WO2014103620A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2014103620A1
WO2014103620A1 PCT/JP2013/082356 JP2013082356W WO2014103620A1 WO 2014103620 A1 WO2014103620 A1 WO 2014103620A1 JP 2013082356 W JP2013082356 W JP 2013082356W WO 2014103620 A1 WO2014103620 A1 WO 2014103620A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
time interval
expansion
unit
amount
Prior art date
Application number
PCT/JP2013/082356
Other languages
French (fr)
Japanese (ja)
Inventor
大介 豊田
敦 小倉
正志 一桐
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2014103620A1 publication Critical patent/WO2014103620A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus.
  • R32 is a refrigerant having a smaller density than R410A, which has been conventionally used as a refrigerant.
  • the expansion mechanism may be controlled using the discharge temperature of the compressor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-122777
  • the opening degree of the expansion valve is controlled using the discharge temperature of the compressor.
  • the amount of refrigerant circulating in the refrigeration system is reduced.
  • R32 is used as the refrigerant
  • the circulation amount of the refrigerant in the refrigeration apparatus tends to be smaller than when R410A is used as the refrigerant.
  • the opening degree of the expansion valve may be excessively reduced, and the discharge temperature may increase excessively.
  • the discharge temperature rises too much, it takes time until the drop in the discharge temperature is observed even if the opening of the expansion valve is increased.
  • the opening degree of the expansion valve may be excessively increased, and the discharge temperature may be excessively lowered.
  • control hunting occurs, so that the expansion valve cannot be adjusted to an appropriate opening degree, or in order to adjust the expansion valve to an appropriate opening degree. The problem of taking time can occur.
  • the problem of the present invention is that, in a refrigeration apparatus that uses R32 as a refrigerant, when the expansion mechanism is controlled using the discharge temperature of the compressor, even when the compressor is operated in a low rotation speed range,
  • An object of the present invention is to provide a refrigeration apparatus capable of controlling an expansion mechanism quickly and appropriately.
  • the refrigeration apparatus is a refrigeration apparatus that uses R32 as a refrigerant.
  • the refrigeration apparatus includes a compressor, a condenser, an expansion mechanism, an evaporator, a temperature detection unit, an expansion adjustment unit, and a time interval change unit.
  • the compressor sucks low-pressure refrigerant from the suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant.
  • the condenser condenses the high-pressure refrigerant discharged from the compressor.
  • the expansion mechanism expands the high-pressure refrigerant that has exited the condenser.
  • the evaporator evaporates the refrigerant expanded by the expansion mechanism.
  • the temperature detection unit detects the discharge temperature of the refrigerant discharged from the compressor.
  • the expansion adjustment unit performs adjustment control of the expansion mechanism using the discharge temperature.
  • the time interval changing unit changes the control time interval of the expansion adjusting unit.
  • the time interval changing unit changes the control time interval from the first time interval to a second time interval longer than the first time interval when the rotation speed of the compressor becomes smaller than the threshold value.
  • the expansion adjusting unit can control the expansion mechanism after accurately grasping the discharge temperature even when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
  • control time interval is changed from the first time interval to the second time interval based on the comparison result between the rotation speed of the compressor and the threshold value, with a simple configuration and easy processing, Even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect, wherein the time interval changing unit sets the control time interval to the second time when the rotation speed of the compressor is equal to or greater than a threshold value. The time interval is changed to the first time interval.
  • the control time interval of the adjustment control of the expansion mechanism is changed to the first time interval shorter than the second time interval. Therefore, when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or greater than the threshold value, the expansion mechanism can be quickly adjusted and controlled.
  • the refrigeration apparatus is a refrigeration apparatus that uses R32 as a refrigerant.
  • the refrigeration apparatus includes a compressor, a condenser, an expansion mechanism, an evaporator, a temperature detection unit, an expansion adjustment unit, and a feedback amount change unit.
  • the compressor sucks low-pressure refrigerant from the suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant.
  • the condenser condenses the high-pressure refrigerant discharged from the compressor.
  • the expansion mechanism expands the high-pressure refrigerant that has exited the condenser.
  • the evaporator evaporates the refrigerant expanded by the expansion mechanism.
  • the temperature detection unit detects the discharge temperature of the refrigerant discharged from the compressor.
  • the expansion adjustment unit performs adjustment control of the expansion mechanism using the discharge temperature.
  • the feedback amount changing unit changes the feedback amount of the expansion mechanism by the expansion adjusting unit.
  • the feedback amount changing unit changes the feedback amount from the first amount to a second amount smaller than the first amount when the rotation speed of the compressor becomes smaller than the threshold value.
  • the expansion adjusting unit does not excessively adjust the expansion mechanism when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
  • the rotation speed of the compressor is small with a simple configuration and easy processing.
  • the expansion mechanism can be appropriately controlled.
  • a refrigeration apparatus is the refrigeration apparatus according to the third aspect, in which the feedback amount changing unit changes the feedback amount to the second amount when the rotation speed of the compressor becomes equal to or greater than a threshold value. To change to the first amount.
  • the feedback amount of the expansion mechanism is changed to the first amount larger than the second amount. Therefore, when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or greater than the threshold value, the expansion mechanism can be quickly adjusted and controlled.
  • the control time interval of the expansion mechanism adjustment control is changed to a second time interval longer than the first time interval. Therefore, the expansion adjusting unit can control the expansion mechanism after accurately grasping the discharge temperature even when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
  • the expansion mechanism when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or higher than the threshold value, the expansion mechanism can be adjusted and controlled quickly.
  • the expansion adjusting unit does not excessively adjust the expansion mechanism when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
  • the expansion mechanism when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or higher than the threshold value, the expansion mechanism can be adjusted and controlled quickly.
  • the air conditioner 10 as a refrigeration apparatus according to the first embodiment of the present invention is an air conditioner that can be operated by switching between a cooling operation and a heating operation.
  • the air conditioner 10 may not be operable by switching between the cooling operation and the heating operation, and may be an air conditioner capable of performing only the cooling operation or the heating operation.
  • the air conditioner 10 mainly includes an indoor unit 20, an outdoor unit 30, and a control unit 40.
  • the air conditioner 10 has a refrigerant circuit 1 filled with R32 as a refrigerant.
  • the refrigerant circuit 1 has an indoor circuit 1 a accommodated in the indoor unit 20 and an outdoor circuit 1 b accommodated in the outdoor unit 30.
  • the indoor side circuit 1a and the outdoor side circuit 1b are connected by a liquid refrigerant communication pipe 71 and a gas refrigerant communication pipe 72.
  • the indoor unit 20 is installed in a room that is subject to air conditioning.
  • the indoor unit 20 includes an indoor heat exchanger 21 and an indoor fan 22.
  • the indoor heat exchanger 21 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. During the cooling operation, the indoor heat exchanger 21 functions as an evaporator that evaporates refrigerant expanded by an outdoor expansion valve 36 described later, and cools indoor air. The indoor heat exchanger 21 functions as a condenser that condenses high-pressure refrigerant discharged from a compressor 31 described later during heating operation, and heats indoor air.
  • the liquid side of the indoor heat exchanger 21 is connected to the liquid refrigerant communication pipe 71, and the gas side of the indoor heat exchanger 21 is connected to the gas refrigerant communication pipe 72.
  • the indoor fan 22 is driven by a fan motor.
  • the indoor fan 22 takes in indoor air and blows it to the indoor heat exchanger 21, and promotes heat exchange between the refrigerant flowing through the indoor heat exchanger 21 and the indoor air.
  • the outdoor unit 30 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor fan 35, an outdoor expansion valve 36, and a discharge temperature sensor 51.
  • the compressor 31, the four-way switching valve 33, the outdoor heat exchanger 34, and the outdoor expansion valve 36 are connected by refrigerant piping.
  • the suction port of the compressor 31 and the four-way switching valve 33 are connected by a suction pipe 81.
  • the discharge port of the compressor 31 and the four-way switching valve 33 are connected by a discharge pipe 82.
  • the four-way switching valve 33 and the gas side of the outdoor heat exchanger 34 are connected by a first gas refrigerant pipe 83.
  • the outdoor heat exchanger 34 and the liquid refrigerant communication pipe 71 are connected by a liquid refrigerant pipe 84.
  • the liquid refrigerant pipe 84 is provided with an outdoor expansion valve 36.
  • the four-way switching valve 33 and the gas refrigerant communication pipe 72 are connected by a second gas refrigerant pipe 85.
  • the compressor 31 drives the compression mechanism with a motor, thereby sucking low-pressure gas refrigerant from the suction pipe 81 and supplying the high-pressure gas refrigerant compressed by the compression mechanism to the discharge pipe 82. Discharge.
  • the compressor 31 is a rotary compressor, it is not limited to this, For example, a scroll compressor may be sufficient.
  • the compressor 31 is an inverter type compressor capable of changing the rotation speed N (the rotation speed of the motor of the compressor 31).
  • the movement of the compressor 31 is controlled by a compressor control unit 41b described later.
  • the compressor control unit 41 b rotates the compressor 31 in accordance with the degree of deviation between the temperature (room temperature) of the air conditioning target space and the set temperature, and the discharge temperature Td of the compressor 31 detected by the discharge temperature sensor 51. Control the number N.
  • the four-way switching valve 33 switches the flow direction of the refrigerant when the air-conditioning apparatus 10 is switched between the cooling operation and the heating operation.
  • the discharge pipe 82 and the first gas refrigerant pipe 83 are connected, and the suction pipe 81 and the second gas refrigerant pipe 85 are connected (see the solid line in FIG. 1).
  • the discharge pipe 82 and the second gas refrigerant pipe 85 are connected, and the suction pipe 81 and the first gas refrigerant pipe 83 are connected (see the broken line in FIG. 1).
  • the outdoor heat exchanger 34 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins.
  • the outdoor heat exchanger 34 functions as a condenser that condenses the high-pressure refrigerant discharged from the compressor 31 by exchanging heat between the outdoor air and the refrigerant during the cooling operation.
  • the outdoor heat exchanger 34 functions as an evaporator that evaporates the refrigerant expanded by the outdoor expansion valve 36 by exchanging heat between the outdoor air and the refrigerant during heating operation.
  • Outdoor Fan 35 is rotated by a fan motor and takes outdoor air into the outdoor unit 30.
  • the taken outdoor air passes through the outdoor heat exchanger 34 and is finally discharged out of the outdoor unit 30.
  • the outdoor fan 35 promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 34 and outdoor air.
  • the outdoor expansion valve 36 is an example of an expansion mechanism, and an electric expansion valve with a variable opening provided for adjusting the pressure and flow rate of the refrigerant flowing in the refrigerant circuit 1. It is.
  • the outdoor expansion valve 36 expands the refrigerant flowing from the outdoor heat exchanger 34 that functions as a condenser to the indoor heat exchanger 21 that functions as an evaporator.
  • the outdoor expansion valve 36 expands the refrigerant flowing from the indoor heat exchanger 21 that functions as a condenser to the outdoor heat exchanger 34 that functions as an evaporator.
  • the opening degree of the outdoor expansion valve 36 is adjusted and controlled by an expansion adjusting unit 41a of the control unit 40 described later.
  • the discharge temperature sensor 51 is an example of a temperature detection unit.
  • the discharge temperature sensor 51 is a thermistor for detecting the temperature of the refrigerant discharged from the compressor 31 (discharge temperature Td).
  • the discharge temperature sensor 51 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82.
  • the attachment position of the discharge temperature sensor 51 is not limited to this.
  • the discharge temperature sensor 51 may be attached to an appropriate position for grasping the temperature of the refrigerant discharged from the compressor 31.
  • the discharge temperature Td detected by the discharge temperature sensor 51 is used for control of the rotational speed N of the compressor 31 and adjustment control of the opening degree of the outdoor expansion valve 36.
  • Control Unit 40 controls the movement of the air conditioner 10.
  • FIG. 2 the block diagram of the air conditioning apparatus 10 containing the control unit 40 is shown.
  • the control unit 40 includes a control unit 41 formed of a microcomputer or the like, a storage unit 42 formed of a memory such as a RAM or a ROM, and an input unit 43 (remote control). As shown in FIG. 2, the control unit 40 includes components of the indoor unit 20 and the outdoor unit 30 (compressor 31, four-way switching valve 33, outdoor fan 35, outdoor expansion valve 36, indoor fan 22, discharge temperature sensor 51, etc. ) And are electrically connected.
  • the control unit 41 controls the air conditioner 10 by reading and executing the program stored in the storage unit 42.
  • the control unit 41 exchanges control signals with the input unit 43 in order to operate the indoor unit 20.
  • the control part 41 controls the driving
  • the control unit 41 controls various devices of the indoor unit 20 and the outdoor unit 30 according to the operating conditions and the operating state of the air conditioner 10.
  • control part 41 has the expansion adjustment part 41a, the compressor control part 41b, and the time interval change part 41c as a function part.
  • the expansion adjustment unit 41a, the compressor control unit 41b, and the time interval change unit 41c will be described later.
  • the storage unit 42 stores programs to be executed by the control unit 41 and various information.
  • the storage unit 42 has a time interval storage area 42a for storing the time interval ⁇ t.
  • the time interval storage area 42a will be described later.
  • Control Unit (2-3-1) Control Unit (2-3-1-1) Expansion Adjusting Unit
  • the expansion adjusting unit 41a opens the opening of the outdoor expansion valve 36 in accordance with the operating conditions and operating conditions of the air conditioner 10. Adjust the control.
  • the expansion adjusting unit 41a uses the value of the discharge temperature Td measured by the discharge temperature sensor 51 as one of the parameters for adjusting and controlling the opening degree of the outdoor expansion valve 36. Specifically, when the discharge temperature Td is lower than the target temperature, the expansion adjusting unit 41a performs control to reduce the opening degree of the outdoor expansion valve 36. On the other hand, when the discharge temperature Td is higher than the target temperature, the expansion adjusting unit 41a performs control to increase the opening degree of the outdoor expansion valve 36.
  • the adjustment control of the opening degree of the outdoor expansion valve 36 using the discharge temperature Td as a parameter of the expansion adjusting unit 41a is executed at every control time interval.
  • the control time interval of the expansion adjustment unit 41a is the time interval ⁇ t stored in the time interval storage area 42a of the storage unit 42.
  • the compressor control unit 41b starts / stops the compressor 31 and rotates the compressor 31 according to the operating conditions, operating conditions, etc. of the air conditioner 10.
  • the number N (the rotational speed N of the motor of the compressor 31) is determined and controlled.
  • the compressor control unit 41b determines the rotation speed N of the compressor 31 according to the degree of divergence between the temperature (room temperature) of the space to be air-conditioned of the air conditioning apparatus 10 and the set temperature, and the rotation speed N
  • the compressor 31 is controlled so that
  • the time interval changing unit 41c changes the control time interval of the expansion adjusting unit 41a by rewriting the value of the time interval ⁇ t stored in the time interval storage area 42a. .
  • the change of the control time interval of the expansion adjusting unit 41a by the time interval changing unit 41c will be described later.
  • (2-3-2) Storage Unit (2-3-2-1) Time Interval Storage Area
  • the expansion adjusting unit 41a has an outdoor expansion valve according to the discharge temperature Td of the compressor 31.
  • a time interval ⁇ t is stored as a control time interval for performing the adjustment control of the opening degree of 36.
  • the time interval ⁇ t in the time interval storage area 42a is changed to the first time interval A1 or the second time interval A2 by being changed by the time interval changing unit 41c.
  • the second time interval A2 is a time interval longer than the first time interval.
  • the first time interval A1 is 10 seconds and the second time interval A2 is 30 seconds.
  • the input unit 43 is a remote controller for the air conditioning apparatus 10.
  • the input unit 43 receives various inputs from the user of the air conditioning apparatus 10.
  • Various inputs received from the user by the input unit 43 include an operation / stop command for the air conditioner 10, an operation mode (heating mode / cooling mode) of the air conditioner 10, a set temperature of the air conditioner 10, and the like.
  • control time interval of the expansion adjusting unit 41a (the expansion adjusting unit 41a performs adjustment control of the outdoor expansion valve 36 according to the discharge temperature Td of the compressor 31). (Time interval) to be changed will be described with reference to the flowchart of FIG.
  • the process of changing the control time interval of the outdoor expansion valve 36 is repeatedly executed during operation of the air conditioner 10.
  • step S1 the time interval changing unit 41c acquires the rotational speed N of the compressor 31 from the compressor control unit 41b. Thereafter, the process proceeds to step S2.
  • step S2 the time interval changing unit 41c determines whether or not the rotation speed N of the compressor 31 acquired in step S1 is smaller than the threshold value N1.
  • the threshold value N1 does not cause control hunting even when the adjustment of the opening degree of the outdoor expansion valve 36 is performed at the first time interval A1 when the rotation speed N of the compressor 31 is operated as the threshold value N1. And, it is determined to be as small as possible.
  • the threshold value N1 is determined based on actual machine test results of the air conditioner 10 and the like.
  • step S2 If it is determined in step S2 that the rotational speed N of the compressor 31 is smaller than the threshold value N1, the process proceeds to step S3. On the other hand, if it is determined in step S2 that the rotation speed N of the compressor 31 is greater than or equal to the threshold value N1, the process proceeds to step S5.
  • step S3 the time interval changing unit 41c determines whether or not the time interval ⁇ t stored in the time interval storage area 42a is the first time interval A1.
  • the process proceeds to step S4.
  • the process is terminated.
  • step S4 the time interval changing unit 41c changes the time interval ⁇ t stored in the time interval storage area 42a to the second time interval A2. Thereafter, the process ends.
  • step S5 the time interval changing unit 41c determines whether or not the time interval ⁇ t stored in the time interval storage area 42a is the second time interval A2. When it is determined that the time interval ⁇ t stored in the time interval storage area 42a is the second time interval A2, the process proceeds to step S6. On the other hand, when it is determined that the time interval ⁇ t stored in the time interval storage area 42a is not the second time interval A2 (the first time interval A1), the process is terminated.
  • step S6 the time interval changing unit 41c changes the time interval ⁇ t stored in the time interval storage area 42a to the first time interval A1. Thereafter, the process ends.
  • the control time interval for adjusting and controlling the outdoor expansion valve 36 according to the discharge temperature Td is adjusted by the expansion adjusting unit 41a.
  • A1 is changed to a second time interval A2 that is longer than the first time interval A1.
  • the control time interval during which the expansion adjustment unit 41a adjusts and controls the outdoor expansion valve 36 according to the discharge temperature Td of the compressor 31 is the first time.
  • One hour interval A1 That is, the time interval changing unit 41c changes the control time interval of the expansion adjusting unit 41a from the second time interval A2 when the rotation speed N of the compressor becomes a threshold value N1 or more from a value smaller than the threshold value N1. Change to the first time interval A1.
  • control hunting can be prevented in the low rotation speed region (rotation speed N ⁇ threshold value N1) of the compressor 31, and when the rotation speed N of the compressor 31 is relatively large (revolution speed N ⁇ threshold value N1). Case), the opening degree of the outdoor expansion valve 36 can be adjusted and controlled quickly.
  • the rotation speed N of the compressor 31 is compared with the threshold value N1, and the control time interval is switched between two values (first time interval A1 and second time interval A2) according to the comparison result. Therefore, the above effect can be realized with a simple configuration and easy processing.
  • the air conditioning apparatus 10 of the present embodiment is a refrigeration apparatus that uses R32 as a refrigerant.
  • the air conditioner 10 includes a compressor 31, a condenser (indoor heat exchanger 21 or outdoor heat exchanger 34), an outdoor expansion valve 36 as an expansion mechanism, and an evaporator (outdoor heat exchanger 34 or indoor heat exchange). 21), a discharge temperature sensor 51 as a temperature detecting unit, an expansion adjusting unit 41a, and a time interval changing unit 41c.
  • the compressor 31 sucks the low-pressure refrigerant from the suction pipe 81, compresses the refrigerant, and discharges the high-pressure refrigerant.
  • the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) condenses the high-pressure refrigerant discharged from the compressor 31.
  • the outdoor expansion valve 36 expands the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34).
  • the evaporator (the outdoor heat exchanger 34 or the indoor heat exchanger 21) evaporates the refrigerant expanded by the outdoor expansion valve 36.
  • the discharge temperature sensor 51 detects the discharge temperature Td of the refrigerant discharged from the compressor 31.
  • the expansion adjusting unit 41a performs adjustment control of the outdoor expansion valve 36 using the discharge temperature Td.
  • the time interval changing unit 41c changes the control time interval of the expansion adjusting unit 41a.
  • the time interval changing unit 41c changes the control time interval from the first time interval A1 to the second time interval A2 longer than the first time interval A1 when the rotation speed N of the compressor 31 becomes smaller than the threshold value N1. change.
  • the expansion adjusting unit 41a can control the outdoor expansion valve 36 while accurately grasping the discharge temperature Td even when the rotation speed of the compressor 31 is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed N of the compressor 31 is small, the outdoor expansion valve 36 can be controlled promptly and appropriately without causing control hunting.
  • the outdoor expansion valve 36 can be quickly and appropriately controlled by an easy process.
  • the time interval changing unit 41c changes the control time interval from the second time interval A2 to the first time interval when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1. Change to A1.
  • the control time interval of the adjustment control of the outdoor expansion valve 36 is changed to the first time interval A1 shorter than the second time interval A2. Therefore, when the refrigerant circulation amount is large and the rotation speed N of the compressor 31 is greater than or equal to the threshold value N1, adjustment control of the outdoor expansion valve 36 can be performed quickly.
  • the number of indoor units 20 is one, but a plurality of units may be used.
  • the plurality of indoor units may each be provided with an indoor expansion valve as an expansion mechanism.
  • the expansion adjusting unit 41a changes the adjustment control of the plurality of expansion mechanisms (outdoor expansion valve and indoor expansion valve) according to the time interval ⁇ t (the rotation speed N of the compressor 31) stored in the time interval storage area 42a.
  • the time interval ⁇ t) may be executed as the control time interval.
  • an expansion mechanism is the outdoor expansion valve 36, it is not limited to this.
  • the expansion mechanism only needs to expand the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) and adjust the pressure and flow rate of the refrigerant.
  • the expansion adjusting unit 41a is not limited to the one that adjusts the opening degree of the outdoor expansion valve 36, and may be any unit that can adjust and control refrigerant pressure change and flow rate adjustment by the expansion mechanism.
  • the expansion mechanism may be a plurality of capillary tubes having different characteristics, and the expansion adjustment unit may change the capillary tube through which the refrigerant flows by controlling an electric valve.
  • control time interval of the expansion adjustment unit 41a is changed between the first time interval A1 and the second time interval A2 depending on whether or not the rotational speed N of the compressor 31 is smaller than the threshold value N1 of 1.
  • the present invention is not limited to this. A plurality of threshold values are prepared, and the control time interval may be changed in multiple stages depending on whether or not the threshold value is smaller than each threshold value.
  • An air conditioner 110 as a refrigeration apparatus according to the second embodiment of the present invention is the same as the air conditioner 10 of the first embodiment except for a control unit 140 (see FIG. 4).
  • the air-conditioning apparatus 110 is the same as the air-conditioning apparatus 10 except for the control unit 140.
  • FIG. 5 shows a block diagram of the air conditioner 110 including the control unit 140.
  • the control unit 140 includes a control unit 141 formed of a microcomputer or the like, a storage unit 142 formed of a memory such as a RAM or a ROM, and an input unit 43 (remote control). As shown in FIG. 5, the control unit 140 includes components of the indoor unit 20 and the outdoor unit 30 (compressor 31, four-way switching valve 33, outdoor fan 35, outdoor expansion valve 36, indoor fan 22, discharge temperature sensor 51, etc. ) And are electrically connected.
  • the control part 141 controls the air conditioning apparatus 110 by reading and executing the program memorize
  • the control unit 141 exchanges control signals with the input unit 43 in order to operate the indoor unit 20.
  • the control part 141 controls the driving
  • the control unit 141 controls various devices of the indoor unit 20 and the outdoor unit 30 according to the operating conditions and the operating state of the air conditioner 110.
  • the control unit 141 includes an expansion adjustment unit 141a, a compressor control unit 41b, and a feedback amount changing unit 141d as functional units.
  • the expansion adjusting unit 141a and the feedback amount changing unit 141d will be described later. Since the compressor control unit 41b is the same as that of the first embodiment, the description thereof is omitted.
  • the storage unit 142 stores a program to be executed by the control unit 141 and various types of information.
  • the storage unit 142 includes a feedback amount storage area 142b that stores the feedback amount ⁇ F.
  • the feedback amount ⁇ F is adjusted once by the expansion adjusting unit 141a when the expansion adjusting unit 141a performs the adjustment control of the opening degree of the outdoor expansion valve 36 using the discharge temperature Td of the compressor 31. It is the adjustment amount [%] of the opening degree of the outdoor expansion valve 36 that is adjusted in the above. How the feedback amount ⁇ F is used will be described later.
  • Control Unit (2-1-1) Expansion Adjustment Unit
  • the expansion adjustment unit 141a opens the opening of the outdoor expansion valve 36 in accordance with the operating conditions and operating conditions of the air conditioner 110. Adjust the control.
  • the expansion adjusting unit 141a uses the value of the discharge temperature Td measured by the discharge temperature sensor 51 as one of parameters for adjusting and controlling the opening degree of the outdoor expansion valve 36. Specifically, the expansion adjusting unit 141a performs control to reduce the opening degree of the outdoor expansion valve 36 when the discharge temperature Td is lower than the target temperature. On the other hand, when the discharge temperature Td is higher than the target temperature, the expansion adjusting unit 141a performs control to increase the opening degree of the outdoor expansion valve 36. In addition, when performing the adjustment control of the opening degree of the outdoor expansion valve 36 by using the discharge temperature Td, the expansion adjustment unit 141a increases the outdoor amount by the feedback amount ⁇ F stored in the feedback amount storage area 142b per one adjustment control. The opening degree of the expansion valve 36 is adjusted.
  • the expansion adjusting unit 141a performs control to decrease the opening degree of the outdoor expansion valve 36 by the feedback amount ⁇ F, and when the discharge temperature Td is higher than the target temperature. Then, control is performed to increase the opening of the outdoor expansion valve 36 by the feedback amount ⁇ F.
  • the opening adjustment of the outdoor expansion valve 36 based on the discharge temperature Td by the expansion adjusting unit 141a is executed at regular control time intervals (for example, every 10 seconds).
  • the feedback amount changing unit 141d rewrites the value of the feedback amount ⁇ F stored in the feedback amount storage area 142b.
  • the feedback amount changing unit 141d changes the value of the feedback amount ⁇ F stored in the feedback amount storage area 142b, so that the expansion adjusting unit 141a controls the opening degree of the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31.
  • the adjustment amount of the opening degree of the outdoor expansion valve 36 that the expansion adjusting unit 141a adjusts by one adjustment control is changed. The process of changing the feedback amount ⁇ F by the feedback amount changing unit 141d will be described later.
  • the expansion adjusting unit 141a is provided for the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31.
  • an adjustment amount of the opening degree of the outdoor expansion valve 36 which is adjusted by the expansion adjusting unit 141a by one adjustment control, is stored as a feedback amount ⁇ F.
  • the feedback amount ⁇ F in the feedback amount storage area 142b is set to the first amount F1 or the second amount F2 by being changed by the feedback amount changing unit 141d.
  • the second amount F2 is smaller than the first amount F1.
  • the first amount F1 is 5% and the second amount F2 is 3%.
  • the numerical value quoted here is only an example and is not limited to this.
  • step S201 the feedback amount changing unit 141d acquires the rotational speed N of the compressor 31 from the compressor control unit 41b. Thereafter, the process proceeds to step S202.
  • step S202 the feedback amount changing unit 141d determines whether or not the rotation speed N of the compressor 31 acquired in step S201 is smaller than a threshold value N1 '.
  • the threshold value N1 ′ is defined as the first amount F1 that is the amount of adjustment of the opening of the outdoor expansion valve 36 by the expansion adjustment unit 141a when the rotation speed N of the compressor 31 is set to the threshold value N1 ′. However, control hunting is not caused and the value is determined to be as small as possible.
  • the threshold value N1 ' is determined based on the actual machine test result of the air conditioner 110 and the like.
  • step S202 If it is determined in step S202 that the rotation speed N of the compressor 31 is smaller than the threshold value N1 ', the process proceeds to step S203. On the other hand, if it is determined in step S2 that the rotation speed N of the compressor 31 is greater than or equal to the threshold value N1 ', the process proceeds to step S205.
  • step S203 the feedback amount changing unit 141d determines whether or not the feedback amount ⁇ F stored in the feedback amount storage area 142b is the first amount F1. If it is determined that the feedback amount ⁇ F stored in the feedback amount storage area 142b is the first amount F1, the process proceeds to step S204. On the other hand, when it is determined that the feedback amount ⁇ F stored in the feedback amount storage area 142b is not the first amount F1 (the second amount F2), the process is terminated.
  • step S204 the feedback amount changing unit 141d changes the feedback amount ⁇ F stored in the feedback amount storage area 142b to the second amount F2. Thereafter, the process ends.
  • step S205 the feedback amount changing unit 141d determines whether or not the feedback amount ⁇ F stored in the feedback amount storage area 142b is the second amount F2. When it is determined that the feedback amount ⁇ F stored in the feedback amount storage area 142b is the second amount F2, the process proceeds to step S206. On the other hand, if it is determined that the feedback amount ⁇ F stored in the feedback amount storage area 142b is not the second amount F2 (is the first amount F1), the process is terminated.
  • step S206 the feedback amount changing unit 141d changes the feedback amount ⁇ F stored in the feedback amount storage area 142b to the first amount F1. Thereafter, the process ends.
  • the expansion adjustment unit 141a controls the opening degree of the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31.
  • the adjustment amount of the degree of opening of the outdoor expansion valve 36 which is adjusted by the adjustment control unit 141a once, becomes the second amount F2. That is, the feedback amount changing unit 141d determines the feedback amount of the outdoor expansion valve 36 by the expansion adjusting unit 141a when the rotation speed N of the compressor 31 is smaller than the threshold value N1 ′ from a value equal to or higher than the threshold value N1 ′.
  • ⁇ F is changed from the first amount F1 to a second amount F2 smaller than the first amount F1.
  • the expansion adjustment unit 141a adjusts and controls the opening degree of the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31.
  • the adjustment amount of the degree of opening of the outdoor expansion valve 36 which is adjusted by the adjustment control unit 141a once, becomes the first amount F1. That is, the feedback amount changing unit 141d determines the feedback amount of the outdoor expansion valve 36 by the expansion adjusting unit 141a when the rotation speed N of the compressor 31 is changed from a value smaller than the threshold value N1 ′ to a value equal to or larger than the threshold value N1 ′.
  • ⁇ F is changed from the second amount F2 to the first amount F1.
  • the rotation speed N of the compressor 31 is compared with the threshold value N1 ′, and the feedback amount ⁇ F is only switched between two values (first amount F1 and second amount F2) according to the comparison result. Therefore, the above effect can be realized with a simple configuration and easy processing.
  • the air conditioning apparatus 110 of the present embodiment is a refrigeration apparatus that uses R32 as a refrigerant.
  • the air conditioner 110 includes a compressor 31, a condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34), an outdoor expansion valve 36 as an expansion mechanism, and an evaporator (the outdoor heat exchanger 34 or the indoor heat exchange). 21), a discharge temperature sensor 51 as a temperature detecting unit, an expansion adjusting unit 141a, and a feedback amount changing unit 141d.
  • the compressor 31 sucks the low-pressure refrigerant from the suction pipe 81, compresses the refrigerant, and discharges the high-pressure refrigerant.
  • the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) condenses the high-pressure refrigerant discharged from the compressor 31.
  • the outdoor expansion valve 36 expands the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34).
  • the evaporator (the outdoor heat exchanger 34 or the indoor heat exchanger 21) evaporates the refrigerant expanded by the outdoor expansion valve 36.
  • the discharge temperature sensor 51 detects the discharge temperature Td of the refrigerant discharged from the compressor 31.
  • the expansion adjustment unit 141a performs adjustment control of the outdoor expansion valve 36 using the discharge temperature Td.
  • the feedback amount changing unit 141d changes the feedback amount ⁇ F of the outdoor expansion valve 36 by the expansion adjusting unit 141a.
  • the feedback amount changing unit 141d changes the feedback amount ⁇ F from the first amount F1 to the second amount F2 smaller than the first amount F1 when the rotational speed N of the compressor 31 becomes smaller than the threshold value N1 ′. .
  • the expansion adjusting unit 141a does not excessively adjust the outdoor expansion valve 36 when the rotation speed N of the compressor 31 is small and the refrigerant circulation amount is small. As a result, even when the rotation speed N of the compressor 31 is small, the outdoor expansion valve 36 can be controlled promptly and appropriately without causing control hunting.
  • the feedback amount ⁇ F of the outdoor expansion valve 36 is changed based on the comparison result between the rotational speed N of the compressor 31 and the threshold value N1 ′, the compression is performed with a simple configuration and easy processing. Even when the rotational speed N of the machine 31 is small, the outdoor expansion valve 36 can be appropriately controlled.
  • the feedback amount changing unit 141d changes the feedback amount ⁇ F from the second amount F2 to the first amount F1 when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1 ′. Change to
  • the feedback amount ⁇ F of the outdoor expansion valve 36 is changed to the first amount F1 that is larger than the second amount F2. Therefore, when the refrigerant circulation amount is large and the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1 ', the adjustment control of the outdoor expansion valve 36 can be performed quickly.
  • the number of indoor units 20 is one, but a plurality of units may be used.
  • the plurality of indoor units may each be provided with an indoor expansion valve as an expansion mechanism.
  • the expansion adjustment unit 141a performs adjustment control of the plurality of expansion mechanisms (outdoor expansion valve and indoor expansion valve) using the feedback amount that is changed by the rotational speed N of the compressor 31 as described above. Anything to do.
  • an expansion mechanism is the outdoor expansion valve 36, it is not limited to this.
  • the expansion mechanism only needs to expand the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) and adjust the pressure and flow rate of the refrigerant.
  • the expansion adjusting unit 141a is not limited to the one that adjusts the opening degree of the outdoor expansion valve 36, and may be any unit that can adjust and control the pressure change and flow rate adjustment of the refrigerant by the expansion mechanism.
  • the expansion mechanism may be a plurality of capillary tubes having different characteristics, and the expansion adjustment unit may change the capillary tube through which the refrigerant flows by controlling an electric valve.
  • the feedback amount changing unit uses the expansion adjustment unit feedback amount when the rotation speed N of the compressor 31 is smaller than the threshold value N1 ′, and the rotation speed N of the compressor 31 is the threshold value N1 ′. What is necessary is just to be comprised so that it may become small compared with the amount of feedback in the above case.
  • the expansion adjusting unit 141a can perform the outdoor expansion as long as the rotation speed N of the compressor 31 does not change.
  • the opening of the valve 36 is configured to be adjusted by a feedback amount ⁇ F (first amount F1 or second amount F2) determined per one adjustment control, but is not limited thereto.
  • the feedback amount ⁇ F may be changed depending on conditions other than the rotational speed N of the compressor 31. And if the operating conditions other than the rotation speed N of the compressor 31 are the same, the feedback amount change part 141d is based on the expansion adjustment part 141a when the rotation speed N of the compressor 31 becomes smaller than the threshold value N1 ′. What is necessary is just to comprise so that the feedback amount of the outdoor expansion valve 36 may be made small compared with the feedback amount of the outdoor expansion valve 36 when the rotation speed N of the compressor 31 is more than threshold value N1 '.
  • the adjustment amount (that is, the feedback amount) of the degree of opening of the outdoor expansion valve 36 per adjustment control of the expansion adjusting unit 141a is the value of the discharge temperature Td measured by the discharge temperature sensor 51. It may be changed according to the temperature difference from the target value of the discharge temperature. If the temperature difference between the value of the discharge temperature Td measured by the discharge temperature sensor 51 and the target value of the discharge temperature is the same, the feedback amount changing unit 141d sets the rotation speed N of the compressor 31 to the threshold value N1. It suffices that the feedback amount of the outdoor expansion valve 36 by the expansion adjustment unit 141a when it becomes smaller than the feedback amount when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1 ′.
  • the feedback amount ⁇ F is adjusted by the expansion adjusting unit 141a once when the expansion adjusting unit 141a adjusts and controls the opening degree of the outdoor expansion valve 36 using the discharge temperature Td of the compressor 31.
  • the amount of adjustment of the opening degree of the outdoor expansion valve 36 to be adjusted is not limited to this.
  • the feedback amount ⁇ F may be a refrigerant flow rate change amount that changes by changing the opening degree of the outdoor expansion valve 36.
  • the feedback amount ⁇ F of the outdoor expansion valve 36 by the expansion adjustment unit 141a depends on whether the rotation speed N of the compressor 31 is smaller than the threshold value N1 ′ of 1, and the first amount F1 and the second amount F2.
  • a plurality of threshold values are prepared, and the feedback amount ⁇ F of the outdoor expansion valve 36 may be changed in multiple stages depending on whether or not it is smaller than each threshold value.
  • the expansion mechanism when the expansion mechanism is controlled using the discharge temperature of the compressor, even when the compressor is operated in a low rotation speed range, The expansion mechanism can be controlled promptly and appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is a refrigeration device using R32 as a coolant, and capable of quickly and appropriately controlling an expansion mechanism when the expansion mechanism is controlled by using the discharge temperature of the compressor thereof, and even when the compressor operates in a low-rotational-speed region. An air-conditioning device (10) using R32 as a coolant is equipped with a compressor (31), an outside heat exchanger, an outside expansion valve (36), an inside heat exchanger, a discharge-temperature sensor (51), an expansion adjustment unit (41a), and a time-interval-changing unit (41c). The expansion valve causes a high-pressure coolant discharged from a condenser (outside heat exchanger or inside heat exchanger) to expand. The discharge-temperature sensor detects the discharge temperature of the coolant discharged from the compressor. The expansion adjustment unit adjusts and controls the aperture of the outside expansion valve by using the discharge temperature. The time-interval-changing unit changes the control time interval of the expansion adjustment unit. When the rotational speed of the compressor is below a threshold, the time-interval-changing unit changes the control time interval from a first time interval to a second time interval which is longer than the first time interval.

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置に関する。 The present invention relates to a refrigeration apparatus.
 冷媒としてR32を使用する冷凍装置が知られている(例えば、特許文献1(特開2012-122677号公報))。R32は、従来、冷媒として用いられることの多かったR410Aと比べ密度の小さな冷媒である。 A refrigerating apparatus using R32 as a refrigerant is known (for example, Patent Document 1 (Japanese Patent Laid-Open No. 2012-122777)). R32 is a refrigerant having a smaller density than R410A, which has been conventionally used as a refrigerant.
 このような冷凍装置において、圧縮機の吐出温度を用いて膨張機構が制御される場合がある。例えば、特許文献1(特開2012-122677号公報)では、圧縮機の吐出温度を用いて膨張弁の開度が制御されている。 In such a refrigeration apparatus, the expansion mechanism may be controlled using the discharge temperature of the compressor. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2012-122777), the opening degree of the expansion valve is controlled using the discharge temperature of the compressor.
 ところで、現在、冷凍装置において、1台の圧縮機で幅広い負荷に対応することを目的として、従来よりも低回転数域で圧縮機を運転することが求められつつある。冷媒としてR32を使用する冷凍装置において、圧縮機がこのような低回転数域で運転され、特許文献1(特開2012-122677号公報)のように圧縮機の吐出温度を用いて膨張弁の開度が制御される場合には、以下の様な問題がある。 By the way, at present, in a refrigeration apparatus, it is required to operate a compressor in a lower rotational speed range than before in order to deal with a wide range of loads with a single compressor. In a refrigeration system that uses R32 as a refrigerant, the compressor is operated in such a low rotation speed range, and the discharge valve of the compressor is used by using the discharge temperature of the compressor as in Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-122777). When the opening degree is controlled, there are the following problems.
 圧縮機が低回転数域で運転される場合には、冷凍装置の冷媒の循環量が少なくなる。特に、冷媒としてR32が使用される場合には、R32の密度が小さいため、冷凍装置の冷媒の循環量が、冷媒としてR410Aが使用される場合に比べて少なくなりやすい。冷媒の循環量が少ない状態では、膨張弁の開度を小さく絞っても、吐出温度の上昇が観測されるまでに時間がかかる。そのため、膨張弁の開度を過剰に絞りすぎ、吐出温度が上昇しすぎる場合がある。また、吐出温度が上昇しすぎた場合には、膨張弁の開度を大きくしても、吐出温度の下降が観測されるまでに時間がかかる。そのため、膨張弁の開度を過剰に大きくしすぎ、吐出温度が低下しすぎる場合がある。このように、圧縮機が低回転数域で運転される場合には、制御ハンチングが発生し、膨張弁を適切な開度に調整できない、又は、膨張弁を適切な開度に調節するために時間がかかるという問題が起こりうる。 When the compressor is operated in a low rotation speed range, the amount of refrigerant circulating in the refrigeration system is reduced. In particular, when R32 is used as the refrigerant, since the density of R32 is small, the circulation amount of the refrigerant in the refrigeration apparatus tends to be smaller than when R410A is used as the refrigerant. In a state where the circulation amount of the refrigerant is small, it takes time until an increase in the discharge temperature is observed even if the opening of the expansion valve is reduced. For this reason, the opening degree of the expansion valve may be excessively reduced, and the discharge temperature may increase excessively. In addition, when the discharge temperature rises too much, it takes time until the drop in the discharge temperature is observed even if the opening of the expansion valve is increased. Therefore, the opening degree of the expansion valve may be excessively increased, and the discharge temperature may be excessively lowered. As described above, when the compressor is operated in a low rotation speed range, control hunting occurs, so that the expansion valve cannot be adjusted to an appropriate opening degree, or in order to adjust the expansion valve to an appropriate opening degree. The problem of taking time can occur.
 本発明の課題は、冷媒としてR32を使用する冷凍装置において、圧縮機の吐出温度を用いて膨張機構が制御される場合に、圧縮機が低回転数域で運転される場合であっても、速やかかつ適切に膨張機構を制御可能な冷凍装置を提供することにある。 The problem of the present invention is that, in a refrigeration apparatus that uses R32 as a refrigerant, when the expansion mechanism is controlled using the discharge temperature of the compressor, even when the compressor is operated in a low rotation speed range, An object of the present invention is to provide a refrigeration apparatus capable of controlling an expansion mechanism quickly and appropriately.
 本発明の第1観点に係る冷凍装置は、冷媒としてR32を使う冷凍装置である。冷凍装置は、圧縮機と、凝縮器と、膨張機構と、蒸発器と、温度検出部と、膨張調整部と、時間間隔変更部と、を備える。圧縮機は、吸入流路から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器は、圧縮機から吐出された高圧の冷媒を凝縮させる。膨張機構は、凝縮器を出た高圧冷媒を膨張させる。蒸発器は、膨張機構で膨張した冷媒を蒸発させる。温度検出部は、圧縮機から吐出された冷媒の吐出温度を検出する。膨張調整部は、吐出温度を用いて膨張機構の調整制御を行う。時間間隔変更部は、膨張調整部の制御時間間隔を変更する。時間間隔変更部は、圧縮機の回転数が閾値より小さくなった場合に、制御時間間隔を、第1時間間隔から、第1時間間隔よりも長い第2時間間隔に変更する。 The refrigeration apparatus according to the first aspect of the present invention is a refrigeration apparatus that uses R32 as a refrigerant. The refrigeration apparatus includes a compressor, a condenser, an expansion mechanism, an evaporator, a temperature detection unit, an expansion adjustment unit, and a time interval change unit. The compressor sucks low-pressure refrigerant from the suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant. The condenser condenses the high-pressure refrigerant discharged from the compressor. The expansion mechanism expands the high-pressure refrigerant that has exited the condenser. The evaporator evaporates the refrigerant expanded by the expansion mechanism. The temperature detection unit detects the discharge temperature of the refrigerant discharged from the compressor. The expansion adjustment unit performs adjustment control of the expansion mechanism using the discharge temperature. The time interval changing unit changes the control time interval of the expansion adjusting unit. The time interval changing unit changes the control time interval from the first time interval to a second time interval longer than the first time interval when the rotation speed of the compressor becomes smaller than the threshold value.
 ここでは、圧縮機の回転数が閾値よりも小さい場合に、膨張機構の調整制御の制御時間間隔が、第1時間間隔より長い第2時間間隔に変更される。そのため、膨張調整部は、圧縮機の回転数が小さく、冷媒の循環量が小さい場合にも、吐出温度を正確に把握した上で膨張機構の制御を行うことができる。その結果、圧縮機の回転数が小さい場合にも、制御ハンチングを起こすことなく、速やかに、かつ、適切に膨張機構を制御できる。 Here, when the rotation speed of the compressor is smaller than the threshold value, the control time interval of the adjustment control of the expansion mechanism is changed to a second time interval longer than the first time interval. Therefore, the expansion adjusting unit can control the expansion mechanism after accurately grasping the discharge temperature even when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
 特に、ここでは、圧縮機の回転数と閾値との比較結果に基づいて、制御時間間隔が第1時間間隔から第2時間間隔に変更されるので、簡易な構成、及び、容易な処理で、圧縮機の回転数が小さい場合にも、速やか、かつ、適切に膨張機構を制御できる。 In particular, here, since the control time interval is changed from the first time interval to the second time interval based on the comparison result between the rotation speed of the compressor and the threshold value, with a simple configuration and easy processing, Even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately.
 本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、時間間隔変更部は、圧縮機の回転数が閾値以上になった場合に、制御時間間隔を、第2時間間隔から、第1時間間隔に変更する。 The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, wherein the time interval changing unit sets the control time interval to the second time when the rotation speed of the compressor is equal to or greater than a threshold value. The time interval is changed to the first time interval.
 ここでは、圧縮機の回転数が閾値以上の場合に、膨張機構の調整制御の制御時間間隔が第2時間間隔より短い第1時間間隔に変更される。そのため、冷媒の循環量が大きい、圧縮機の回転数が閾値以上の場合には、迅速に膨張機構の調整制御を行うことができる。 Here, when the rotation speed of the compressor is equal to or greater than the threshold, the control time interval of the adjustment control of the expansion mechanism is changed to the first time interval shorter than the second time interval. Therefore, when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or greater than the threshold value, the expansion mechanism can be quickly adjusted and controlled.
 本発明の第3観点に係る冷凍装置は、冷媒としてR32を使う冷凍装置である。冷凍装置は、圧縮機と、凝縮器と、膨張機構と、蒸発器と、温度検出部と、膨張調整部と、フィードバック量変更部と、を備える。圧縮機は、吸入流路から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器は、圧縮機から吐出された高圧の冷媒を凝縮させる。膨張機構は、凝縮器を出た高圧冷媒を膨張させる。蒸発器は、膨張機構で膨張した冷媒を蒸発させる。温度検出部は、圧縮機から吐出された冷媒の吐出温度を検出する。膨張調整部は、吐出温度を用いて膨張機構の調整制御を行う。フィードバック量変更部は、膨張調整部による、膨張機構のフィードバック量を変更する。フィードバック量変更部は、圧縮機の回転数が閾値より小さくなった場合に、フィードバック量を、第1量から、第1量よりも小さな第2量に変更する。 The refrigeration apparatus according to the third aspect of the present invention is a refrigeration apparatus that uses R32 as a refrigerant. The refrigeration apparatus includes a compressor, a condenser, an expansion mechanism, an evaporator, a temperature detection unit, an expansion adjustment unit, and a feedback amount change unit. The compressor sucks low-pressure refrigerant from the suction flow path, compresses the refrigerant, and discharges high-pressure refrigerant. The condenser condenses the high-pressure refrigerant discharged from the compressor. The expansion mechanism expands the high-pressure refrigerant that has exited the condenser. The evaporator evaporates the refrigerant expanded by the expansion mechanism. The temperature detection unit detects the discharge temperature of the refrigerant discharged from the compressor. The expansion adjustment unit performs adjustment control of the expansion mechanism using the discharge temperature. The feedback amount changing unit changes the feedback amount of the expansion mechanism by the expansion adjusting unit. The feedback amount changing unit changes the feedback amount from the first amount to a second amount smaller than the first amount when the rotation speed of the compressor becomes smaller than the threshold value.
 ここでは、圧縮機の回転数が閾値よりも小さい場合に、膨張調整部による膨張機構のフィードバック量が、第1量から、第1量より小さな第2量に変更される。そのため、膨張調整部は、圧縮機の回転数が小さく、冷媒の循環量が小さい場合に、膨張機構を過度に調整することがない。その結果、圧縮機の回転数が小さい場合にも、制御ハンチングを起こすことなく、速やかに、かつ、適切に膨張機構を制御できる。 Here, when the rotation speed of the compressor is smaller than the threshold value, the feedback amount of the expansion mechanism by the expansion adjusting unit is changed from the first amount to the second amount smaller than the first amount. Therefore, the expansion adjusting unit does not excessively adjust the expansion mechanism when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
 特に、ここでは、圧縮機の回転数と閾値との比較結果に基づいて、膨張機構のフィードバック量が変更されるので、簡易な構成、及び、容易な処理で、圧縮機の回転数が小さい場合にも適切に膨張機構を制御できる。 In particular, here, since the feedback amount of the expansion mechanism is changed based on the comparison result between the rotation speed of the compressor and the threshold value, the rotation speed of the compressor is small with a simple configuration and easy processing. In addition, the expansion mechanism can be appropriately controlled.
 本発明の第4観点に係る冷凍装置は、第3観点に係る冷凍装置であって、フィードバック量変更部は、圧縮機の回転数が閾値以上になった場合に、フィードバック量を、第2量から、第1量になるよう変更する。 A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to the third aspect, in which the feedback amount changing unit changes the feedback amount to the second amount when the rotation speed of the compressor becomes equal to or greater than a threshold value. To change to the first amount.
 ここでは、圧縮機の回転数が閾値以上の場合に、膨張機構のフィードバック量が第2量より大きな第1量に変更される。そのため、冷媒の循環量が大きい、圧縮機の回転数が閾値以上の場合には、迅速に膨張機構の調整制御を行うことができる。 Here, when the rotation speed of the compressor is equal to or greater than the threshold value, the feedback amount of the expansion mechanism is changed to the first amount larger than the second amount. Therefore, when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or greater than the threshold value, the expansion mechanism can be quickly adjusted and controlled.
 本発明の第1観点に係る冷凍装置では、圧縮機の回転数が閾値よりも小さい場合に、膨張機構の調整制御の制御時間間隔が、第1時間間隔より長い第2時間間隔に変更される。そのため、膨張調整部は、圧縮機の回転数が小さく、冷媒の循環量が小さい場合にも、吐出温度を正確に把握した上で膨張機構の制御を行うことができる。その結果、圧縮機の回転数が小さい場合にも、制御ハンチングを起こすことなく、速やかに、かつ、適切に膨張機構を制御できる。 In the refrigeration apparatus according to the first aspect of the present invention, when the rotation speed of the compressor is smaller than the threshold value, the control time interval of the expansion mechanism adjustment control is changed to a second time interval longer than the first time interval. . Therefore, the expansion adjusting unit can control the expansion mechanism after accurately grasping the discharge temperature even when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
 本発明の第2観点に係る冷凍装置では、冷媒の循環量が大きい、圧縮機の回転数が閾値以上の場合には、迅速に膨張機構の調整制御を行うことができる。 In the refrigeration apparatus according to the second aspect of the present invention, when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or higher than the threshold value, the expansion mechanism can be adjusted and controlled quickly.
 本発明の第3観点に係る冷凍装置では、圧縮機の回転数が閾値よりも小さい場合に、膨張調整部による膨張機構のフィードバック量が、第1量から、第1量より小さな第2量に変更される。そのため、膨張調整部は、圧縮機の回転数が小さく、冷媒の循環量が小さい場合に、膨張機構を過度に調整することがない。その結果、圧縮機の回転数が小さい場合にも、制御ハンチングを起こすことなく、速やかに、かつ、適切に膨張機構を制御できる。 In the refrigeration apparatus according to the third aspect of the present invention, when the rotation speed of the compressor is smaller than the threshold value, the feedback amount of the expansion mechanism by the expansion adjustment unit is changed from the first amount to the second amount smaller than the first amount. Be changed. Therefore, the expansion adjusting unit does not excessively adjust the expansion mechanism when the rotation speed of the compressor is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed of the compressor is small, the expansion mechanism can be controlled promptly and appropriately without causing control hunting.
 本発明の第4観点に係る冷凍装置では、冷媒の循環量が大きい、圧縮機の回転数が閾値以上の場合には、迅速に膨張機構の調整制御を行うことができる。 In the refrigeration apparatus according to the fourth aspect of the present invention, when the refrigerant circulation amount is large and the rotation speed of the compressor is equal to or higher than the threshold value, the expansion mechanism can be adjusted and controlled quickly.
本発明の冷凍装置の第1実施形態に係る空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus which concerns on 1st Embodiment of the freezing apparatus of this invention. 図1の空気調和装置のブロック図である。It is a block diagram of the air conditioning apparatus of FIG. 図1の空気調和装置の、膨張調整部の制御時間間隔の変更処理について説明するためのフローチャートである。It is a flowchart for demonstrating the change process of the control time interval of an expansion | swelling adjustment part of the air conditioning apparatus of FIG. 本発明の冷凍装置の第2実施形態に係る空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus which concerns on 2nd Embodiment of the freezing apparatus of this invention. 図4の空気調和装置のブロック図である。It is a block diagram of the air conditioning apparatus of FIG. 図4の空気調和装置の、膨張調整部による室外膨張弁のフィードバック量の変更処理について説明するためのフローチャートである。It is a flowchart for demonstrating the change process of the feedback amount of the outdoor expansion valve by the expansion adjustment part of the air conditioning apparatus of FIG.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、下記の本発明の実施形態は、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment of this invention can be suitably changed in the range which does not deviate from the meaning of this invention.
 <第1実施形態>
 (1)全体構成
 本発明の第1実施形態に係る冷凍装置としての空気調和装置10は、冷房運転と暖房運転とを切り替えて運転可能な空気調和装置である。ただし、空気調和装置10は、冷房運転と暖房運転とを切り替えて運転可能でなくてもよく、冷房運転又は暖房運転のいずれかだけを実施可能な空気調和装置であってもよい。
<First Embodiment>
(1) Overall Configuration The air conditioner 10 as a refrigeration apparatus according to the first embodiment of the present invention is an air conditioner that can be operated by switching between a cooling operation and a heating operation. However, the air conditioner 10 may not be operable by switching between the cooling operation and the heating operation, and may be an air conditioner capable of performing only the cooling operation or the heating operation.
 空気調和装置10は、図1に示すように、主に、室内ユニット20と、室外ユニット30と、制御ユニット40と、を有する。 As shown in FIG. 1, the air conditioner 10 mainly includes an indoor unit 20, an outdoor unit 30, and a control unit 40.
 空気調和装置10は、R32が冷媒として充填された冷媒回路1を有する。冷媒回路1は、室内ユニット20に収容される室内側回路1aと、室外ユニット30に収容される室外側回路1bとを有する。室内側回路1aと室外側回路1bとは、液冷媒連絡配管71とガス冷媒連絡配管72とによって接続される。 The air conditioner 10 has a refrigerant circuit 1 filled with R32 as a refrigerant. The refrigerant circuit 1 has an indoor circuit 1 a accommodated in the indoor unit 20 and an outdoor circuit 1 b accommodated in the outdoor unit 30. The indoor side circuit 1a and the outdoor side circuit 1b are connected by a liquid refrigerant communication pipe 71 and a gas refrigerant communication pipe 72.
 (2)詳細構成
 (2-1)室内ユニット
 室内ユニット20は、空気調和の対象である室内に設置される。室内ユニット20は、室内熱交換器21と、室内ファン22と、を有する。
(2) Detailed Configuration (2-1) Indoor Unit The indoor unit 20 is installed in a room that is subject to air conditioning. The indoor unit 20 includes an indoor heat exchanger 21 and an indoor fan 22.
 室内熱交換器21は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器21は、冷房運転時には、後述する室外膨張弁36で膨張した冷媒を蒸発させる蒸発器として機能し、室内空気を冷却する。室内熱交換器21は、暖房運転時には、後述する圧縮機31から吐出された高圧の冷媒を凝縮させる凝縮器として機能し、室内空気を加熱する。室内熱交換器21の液側は液冷媒連絡配管71に接続され、室内熱交換器21のガス側はガス冷媒連絡配管72に接続される。 The indoor heat exchanger 21 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. During the cooling operation, the indoor heat exchanger 21 functions as an evaporator that evaporates refrigerant expanded by an outdoor expansion valve 36 described later, and cools indoor air. The indoor heat exchanger 21 functions as a condenser that condenses high-pressure refrigerant discharged from a compressor 31 described later during heating operation, and heats indoor air. The liquid side of the indoor heat exchanger 21 is connected to the liquid refrigerant communication pipe 71, and the gas side of the indoor heat exchanger 21 is connected to the gas refrigerant communication pipe 72.
 室内ファン22は、ファンモータにより駆動される。室内ファン22は、室内空気を取り込んで室内熱交換器21に送風し、室内熱交換器21を流れる冷媒と、室内空気との熱交換を促進する。 The indoor fan 22 is driven by a fan motor. The indoor fan 22 takes in indoor air and blows it to the indoor heat exchanger 21, and promotes heat exchange between the refrigerant flowing through the indoor heat exchanger 21 and the indoor air.
 (2-2)室外ユニット
 室外ユニット30は、主に、圧縮機31,四路切換弁33、室外熱交換器34、室外ファン35、室外膨張弁36、及び、吐出温度センサ51を有する。圧縮機31、四路切換弁33、室外熱交換器34、及び、室外膨張弁36は、冷媒配管により接続される。
(2-2) Outdoor Unit The outdoor unit 30 mainly includes a compressor 31, a four-way switching valve 33, an outdoor heat exchanger 34, an outdoor fan 35, an outdoor expansion valve 36, and a discharge temperature sensor 51. The compressor 31, the four-way switching valve 33, the outdoor heat exchanger 34, and the outdoor expansion valve 36 are connected by refrigerant piping.
 (2-2-1)冷媒配管による構成機器の接続
 室外ユニット30の構成機器の冷媒配管による接続について説明する。
(2-2-1) Connection of Components by Refrigerant Piping Connection of components by the refrigerant piping of the outdoor unit 30 will be described.
 圧縮機31の吸入口と四路切換弁33とは、吸入管81によって接続される。圧縮機31の吐出口と四路切換弁33とは、吐出管82によって接続される。四路切換弁33と室外熱交換器34のガス側とは、第1ガス冷媒管83によって接続される。室外熱交換器34と液冷媒連絡配管71とは、液冷媒管84によって接続される。液冷媒管84には、室外膨張弁36が設けられる。四路切換弁33とガス冷媒連絡配管72とは、第2ガス冷媒管85によって接続される。 The suction port of the compressor 31 and the four-way switching valve 33 are connected by a suction pipe 81. The discharge port of the compressor 31 and the four-way switching valve 33 are connected by a discharge pipe 82. The four-way switching valve 33 and the gas side of the outdoor heat exchanger 34 are connected by a first gas refrigerant pipe 83. The outdoor heat exchanger 34 and the liquid refrigerant communication pipe 71 are connected by a liquid refrigerant pipe 84. The liquid refrigerant pipe 84 is provided with an outdoor expansion valve 36. The four-way switching valve 33 and the gas refrigerant communication pipe 72 are connected by a second gas refrigerant pipe 85.
 (2-2-2)圧縮機
 圧縮機31は、モータで圧縮機構を駆動することで、吸入管81から低圧のガス冷媒を吸入し、圧縮機構で圧縮した高圧のガス冷媒を吐出管82に吐出する。圧縮機31は、ロータリ圧縮機であるが、これに限定されるものではなく、例えばスクロール圧縮機であってもよい。
(2-2-2) Compressor The compressor 31 drives the compression mechanism with a motor, thereby sucking low-pressure gas refrigerant from the suction pipe 81 and supplying the high-pressure gas refrigerant compressed by the compression mechanism to the discharge pipe 82. Discharge. Although the compressor 31 is a rotary compressor, it is not limited to this, For example, a scroll compressor may be sufficient.
 圧縮機31は、回転数N(圧縮機31のモータの回転数)を変更可能なインバータ式の圧縮機である。圧縮機31の動きは、後述する圧縮機制御部41bにより制御されている。圧縮機制御部41bは、空気調和の対象空間の温度(室温)と設定温度との乖離度や、吐出温度センサ51により検知された圧縮機31の吐出温度Tdに応じて、圧縮機31の回転数Nを制御する。 The compressor 31 is an inverter type compressor capable of changing the rotation speed N (the rotation speed of the motor of the compressor 31). The movement of the compressor 31 is controlled by a compressor control unit 41b described later. The compressor control unit 41 b rotates the compressor 31 in accordance with the degree of deviation between the temperature (room temperature) of the air conditioning target space and the set temperature, and the discharge temperature Td of the compressor 31 detected by the discharge temperature sensor 51. Control the number N.
 (2-2-3)四路切換弁
 四路切換弁33は、空気調和装置10の冷房運転と暖房運転との切換時に、冷媒の流れ方向を切り換える。冷房運転時には吐出管82と第1ガス冷媒管83とを接続するとともに吸入管81と第2ガス冷媒管85とを接続する(図1の実線参照)。一方、暖房運転時には吐出管82と第2ガス冷媒管85とを接続するとともに吸入管81と第1ガス冷媒管83とを接続する(図1の破線参照)。
(2-2-3) Four-way switching valve The four-way switching valve 33 switches the flow direction of the refrigerant when the air-conditioning apparatus 10 is switched between the cooling operation and the heating operation. During the cooling operation, the discharge pipe 82 and the first gas refrigerant pipe 83 are connected, and the suction pipe 81 and the second gas refrigerant pipe 85 are connected (see the solid line in FIG. 1). On the other hand, during the heating operation, the discharge pipe 82 and the second gas refrigerant pipe 85 are connected, and the suction pipe 81 and the first gas refrigerant pipe 83 are connected (see the broken line in FIG. 1).
 (2-2-4)室外熱交換器
 室外熱交換器34は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室外熱交換器34は、冷房運転時には、室外空気と冷媒の熱交換を行うことで、圧縮機31から吐出された高圧の冷媒を凝縮させる凝縮器として機能する。室外熱交換器34は、暖房運転時には、室外空気と冷媒の熱交換を行うことで、室外膨張弁36で膨張した冷媒を蒸発させる蒸発器として機能する。
(2-2-4) Outdoor Heat Exchanger The outdoor heat exchanger 34 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins. The outdoor heat exchanger 34 functions as a condenser that condenses the high-pressure refrigerant discharged from the compressor 31 by exchanging heat between the outdoor air and the refrigerant during the cooling operation. The outdoor heat exchanger 34 functions as an evaporator that evaporates the refrigerant expanded by the outdoor expansion valve 36 by exchanging heat between the outdoor air and the refrigerant during heating operation.
 (2-2-5)室外ファン
 室外ファン35は、ファンモータにより回転され、室外ユニット30内に室外空気を取り込む。取り込まれた室外空気は、室外熱交換器34を通過し、最終的に室外ユニット30外へ排出される。室外ファン35は、室外熱交換器34内を流れる冷媒と、室外空気との熱交換を促進する。
(2-2-5) Outdoor Fan The outdoor fan 35 is rotated by a fan motor and takes outdoor air into the outdoor unit 30. The taken outdoor air passes through the outdoor heat exchanger 34 and is finally discharged out of the outdoor unit 30. The outdoor fan 35 promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 34 and outdoor air.
 (2-2-6)室外膨張弁
 室外膨張弁36は、膨張機構の一例であり、冷媒回路1内を流れる冷媒の圧力や流量の調節を行うために設けられた開度可変の電動膨張弁である。冷房運転時には、室外膨張弁36は、凝縮器として機能する室外熱交換器34から、蒸発器として機能する室内熱交換器21へと流れる冷媒を膨張させる。暖房運転時には、室外膨張弁36は、凝縮器として機能する室内熱交換器21から、蒸発器として機能する室外熱交換器34へと流れる冷媒を膨張させる。室外膨張弁36の開度は、後述する制御ユニット40の膨張調整部41aにより調整制御される。
(2-2-6) Outdoor Expansion Valve The outdoor expansion valve 36 is an example of an expansion mechanism, and an electric expansion valve with a variable opening provided for adjusting the pressure and flow rate of the refrigerant flowing in the refrigerant circuit 1. It is. During the cooling operation, the outdoor expansion valve 36 expands the refrigerant flowing from the outdoor heat exchanger 34 that functions as a condenser to the indoor heat exchanger 21 that functions as an evaporator. During the heating operation, the outdoor expansion valve 36 expands the refrigerant flowing from the indoor heat exchanger 21 that functions as a condenser to the outdoor heat exchanger 34 that functions as an evaporator. The opening degree of the outdoor expansion valve 36 is adjusted and controlled by an expansion adjusting unit 41a of the control unit 40 described later.
 (2-2-7)吐出温度センサ
 吐出温度センサ51は、温度検出部の一例である。吐出温度センサ51は、圧縮機31から吐出される冷媒の温度(吐出温度Td)を検出するためのサーミスタである。吐出温度センサ51は、圧縮機31の外部、より具体的には、吐出管82の、圧縮機31の吐出口付近に設けられる。なお、吐出温度センサ51の取り付け位置は、これに限定されるものではない。吐出温度センサ51は、圧縮機31から吐出される冷媒の温度を把握する上で適切な位置に取り付けられればよい。吐出温度センサ51で検出された吐出温度Tdは、圧縮機31の回転数Nの制御や、室外膨張弁36の開度の調整制御のために用いられる。
(2-2-7) Discharge Temperature Sensor The discharge temperature sensor 51 is an example of a temperature detection unit. The discharge temperature sensor 51 is a thermistor for detecting the temperature of the refrigerant discharged from the compressor 31 (discharge temperature Td). The discharge temperature sensor 51 is provided outside the compressor 31, more specifically, near the discharge port of the compressor 31 in the discharge pipe 82. The attachment position of the discharge temperature sensor 51 is not limited to this. The discharge temperature sensor 51 may be attached to an appropriate position for grasping the temperature of the refrigerant discharged from the compressor 31. The discharge temperature Td detected by the discharge temperature sensor 51 is used for control of the rotational speed N of the compressor 31 and adjustment control of the opening degree of the outdoor expansion valve 36.
 (2-3)制御ユニット
 制御ユニット40は、空気調和装置10の動きを制御する。図2に、制御ユニット40を含む空気調和装置10のブロック図を示す。
(2-3) Control Unit The control unit 40 controls the movement of the air conditioner 10. In FIG. 2, the block diagram of the air conditioning apparatus 10 containing the control unit 40 is shown.
 制御ユニット40は、マイクロコンピュータ等からなる制御部41と、RAMやROM等のメモリから成る記憶部42と、入力部43(リモコン)と、を有する。制御ユニット40は、図2のように、室内ユニット20及び室外ユニット30の各構成(圧縮機31、四路切換弁33、室外ファン35、室外膨張弁36、室内ファン22、吐出温度センサ51等)と電気的に接続されている。 The control unit 40 includes a control unit 41 formed of a microcomputer or the like, a storage unit 42 formed of a memory such as a RAM or a ROM, and an input unit 43 (remote control). As shown in FIG. 2, the control unit 40 includes components of the indoor unit 20 and the outdoor unit 30 (compressor 31, four-way switching valve 33, outdoor fan 35, outdoor expansion valve 36, indoor fan 22, discharge temperature sensor 51, etc. ) And are electrically connected.
 制御部41は、記憶部42に記憶されたプログラムを読み出して実行することで、空気調和装置10の制御を行う。制御部41は、室内ユニット20の操作を行うために、入力部43との間で制御信号のやり取りを行う。そして、制御部41は、入力部43への入力(空気調和装置10の運転/停止、運転モード(冷房モード/暖房モード)、設定温度等)に応じて、空気調和装置10の運転を制御する。制御部41は、空気調和装置10の運転条件や運転状態に応じて、室内ユニット20及び室外ユニット30の各種機器を制御する。 The control unit 41 controls the air conditioner 10 by reading and executing the program stored in the storage unit 42. The control unit 41 exchanges control signals with the input unit 43 in order to operate the indoor unit 20. And the control part 41 controls the driving | operation of the air conditioning apparatus 10 according to the input (The operation / stop of the air conditioning apparatus 10, an operation mode (cooling mode / heating mode), preset temperature, etc.) to the input part 43. . The control unit 41 controls various devices of the indoor unit 20 and the outdoor unit 30 according to the operating conditions and the operating state of the air conditioner 10.
 なお、制御部41は、機能部として、膨張調整部41a、圧縮機制御部41b、及び時間間隔変更部41cを有する。膨張調整部41a、圧縮機制御部41b、及び時間間隔変更部41cについては、後述する。 In addition, the control part 41 has the expansion adjustment part 41a, the compressor control part 41b, and the time interval change part 41c as a function part. The expansion adjustment unit 41a, the compressor control unit 41b, and the time interval change unit 41c will be described later.
 記憶部42には、制御部41で実行されるためのプログラムや各種情報が記憶される。記憶部42は、時間間隔Δtを記憶する時間間隔記憶領域42aを有する。時間間隔記憶領域42aについては、後述する。 The storage unit 42 stores programs to be executed by the control unit 41 and various information. The storage unit 42 has a time interval storage area 42a for storing the time interval Δt. The time interval storage area 42a will be described later.
 (2-3-1)制御部
 (2-3-1-1)膨張調整部
 膨張調整部41aは、空気調和装置10の運転条件や、運転状態等に応じて、室外膨張弁36の開度を調整制御する。
(2-3-1) Control Unit (2-3-1-1) Expansion Adjusting Unit The expansion adjusting unit 41a opens the opening of the outdoor expansion valve 36 in accordance with the operating conditions and operating conditions of the air conditioner 10. Adjust the control.
 膨張調整部41aは、吐出温度センサ51により計測された吐出温度Tdの値を、室外膨張弁36の開度を調整制御するためのパラメータの1つとして用いる。具体的には、膨張調整部41aは、吐出温度Tdが目標温度よりも低い場合には、室外膨張弁36の開度を小さくする制御を行う。一方、膨張調整部41aは、吐出温度Tdが目標温度より高い場合には、室外膨張弁36の開度を大きくする制御を行う。 The expansion adjusting unit 41a uses the value of the discharge temperature Td measured by the discharge temperature sensor 51 as one of the parameters for adjusting and controlling the opening degree of the outdoor expansion valve 36. Specifically, when the discharge temperature Td is lower than the target temperature, the expansion adjusting unit 41a performs control to reduce the opening degree of the outdoor expansion valve 36. On the other hand, when the discharge temperature Td is higher than the target temperature, the expansion adjusting unit 41a performs control to increase the opening degree of the outdoor expansion valve 36.
 膨張調整部41aの、吐出温度Tdをパラメータとした、室外膨張弁36の開度の調整制御は、制御時間間隔毎に実行される。膨張調整部41aの制御時間間隔は、記憶部42の時間間隔記憶領域42aに記憶された時間間隔Δtである。 The adjustment control of the opening degree of the outdoor expansion valve 36 using the discharge temperature Td as a parameter of the expansion adjusting unit 41a is executed at every control time interval. The control time interval of the expansion adjustment unit 41a is the time interval Δt stored in the time interval storage area 42a of the storage unit 42.
 (2-3-1-2)圧縮機制御部
 圧縮機制御部41bは、空気調和装置10の運転条件や、運転状態等に応じて、圧縮機31の起動/停止と、圧縮機31の回転数N(圧縮機31のモータの回転数N)を決定し、制御する。圧縮機制御部41bは、例えば、空気調和装置10の空調対象である空間の温度(室温)と設定温度との乖離度に応じて、圧縮機31の回転数Nを決定し、その回転数Nになるように圧縮機31を制御する。
(2-3-1-2) Compressor Control Unit The compressor control unit 41b starts / stops the compressor 31 and rotates the compressor 31 according to the operating conditions, operating conditions, etc. of the air conditioner 10. The number N (the rotational speed N of the motor of the compressor 31) is determined and controlled. For example, the compressor control unit 41b determines the rotation speed N of the compressor 31 according to the degree of divergence between the temperature (room temperature) of the space to be air-conditioned of the air conditioning apparatus 10 and the set temperature, and the rotation speed N The compressor 31 is controlled so that
 (2-3-1-3)制御時間変更部
 時間間隔変更部41cは、時間間隔記憶領域42aに記憶された時間間隔Δtの値を書き換えることで、膨張調整部41aの制御時間間隔を変更する。時間間隔変更部41cによる、膨張調整部41aの制御時間間隔の変更については後述する。
(2-3-1-3) Control time changing unit The time interval changing unit 41c changes the control time interval of the expansion adjusting unit 41a by rewriting the value of the time interval Δt stored in the time interval storage area 42a. . The change of the control time interval of the expansion adjusting unit 41a by the time interval changing unit 41c will be described later.
 (2-3-2)記憶部
 (2-3-2-1)時間間隔記憶領域
 時間間隔記憶領域42aには、膨張調整部41aが、圧縮機31の吐出温度Tdに応じて、室外膨張弁36の開度の調整制御を行う制御時間間隔として、時間間隔Δtが記憶されている。
(2-3-2) Storage Unit (2-3-2-1) Time Interval Storage Area In the time interval storage area 42a, the expansion adjusting unit 41a has an outdoor expansion valve according to the discharge temperature Td of the compressor 31. A time interval Δt is stored as a control time interval for performing the adjustment control of the opening degree of 36.
 時間間隔記憶領域42aの時間間隔Δtは、時間間隔変更部41cにより変更されることで、第1時間間隔A1又は第2時間間隔A2に設定される。第2時間間隔A2は、第1時間間隔より長い時間間隔である。例えば、第1時間間隔A1は10秒で、第2時間間隔A2は30秒である。 The time interval Δt in the time interval storage area 42a is changed to the first time interval A1 or the second time interval A2 by being changed by the time interval changing unit 41c. The second time interval A2 is a time interval longer than the first time interval. For example, the first time interval A1 is 10 seconds and the second time interval A2 is 30 seconds.
 (2-3-3)入力部
 入力部43は、空気調和装置10のリモコンである。入力部43は、空気調和装置10のユーザから各種入力を受け付ける。入力部43がユーザから受け付ける各種入力には、空気調和装置10の運転/停止命令、空気調和装置10の運転モード(暖房モード/冷房モード)、空気調和装置10の設定温度等が含まれる。
(2-3-3) Input Unit The input unit 43 is a remote controller for the air conditioning apparatus 10. The input unit 43 receives various inputs from the user of the air conditioning apparatus 10. Various inputs received from the user by the input unit 43 include an operation / stop command for the air conditioner 10, an operation mode (heating mode / cooling mode) of the air conditioner 10, a set temperature of the air conditioner 10, and the like.
 (3)膨張調整部の制御時間間隔の変更処理
 以下に、膨張調整部41aの制御時間間隔(膨張調整部41aが、圧縮機31の吐出温度Tdに応じて、室外膨張弁36の調整制御を行う時間間隔)の変更処理について、図3のフローチャートを用いて説明する。室外膨張弁36の制御時間間隔の変更処理は、空気調和装置10の運転中に繰り返し実行される。
(3) Change processing of control time interval of expansion adjusting unit Hereinafter, control time interval of the expansion adjusting unit 41a (the expansion adjusting unit 41a performs adjustment control of the outdoor expansion valve 36 according to the discharge temperature Td of the compressor 31). (Time interval) to be changed will be described with reference to the flowchart of FIG. The process of changing the control time interval of the outdoor expansion valve 36 is repeatedly executed during operation of the air conditioner 10.
 ステップS1では、時間間隔変更部41cが、圧縮機制御部41bから、圧縮機31の回転数Nを取得する。その後ステップS2に進む。 In step S1, the time interval changing unit 41c acquires the rotational speed N of the compressor 31 from the compressor control unit 41b. Thereafter, the process proceeds to step S2.
 ステップS2では、時間間隔変更部41cは、ステップS1で取得された圧縮機31の回転数Nが、閾値N1より小さいか否かを判定する。 In step S2, the time interval changing unit 41c determines whether or not the rotation speed N of the compressor 31 acquired in step S1 is smaller than the threshold value N1.
 なお、閾値N1は、圧縮機31の回転数Nを閾値N1として運転した場合に、室外膨張弁36の開度の調整制御を第1時間間隔A1で行っても、制御ハンチングを起こすことが無く、かつ、できるだけ小さな値になるように決定されている。なお、閾値N1は、空気調和装置10の実機試験結果等に基づいて決定される。 Note that the threshold value N1 does not cause control hunting even when the adjustment of the opening degree of the outdoor expansion valve 36 is performed at the first time interval A1 when the rotation speed N of the compressor 31 is operated as the threshold value N1. And, it is determined to be as small as possible. The threshold value N1 is determined based on actual machine test results of the air conditioner 10 and the like.
 ステップS2で、圧縮機31の回転数Nが閾値N1より小さいと判定された場合には、ステップS3に進む。一方、ステップS2で、圧縮機31の回転数Nが閾値N1以上と判定された場合には、ステップS5に進む。 If it is determined in step S2 that the rotational speed N of the compressor 31 is smaller than the threshold value N1, the process proceeds to step S3. On the other hand, if it is determined in step S2 that the rotation speed N of the compressor 31 is greater than or equal to the threshold value N1, the process proceeds to step S5.
 ステップS3では、時間間隔変更部41cは、時間間隔記憶領域42aに記憶されている時間間隔Δtが第1時間間隔A1であるか否かを判定する。時間間隔記憶領域42aに記憶されている時間間隔Δtが、第1時間間隔A1であると判定された場合には、ステップS4へと進む。一方、時間間隔記憶領域42aに記憶されている時間間隔Δtが、第1時間間隔A1ではない(第2時間間隔A2である)と判定された場合には、処理を終了する。 In step S3, the time interval changing unit 41c determines whether or not the time interval Δt stored in the time interval storage area 42a is the first time interval A1. When it is determined that the time interval Δt stored in the time interval storage area 42a is the first time interval A1, the process proceeds to step S4. On the other hand, when it is determined that the time interval Δt stored in the time interval storage area 42a is not the first time interval A1 (the second time interval A2), the process is terminated.
 ステップS4では、時間間隔変更部41cは、時間間隔記憶領域42aに記憶されている時間間隔Δtを第2時間間隔A2に変更する。その後、処理を終了する。 In step S4, the time interval changing unit 41c changes the time interval Δt stored in the time interval storage area 42a to the second time interval A2. Thereafter, the process ends.
 ステップS5では、時間間隔変更部41cは、時間間隔記憶領域42aに記憶されている時間間隔Δtが第2時間間隔A2であるか否かを判定する。時間間隔記憶領域42aに記憶されている時間間隔Δtが、第2時間間隔A2であると判定された場合には、ステップS6へと進む。一方、時間間隔記憶領域42aに記憶されている時間間隔Δtが、第2時間間隔A2ではない(第1時間間隔A1である)と判定された場合には、処理を終了する。 In step S5, the time interval changing unit 41c determines whether or not the time interval Δt stored in the time interval storage area 42a is the second time interval A2. When it is determined that the time interval Δt stored in the time interval storage area 42a is the second time interval A2, the process proceeds to step S6. On the other hand, when it is determined that the time interval Δt stored in the time interval storage area 42a is not the second time interval A2 (the first time interval A1), the process is terminated.
 ステップS6では、時間間隔変更部41cは、時間間隔記憶領域42aに記憶されている時間間隔Δtを第1時間間隔A1に変更する。その後、処理を終了する。 In step S6, the time interval changing unit 41c changes the time interval Δt stored in the time interval storage area 42a to the first time interval A1. Thereafter, the process ends.
 以上の処理を行うことで、圧縮機31の回転数Nが閾値N1より小さくなった場合には、膨張調整部41aが、吐出温度Tdに応じて室外膨張弁36を調整制御する制御時間間隔が、第2時間間隔A2となる。つまり、時間間隔変更部41cは、圧縮機31の回転数Nが、閾値N1以上の値から、閾値N1より小さな値になった場合に、膨張調整部41aの制御時間間隔を、第1時間間隔A1から、第1時間間隔A1よりも長い第2時間間隔A2に変更する。 By performing the above processing, when the rotation speed N of the compressor 31 becomes smaller than the threshold value N1, the control time interval for adjusting and controlling the outdoor expansion valve 36 according to the discharge temperature Td is adjusted by the expansion adjusting unit 41a. The second time interval A2. That is, the time interval changing unit 41c sets the control time interval of the expansion adjusting unit 41a to the first time interval when the rotation speed N of the compressor 31 is smaller than the threshold value N1 from a value equal to or greater than the threshold value N1. A1 is changed to a second time interval A2 that is longer than the first time interval A1.
 一方、圧縮機31の回転数Nが閾値N1以上になった場合には、膨張調整部41aが、圧縮機31の吐出温度Tdに応じて室外膨張弁36を調整制御する制御時間間隔が、第1時間間隔A1となる。つまり、時間間隔変更部41cは、圧縮機の回転数Nが、閾値N1より小さな値から、閾値N1以上になった場合に、膨張調整部41aの制御時間間隔を、第2時間間隔A2から、第1時間間隔A1に変更する。 On the other hand, when the rotation speed N of the compressor 31 is equal to or higher than the threshold value N1, the control time interval during which the expansion adjustment unit 41a adjusts and controls the outdoor expansion valve 36 according to the discharge temperature Td of the compressor 31 is the first time. One hour interval A1. That is, the time interval changing unit 41c changes the control time interval of the expansion adjusting unit 41a from the second time interval A2 when the rotation speed N of the compressor becomes a threshold value N1 or more from a value smaller than the threshold value N1. Change to the first time interval A1.
 これにより、圧縮機31の低回転数領域(回転数N<閾値N1)では、制御ハンチングを防止することができ、圧縮機31の回転数Nが比較的大きい場合(回転数N≧閾値N1の場合)には、迅速に室外膨張弁36の開度を調整制御することができる。 As a result, control hunting can be prevented in the low rotation speed region (rotation speed N <threshold value N1) of the compressor 31, and when the rotation speed N of the compressor 31 is relatively large (revolution speed N ≧ threshold value N1). Case), the opening degree of the outdoor expansion valve 36 can be adjusted and controlled quickly.
 特に、ここでは、圧縮機31の回転数Nを閾値N1と比較して、その比較結果に応じて制御時間間隔を2つの値(第1時間間隔A1及び第2時間間隔A2)の間で切り替えるだけなので、簡易な構成及び容易な処理で、上記の効果を実現できる。 In particular, here, the rotation speed N of the compressor 31 is compared with the threshold value N1, and the control time interval is switched between two values (first time interval A1 and second time interval A2) according to the comparison result. Therefore, the above effect can be realized with a simple configuration and easy processing.
 (4)特徴
 (4-1)
 本実施形態の空気調和装置10は、冷媒としてR32を使う冷凍装置である。空気調和装置10は、圧縮機31と、凝縮器(室内熱交換器21又は室外熱交換器34)と、膨張機構としての室外膨張弁36と、蒸発器(室外熱交換器34又は室内熱交換器21)と、温度検出部としての吐出温度センサ51と、膨張調整部41aと、時間間隔変更部41cと、を備える。圧縮機31は、吸入管81から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器(室内熱交換器21又は室外熱交換器34)は、圧縮機31から吐出された高圧の冷媒を凝縮させる。室外膨張弁36は、凝縮器(室内熱交換器21又は室外熱交換器34)を出た高圧冷媒を膨張させる。蒸発器(室外熱交換器34又は室内熱交換器21)は、室外膨張弁36で膨張した冷媒を蒸発させる。吐出温度センサ51は、圧縮機31から吐出された冷媒の吐出温度Tdを検出する。膨張調整部41aは、吐出温度Tdを用いて、室外膨張弁36の調整制御を行う。時間間隔変更部41cは、膨張調整部41aの制御時間間隔を変更する。時間間隔変更部41cは、圧縮機31の回転数Nが閾値N1より小さくなった場合に、制御時間間隔を、第1時間間隔A1から、第1時間間隔A1よりも長い第2時間間隔A2に変更する。
(4) Features (4-1)
The air conditioning apparatus 10 of the present embodiment is a refrigeration apparatus that uses R32 as a refrigerant. The air conditioner 10 includes a compressor 31, a condenser (indoor heat exchanger 21 or outdoor heat exchanger 34), an outdoor expansion valve 36 as an expansion mechanism, and an evaporator (outdoor heat exchanger 34 or indoor heat exchange). 21), a discharge temperature sensor 51 as a temperature detecting unit, an expansion adjusting unit 41a, and a time interval changing unit 41c. The compressor 31 sucks the low-pressure refrigerant from the suction pipe 81, compresses the refrigerant, and discharges the high-pressure refrigerant. The condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) condenses the high-pressure refrigerant discharged from the compressor 31. The outdoor expansion valve 36 expands the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34). The evaporator (the outdoor heat exchanger 34 or the indoor heat exchanger 21) evaporates the refrigerant expanded by the outdoor expansion valve 36. The discharge temperature sensor 51 detects the discharge temperature Td of the refrigerant discharged from the compressor 31. The expansion adjusting unit 41a performs adjustment control of the outdoor expansion valve 36 using the discharge temperature Td. The time interval changing unit 41c changes the control time interval of the expansion adjusting unit 41a. The time interval changing unit 41c changes the control time interval from the first time interval A1 to the second time interval A2 longer than the first time interval A1 when the rotation speed N of the compressor 31 becomes smaller than the threshold value N1. change.
 ここでは、圧縮機31の回転数Nが閾値N1よりも小さい場合に、室外膨張弁36の調整制御の制御時間間隔が、第1時間間隔A1より長い第2時間間隔A2に変更される。そのため、膨張調整部41aは、圧縮機31の回転数が小さく、冷媒の循環量が小さい場合にも、吐出温度Tdを正確に把握した上で室外膨張弁36の制御を行うことができる。その結果、圧縮機31の回転数Nが小さい場合にも、制御ハンチングを起こすことなく、速やかに、かつ、適切に室外膨張弁36を制御できる。 Here, when the rotation speed N of the compressor 31 is smaller than the threshold value N1, the control time interval of the adjustment control of the outdoor expansion valve 36 is changed to the second time interval A2 longer than the first time interval A1. Therefore, the expansion adjusting unit 41a can control the outdoor expansion valve 36 while accurately grasping the discharge temperature Td even when the rotation speed of the compressor 31 is small and the circulation amount of the refrigerant is small. As a result, even when the rotation speed N of the compressor 31 is small, the outdoor expansion valve 36 can be controlled promptly and appropriately without causing control hunting.
 特に、ここでは、圧縮機31の回転数Nと閾値N1との比較結果に基づいて、制御時間間隔が第1時間間隔A1から第2時間間隔A2に変更されるので、簡易な構成、及び、容易な処理で、圧縮機31の回転数Nが小さい場合にも、速やか、かつ、適切に室外膨張弁36を制御できる。 In particular, since the control time interval is changed from the first time interval A1 to the second time interval A2 based on the comparison result between the rotation speed N of the compressor 31 and the threshold value N1, here, a simple configuration, and Even when the rotation speed N of the compressor 31 is small, the outdoor expansion valve 36 can be quickly and appropriately controlled by an easy process.
 (4-2)
 本実施形態の空気調和装置10では、時間間隔変更部41cは、圧縮機31の回転数Nが閾値N1以上になった場合に、制御時間間隔を、第2時間間隔A2から、第1時間間隔A1に変更する。
(4-2)
In the air conditioner 10 of the present embodiment, the time interval changing unit 41c changes the control time interval from the second time interval A2 to the first time interval when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1. Change to A1.
 ここでは、圧縮機31の回転数Nが閾値N1以上の場合に、室外膨張弁36の調整制御の制御時間間隔が第2時間間隔A2より短い第1時間間隔A1に変更される。そのため、冷媒の循環量が大きい、圧縮機31の回転数Nが閾値N1以上の場合には、迅速に室外膨張弁36の調整制御を行うことができる。 Here, when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1, the control time interval of the adjustment control of the outdoor expansion valve 36 is changed to the first time interval A1 shorter than the second time interval A2. Therefore, when the refrigerant circulation amount is large and the rotation speed N of the compressor 31 is greater than or equal to the threshold value N1, adjustment control of the outdoor expansion valve 36 can be performed quickly.
 (5)変形例
 以下に本実施形態の変形例を示す。なお、複数の変形例を適宜組み合わせてもよい。
(5) Modifications Modifications of the present embodiment are shown below. A plurality of modified examples may be appropriately combined.
 (5-1)変形例1A
 上記実施形態では、室内ユニット20は1台であるが、複数台であっても構わない。また、複数の室内ユニットには、それぞれ膨張機構として室内膨張弁が設けられていてもよい。そして、膨張調整部41aは、複数の膨張機構(室外膨張弁及び室内膨張弁)の調整制御を、時間間隔記憶領域42aに記憶された時間間隔Δt(圧縮機31の回転数Nによって変更される時間間隔Δt)を制御時間間隔として、実行するものであってもよい。
(5-1) Modification 1A
In the above embodiment, the number of indoor units 20 is one, but a plurality of units may be used. The plurality of indoor units may each be provided with an indoor expansion valve as an expansion mechanism. Then, the expansion adjusting unit 41a changes the adjustment control of the plurality of expansion mechanisms (outdoor expansion valve and indoor expansion valve) according to the time interval Δt (the rotation speed N of the compressor 31) stored in the time interval storage area 42a. The time interval Δt) may be executed as the control time interval.
 (5-2)変形例1B
 上記実施形態では、膨張機構は室外膨張弁36であるが、これに限定されるものではない。膨張機構は、凝縮器(室内熱交換器21又は室外熱交換器34)を出た高圧の冷媒を膨張させ、冷媒の圧力や流量の調節を行うものであればよい。膨張調整部41aも、室外膨張弁36の開度を調整するものに限定されるものではなく、膨張機構による冷媒の圧力変化や流量調節を調整制御できるものであればよい。例えば、膨張機構は複数の特性の異なるキャピラリチューブであり、膨張調整部は、電動弁を制御することで、冷媒の流れるキャピラリチューブを変更するものであってもよい。
(5-2) Modification 1B
In the said embodiment, although an expansion mechanism is the outdoor expansion valve 36, it is not limited to this. The expansion mechanism only needs to expand the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) and adjust the pressure and flow rate of the refrigerant. The expansion adjusting unit 41a is not limited to the one that adjusts the opening degree of the outdoor expansion valve 36, and may be any unit that can adjust and control refrigerant pressure change and flow rate adjustment by the expansion mechanism. For example, the expansion mechanism may be a plurality of capillary tubes having different characteristics, and the expansion adjustment unit may change the capillary tube through which the refrigerant flows by controlling an electric valve.
 (5-3)変形例1C
 上記実施形態では、圧縮機31の回転数Nが1の閾値N1より小さいか否かで、膨張調整部41aの制御時間間隔が第1時間間隔A1と第2時間間隔A2との間で変更されるが、これに限定されるものではない。閾値は複数用意され、各閾値より小さいか否かで、制御時間間隔が多段階で変更されてもよい。
(5-3) Modification 1C
In the above embodiment, the control time interval of the expansion adjustment unit 41a is changed between the first time interval A1 and the second time interval A2 depending on whether or not the rotational speed N of the compressor 31 is smaller than the threshold value N1 of 1. However, the present invention is not limited to this. A plurality of threshold values are prepared, and the control time interval may be changed in multiple stages depending on whether or not the threshold value is smaller than each threshold value.
 <第2実施形態>
 (1)全体構成
 本発明の第2実施形態に係る冷凍装置としての空気調和装置110は、制御ユニット140(図4参照)を除き、第1実施形態の空気調和装置10と同様である。
Second Embodiment
(1) Overall Configuration An air conditioner 110 as a refrigeration apparatus according to the second embodiment of the present invention is the same as the air conditioner 10 of the first embodiment except for a control unit 140 (see FIG. 4).
 (2)詳細構成
 上記のように、空気調和装置110は、制御ユニット140を除き空気調和装置10と同様であるため、制御ユニット140以外の説明を省略する。
(2) Detailed configuration As described above, the air-conditioning apparatus 110 is the same as the air-conditioning apparatus 10 except for the control unit 140.
 (2-1)制御ユニット
 制御ユニット140は、空気調和装置110の動きを制御する。図5に、制御ユニット140を含む空気調和装置110のブロック図を示す。
(2-1) Control Unit The control unit 140 controls the movement of the air conditioner 110. FIG. 5 shows a block diagram of the air conditioner 110 including the control unit 140.
 制御ユニット140は、マイクロコンピュータ等からなる制御部141と、RAMやROM等のメモリから成る記憶部142と、入力部43(リモコン)と、を有する。制御ユニット140は、図5のように、室内ユニット20及び室外ユニット30の各構成(圧縮機31、四路切換弁33、室外ファン35、室外膨張弁36、室内ファン22、吐出温度センサ51等)と電気的に接続されている。 The control unit 140 includes a control unit 141 formed of a microcomputer or the like, a storage unit 142 formed of a memory such as a RAM or a ROM, and an input unit 43 (remote control). As shown in FIG. 5, the control unit 140 includes components of the indoor unit 20 and the outdoor unit 30 (compressor 31, four-way switching valve 33, outdoor fan 35, outdoor expansion valve 36, indoor fan 22, discharge temperature sensor 51, etc. ) And are electrically connected.
 制御部141は、記憶部142に記憶されたプログラムを読み出して実行することで、空気調和装置110の制御を行う。制御部141は、室内ユニット20の操作を行うために、入力部43との間で制御信号のやり取りを行う。そして、制御部141は、入力部43への入力(空気調和装置110の運転/停止、運転モード(冷房モード/暖房モード)、設定温度等)に応じて、空気調和装置110の運転を制御する。制御部141は、空気調和装置110の運転条件や運転状態に応じて、室内ユニット20及び室外ユニット30の各種機器を制御する。 The control part 141 controls the air conditioning apparatus 110 by reading and executing the program memorize | stored in the memory | storage part 142. FIG. The control unit 141 exchanges control signals with the input unit 43 in order to operate the indoor unit 20. And the control part 141 controls the driving | operation of the air conditioning apparatus 110 according to the input (The operation / stop of the air conditioning apparatus 110, an operation mode (cooling mode / heating mode), preset temperature etc.) to the input part 43. . The control unit 141 controls various devices of the indoor unit 20 and the outdoor unit 30 according to the operating conditions and the operating state of the air conditioner 110.
 制御部141は、機能部として、膨張調整部141a、圧縮機制御部41b、及びフィードバック量変更部141dを有する。膨張調整部141a及びフィードバック量変更部141dについては後述する。圧縮機制御部41bについては、第1実施形態と同様であるので、説明は省略する。 The control unit 141 includes an expansion adjustment unit 141a, a compressor control unit 41b, and a feedback amount changing unit 141d as functional units. The expansion adjusting unit 141a and the feedback amount changing unit 141d will be described later. Since the compressor control unit 41b is the same as that of the first embodiment, the description thereof is omitted.
 記憶部142には、制御部141で実行されるためのプログラムや各種情報が記憶される。記憶部142は、フィードバック量ΔFを記憶するフィードバック量記憶領域142bを有する。なお、ここでのフィードバック量ΔFは、膨張調整部141aが圧縮機31の吐出温度Tdを用いて室外膨張弁36の開度の調整制御を行う際に、膨張調整部141aが1回の調整制御で調整する、室外膨張弁36の開度の調整量[%]である。フィードバック量ΔFがどのように用いられるかについては後述する。 The storage unit 142 stores a program to be executed by the control unit 141 and various types of information. The storage unit 142 includes a feedback amount storage area 142b that stores the feedback amount ΔF. Here, the feedback amount ΔF is adjusted once by the expansion adjusting unit 141a when the expansion adjusting unit 141a performs the adjustment control of the opening degree of the outdoor expansion valve 36 using the discharge temperature Td of the compressor 31. It is the adjustment amount [%] of the opening degree of the outdoor expansion valve 36 that is adjusted in the above. How the feedback amount ΔF is used will be described later.
 (2-1-1)制御部
 (2-1-1-1)膨張調整部
 膨張調整部141aは、空気調和装置110の運転条件や、運転状態等に応じて、室外膨張弁36の開度を調整制御する。
(2-1-1) Control Unit (2-1-1-1) Expansion Adjustment Unit The expansion adjustment unit 141a opens the opening of the outdoor expansion valve 36 in accordance with the operating conditions and operating conditions of the air conditioner 110. Adjust the control.
 膨張調整部141aは、吐出温度センサ51により計測された吐出温度Tdの値を、室外膨張弁36の開度を調整制御するためのパラメータの1つとして用いる。具体的には、膨張調整部141aは、吐出温度Tdが目標温度よりも低い場合には、室外膨張弁36の開度を小さくする制御を行う。一方、膨張調整部141aは、吐出温度Tdが目標温度より高い場合には、室外膨張弁36の開度を大きくする制御を行う。なお、膨張調整部141aは、吐出温度Tdを用いて室外膨張弁36の開度の調整制御を行う際、1回の調整制御あたり、フィードバック量記憶領域142bに記憶されたフィードバック量ΔFだけ、室外膨張弁36の開度を調整する。つまり、膨張調整部141aは、吐出温度Tdが目標温度よりも低い場合には、室外膨張弁36の開度をフィードバック量ΔFだけ小さくする制御を行い、吐出温度Tdが目標温度より高い場合には、室外膨張弁36の開度をフィードバック量ΔFだけ大きくする制御を行う。 The expansion adjusting unit 141a uses the value of the discharge temperature Td measured by the discharge temperature sensor 51 as one of parameters for adjusting and controlling the opening degree of the outdoor expansion valve 36. Specifically, the expansion adjusting unit 141a performs control to reduce the opening degree of the outdoor expansion valve 36 when the discharge temperature Td is lower than the target temperature. On the other hand, when the discharge temperature Td is higher than the target temperature, the expansion adjusting unit 141a performs control to increase the opening degree of the outdoor expansion valve 36. In addition, when performing the adjustment control of the opening degree of the outdoor expansion valve 36 by using the discharge temperature Td, the expansion adjustment unit 141a increases the outdoor amount by the feedback amount ΔF stored in the feedback amount storage area 142b per one adjustment control. The opening degree of the expansion valve 36 is adjusted. That is, when the discharge temperature Td is lower than the target temperature, the expansion adjusting unit 141a performs control to decrease the opening degree of the outdoor expansion valve 36 by the feedback amount ΔF, and when the discharge temperature Td is higher than the target temperature. Then, control is performed to increase the opening of the outdoor expansion valve 36 by the feedback amount ΔF.
 膨張調整部141aの、吐出温度Tdに基づく室外膨張弁36の開度調整は、一定の制御時間間隔毎(例えば10秒毎)に実行される。 The opening adjustment of the outdoor expansion valve 36 based on the discharge temperature Td by the expansion adjusting unit 141a is executed at regular control time intervals (for example, every 10 seconds).
 (2-1-1-2)フィードバック量変更部
 フィードバック量変更部141dは、フィードバック量記憶領域142bに記憶されたフィードバック量ΔFの値を書き換える。フィードバック量変更部141dは、フィードバック量記憶領域142bに記憶されたフィードバック量ΔFの値を変更することで、膨張調整部141aが圧縮機31の吐出温度Tdに基づいて室外膨張弁36の開度を調整制御する際に、膨張調整部141aが1回の調整制御で調整する、室外膨張弁36の開度の調整量を変更する。フィードバック量変更部141dによるフィードバック量ΔFの変更処理については後述する。
(2-1-1-2) Feedback Amount Changing Unit The feedback amount changing unit 141d rewrites the value of the feedback amount ΔF stored in the feedback amount storage area 142b. The feedback amount changing unit 141d changes the value of the feedback amount ΔF stored in the feedback amount storage area 142b, so that the expansion adjusting unit 141a controls the opening degree of the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31. When performing the adjustment control, the adjustment amount of the opening degree of the outdoor expansion valve 36 that the expansion adjusting unit 141a adjusts by one adjustment control is changed. The process of changing the feedback amount ΔF by the feedback amount changing unit 141d will be described later.
 (2-1-2)記憶部
 (2-1-2-1)フィードバック量記憶領域
 フィードバック量記憶領域142bには、膨張調整部141aが圧縮機31の吐出温度Tdに基づいて室外膨張弁36の開度を調整制御する際に、膨張調整部141aが1回の調整制御で調整する、室外膨張弁36の開度の調整量が、フィードバック量ΔFとして記憶されている。
(2-1-2) Storage Unit (2-1-2-1) Feedback Amount Storage Area In the feedback amount storage area 142b, the expansion adjusting unit 141a is provided for the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31. When the opening degree is adjusted and controlled, an adjustment amount of the opening degree of the outdoor expansion valve 36, which is adjusted by the expansion adjusting unit 141a by one adjustment control, is stored as a feedback amount ΔF.
 フィードバック量記憶領域142bのフィードバック量ΔFは、フィードバック量変更部141dにより変更されることで、第1量F1又は第2量F2に設定される。第2量F2は、第1量F1より小さい。例えば、第1量F1は5%で、第2量F2は3%である。ただし、ここで挙げた数値は例示にすぎず、これに限定されるものではない。 The feedback amount ΔF in the feedback amount storage area 142b is set to the first amount F1 or the second amount F2 by being changed by the feedback amount changing unit 141d. The second amount F2 is smaller than the first amount F1. For example, the first amount F1 is 5% and the second amount F2 is 3%. However, the numerical value quoted here is only an example and is not limited to this.
 (2-1-3)入力部
 入力部43は、第1実施形態と同様であるため、説明は省略する。
(2-1-3) Input Unit Since the input unit 43 is the same as that in the first embodiment, description thereof is omitted.
 (3)フィードバック量の変更処理
 以下に、膨張調整部141aによる室外膨張弁36のフィードバック量ΔF(膨張調整部141aが圧縮機31の吐出温度Tdを用いて室外膨張弁36の開度を調整制御する際に、1回の調整制御で調整する、室外膨張弁36の開度の調整量)の変更処理について、図6のフローチャートを用いて説明する。フィードバック量ΔFの変更処理は、空気調和装置110の運転中に繰り返し実行される。
(3) Feedback amount changing process The feedback amount ΔF of the outdoor expansion valve 36 by the expansion adjusting unit 141a (the expansion adjusting unit 141a adjusts and controls the opening degree of the outdoor expansion valve 36 using the discharge temperature Td of the compressor 31). In this case, the change process of the adjustment amount of the outdoor expansion valve 36, which is adjusted by one adjustment control, will be described with reference to the flowchart of FIG. The process of changing the feedback amount ΔF is repeatedly performed during the operation of the air conditioner 110.
 ステップS201では、フィードバック量変更部141dが、圧縮機制御部41bから、圧縮機31の回転数Nを取得する。その後ステップS202に進む。 In step S201, the feedback amount changing unit 141d acquires the rotational speed N of the compressor 31 from the compressor control unit 41b. Thereafter, the process proceeds to step S202.
 ステップS202では、フィードバック量変更部141dは、ステップS201で取得された圧縮機31の回転数Nが、閾値N1’より小さいか否かを判定する。 In step S202, the feedback amount changing unit 141d determines whether or not the rotation speed N of the compressor 31 acquired in step S201 is smaller than a threshold value N1 '.
 なお、閾値N1’は、圧縮機31の回転数Nを閾値N1’にして運転した場合に、膨張調整部141aによる室外膨張弁36の開度の1回あたりの調整量を第1量F1としても、制御ハンチングを起こすことが無く、かつ、できるだけ小さな値になるように決定されている。なお、閾値N1’は、空気調和装置110の実機試験結果等に基づいて決定される。 The threshold value N1 ′ is defined as the first amount F1 that is the amount of adjustment of the opening of the outdoor expansion valve 36 by the expansion adjustment unit 141a when the rotation speed N of the compressor 31 is set to the threshold value N1 ′. However, control hunting is not caused and the value is determined to be as small as possible. The threshold value N1 'is determined based on the actual machine test result of the air conditioner 110 and the like.
 ステップS202で、圧縮機31の回転数Nが閾値N1’より小さいと判定された場合には、ステップS203に進む。一方、ステップS2で、圧縮機31の回転数Nが閾値N1’以上と判定された場合には、ステップS205に進む。 If it is determined in step S202 that the rotation speed N of the compressor 31 is smaller than the threshold value N1 ', the process proceeds to step S203. On the other hand, if it is determined in step S2 that the rotation speed N of the compressor 31 is greater than or equal to the threshold value N1 ', the process proceeds to step S205.
 ステップS203では、フィードバック量変更部141dは、フィードバック量記憶領域142bに記憶されているフィードバック量ΔFが第1量F1であるか否かを判定する。フィードバック量記憶領域142bに記憶されているフィードバック量ΔFが、第1量F1であると判定された場合には、ステップS204へと進む。一方、フィードバック量記憶領域142bに記憶されているフィードバック量ΔFが、第1量F1ではない(第2量F2である)と判定された場合には、処理を終了する。 In step S203, the feedback amount changing unit 141d determines whether or not the feedback amount ΔF stored in the feedback amount storage area 142b is the first amount F1. If it is determined that the feedback amount ΔF stored in the feedback amount storage area 142b is the first amount F1, the process proceeds to step S204. On the other hand, when it is determined that the feedback amount ΔF stored in the feedback amount storage area 142b is not the first amount F1 (the second amount F2), the process is terminated.
 ステップS204では、フィードバック量変更部141dは、フィードバック量記憶領域142bに記憶されているフィードバック量ΔFを第2量F2に変更する。その後、処理を終了する。 In step S204, the feedback amount changing unit 141d changes the feedback amount ΔF stored in the feedback amount storage area 142b to the second amount F2. Thereafter, the process ends.
 ステップS205では、フィードバック量変更部141dは、フィードバック量記憶領域142bに記憶されているフィードバック量ΔFが第2量F2であるか否かを判定する。フィードバック量記憶領域142bに記憶されているフィードバック量ΔFが、第2量F2であると判定された場合には、ステップS206へと進む。一方、フィードバック量記憶領域142bに記憶されているフィードバック量ΔFが、第2量F2ではない(第1量F1である)と判定された場合には、処理を終了する。 In step S205, the feedback amount changing unit 141d determines whether or not the feedback amount ΔF stored in the feedback amount storage area 142b is the second amount F2. When it is determined that the feedback amount ΔF stored in the feedback amount storage area 142b is the second amount F2, the process proceeds to step S206. On the other hand, if it is determined that the feedback amount ΔF stored in the feedback amount storage area 142b is not the second amount F2 (is the first amount F1), the process is terminated.
 ステップS206では、フィードバック量変更部141dは、フィードバック量記憶領域142bに記憶されているフィードバック量ΔFを第1量F1に変更する。その後、処理を終了する。 In step S206, the feedback amount changing unit 141d changes the feedback amount ΔF stored in the feedback amount storage area 142b to the first amount F1. Thereafter, the process ends.
 以上の処理を行うことで、圧縮機31の回転数Nが閾値N1’より小さくなった場合には、膨張調整部141aが圧縮機31の吐出温度Tdに基づいて室外膨張弁36の開度を調整制御する際に、膨張調整部141aが1回の調整制御で調整する、室外膨張弁36の開度の調整量が、第2量F2となる。つまり、フィードバック量変更部141dは、圧縮機31の回転数Nが、閾値N1’以上の値から、閾値N1’より小さな値になった場合に、膨張調整部141aによる室外膨張弁36のフィードバック量ΔFを、第1量F1から、第1量F1よりも小さな第2量F2に変更する。 By performing the above processing, when the rotation speed N of the compressor 31 becomes smaller than the threshold value N1 ′, the expansion adjustment unit 141a controls the opening degree of the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31. When adjustment control is performed, the adjustment amount of the degree of opening of the outdoor expansion valve 36, which is adjusted by the adjustment control unit 141a once, becomes the second amount F2. That is, the feedback amount changing unit 141d determines the feedback amount of the outdoor expansion valve 36 by the expansion adjusting unit 141a when the rotation speed N of the compressor 31 is smaller than the threshold value N1 ′ from a value equal to or higher than the threshold value N1 ′. ΔF is changed from the first amount F1 to a second amount F2 smaller than the first amount F1.
 一方、圧縮機31の回転数Nが閾値N1’以上になった場合には、膨張調整部141aが圧縮機31の吐出温度Tdに基づいて室外膨張弁36の開度を調整制御する際に、膨張調整部141aが1回の調整制御で調整する、室外膨張弁36の開度の調整量が、第1量F1となる。つまり、フィードバック量変更部141dは、圧縮機31の回転数Nが、閾値N1’より小さな値から、閾値N1’以上の値になった場合に、膨張調整部141aによる室外膨張弁36のフィードバック量ΔFを、第2量F2から第1量F1に変更する。 On the other hand, when the rotation speed N of the compressor 31 is equal to or higher than the threshold value N1 ′, the expansion adjustment unit 141a adjusts and controls the opening degree of the outdoor expansion valve 36 based on the discharge temperature Td of the compressor 31. The adjustment amount of the degree of opening of the outdoor expansion valve 36, which is adjusted by the adjustment control unit 141a once, becomes the first amount F1. That is, the feedback amount changing unit 141d determines the feedback amount of the outdoor expansion valve 36 by the expansion adjusting unit 141a when the rotation speed N of the compressor 31 is changed from a value smaller than the threshold value N1 ′ to a value equal to or larger than the threshold value N1 ′. ΔF is changed from the second amount F2 to the first amount F1.
 これにより、圧縮機31の低回転数領域(回転数N<閾値N1’)では、室外膨張弁36の開度が一度の調整制御で過度に調整されてしまうことを抑制でき、制御ハンチングを防止することができる。一方、圧縮機31の回転数Nが比較的大きい場合(回転数N≧閾値N1’の場合)には、圧縮機31が低回転数領域で運転される場合に比べ、室外膨張弁36の開度が大きく変更されるため、迅速に室外膨張弁36の開度を調整制御することができる。 Thereby, in the low rotation speed area | region (rotation speed N <threshold value N1 ') of the compressor 31, it can suppress that the opening degree of the outdoor expansion valve 36 is adjusted excessively by one adjustment control, and control hunting is prevented. can do. On the other hand, when the rotation speed N of the compressor 31 is relatively large (when the rotation speed N ≧ the threshold value N1 ′), the outdoor expansion valve 36 is opened compared to when the compressor 31 is operated in the low rotation speed region. Since the degree is greatly changed, the opening degree of the outdoor expansion valve 36 can be quickly adjusted and controlled.
 特に、ここでは、圧縮機31の回転数Nを閾値N1’と比較して、その比較結果に応じてフィードバック量ΔFを2つの値(第1量F1及び第2量F2)の間で切り替えるだけなので、簡易な構成及び容易な処理で、上記の効果を実現できる。 In particular, here, the rotation speed N of the compressor 31 is compared with the threshold value N1 ′, and the feedback amount ΔF is only switched between two values (first amount F1 and second amount F2) according to the comparison result. Therefore, the above effect can be realized with a simple configuration and easy processing.
 (4)特徴
 (4-1)
 本実施形態の空気調和装置110は、冷媒としてR32を使う冷凍装置である。空気調和装置110は、圧縮機31と、凝縮器(室内熱交換器21又は室外熱交換器34)と、膨張機構としての室外膨張弁36と、蒸発器(室外熱交換器34又は室内熱交換器21)と、温度検出部としての吐出温度センサ51と、膨張調整部141aと、フィードバック量変更部141dと、を備える。圧縮機31は、吸入管81から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する。凝縮器(室内熱交換器21又は室外熱交換器34)は、圧縮機31から吐出された高圧の冷媒を凝縮させる。室外膨張弁36は、凝縮器(室内熱交換器21又は室外熱交換器34)を出た高圧冷媒を膨張させる。蒸発器(室外熱交換器34又は室内熱交換器21)は、室外膨張弁36で膨張した冷媒を蒸発させる。吐出温度センサ51は、圧縮機31から吐出された冷媒の吐出温度Tdを検出する。膨張調整部141aは、吐出温度Tdを用いて室外膨張弁36の調整制御を行う。フィードバック量変更部141dは、膨張調整部141aによる、室外膨張弁36のフィードバック量ΔFを変更する。フィードバック量変更部141dは、圧縮機31の回転数Nが閾値N1’より小さくなった場合に、フィードバック量ΔFを、第1量F1から、第1量F1よりも小さな第2量F2に変更する。
(4) Features (4-1)
The air conditioning apparatus 110 of the present embodiment is a refrigeration apparatus that uses R32 as a refrigerant. The air conditioner 110 includes a compressor 31, a condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34), an outdoor expansion valve 36 as an expansion mechanism, and an evaporator (the outdoor heat exchanger 34 or the indoor heat exchange). 21), a discharge temperature sensor 51 as a temperature detecting unit, an expansion adjusting unit 141a, and a feedback amount changing unit 141d. The compressor 31 sucks the low-pressure refrigerant from the suction pipe 81, compresses the refrigerant, and discharges the high-pressure refrigerant. The condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) condenses the high-pressure refrigerant discharged from the compressor 31. The outdoor expansion valve 36 expands the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34). The evaporator (the outdoor heat exchanger 34 or the indoor heat exchanger 21) evaporates the refrigerant expanded by the outdoor expansion valve 36. The discharge temperature sensor 51 detects the discharge temperature Td of the refrigerant discharged from the compressor 31. The expansion adjustment unit 141a performs adjustment control of the outdoor expansion valve 36 using the discharge temperature Td. The feedback amount changing unit 141d changes the feedback amount ΔF of the outdoor expansion valve 36 by the expansion adjusting unit 141a. The feedback amount changing unit 141d changes the feedback amount ΔF from the first amount F1 to the second amount F2 smaller than the first amount F1 when the rotational speed N of the compressor 31 becomes smaller than the threshold value N1 ′. .
 ここでは、圧縮機31の回転数Nが閾値N1’よりも小さい場合に、膨張調整部141aによる室外膨張弁36のフィードバック量ΔFが、第1量F1から、第1量F1より小さな第2量F2に変更される。そのため、膨張調整部141aは、圧縮機31の回転数Nが小さく、冷媒の循環量が小さい場合に、室外膨張弁36を過度に調整することがない。その結果、圧縮機31の回転数Nが小さい場合にも、制御ハンチングを起こすことなく、速やかに、かつ、適切に室外膨張弁36を制御できる。 Here, when the rotational speed N of the compressor 31 is smaller than the threshold value N1 ′, the feedback amount ΔF of the outdoor expansion valve 36 by the expansion adjustment unit 141a is a second amount smaller than the first amount F1 from the first amount F1. Changed to F2. Therefore, the expansion adjusting unit 141a does not excessively adjust the outdoor expansion valve 36 when the rotation speed N of the compressor 31 is small and the refrigerant circulation amount is small. As a result, even when the rotation speed N of the compressor 31 is small, the outdoor expansion valve 36 can be controlled promptly and appropriately without causing control hunting.
 特に、ここでは、圧縮機31の回転数Nと閾値N1’との比較結果に基づいて、室外膨張弁36のフィードバック量ΔFが変更されるので、簡易な構成、及び、容易な処理で、圧縮機31の回転数Nが小さい場合にも、適切に室外膨張弁36を制御できる。 In particular, here, since the feedback amount ΔF of the outdoor expansion valve 36 is changed based on the comparison result between the rotational speed N of the compressor 31 and the threshold value N1 ′, the compression is performed with a simple configuration and easy processing. Even when the rotational speed N of the machine 31 is small, the outdoor expansion valve 36 can be appropriately controlled.
 (4-2)
 本実施形態の空気調和装置10では、フィードバック量変更部141dは、圧縮機31の回転数Nが閾値N1’以上になった場合に、フィードバック量ΔFを、第2量F2から、第1量F1になるよう変更する。
(4-2)
In the air conditioning apparatus 10 of the present embodiment, the feedback amount changing unit 141d changes the feedback amount ΔF from the second amount F2 to the first amount F1 when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1 ′. Change to
 ここでは、圧縮機31の回転数Nが閾値N1’以上の場合に、室外膨張弁36のフィードバック量ΔFが第2量F2より大きな第1量F1に変更される。そのため、冷媒の循環量が大きい、圧縮機31の回転数Nが閾値N1’以上の場合には、迅速に室外膨張弁36の調整制御を行うことができる。 Here, when the rotational speed N of the compressor 31 is equal to or greater than the threshold value N1 ', the feedback amount ΔF of the outdoor expansion valve 36 is changed to the first amount F1 that is larger than the second amount F2. Therefore, when the refrigerant circulation amount is large and the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1 ', the adjustment control of the outdoor expansion valve 36 can be performed quickly.
 (5)変形例
 以下に本実施形態の変形例を示す。なお、複数の変形例を適宜組み合わせてもよい。
(5) Modifications Modifications of the present embodiment are shown below. A plurality of modified examples may be appropriately combined.
 (5-1)変形例2A
 上記実施形態に係る空気調和装置110では、膨張調整部141aによる室外膨張弁36のフィードバック量ΔFが変更されるが、これに加え、第1実施形態に係る空気調和装置10と同様に、膨張調整部141aの制御時間間隔も変更されてもよい。
(5-1) Modification 2A
In the air conditioning apparatus 110 according to the above embodiment, the feedback amount ΔF of the outdoor expansion valve 36 by the expansion adjusting unit 141a is changed. In addition, the expansion adjustment is performed in the same manner as the air conditioning apparatus 10 according to the first embodiment. The control time interval of the unit 141a may also be changed.
 (5-2)変形例2B
 上記実施形態では、室内ユニット20は1台であるが、複数台であっても構わない。また、複数の室内ユニットには、それぞれ膨張機構として室内膨張弁が設けられていてもよい。この場合には、膨張調整部141aは、複数の膨張機構(室外膨張弁及び室内膨張弁)の調整制御を、上記のように圧縮機31の回転数Nによって変更されるフィードバック量を用いて実行するものであればよい。
(5-2) Modification 2B
In the above embodiment, the number of indoor units 20 is one, but a plurality of units may be used. The plurality of indoor units may each be provided with an indoor expansion valve as an expansion mechanism. In this case, the expansion adjustment unit 141a performs adjustment control of the plurality of expansion mechanisms (outdoor expansion valve and indoor expansion valve) using the feedback amount that is changed by the rotational speed N of the compressor 31 as described above. Anything to do.
 (5-3)変形例2C
 上記実施形態では、膨張機構は室外膨張弁36であるが、これに限定されるものではない。膨張機構は、凝縮器(室内熱交換器21又は室外熱交換器34)を出た高圧の冷媒を膨張させ、冷媒の圧力や流量の調節を行うものであればよい。膨張調整部141aも、室外膨張弁36の開度を調整するものに限定されるものではなく、膨張機構による冷媒の圧力変化や流量調節を調整制御できるものであればよい。
(5-3) Modification 2C
In the said embodiment, although an expansion mechanism is the outdoor expansion valve 36, it is not limited to this. The expansion mechanism only needs to expand the high-pressure refrigerant that has exited the condenser (the indoor heat exchanger 21 or the outdoor heat exchanger 34) and adjust the pressure and flow rate of the refrigerant. The expansion adjusting unit 141a is not limited to the one that adjusts the opening degree of the outdoor expansion valve 36, and may be any unit that can adjust and control the pressure change and flow rate adjustment of the refrigerant by the expansion mechanism.
 例えば、膨張機構は複数の特性の異なるキャピラリチューブであり、膨張調整部は、電動弁を制御することで、冷媒の流れるキャピラリチューブを変更するものであってもよい。この場合にも、フィードバック量変更部は、圧縮機31の回転数Nが閾値N1’より小さくなった場合の膨張調整部による膨張機構のフィードバック量を、圧縮機31の回転数Nが閾値N1’以上の場合のフィードバック量に比べ小さくするように構成されればよい。 For example, the expansion mechanism may be a plurality of capillary tubes having different characteristics, and the expansion adjustment unit may change the capillary tube through which the refrigerant flows by controlling an electric valve. Also in this case, the feedback amount changing unit uses the expansion adjustment unit feedback amount when the rotation speed N of the compressor 31 is smaller than the threshold value N1 ′, and the rotation speed N of the compressor 31 is the threshold value N1 ′. What is necessary is just to be comprised so that it may become small compared with the amount of feedback in the above case.
 (5-4)変形例2D
 上記実施形態では、吐出温度センサ51により計測された吐出温度Tdとその目標温度との間に差がある場合に、膨張調整部141aは、圧縮機31の回転数Nが変化しない限り、室外膨張弁36の開度を1回の調整制御あたり決まったフィードバック量ΔF(第1量F1又は第2量F2)だけ調整するように構成されているが、これに限定されるものではない。
(5-4) Modification 2D
In the above embodiment, when there is a difference between the discharge temperature Td measured by the discharge temperature sensor 51 and the target temperature, the expansion adjusting unit 141a can perform the outdoor expansion as long as the rotation speed N of the compressor 31 does not change. The opening of the valve 36 is configured to be adjusted by a feedback amount ΔF (first amount F1 or second amount F2) determined per one adjustment control, but is not limited thereto.
 例えば、フィードバック量ΔFは、圧縮機31の回転数N以外の条件によっても変更されるものであってもよい。そして、フィードバック量変更部141dは、圧縮機31の回転数N以外の運転条件が同一であるとすれば、圧縮機31の回転数Nが閾値N1’より小さくなった場合の膨張調整部141aによる室外膨張弁36のフィードバック量を、圧縮機31の回転数Nが閾値N1’以上の場合の室外膨張弁36のフィードバック量に比べ小さくするように構成されればよい。 For example, the feedback amount ΔF may be changed depending on conditions other than the rotational speed N of the compressor 31. And if the operating conditions other than the rotation speed N of the compressor 31 are the same, the feedback amount change part 141d is based on the expansion adjustment part 141a when the rotation speed N of the compressor 31 becomes smaller than the threshold value N1 ′. What is necessary is just to comprise so that the feedback amount of the outdoor expansion valve 36 may be made small compared with the feedback amount of the outdoor expansion valve 36 when the rotation speed N of the compressor 31 is more than threshold value N1 '.
 例えば、具体的には、膨張調整部141aの1回の調整制御あたりの室外膨張弁36の開度の調整量(つまりフィードバック量)は、吐出温度センサ51により計測された吐出温度Tdの値と吐出温度の目標値との温度差に応じて変更されてもよい。そして、フィードバック量変更部141dは、吐出温度センサ51により計測された吐出温度Tdの値と吐出温度の目標値との温度差が同一であるとすれば、圧縮機31の回転数Nが閾値N1’より小さくなった場合の膨張調整部141aによる室外膨張弁36のフィードバック量を、圧縮機31の回転数Nが閾値N1’以上の場合のフィードバック量に比べ小さくするように構成されればよい。 For example, specifically, the adjustment amount (that is, the feedback amount) of the degree of opening of the outdoor expansion valve 36 per adjustment control of the expansion adjusting unit 141a is the value of the discharge temperature Td measured by the discharge temperature sensor 51. It may be changed according to the temperature difference from the target value of the discharge temperature. If the temperature difference between the value of the discharge temperature Td measured by the discharge temperature sensor 51 and the target value of the discharge temperature is the same, the feedback amount changing unit 141d sets the rotation speed N of the compressor 31 to the threshold value N1. It suffices that the feedback amount of the outdoor expansion valve 36 by the expansion adjustment unit 141a when it becomes smaller than the feedback amount when the rotation speed N of the compressor 31 is equal to or greater than the threshold value N1 ′.
 (5-5)変形例2E
 上記実施形態では、フィードバック量ΔFは、膨張調整部141aが圧縮機31の吐出温度Tdを用いて室外膨張弁36の開度を調整制御する際に、膨張調整部141aが1回の調整制御で調整する室外膨張弁36の開度の調整量であるが、これに限定されるものではない。例えば、フィードバック量ΔFは、室外膨張弁36の開度を変更することで変化する冷媒の流量変化量等であってもよい。
(5-5) Modification 2E
In the above embodiment, the feedback amount ΔF is adjusted by the expansion adjusting unit 141a once when the expansion adjusting unit 141a adjusts and controls the opening degree of the outdoor expansion valve 36 using the discharge temperature Td of the compressor 31. The amount of adjustment of the opening degree of the outdoor expansion valve 36 to be adjusted is not limited to this. For example, the feedback amount ΔF may be a refrigerant flow rate change amount that changes by changing the opening degree of the outdoor expansion valve 36.
 (5-6)変形例2F
 上記実施形態では、圧縮機31の回転数Nが1の閾値N1’より小さいか否かで、膨張調整部141aによる室外膨張弁36のフィードバック量ΔFが、第1量F1と第2量F2との間で変更されるが、これに限定されるものではない。閾値は複数用意され、各閾値より小さいか否かで、室外膨張弁36のフィードバック量ΔFが多段階で変更されてもよい。
(5-6) Modification 2F
In the above-described embodiment, the feedback amount ΔF of the outdoor expansion valve 36 by the expansion adjustment unit 141a depends on whether the rotation speed N of the compressor 31 is smaller than the threshold value N1 ′ of 1, and the first amount F1 and the second amount F2. However, it is not limited to this. A plurality of threshold values are prepared, and the feedback amount ΔF of the outdoor expansion valve 36 may be changed in multiple stages depending on whether or not it is smaller than each threshold value.
 本発明によれば、冷媒としてR32を使用する冷凍装置において、圧縮機の吐出温度を用いて膨張機構が制御される場合に、圧縮機が低回転数域で運転される場合であっても、速やかかつ適切に膨張機構を制御可能である。 According to the present invention, in the refrigeration apparatus using R32 as the refrigerant, when the expansion mechanism is controlled using the discharge temperature of the compressor, even when the compressor is operated in a low rotation speed range, The expansion mechanism can be controlled promptly and appropriately.
10,110 空気調和装置(冷凍装置)
21 室内熱交換器(凝縮器、蒸発器)
31 圧縮機
34 室外熱交換器(蒸発器、凝縮器)
36 室外膨張弁(膨張機構)
41a,141a 膨張調整部
41c 時間間隔変更部
141d フィードバック量変更部
51 吐出温度センサ(温度検出部)
81 吸入管(吸入流路)
10,110 Air conditioning equipment (refrigeration equipment)
21 Indoor heat exchanger (condenser, evaporator)
31 Compressor 34 Outdoor heat exchanger (evaporator, condenser)
36 Outdoor expansion valve (expansion mechanism)
41a, 141a Expansion adjustment unit 41c Time interval change unit 141d Feedback amount change unit 51 Discharge temperature sensor (temperature detection unit)
81 Suction pipe (suction channel)
特開2012-122677号公報JP 2012-122777 A

Claims (4)

  1.  冷媒としてR32を使う冷凍装置(10)であって、
     吸入流路(81)から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する、圧縮機(31)と、
     前記圧縮機から吐出された高圧の冷媒を凝縮させる、凝縮器(21,34)と、
     前記凝縮器を出た高圧冷媒を膨張させる、膨張機構(36)と、
     前記膨張機構で膨張した冷媒を蒸発させる、蒸発器(34,21)と、
     前記圧縮機から吐出された冷媒の吐出温度を検出する、温度検出部(51)と、
     前記吐出温度を用いて前記膨張機構の調整制御を行う、膨張調整部(41a)と、
     前記膨張調整部の制御時間間隔を変更する、時間間隔変更部(41c)と、
    を備え、
     前記時間間隔変更部は、前記圧縮機の回転数が閾値より小さくなった場合に、前記制御時間間隔を、第1時間間隔から、前記第1時間間隔よりも長い第2時間間隔に変更する、
    冷凍装置。
    A refrigeration apparatus (10) that uses R32 as a refrigerant,
    A compressor (31) for sucking low-pressure refrigerant from the suction flow path (81), compressing the refrigerant and discharging high-pressure refrigerant;
    A condenser (21, 34) for condensing the high-pressure refrigerant discharged from the compressor;
    An expansion mechanism (36) for expanding the high-pressure refrigerant exiting the condenser;
    An evaporator (34, 21) for evaporating the refrigerant expanded by the expansion mechanism;
    A temperature detector (51) for detecting the discharge temperature of the refrigerant discharged from the compressor;
    An expansion adjustment unit (41a) that performs adjustment control of the expansion mechanism using the discharge temperature;
    A time interval changing unit (41c) for changing a control time interval of the expansion adjusting unit;
    With
    The time interval changing unit changes the control time interval from a first time interval to a second time interval longer than the first time interval when the rotation speed of the compressor becomes smaller than a threshold.
    Refrigeration equipment.
  2.  前記時間間隔変更部は、前記圧縮機の回転数が前記閾値以上になった場合に、前記制御時間間隔を、前記第2時間間隔から、前記第1時間間隔に変更する、
    請求項1に記載の冷凍装置。
    The time interval changing unit changes the control time interval from the second time interval to the first time interval when the rotation speed of the compressor is equal to or greater than the threshold.
    The refrigeration apparatus according to claim 1.
  3.  冷媒としてR32を使う冷凍装置(110)であって、
     吸入流路(81)から低圧の冷媒を吸入し、冷媒の圧縮を行って高圧の冷媒を吐出する、圧縮機(31)と、
     前記圧縮機から吐出された高圧の冷媒を凝縮させる、凝縮器(21,34)と、
     前記凝縮器を出た高圧冷媒を膨張させる、膨張機構(36)と、
     前記膨張機構で膨張した冷媒を蒸発させる、蒸発器(34,21)と、
     前記圧縮機から吐出された冷媒の吐出温度を検出する、温度検出部(51)と、
     前記吐出温度を用いて前記膨張機構の調整制御を行う、膨張調整部(141a)と、
     前記膨張調整部による、前記膨張機構のフィードバック量を変更する、フィードバック量変更部(141d)と、
    を備え、
     前記フィードバック量変更部は、前記圧縮機の回転数が閾値より小さくなった場合に、前記フィードバック量を、第1量から、前記第1量よりも小さな第2量に変更する、
    冷凍装置。
    A refrigeration apparatus (110) using R32 as a refrigerant,
    A compressor (31) for sucking low-pressure refrigerant from the suction flow path (81), compressing the refrigerant and discharging high-pressure refrigerant;
    A condenser (21, 34) for condensing the high-pressure refrigerant discharged from the compressor;
    An expansion mechanism (36) for expanding the high-pressure refrigerant exiting the condenser;
    An evaporator (34, 21) for evaporating the refrigerant expanded by the expansion mechanism;
    A temperature detector (51) for detecting the discharge temperature of the refrigerant discharged from the compressor;
    An expansion adjustment unit (141a) that performs adjustment control of the expansion mechanism using the discharge temperature;
    A feedback amount changing unit (141d) for changing a feedback amount of the expansion mechanism by the expansion adjusting unit;
    With
    The feedback amount changing unit changes the feedback amount from a first amount to a second amount smaller than the first amount when the rotation speed of the compressor is smaller than a threshold value.
    Refrigeration equipment.
  4.  前記フィードバック量変更部は、前記圧縮機の回転数が前記閾値以上になった場合に、前記フィードバック量を、前記第2量から、前記第1量になるよう変更する、
    請求項3に記載の冷凍装置。
    The feedback amount changing unit changes the feedback amount from the second amount to the first amount when the rotation speed of the compressor is equal to or greater than the threshold value.
    The refrigeration apparatus according to claim 3.
PCT/JP2013/082356 2012-12-28 2013-12-02 Refrigeration device WO2014103620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-289090 2012-12-28
JP2012289090 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103620A1 true WO2014103620A1 (en) 2014-07-03

Family

ID=51020714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082356 WO2014103620A1 (en) 2012-12-28 2013-12-02 Refrigeration device

Country Status (2)

Country Link
JP (1) JP2014142168A (en)
WO (1) WO2014103620A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102538A1 (en) * 2017-11-22 2019-05-31 三菱電機株式会社 Air conditioner
US20190248209A1 (en) * 2016-10-14 2019-08-15 Sanden Automotive Climate Systems Corporation Vehicle Air Conditioner
WO2020007272A1 (en) * 2018-07-02 2020-01-09 艾默生环境优化技术(苏州)有限公司 Variable speed condensing unit, self-adaptive capacity adjustment method, storage medium, and controller
CN110671847A (en) * 2018-07-02 2020-01-10 艾默生环境优化技术(苏州)有限公司 Variable-speed condensing unit, capacity self-adaptive adjusting method, storage medium and controller
CN113418329A (en) * 2021-05-28 2021-09-21 青岛海尔空调电子有限公司 Control method of refrigeration and freezing unit and refrigeration and freezing unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240200839A1 (en) * 2022-12-14 2024-06-20 Johnson Controls Tyco IP Holdings LLP Energy efficient heat pump with control system and compressor injection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236299A (en) * 1996-02-29 1997-09-09 Daikin Ind Ltd Running control device for air conditioning apparatus
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2012122677A (en) * 2010-12-09 2012-06-28 Mitsubishi Electric Corp Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117967A (en) * 1981-12-31 1983-07-13 松下電器産業株式会社 Controller for refrigeration cycle
JPH1038387A (en) * 1996-07-23 1998-02-13 Daikin Ind Ltd Operation controller of air conditioner
JPH10246517A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Control for air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236299A (en) * 1996-02-29 1997-09-09 Daikin Ind Ltd Running control device for air conditioning apparatus
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2012122677A (en) * 2010-12-09 2012-06-28 Mitsubishi Electric Corp Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190248209A1 (en) * 2016-10-14 2019-08-15 Sanden Automotive Climate Systems Corporation Vehicle Air Conditioner
US10870332B2 (en) * 2016-10-14 2020-12-22 Sanden Automotive Climate Systems Corporation Vehicle air conditioner
WO2019102538A1 (en) * 2017-11-22 2019-05-31 三菱電機株式会社 Air conditioner
CN111356885A (en) * 2017-11-22 2020-06-30 三菱电机株式会社 Air conditioner
JPWO2019102538A1 (en) * 2017-11-22 2020-11-19 三菱電機株式会社 air conditioner
CN111356885B (en) * 2017-11-22 2022-02-01 三菱电机株式会社 Air conditioner
WO2020007272A1 (en) * 2018-07-02 2020-01-09 艾默生环境优化技术(苏州)有限公司 Variable speed condensing unit, self-adaptive capacity adjustment method, storage medium, and controller
CN110671847A (en) * 2018-07-02 2020-01-10 艾默生环境优化技术(苏州)有限公司 Variable-speed condensing unit, capacity self-adaptive adjusting method, storage medium and controller
CN113418329A (en) * 2021-05-28 2021-09-21 青岛海尔空调电子有限公司 Control method of refrigeration and freezing unit and refrigeration and freezing unit

Also Published As

Publication number Publication date
JP2014142168A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
WO2014103620A1 (en) Refrigeration device
JP6138711B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
JP5783215B2 (en) Air conditioner
CN108351116B (en) Air conditioner
JP5077414B2 (en) Refrigeration unit outdoor unit
JP6312830B2 (en) Air conditioner
JP5772811B2 (en) Refrigeration equipment
JP6578695B2 (en) Air conditioner
JP4969271B2 (en) Air conditioner
JP2018159520A (en) Air conditioner
US11913694B2 (en) Heat pump system
JP6650567B2 (en) Air conditioner
JP6551437B2 (en) air conditioner
JP2011242097A (en) Refrigerating apparatus
JP2015068608A (en) Air conditioner
JP5999163B2 (en) Air conditioner
JP6507598B2 (en) Air conditioning system
JP6105271B2 (en) Air conditioner
JP7392567B2 (en) air conditioner
JP7216309B2 (en) air conditioner
JPWO2019021961A1 (en) Outside air temperature detection system of heat pump heat source unit
JP2008180480A (en) Operation control method of multi-chamber type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866730

Country of ref document: EP

Kind code of ref document: A1