003-02-12 2003-12-19 Electric compressor
KR1020030096671A KR20040073268A (en) 2003-02-12 2003-12-24 Electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033377A JP2004245073A (en) 2003-02-12 2003-02-12 Electric compressor

Publications (1)

Publication Number Publication Date
JP2004245073A true JP2004245073A (en) 2004-09-02

Family

ID=32984308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033377A Pending JP2004245073A (en) 2003-02-12 2003-02-12 Electric compressor

Country Status (4)

Country Link
US (1) US20040191094A1 (en)
JP (1) JP2004245073A (en)
KR (1) KR20040073268A (en)
CN (1) CN100335782C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041146A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Refrigerator
WO2006041147A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Compressor, refrigerating device, and refrigerator
JP2007152545A (en) * 2005-11-09 2007-06-21 Hitachi Ltd Grinding surface plate and its manufacturing method
JP2008121628A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2008531896A (en) * 2004-12-08 2008-08-14 松下電器産業株式会社 Refrigerant compressor
JP2009019571A (en) * 2007-07-12 2009-01-29 Panasonic Corp Hermetic compressor
JP2010127218A (en) * 2008-11-28 2010-06-10 Panasonic Corp Compressor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617656B2 (en) * 2003-10-14 2011-01-26 パナソニック株式会社 Hermetic compressor
JP4429769B2 (en) * 2004-03-16 2010-03-10 パナソニック株式会社 Hermetic compressor
CN101354026B (en) * 2004-11-24 2010-07-21 松下电器产业株式会社 Hermetic compressor
JP4444285B2 (en) * 2004-11-24 2010-03-31 パナソニック株式会社 Hermetic compressor
CN100376791C (en) * 2004-12-08 2008-03-26 松下电器产业株式会社 Refrigerant compressor
KR100748538B1 (en) * 2005-11-30 2007-08-13 엘지전자 주식회사 Synchronous reluctance motor and compressor having the same
JP2008138526A (en) * 2006-11-30 2008-06-19 Daikin Ind Ltd Compressor
DE102007038432A1 (en) * 2007-08-16 2009-02-19 Danfoss Compressors Gmbh Refrigerant compressor means
BRPI0903956A2 (en) * 2009-01-09 2010-11-23 Aurelio Mayorca process and equipment to improve efficiency of compressors and refrigerators
JP2012087711A (en) * 2010-10-21 2012-05-10 Panasonic Corp Hermetic compressor
JP2012193926A (en) * 2011-03-17 2012-10-11 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
DE102013216700B4 (en) * 2013-08-22 2022-01-27 Siemens Mobility GmbH Charging battery-capable road vehicles
US9518572B2 (en) * 2014-02-10 2016-12-13 Haier Us Appliance Solutions, Inc. Linear compressor
JP6428739B2 (en) * 2016-09-30 2018-11-28 株式会社富士通ゼネラル Compressor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627093A (en) * 1979-08-07 1981-03-16 Sanyo Electric Co Ltd Lubricating system of enclosed compressor
IT1128837B (en) * 1980-06-30 1986-06-04 Aspera Spa IMPROVEMENTS IN COMPRESSORS FOR REFRIGERATING FLUIDS
JPS58156182U (en) * 1982-04-14 1983-10-18 株式会社東芝 compressor
US5266016A (en) * 1989-09-18 1993-11-30 Tecumseh Products Company Positive stop for a suction leaf valve of a compressor
US5205723A (en) * 1991-01-22 1993-04-27 Matsushita Refrigeration Company Hermetically sealed compressor
JPH05141359A (en) * 1991-11-18 1993-06-08 Matsushita Refrig Co Ltd Closed type motor-operated compressor
JP3336632B2 (en) * 1992-07-03 2002-10-21 三菱電機株式会社 Two-cylinder hermetic electric compressor, assembling jig and assembling method
JP3564769B2 (en) * 1995-01-23 2004-09-15 松下電器産業株式会社 Scroll compressor
JPH1026425A (en) * 1996-07-11 1998-01-27 Mitsubishi Electric Corp Refrigerant compressor driving at variable speed and refrigeration cycle device provided with the same refrigerant compressor
JPH1075542A (en) * 1996-08-29 1998-03-17 Aichi Emerson Electric Co Ltd Motor for driving compressor
JP3762043B2 (en) * 1997-01-17 2006-03-29 東芝キヤリア株式会社 Rotary hermetic compressor and refrigeration cycle apparatus
JP2001003864A (en) * 1999-06-16 2001-01-09 Mitsubishi Electric Corp Air conditioner
JP4529241B2 (en) * 1999-07-02 2010-08-25 パナソニック株式会社 Electric compressor
KR100507786B1 (en) * 1999-07-02 2005-08-17 마쯔시다덴기산교 가부시키가이샤 Electric compressor
JP2001055979A (en) * 1999-08-11 2001-02-27 Toshiba Kyaria Kk Cooling medium compressor
JP3499786B2 (en) * 1999-11-25 2004-02-23 株式会社日立製作所 Ultra-high-speed permanent magnet rotating electric machine system
JP3629587B2 (en) * 2000-02-14 2005-03-16 株式会社日立製作所 Air conditioner, outdoor unit and refrigeration system
JP3760748B2 (en) * 2000-09-20 2006-03-29 株式会社日立製作所 Hermetic electric compressor
JP2002332964A (en) * 2001-05-07 2002-11-22 Matsushita Refrig Co Ltd Coolant compressor starting device and coolant compressor
JP2003003958A (en) * 2001-06-21 2003-01-08 Matsushita Refrig Co Ltd Hermetic electric compressor and refrigerating device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041146A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Refrigerator
WO2006041147A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Compressor, refrigerating device, and refrigerator
JP2008531896A (en) * 2004-12-08 2008-08-14 松下電器産業株式会社 Refrigerant compressor
JP2007152545A (en) * 2005-11-09 2007-06-21 Hitachi Ltd Grinding surface plate and its manufacturing method
JP4710774B2 (en) * 2005-11-09 2011-06-29 株式会社日立製作所 Manufacturing method of polishing surface plate
JP2008121628A (en) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd Hermetic compressor
JP4687634B2 (en) * 2006-11-15 2011-05-25 パナソニック株式会社 Hermetic compressor
JP2009019571A (en) * 2007-07-12 2009-01-29 Panasonic Corp Hermetic compressor
JP2010127218A (en) * 2008-11-28 2010-06-10 Panasonic Corp Compressor

Also Published As

Publication number Publication date
US20040191094A1 (en) 2004-09-30
CN1521397A (en) 2004-08-18
CN100335782C (en) 2007-09-05
KR20040073268A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP2004245073A (en) Electric compressor
JP4005169B2 (en) Compressor
US8535023B2 (en) Linear compressor
EP1111240B1 (en) Electric compressor
JP4273738B2 (en) Linear compressor
US8794934B2 (en) Linear compressor
JP6215823B2 (en) Hermetic compressor
US20060147326A1 (en) Hermetically sealed compressor
JP2004140901A (en) Linear motor and linear compressor
US7866957B2 (en) Hermetic compressor
JP2007327497A (en) Compressor
JP4599881B2 (en) Hermetic compressor
JP2013087685A (en) Hermetic type compressor
JP2006144731A (en) Compressor
JP5040488B2 (en) Hermetic compressor
JP2017216806A (en) Compressor
JP4031454B2 (en) Compressor
JP2006144730A (en) Reciprocating refrigerant compressor
JP2008050998A (en) Sealed compressor
KR101918067B1 (en) Reciprocating compressor
JP2007239635A (en) Hermetic compressor
JP2007040139A (en) Compressor
WO2020085427A1 (en) Sealed compressor and refrigeration device
WO2020165962A1 (en) Compressor and air conditioning device
JP2001339929A (en) Electric compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821