JPS58117967A - Controller for refrigeration cycle - Google Patents

Controller for refrigeration cycle

Info

Publication number
JPS58117967A
JPS58117967A JP21305481A JP21305481A JPS58117967A JP S58117967 A JPS58117967 A JP S58117967A JP 21305481 A JP21305481 A JP 21305481A JP 21305481 A JP21305481 A JP 21305481A JP S58117967 A JPS58117967 A JP S58117967A
Authority
JP
Japan
Prior art keywords
increase
refrigeration cycle
decrease
arithmetic processing
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21305481A
Other languages
Japanese (ja)
Other versions
JPS6353454B2 (en
Inventor
勇 奥田
中沢 昭
松森 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21305481A priority Critical patent/JPS58117967A/en
Publication of JPS58117967A publication Critical patent/JPS58117967A/en
Publication of JPS6353454B2 publication Critical patent/JPS6353454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、冷凍サイクル制御装置に関し、熱電膨張弁等
の電気式膨張弁を用いた冷凍装置又は空調装置において
、冷凍サイクルの状態を検知し、電気式11M弁により
冷凍サイクルをl+t%に制御し、かつ、急激な負荷変
動等に対する応答性を高めて最適化を図り、常に効率良
(維持することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle control device, which detects the state of the refrigeration cycle in a refrigeration system or air conditioner using an electric expansion valve such as a thermoelectric expansion valve, and controls the refrigeration cycle using an electric 11M valve. The purpose is to always maintain high efficiency by controlling the cycle to 1+t% and improving responsiveness to sudden load fluctuations, etc. for optimization.

従来より、冷凍サイクルを最適化する一手段として、蒸
発器の温度と圧縮機の吸入部の温度の差、すなわち過熱
度(スーパーヒートノを所定の値に維持しようとする方
法か採用されている。この種の制御装置として、従来、
過熱度を設定値に維持するため、その偏差の値に応じて
連続的に比例積分あるいは比例積分の微分の制御を行な
う方法が考えられている。この方法は、安定した制御状
態での特性は良好であるが、冷凍サイクルの状態変化に
対する過熱度の変化特性において、分オーダーの遅い場
合や、秒オーダーの速い場合が存在し、また膨張弁の応
答速度の問題もあり、これらの状況に対応して常に過熱
度を設定値に維持するための制御**の構成は極めて困
難となっている。冷凍サイクルの負荷状態の変化等、種
々の状態に対してしばしば過熱度の制御が大きな振動現
象となり、安定な制御は実現に至っていない。
Traditionally, as a means of optimizing the refrigeration cycle, a method has been adopted to maintain the difference between the evaporator temperature and the compressor suction temperature, or the degree of superheat, at a predetermined value. Conventionally, as this type of control device,
In order to maintain the degree of superheat at a set value, a method has been considered in which the proportional integral or the derivative of the proportional integral is continuously controlled according to the value of the deviation. Although this method has good characteristics under stable control conditions, the change characteristics of the degree of superheat due to changes in the state of the refrigeration cycle may be slow on the order of minutes or fast on the order of seconds. Due to the problem of response speed, it is extremely difficult to configure a control system to constantly maintain the degree of superheat at the set value in response to these situations. Controlling the degree of superheating often results in large vibrations due to various conditions such as changes in the load condition of the refrigeration cycle, and stable control has not yet been realized.

また、従来、上記の問題点を軽減するため、過熱度と設
定値を比較し、正負2つの領域で検知し、その符号に応
じて所定時間毎もしくは符号変化時に膨張弁に印加する
電圧を所定値だ番す加減算するものがあった。この方法
は、基本的にVi過熱廣の制御特性は振動状態となるが
、冷凍サイクルの負荷か大きく、冷媒潴Mが大きい場合
には、過熱度はほぼ設定値と等しく制御できる。しかし
ながら冷凍サイクルの低負荷、すなわち冷媒流量が少な
い状況での制御は大きな振動状態となり、圧縮機への液
ハック状態に陥りゃすいものとなった。この低負荷にお
ける制御性を改善するため加減算する電圧値を小さくす
ると、負荷変動が起って過熱度か設定値より大きくずれ
た場合、その回復動作か極めて長時間となり、応答性の
面で難点を有するものとなっていた。
Conventionally, in order to alleviate the above-mentioned problems, the degree of superheating is compared with a set value, detected in two regions, positive and negative, and depending on the sign, the voltage applied to the expansion valve is set at a predetermined time interval or when the sign changes. There was something that added and subtracted numbers. In this method, the control characteristics of the Vi superheat range are basically in an oscillating state, but if the load on the refrigeration cycle is large and the refrigerant tank M is large, the superheat degree can be controlled to be approximately equal to the set value. However, when the refrigeration cycle is under low load, that is, when the refrigerant flow rate is low, control results in large vibrations, making it easy for the compressor to get into a liquid hack state. In order to improve controllability at low loads, if the voltage value to be added or subtracted is made smaller, if load fluctuation occurs and the superheat degree deviates significantly from the set value, the recovery operation will take an extremely long time, which is a problem in terms of responsiveness. It was supposed to have a

そこで本発明は、従来の難点を極力解消し、過熱度の制
御における安定性、応答性を高め、冷凍サイクルを最適
化し、冷凍・空調機器の効率(いわゆるERRおよび5
EER)の同上を連成しようとするものである。
Therefore, the present invention eliminates the conventional difficulties as much as possible, improves stability and responsiveness in superheat control, optimizes the refrigeration cycle, and improves the efficiency (so-called ERR and 5%) of refrigeration and air conditioning equipment.
EER).

特に本発明は、通常は膨張弁への印加電圧の変更を比較
的小さな電圧幅で行なって振動の極めて小さい安定fl
制御を行ない、また負荷f@等により過熱度が設定値に
対して大きくずれ、その状態か一定時間継続した時には
大きfjt圧幅で修正動作を行ない、通常の安定な制御
への回復を早めようとするものである。
In particular, the present invention normally changes the voltage applied to the expansion valve in a relatively small voltage range to achieve a stable fl with extremely low vibration.
If the degree of superheat deviates significantly from the set value due to load f@ etc. and this state continues for a certain period of time, perform corrective action with a large fjt pressure range to hasten the recovery to normal stable control. That is.

以下、本発明の冷凍サイクル制御装置を添付図面に基づ
いて説明する。第1図は本発明に基づ(冷凍サイクル制
御装置の一実施例を示す構成図であり、図は特に冷房装
置に用いた場合を示している。WS1図に8いて、(1
)は圧縮機、(2)は凝縮器、(3)は凝縮器(2)用
の送風機、(4)は電気信号により弁開度を調節しつる
。膨張弁(ここでは熱電膨張弁とするンである。(5)
は蒸発器、(6)は蒸発器(5)用の送風機、(7)は
蒸発器(5)の入口部に設けた第1の温度センサ、(8
)は圧縮機(1)の吸入部に設けた第2の温度センサ、
(9)は温度センサ(7)及び(8)よりの湿炭信号を
入力し、膨張弁(4)に電気信号(直流電圧)を出力す
る制御回路である。膨張弁(4)はここでIIi通電閉
形の熱電膨張弁であり、膨張弁(4)へ直流電圧が加え
られると、その電圧に応じて冷媒流量が与えられるもの
である。
Hereinafter, the refrigeration cycle control device of the present invention will be explained based on the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of the refrigeration cycle control device (refrigeration cycle control device) based on the present invention, and the figure particularly shows the case where it is used in a cooling device.
) is a compressor, (2) is a condenser, (3) is a blower for the condenser (2), and (4) is a valve opening that is adjusted by an electric signal. Expansion valve (here, thermoelectric expansion valve) (5)
is an evaporator, (6) is a blower for the evaporator (5), (7) is a first temperature sensor provided at the inlet of the evaporator (5), and (8) is a blower for the evaporator (5).
) is a second temperature sensor provided at the suction part of the compressor (1),
(9) is a control circuit that inputs the wet coal signals from the temperature sensors (7) and (8) and outputs an electric signal (DC voltage) to the expansion valve (4). The expansion valve (4) here is a thermoelectric expansion valve of the IIi energized closed type, and when a DC voltage is applied to the expansion valve (4), the refrigerant flow rate is given in accordance with the voltage.

膨張弁(4)への印加電圧VTに対する冷媒流#Qの特
性例を第2図に示す。第2図中、QL及びQHは圧縮機
(1)を運転している場合の冷媒流tQのとりつる範囲
の最小及び最大を示しており、また曲線が2通りあるの
は、ヒステリシス特性があるためである。
FIG. 2 shows an example of the characteristics of the refrigerant flow #Q with respect to the voltage VT applied to the expansion valve (4). In Figure 2, QL and QH indicate the minimum and maximum range of refrigerant flow tQ when the compressor (1) is operating, and the reason why there are two curves is due to hysteresis characteristics. It's for a reason.

そこで、第1図における構成において、圧縮機(1)に
よる冷媒の圧縮作用により冷媒が凝縮器(2)、膨張弁
(4)、蒸発器(51、圧縮機(1)の吸入部の経路で
循環し、蒸発器(5)において冷房能力を出力する。
Therefore, in the configuration shown in Fig. 1, the refrigerant is compressed by the compressor (1) in the path of the condenser (2), the expansion valve (4), the evaporator (51), and the suction part of the compressor (1). It circulates and outputs cooling capacity in the evaporator (5).

この冷凍サイクルの動作において、理惣的にVip発器
(5)内で蒸発した冷媒か、その出口で乾燥飽和蒸気と
なる時が最も効率的な運転状態となる。しかし実際の構
成上は、蒸発器(5)の内部及び蒸発器(5)より圧縮
機(11の吸入部曹での冷媒配管の通路抵抗により温度
降下があり、また圧縮機(1)か冷媒のガス液混合域で
吸入して液圧縮するのを時化する(アキュムレータを設
けている場合は必らずしもそうではないが)ため、冷媒
ガスをわずか過熱した領域で動作させることが適切であ
る。そこでこのような動作状態を達成するために温度セ
ンサ(7)及び(8)の検知するそれぞれの温度の差(
これを過熱Y 8Hとする)が、常に設定値8Hd  
(−冷媒配管によっても異なるが例えば数deg )と
なるように膨張弁(4)への印加電圧VTe賛化し、冷
媒流量を制御するものである。
In the operation of this refrigeration cycle, the most efficient operating state is when the refrigerant evaporates within the Vip generator (5) and becomes dry saturated vapor at its outlet. However, in the actual configuration, there is a temperature drop due to the passage resistance of the refrigerant piping inside the evaporator (5) and from the evaporator (5) to the compressor (11). It is appropriate to operate the refrigerant gas in a slightly superheated region in order to speed up suction and liquid compression in the gas-liquid mixing region (although this is not always the case if an accumulator is provided). Therefore, in order to achieve such an operating state, the difference between the temperatures detected by the temperature sensors (7) and (8) (
This is called overheating Y 8H), but the set value is always 8Hd.
The applied voltage VTe to the expansion valve (4) is controlled so that the voltage VTe becomes equal to (for example, several degrees, although it varies depending on the refrigerant pipe) and the refrigerant flow rate is controlled.

な詔過熱& SHFi、理想冷凍サイクルにおけるもの
に対して、前述のように冷媒配管の通路抵抗による温度
降下がある等、厳密な意味での過熱度(スーパーヒート
)ではないが、ここでは、第1図に示す温度センサ(7
)と(8)によって得られた値を示すものとする。
Superheating & SHFi is not a degree of superheating in the strict sense (superheat), as there is a temperature drop due to passage resistance of the refrigerant piping as mentioned above, compared to that in an ideal refrigeration cycle, but here, Temperature sensor (7) shown in Figure 1
) and (8).

次に制御回路(9)の構成8第3図に示す。第3図にお
いて、αGは領域判定部、αυは演算処理部、囮は信号
出力部であり、演算処理部011の全部及び領域判定部
αGと信号出力部(6)との一部がマイクロコンピュー
タ(以下マイコンと称すJ (13で構成されている。
Next, the configuration 8 of the control circuit (9) is shown in FIG. In FIG. 3, αG is an area determination unit, αυ is an arithmetic processing unit, and the decoy is a signal output unit, and the entire arithmetic processing unit 011 and part of the area determination unit αG and signal output unit (6) are connected to a microcomputer. (hereinafter referred to as a microcomputer).

領域判定部αGはマイコンα3の一部の他、抵抗α6卵
、差動増幅器(161,D/A変換器aη、比較器止ま
り構成されている。信号出力部a2はマイコン03の一
部の他、D/A変換器弱、オペアンプ■、抵抗Qυ、ト
ランジスタ(乙により構成されている。
In addition to a part of the microcomputer α3, the area determination unit αG includes a resistor α6, a differential amplifier (161, a D/A converter aη, and a comparator).The signal output unit a2 includes a part of the microcomputer 03 and a , a D/A converter, an operational amplifier (2), a resistor (Qυ), and a transistor (2).

この構成において、領域判定部00の動作を説明すると
、第1の温度センサ(7)と抵抗l′I41より曹発器
(5)の入口の温度TEに対応した電圧Vlと、第2の
温度センサ(8)と抵抗(至)より、圧縮機(1)の入
口の温度Tsに対応した電圧v8が差動増幅器OQに入
力される。この差動増幅器f16ittllEVsとV
leの差を増幅して出力するもので、その出力は過熱度
sH=’rB −III、  に対応した値である。こ
こで過熱度の設定値をSHd  とすると、その偏差Δ
ST(は△SR= SH−SHd である。今、第4図のように偏差△8Hの領域Aを4領
域(At、 Azr AL A4 )とするため、その
境界を△8H=−2.5,0.+2.5 degとする
In this configuration, the operation of the area determination unit 00 will be explained. The first temperature sensor (7) and the resistor l'I41 generate a voltage Vl corresponding to the temperature TE at the inlet of the temperature generator (5) and a second temperature. A voltage v8 corresponding to the temperature Ts at the inlet of the compressor (1) is input from the sensor (8) and the resistor (to) to the differential amplifier OQ. This differential amplifier f16ittllEVs and V
The difference in le is amplified and outputted, and the output is a value corresponding to the degree of superheating sH='rB-III. Here, if the set value of superheat degree is SHd, then the deviation Δ
ST (is △SR=SH-SHd. Now, as shown in Fig. 4, since the area A of the deviation △8H is made into 4 areas (At, Azr AL A4), the boundary is △8H=-2.5 , 0.+2.5 deg.

そこでマイコンロ3により、△8H=−2.5,0.+
2.5degの3通りでそれぞれSHd+△SHのデジ
タル量をD/A変換器09に入力し、その出力SHR(
= SHd+△8H)と過熱度SRを比較器aeにより
比較することによって、その時の過熱Jf 8Hと設定
値SHdの差、すなわち偏差△8Hの領域人を判定する
ことが出来る。
Then, using microcontroller 3, △8H=-2.5,0. +
The digital amount of SHd+△SH is input to the D/A converter 09 in three ways at 2.5 degrees, and the output SHR (
= SHd + Δ8H) and the degree of superheating SR using the comparator ae, it is possible to determine the difference between the current overheating Jf 8H and the set value SHd, that is, the range of the deviation Δ8H.

第4図に示す4つの領域は、偏差△8H=Odegを中
心に正、負それぞれに対し2つづつの領域となっている
The four regions shown in FIG. 4 are two regions each for positive and negative values centered around the deviation Δ8H=Odeg.

次に演算処理部(社)の動作を説明する。演算処理部α
Dは働域判定部αGによって区分された偏差Δ8Hの領
域Aにより、信号出力部(社)で出力する膨張弁(4)
への印加電圧VTの値を決定するものである。
Next, the operation of the arithmetic processing section will be explained. Arithmetic processing unit α
D is an expansion valve (4) that is output by the signal output unit (company) according to the area A of deviation Δ8H divided by the working area determination unit αG.
This determines the value of the voltage VT applied to.

この演算処理部圓は安定制御時において領域Aが変化(
例えばム$からA4 など)した時、及び同一の領域A
で所定時間To (例えば2分間ンを経過する毎に、そ
れぞれの状態に対応した増減量e、即ち印加電圧vTを
変更するための変化量をそれまでの印加電圧VTの値に
加減算し、新たに出力すべき印加電圧vTの値を決定す
る。この場合の増減量Cは例えば次表に示す通りである
。表中の記中「Aν」は、前回印加電圧vTの変更処理
を行なった時の領域を示し、記号rAp J Fi、今
回印加電圧VTの変更処理を行なうべく状態の領域であ
り、Ay’?APの場合は、領域Aが変化しy:場合で
あり、Ay=A、pは同一の領域Aで所定時間T。
This arithmetic processing unit circle has a region A that changes during stable control (
For example, from M$ to A4), and the same area A
Every time a predetermined period of time To (for example, 2 minutes elapses), the increase/decrease e corresponding to each state, that is, the amount of change for changing the applied voltage vT, is added or subtracted from the value of the applied voltage VT up to that point, and the new value is calculated. The value of the applied voltage vT to be output is determined.The increase/decrease C in this case is as shown in the following table, for example. "Aν" in the table indicates the value when the applied voltage vT was changed last time. The symbol rAp J Fi indicates the region of the state in which the applied voltage VT is changed this time, and in the case of Ay'?AP, the region A changes and y:, and Ay=A, p. is the same area A for a predetermined time T.

経過した場合である。This is a case where the period has passed.

表の増減量eを具体数値で示すと、例えば次の通りであ
る。
When the increase/decrease e in the table is shown in concrete numerical values, for example, it is as follows.

el−50mV、 el=25mV、 es−75mV
、 e4−OmV。
el-50mV, el=25mV, es-75mV
, e4-OmV.

Ps−100mV この増減1eにおいて、e11Fi偏差の符号が逆転す
る場合であり、印加電圧vTの増減を逆にする。
Ps-100mV In this increase/decrease 1e, the sign of the e11Fi deviation is reversed, and the increase/decrease in the applied voltage vT is reversed.

そこで第2図に示すようなヒステ、リシスの影響を除(
ため、e!1にはヒステリシス相当分(例えば75mV
Jを含めている。またel及びesFiそれぞれ偏差の
絶対値の大きさに対応するような値に選んでいる。
Therefore, we removed the effects of hysteresis and lysis as shown in Figure 2 (
Tame, e! 1 has a value equivalent to hysteresis (for example, 75 mV
Includes J. Further, el and esFi are each selected to have a value corresponding to the magnitude of the absolute value of the deviation.

以上は安定制御時の場合であるか、第1図で示す送風機
(6)の風量が変更された場合など、急激な負荷変動が
あると、それにより偏差の領域がAIもしくはA4へ太
き(ずれてしまう。=の領域からAs もしくはAsへ
回復するために、常に増減11 ezで所定時間’l’
a(2分〕毎に修正動作をすると、実際に回復されるま
で極めて長い時間を要することになる。状況によっても
異なるが、例えば30分以上も要する場合も起こりえる
The above is the case during stable control, or if there is a sudden load change such as when the air volume of the blower (6) shown in Fig. 1 is changed, the deviation area widens to AI or A4 ( In order to recover from the area of = to As or As, 'l' is constantly increased or decreased by 11 ez for a predetermined period of time.
If a corrective action is performed every 2 minutes, it will take a very long time to actually recover.Although it depends on the situation, it may take more than 30 minutes, for example.

そこで、このような状況を避けるため、この演算処理部
illけ、領域AIもしくはA4となった後、一定時間
T、 (例えば4分)経過した時は、増減量el を十
分に大きなelIに変更(例えば200 mV)し、所
定時間’ro (2分)毎に加減算を行なう。
Therefore, in order to avoid such a situation, this arithmetic processing unit changes the increase/decrease el to a sufficiently large elI when a certain period of time T (for example, 4 minutes) has elapsed after reaching the area AI or A4. (for example, 200 mV), and addition and subtraction are performed at predetermined time intervals (2 minutes).

その後、領域かAsもしくはA8となった時、再び前述
の安定制御時の動作に移行する。
Thereafter, when the area reaches As or A8, the operation again shifts to the above-mentioned stability control.

この動作により、過熱度SHか大きくずれた場合には増
減量elを増大し、増大された@1′により早期に安定
制御へ回復させることができる。ここで、この増減量e
lを増大するタイミングとして、AtもしくはA8より
AIもしくはA4へ蚊化した時にただちに行ない、eg
の替りに、増大したe lJを加減算し、その後所定時
間(2分2毎に加減算することが考えられるか、この方
法をとると、短期間のみAIもしくはA4となるような
安定制御動作であっても、この増大されたel′か大き
すぎて、逆に大きな振動状態に陥いる可能性か大きいた
め、一定時間〒X(4分ンだけ余裕を与えるものである
By this operation, when the degree of superheating SH deviates greatly, the increase/decrease el is increased, and the increased @1' allows for early recovery to stable control. Here, this increase/decrease e
The timing to increase l is to do it immediately when the mosquito transforms from At or A8 to AI or A4, e.g.
Instead, it may be possible to add or subtract the increased e lJ and then add or subtract it for a predetermined period of time (every 2 minutes).If this method is used, it will be a stable control operation that will be AI or A4 only for a short period of time. However, this increased el' is too large, and there is a high possibility that a large oscillation state will occur, so a certain amount of time 〒X (4 minutes) is provided.

なお一定時間TI=TO(2分ンとなせは、前記の表の
増減量e1の値として200 mVとすることで対応で
き、かつ一定時間TXを設定する必要は特にない。この
場合は、使用対象によっては振動状態に陥いりやすい場
合もあり、安定性と応答性から適宜選択することが良い
。以上の動作により演算処理部(社)はff11回変更
後の印加電圧をV’ffとすると、新たな印加電圧vT
を vT= VTF±e (+は加算、−t[IN)として
与えるものである。
Note that the constant time TI = TO (2 minutes) can be handled by setting the value of increase/decrease e1 in the table above to 200 mV, and there is no particular need to set the constant time TX. Depending on the object, it may be easy to fall into a oscillating state, so it is better to select an appropriate one based on stability and responsiveness.With the above operation, the arithmetic processing unit (company) will set the applied voltage after changing ff 11 times to be V'ff. , new applied voltage vT
is given as vT=VTF±e (+ is addition, -t[IN).

次に信号出力部α2は、演算処理部−で与えられた新し
い印加電圧vTの値のディジタル信号をD/A駿換器(
1!1に入力し、その出力電圧をオペアンプ[株]、ト
ランジスタc12を用いて、膨張弁(4)に印加する。
Next, the signal output unit α2 outputs the digital signal of the new applied voltage vT value given by the arithmetic processing unit to the D/A converter (
1!1, and its output voltage is applied to the expansion valve (4) using an operational amplifier and transistor c12.

膨張弁(4)への印加電圧vTは、演算処理部αυで新
たに加減算処理が行なわれるまでの間は、常に前凹与え
られた値に維持される。以上、制御回路(9)の構成並
びに動作を説明したか、次に、この制御回路(9)を用
いて、’11図の装置を動作させた時の過熱度の偏差Δ
SHの特性例を第5図に示す。
The voltage vT applied to the expansion valve (4) is always maintained at the predetermined value until a new addition/subtraction process is performed in the arithmetic processing unit αυ. Having explained the configuration and operation of the control circuit (9) above, let us now explain the deviation Δ in the degree of superheat when the device shown in Figure '11 is operated using this control circuit (9).
An example of the characteristics of SH is shown in FIG.

第5図(i)は冷媒流量の少ない低負荷条件で、かつ送
l1jiL機(6)の風量か最低の場合の特性である。
FIG. 5(i) shows the characteristics under low load conditions with a small refrigerant flow rate and when the air flow rate of the feeder (6) is at its lowest.

また第5図00において実線の特性は標準条件で、かつ
送風機(6)の風量か最大gよび標準の場合の特性であ
り、破線の特性は増減量elを増大する機能のない場合
の#考特性であり、また時刻t=toは風量を最大より
棒単に変更した時刻である。t2過熱度の設定値8Hd
 = 4 degとした。
In addition, in Fig. 500, the solid line characteristics are under standard conditions and the air volume of the blower (6) is the maximum g, and the broken line characteristics are the characteristics when there is no function to increase the increase/decrease el. The time t=to is the time when the air volume is changed from the maximum. t2 superheat degree setting value 8Hd
= 4 degrees.

図より明らかなように、安定状態での偏差ΔBHの変化
特性は(i i)の万か良く、0〕は±1 deg程度
のFR動となっているが、(I)の場合でもこの程度に
抑えられておれば冷凍サイクル上は特に問題にならず、
効率的にもほぼ病足しえるものである。
As is clear from the figure, the change characteristics of the deviation ΔBH in a stable state are very good for (i), and 0] has an FR movement of about ±1 deg, but even for (I), this is the same level. If it is kept to a minimum, there will be no problem with the refrigeration cycle.
In terms of efficiency, it's almost impossible to get sick.

tた第5a?I(ii)において、時刻1=1.で負荷
変動があり、過熱度SRの回復動作は、比較的にすみや
かに行なわれており、破線で示した特性、すなわち増減
量elを増大せずに一定の値で制狙1するものに比べて
、十分優れた特性となっている。
5th a? In I(ii), time 1=1. There is a load fluctuation at Therefore, it has sufficiently excellent characteristics.

これら第5図(i)、(11)の特性を更に同上するに
は増減量eの値並びに所定時間Toや一定時間’14を
変更することが考えられるか、この場合、安定性と応答
性を総合的に判断し、選定することか望ましい。
In order to further improve the characteristics shown in FIGS. 5(i) and (11), it may be possible to change the value of increase/decrease e, the predetermined time To, and the constant time '14. In this case, stability and responsiveness may be improved. It is desirable to make a comprehensive judgment and make a selection.

ここで前述の演算処理回路fallにおいて、増減蓋e
6をヒステリシス相当分を加えているが、別の方法とし
て、ヒステリシス相当分の増減量をeOとし、印加電圧
VTの増減を前回と逆方向に行なうときのみ、所定の増
減fit e k−eoを加算するようにしても良い。
Here, in the above-mentioned arithmetic processing circuit fall, the increase/decrease lid e
6 is added to the amount equivalent to the hysteresis, but as another method, the increase or decrease equivalent to the hysteresis is set to eO, and only when the applied voltage VT is increased or decreased in the opposite direction to the previous time, the predetermined increase or decrease fit e k-eo is added. It may be added.

次に領域判定部aOt&び演算処理部tll)の他の実
施例を説明する。第6図は領域判定部Oaの構成を簡素
化し、領域Aを偏差Δ8Hが正、負の2つの領域、即ち
△SH<OのときAI 、Δ8H≦0のときA6として
いる。この領域AI+A・に対する増減量eは例えば次
の通りである。
Next, other embodiments of the area determination section aOt & arithmetic processing section tll will be described. FIG. 6 simplifies the configuration of the region determination section Oa, and defines the region A as two regions in which the deviation Δ8H is positive and negative, that is, AI when ΔSH<O, and A6 when Δ8H≦0. The increase/decrease e for this area AI+A· is, for example, as follows.

el−50mV、 e6”loOmV (ヒステリシス
相当分75rnV含む)、所定時間TO=2分、一定時
間IIIx;7分。
el-50mV, e6"loOmV (including 75rnV equivalent to hysteresis), predetermined time TO = 2 minutes, fixed time IIIx; 7 minutes.

ただしelは同一の領域でTx経過後は、el′=20
0mVとする。
However, el is the same area and after Tx elapses, el'=20
Set to 0 mV.

この場合、一定時間T、は第5図におシする値よりも大
きくしているか、これはelを増大する動作に早く移行
しすぎると、逆に振動力1大きくなってしまうのを防止
するためである。
In this case, the fixed time T is set larger than the value shown in Fig. 5, or this prevents the vibration force from increasing by 1 if the operation to increase el is started too quickly. It's for a reason.

この第6図による特性は、I!4図に示すものに比して
一般に劣るか、領域判定部Q(Iや演算処理部圓の構成
、処理が簡単であり、低コストイヒカS図れる利点はあ
る。
This characteristic according to FIG. 6 is I! Compared to the one shown in FIG. 4, it is generally inferior to the one shown in FIG.

以上偏差の領域を544図では4つに区分、146図で
は2つに区分したか、この他、それ以外の数に区分しそ
れぞれの伸域に対応した増減11eを決めることにより
、同様の動作を行なえることは明らかである。
The above deviation area is divided into four areas in Figure 544 and two areas in Figure 146, or by dividing it into other numbers and determining the increase/decrease 11e corresponding to each expansion area, similar operations can be performed. It is clear that this can be done.

以上本発明′に基づく冷凍サイクル制御装置を、添付図
[1i1に示す実施例により説明したか、実施例の他、
以下の構成か可能である。
The refrigeration cycle control device based on the present invention' has been described above with reference to the embodiment shown in the attached drawing [1i1].
The following configurations are possible.

1)1#センサ(7)及び(8)はそれぞれ、蒸発器(
5)の入口部より中間部までの任意の位置、蒸発器(5
)の出口部より圧縮機(1)の入口部望での任意の位N
に配置することか可能であり、それぞれの位置における
検出温1度を過熱度の関係を求め、その設定値を与えれ
ば同様の動作が可能である。
1) 1# sensors (7) and (8) are respectively connected to the evaporator (
Any position from the inlet of the evaporator (5) to the middle part of the evaporator (5)
) from the outlet of the compressor (1) to the inlet of the compressor (1)
The same operation is possible by determining the relationship between the detected temperature of 1 degree at each position and the degree of superheating, and providing that set value.

2)制御回1d +9jにおいて、マイクロコンピュー
タ0濁を主体としてf#匠し1こが、他のデジタル集積
回路や、アナログ回路を用いてもS成が可能であろう。
2) In the control circuit 1d + 9j, the f# design is mainly based on a microcomputer, but it would also be possible to create S using other digital integrated circuits or analog circuits.

3)膨張弁(41として、いわゆる熱電膨張弁を用いた
か、他の構成の電気式の膨張弁であっても同種の制御が
可能であろう。また膨張弁(4)の特性として、゛第2
図に示すように、ヒステリシス特性を有している場合に
ついて説明したが、このヒステリシス特性がほとんど無
視できるかもしくはヒステリシスがない方がより良<、
この場合には、演算処理部圓において、ヒステリシス相
当の増減量eOを与える必要がなくなり処理が簡素化さ
れる。
3) As the expansion valve (41), the same type of control may be possible even if a so-called thermoelectric expansion valve is used or an electric expansion valve of other configuration is used.Furthermore, as a characteristic of the expansion valve (4), 2
As shown in the figure, we have explained the case where the hysteresis characteristic is present, but it is better if the hysteresis characteristic can be almost ignored or there is no hysteresis.
In this case, there is no need to provide an increase/decrease eO corresponding to hysteresis in the arithmetic processing unit, and the processing is simplified.

4)領域判定部〔αに2いて、過熱度8Hと比較データ
8HRとを比較する構成において、比較器(濤もしくは
比較データ5HRCデイフアレンシヤルを与えるように
すれば、領域判定時の誤動作を軽減でき、確実な′判定
が可能となる。また、温度センサ(7)及び(8)の検
知する温度信号T、及びTsを、直接師変換器によりデ
ジタル信号に変換し、これらより領域の判定を行なって
も良く、コスト、性能等の面で使用対象に応じて選定す
ることが望ましい。
4) In the configuration where the region determination unit [α] compares the degree of superheating 8H and the comparison data 8HR, if the comparator (contact or comparison data 5HRC differential is given), malfunctions at the time of region determination can be prevented. In addition, the temperature signals T and Ts detected by the temperature sensors (7) and (8) are converted into digital signals by a direct converter, and the area can be determined from these. However, it is desirable to select a material according to the purpose of use in terms of cost, performance, etc.

5】 第1図では冷房装置について示したが、この他ヒ
ートポンプ式冷暖房装置や、冷凍装置についても適応で
きるものである。
5] Although a cooling device is shown in FIG. 1, the present invention can also be applied to a heat pump air-conditioning device or a refrigeration device.

以上本発明の冷凍サイクル制御装置を詳細に述べたが、
本発明によれば、過熱度を設定値に維持するため、過熱
度の設定値に対する偏差を2つ以上の領域に区分し、そ
の状懇に応じて膨張弁へ電気信号を所定の増減Iにより
きめ細かく変更すると共に、負荷変動等に対して過熱度
が設定値より大きくずれた時は、その領域から一定時間
内に適当な領域まで回復しないことにより検知し、所定
の増減量を増大して回復動作を速めるものであり、過熱
度の制aにおける安定性と応答性を十分向上することが
できる。これにより冷凍サイクルの効率向上、特に8B
ERの向上か期待でき、省エネルギー面で極めて優れた
効果を奏することができる。
Although the refrigeration cycle control device of the present invention has been described in detail above,
According to the present invention, in order to maintain the degree of superheat at a set value, the deviation of the degree of superheat from the set value is divided into two or more regions, and an electric signal is sent to the expansion valve by a predetermined increase/decrease I depending on the situation. In addition to making detailed changes, when the degree of superheat deviates significantly from the set value due to load fluctuations, it is detected by not recovering from that area to an appropriate area within a certain period of time, and recovers by increasing the predetermined increase/decrease. This speeds up the operation, and can sufficiently improve stability and responsiveness in controlling the degree of superheating. This improves the efficiency of the refrigeration cycle, especially 8B
It is expected that the ER will be improved, and an extremely excellent effect can be achieved in terms of energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

′lS1図社本発明に基づく冷凍サイクル制御装置の一
実施例の構成図、第2図はgJ1図における膨張弁の特
性伊、gJ3図は第1図における制御回路の構成図、第
4図Vi領域判定部の検知する領域区分の説明図、第5
図は第1図乃至第4図に示す実施例の動作特性図、第6
図社領域判定部の領域区分の他の実施例の説明図。 (1)は圧縮機、(21ti凝縮機、(4)は膨張弁、
+5112蒸発器、(7)社第1の温度センサ、(8)
は第2の温度センサ、(9)は制御回路、<IGは領域
判定部、Iは演算処理部、@は信号出力部、(13はマ
イクロコンピュータ、Δ8Bは偏差、Aは領域、eは増
減量、’r(、h所定時間、TXは一定時間、vyFi
電気信号(印加電圧]である。 特許出願人代理人      ’i、、B弁理士  白
木  孝、 、:、+、、′う゛し611.二゛;゛ 1/T  (V)
'lS1 Zusha A block diagram of an embodiment of the refrigeration cycle control device based on the present invention, Fig. 2 shows the characteristics of the expansion valve in Fig. gJ1, Fig. gJ3 shows the block diagram of the control circuit in Fig. 1, and Fig. 4 Vi Explanatory diagram of area divisions detected by the area determination unit, fifth
The figures are operational characteristic diagrams of the embodiment shown in Figures 1 to 4, and Figure 6.
FIG. 7 is an explanatory diagram of another example of area classification by the Zusha area determination unit. (1) is a compressor, (21ti condenser, (4) is an expansion valve,
+5112 evaporator, (7) company's first temperature sensor, (8)
is the second temperature sensor, (9) is the control circuit, <IG is the area determination section, I is the arithmetic processing section, @ is the signal output section, (13 is the microcomputer, Δ8B is the deviation, A is the area, and e is the increase/decrease. amount, 'r(, h predetermined time, TX is a fixed time, vyFi
It is an electrical signal (applied voltage). Patent applicant's agent 'i,, B patent attorney Takashi Shiraki, , :, +,,'611.2;'1/T (V)

Claims (3)

【特許請求の範囲】[Claims] (1)電気信号により絞り量が調節可能な膨張弁と、蒸
発器の入口ないし中間部に投lすたjjlの温度センサ
と、前記蒸発器の出口ないし圧縮機の吸入部に設けた1
!2の温度センサと、前記第1および第2の温度センサ
よりの検出温度の差を設定値に維持するように前記膨張
弁への電気信号を制御する制御回路とを設け、前記制御
回路は、前記検出温度の差の設定値に対する偏差を少な
(とも2つ以上の領域に区分する領域判定部と、前記領
域判定部で得られる領域に対応して前記電気信号の値に
所定の、増減量を加減算し、かつ所定の領域で一定時間
経過後は前記所定の増減量と増大する演算処理部と、前
記演算処理部より与えられた電気信号を前記膨膀弁へ出
力する信号出力部とを具備した冷凍サイクル制御製雪。
(1) An expansion valve whose throttle amount can be adjusted by an electric signal, a temperature sensor installed at the inlet or middle part of the evaporator, and an expansion valve installed at the outlet of the evaporator or the suction part of the compressor.
! and a control circuit that controls an electric signal to the expansion valve so as to maintain a difference between temperatures detected by the first and second temperature sensors at a set value, and the control circuit includes: A region determination unit that divides the detected temperature difference from a set value to a small value (a region determination unit that divides the detected temperature difference into two or more regions, and a predetermined increase/decrease in the value of the electrical signal corresponding to the region obtained by the region determination unit) an arithmetic processing section that adds and subtracts the amount of , and after a certain period of time has elapsed in a predetermined area, increases and decreases to the predetermined increase/decrease; and a signal output section that outputs an electric signal given from the arithmetic processing section to the bladder inflation valve. Equipped with refrigeration cycle control snow making.
(2)領域判定部は偏差を正および負の2つ領域に区分
するように構成され、演算処理部は前記2つの領域でそ
わぞれ一定時間経過時に所定の増減量を増大するように
構成された特許請求の範囲第1項記載の冷凍サイクル制
御製電。
(2) The area determination unit is configured to divide the deviation into two areas, positive and negative, and the arithmetic processing unit is configured to increase a predetermined increase/decrease in each of the two areas after a certain period of time has elapsed. A refrigeration cycle control electrical manufacturing device according to claim 1.
(3)領域判定部は偏差を3つ以上の領域に区分するよ
うに構成され、演算処理部は偏差の符号が正および負の
それぞれにおいて、その絶対値が最も大きい領域で一定
時間経過時に所定の増減量を増大するように構成された
特許請求の範囲第1項記載の冷凍サイクル制御装置。
(3) The region determining section is configured to classify the deviation into three or more regions, and the arithmetic processing section is configured to divide the deviation into three or more regions, and the arithmetic processing section selects the region where the absolute value is the largest when the sign of the deviation is positive and negative after a predetermined period of time has elapsed. The refrigeration cycle control device according to claim 1, wherein the refrigeration cycle control device is configured to increase the increase/decrease in the amount of .
JP21305481A 1981-12-31 1981-12-31 Controller for refrigeration cycle Granted JPS58117967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21305481A JPS58117967A (en) 1981-12-31 1981-12-31 Controller for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21305481A JPS58117967A (en) 1981-12-31 1981-12-31 Controller for refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS58117967A true JPS58117967A (en) 1983-07-13
JPS6353454B2 JPS6353454B2 (en) 1988-10-24

Family

ID=16632760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21305481A Granted JPS58117967A (en) 1981-12-31 1981-12-31 Controller for refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS58117967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162170A (en) * 1983-12-19 1985-08-23 キヤリア・コ−ポレイシヨン Cooling device and method of controlling flow rate of refrigerant for said device
JPS60263065A (en) * 1984-06-07 1985-12-26 三菱電機株式会社 Control system of refrigeration cycle
JP2006349282A (en) * 2005-06-17 2006-12-28 Hoshizaki Electric Co Ltd Auger type ice making machine
JP2014142168A (en) * 2012-12-28 2014-08-07 Daikin Ind Ltd Freezer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162170A (en) * 1983-12-19 1985-08-23 キヤリア・コ−ポレイシヨン Cooling device and method of controlling flow rate of refrigerant for said device
JPH0348428B2 (en) * 1983-12-19 1991-07-24 Carrier Corp
JPS60263065A (en) * 1984-06-07 1985-12-26 三菱電機株式会社 Control system of refrigeration cycle
JP2006349282A (en) * 2005-06-17 2006-12-28 Hoshizaki Electric Co Ltd Auger type ice making machine
JP2014142168A (en) * 2012-12-28 2014-08-07 Daikin Ind Ltd Freezer

Also Published As

Publication number Publication date
JPS6353454B2 (en) 1988-10-24

Similar Documents

Publication Publication Date Title
US4498310A (en) Heat pump system
JPH0340295B2 (en)
JPH09295512A (en) Air conditioner for vehicle
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JPS58117967A (en) Controller for refrigeration cycle
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JP4261881B2 (en) Control method of refrigeration cycle
CN112219074B (en) Refrigeration cycle device
JP2516986B2 (en) Vehicle air conditioning refrigeration circuit
US20220113073A1 (en) Temperature regulating refrigeration systems for varying loads
JP2765613B2 (en) heat pump
JPH0575937B2 (en)
JPH07294021A (en) Heat pump type cooling dehumidifying equipment
JPH0534578B2 (en)
JPH01139965A (en) Operation controller for refrigerator
JPH04214153A (en) Refrigerating cycle device
JPS5912942B2 (en) Refrigeration equipment
JPH0340298B2 (en)
JPS6251384B2 (en)
JPH025317Y2 (en)
JP2002195667A (en) Refrigeration apparatus
JPS59109748A (en) Air conditioner
JPH0359351A (en) Air conditioner
JPH087314Y2 (en) refrigerator
JPH08247033A (en) Compression fluid feeding device and feeding method