JP2765613B2 - heat pump - Google Patents
heat pumpInfo
- Publication number
- JP2765613B2 JP2765613B2 JP5331325A JP33132593A JP2765613B2 JP 2765613 B2 JP2765613 B2 JP 2765613B2 JP 5331325 A JP5331325 A JP 5331325A JP 33132593 A JP33132593 A JP 33132593A JP 2765613 B2 JP2765613 B2 JP 2765613B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- pressure
- difference
- compressor
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/22—Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、満液式蒸発器を備えた
ヒートポンプ(本明細書では、冷凍機も含めてヒートポ
ンプという)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump provided with a liquid-filled evaporator (hereinafter, referred to as a heat pump including a refrigerator).
【0002】[0002]
【従来の技術】従来、図7,8に示すヒートポンプが公
知である(関連発明:特開平5−187378号公
報)。このうち、図7に示すヒートポンプは、圧縮機1
1,凝縮器(本明細書では、受液器と一体型のもの、お
よび受液器と分離型のものを含む)12,膨張弁13,
満液式蒸発器14、および手動式流量調節弁15を含む
閉じた冷媒流路16を備え、圧縮機11には容量調節用
のスライド弁17が設けてある。また、凝縮器12に
は、凝縮器12の内外に被加熱液を流す高温側流路18
が接続してあり、蒸発器14には、蒸発器14の内外に
被冷却液を流す低温側流路19が接続してある。2. Description of the Related Art Conventionally, a heat pump shown in FIGS. 7 and 8 has been known (related invention: Japanese Patent Application Laid-Open No. 5-187378). Among them, the heat pump shown in FIG.
1, a condenser (including one integrated with a receiver and one separated from a receiver in this specification) 12, an expansion valve 13,
The compressor 11 is provided with a closed refrigerant flow path 16 including a liquid-filled evaporator 14 and a manual flow rate control valve 15, and a slide valve 17 for capacity adjustment. The condenser 12 has a high-temperature side passage 18 through which a liquid to be heated flows inside and outside the condenser 12.
The evaporator 14 is connected to a low-temperature side flow path 19 through which the liquid to be cooled flows inside and outside the evaporator 14.
【0003】さらに、低温側流路19のうち、被冷却液
を流出させる側の流路に、この流路内の温度を検出する
温度検出器20が設けてあり、この温度検出器20か
ら、これによる検出温度を示す温度信号を温度調節器2
1に入力させてある。そして、流量調節弁15を全開に
した後の自動運転時には、上記温度信号に基き、圧縮機
11が蒸発器14での冷媒温度と被冷却液温度との差を
設定温度とする容量になるように、温度調節器20によ
りスライド弁17の位置制御を行わせている。Further, a temperature detector 20 for detecting the temperature in the low-temperature side flow path 19 is provided in a flow path on the side from which the liquid to be cooled flows out. The temperature signal indicating the detected temperature is output to the temperature controller 2.
1 is input. At the time of automatic operation after the flow control valve 15 is fully opened, based on the temperature signal, the compressor 11 is set to have a capacity where the difference between the refrigerant temperature in the evaporator 14 and the temperature of the liquid to be cooled is the set temperature. Next, the position of the slide valve 17 is controlled by the temperature controller 20.
【0004】また、起動時には、蒸発器14からの冷媒
液が圧縮機11に吸込まれる、いわゆる液バックを防止
するために、流量調節弁15を全閉にし、かつ蒸発器1
4内の液面を最低のレベルするとともに、温度調節器2
0を手動運転モードとしておく。起動後、流量調節弁1
5の開度を増大させて、蒸発器14内の冷媒液を冷却す
ることにより被冷却液の温度を下げてゆく。被冷却液の
温度が設計点まで下がると、温度調節器20を自動運転
モードに切換え、上述した自動運転に入る。At the time of start-up, the flow control valve 15 is fully closed and the evaporator 1 is closed in order to prevent the refrigerant liquid from the evaporator 14 from being sucked into the compressor 11 (so-called liquid back).
4 and the temperature controller 2
0 is set to the manual operation mode. After startup, flow control valve 1
The temperature of the liquid to be cooled is lowered by increasing the opening degree of 5 and cooling the refrigerant liquid in the evaporator 14. When the temperature of the liquid to be cooled falls to the design point, the temperature controller 20 is switched to the automatic operation mode, and the automatic operation described above is started.
【0005】この間、できるだけゆっくりと流量調節弁
15を開いてゆき、圧縮機11に最小限の負荷をかけつ
つ、冷媒液を冷却し、蒸発器14内で冷媒液の突沸が生
じないようにすることが重要である。起動時には、蒸発
器14内での冷媒液の蒸発温度と被冷却液の温度との差
が特に大きくなる。蒸発器14の冷媒はボリュームが限
定されているので、すぐにその温度は低下するが、被冷
却液については、それが暖まっておれば、その温度はす
ぐには低下しない。この両温度の差が突沸の原因とな
る。During this time, the flow control valve 15 is opened as slowly as possible to cool the refrigerant liquid while applying a minimum load to the compressor 11 so as to prevent the refrigerant liquid from being bumped in the evaporator 14. This is very important. During startup, the difference between the evaporation temperature of the refrigerant liquid in the evaporator 14 and the temperature of the liquid to be cooled becomes particularly large. Since the volume of the refrigerant in the evaporator 14 is limited, the temperature immediately decreases, but the temperature of the liquid to be cooled does not immediately decrease if it is warm. The difference between these two temperatures causes bumping.
【0006】図8に示すヒートポンプは、図7に示すヒ
ートポンプとは、温度検出器20に代えて、蒸発器14
と流量調節弁15との間に圧縮機11の吸込圧力を検出
する圧力検出器22を設けた点、および温度調節器21
に代えて圧力調節器23を設けた点を除き、他は実質的
に同様であり、互いに対応する部分については同一番号
を付して説明を省略する。このヒートポンプでは、圧力
検出器22から、これによる検出圧力を示す圧力信号を
圧力調節器23に入力させてあり、流量調節弁15を全
開にした後の自動運転時には、圧力調節器23により、
上記圧力信号に基き、蒸発器14内での冷媒の温度を計
算させて、圧縮機11が蒸発器14での冷媒温度と被冷
却液温度との差を設定温度とする容量になるように、ス
ライド弁17の位置制御を行わせている。なお、蒸発器
14内の冷媒温度は、上記吸込圧力からそのときの飽和
温度として一義的に求められる。The heat pump shown in FIG. 8 is different from the heat pump shown in FIG.
A pressure detector 22 for detecting the suction pressure of the compressor 11 between the pressure control valve 15 and the flow control valve 15;
Are substantially the same except that a pressure regulator 23 is provided in place of, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted. In this heat pump, a pressure signal indicating the detected pressure is input from the pressure detector 22 to the pressure regulator 23. During the automatic operation after the flow control valve 15 is fully opened, the pressure regulator 23
Based on the pressure signal, the temperature of the refrigerant in the evaporator 14 is calculated, so that the compressor 11 has a capacity to set the difference between the refrigerant temperature in the evaporator 14 and the temperature of the liquid to be cooled to a set temperature. The position of the slide valve 17 is controlled. The temperature of the refrigerant in the evaporator 14 is uniquely obtained from the suction pressure as the saturation temperature at that time.
【0007】また、起動時には、上記同様に、蒸発器1
4からの冷媒液が圧縮機11に吸込まれる、いわゆる液
バックを防止するために、流量調節弁15を全閉にし、
かつ蒸発器14内の液面を最低のレベルするとともに、
圧力調節器23を手動運転モードとしておく。起動後、
流量調節弁15の開度を増大させて、蒸発器14内の冷
媒液を冷却することにより被冷却液の温度を下げるとと
もに、圧縮機11の吸込圧力を下げてゆく。この吸込圧
力が設計点まで下がると、温度調節器20を自動運転モ
ードに切換え、上述した自動運転に入る。At the time of starting, the evaporator 1 is operated in the same manner as described above.
In order to prevent so-called liquid back, in which the refrigerant liquid from 4 is sucked into the compressor 11, the flow control valve 15 is fully closed,
And, while keeping the liquid level in the evaporator 14 at the lowest level,
The pressure regulator 23 is set to the manual operation mode. After starting,
By increasing the opening of the flow control valve 15 to cool the refrigerant liquid in the evaporator 14, the temperature of the liquid to be cooled is lowered and the suction pressure of the compressor 11 is lowered. When the suction pressure drops to the design point, the temperature controller 20 is switched to the automatic operation mode, and the automatic operation described above is started.
【0008】[0008]
【発明が解決しようとする課題】上記従来のヒートポン
プの場合、起動時に流量調節弁15の開度を手動で漸開
させつつ蒸発器14内の冷媒液を冷却することにより被
冷却液の温度を下げ、液バック現象の発生の防止を図っ
ている。しかしながら、流量調節弁15の開度を増大さ
せる速度が必ずしも適当でないときもあり、この場合に
は液バック現象が発生する。そして、この液バック現象
が発生すると潤滑油の粘度低下による軸受の損傷、さら
に圧縮機内のロータの損傷という事態を招来するという
問題が生じる。本発明は、斯る従来の問題点を課題とし
てなされたもので、圧縮機への液バックの防止を可能と
したヒートポンプを提供しようとするものである。In the case of the above-mentioned conventional heat pump, the temperature of the liquid to be cooled is reduced by cooling the refrigerant liquid in the evaporator 14 while manually gradually opening the opening of the flow control valve 15 at startup. To prevent the occurrence of the liquid back phenomenon. However, the speed of increasing the opening of the flow control valve 15 may not always be appropriate, and in this case, a liquid back phenomenon occurs. When the liquid back phenomenon occurs, there arises a problem that damage to the bearing due to a decrease in the viscosity of the lubricating oil and damage to the rotor in the compressor occur. The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a heat pump capable of preventing liquid back to a compressor.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、第1発明は、容量調節手段付き圧縮機の他に、少な
くとも凝縮器,膨張弁,蒸発器を含む閉じた冷媒流路を
形成するヒートポンプにおいて、蒸発器の内外に被冷却
液を流す低温側流路の内、上記蒸発器からこの被冷却液
を流出させる側の流路内の温度を検出する温度検出器
と、上記圧縮機の吸込圧力を検出する圧力検出器と、上
記圧縮機の起動時に、上記温度検出器から、検出温度T
を示す温度信号、および上記圧力検出器から、検出した
吸込圧力Psを示す圧力信号を受け、温度Tのときの冷
媒の飽和圧力Peの計算、圧力差ΔP=Pe−Psの計
算、およびΔPと予め定めた設定圧力Cpとの差(ΔP
−Cp)の計算を行い、上記容量調節手段に対して制御
信号を出力し、上記差(ΔP−Cp)が負の場合には、
圧縮機の容量を縮小し、上記差が0の場合には、上記容
量を増大するとともに、上記設定圧力Cpをより低い設
定圧力に変えて、上記差が正の場合には、上記容量を保
ち、再度上記差の計算以降の制御を繰り返す圧力調節器
とを設けて形成した。According to a first aspect of the present invention, a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator is formed in addition to a compressor having a capacity adjusting means. A temperature detector for detecting a temperature in a flow path on the side from which the liquid to be cooled flows out of the evaporator, in the low-temperature side flow path for flowing the liquid to be cooled in and out of the evaporator; A pressure detector for detecting the suction pressure of the compressor, and the temperature detector detects the detected temperature T when the compressor starts.
A temperature signal indicating, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s, the calculation of the saturation pressure P e of the refrigerant at the temperature T, the calculation of the pressure difference [Delta] P = P e -P s , And the difference between ΔP and a predetermined set pressure C p (ΔP
−C p ), and outputs a control signal to the capacity adjusting means. If the difference (ΔP−C p ) is negative,
Reducing the capacity of the compressor, if the difference is zero, as well as increasing the capacity, by changing the set pressure C p to a lower set pressure, when the difference is positive, the capacity And a pressure regulator that repeats the control after calculating the difference again.
【0010】また、第2発明は、容量調節手段付き圧縮
機の他に、少なくとも凝縮器,膨張弁,蒸発器を含む閉
じた冷媒流路を形成するヒートポンプにおいて、蒸発器
の内外に被冷却液を流す低温側流路の内、上記蒸発器か
らこの被冷却液を流出させる側の流路内の温度を検出す
る温度検出器と、上記圧縮機の吸込圧力を検出する圧力
検出器と、上記圧縮機の起動時に、上記温度検出器か
ら、検出温度Tを示す温度信号、および上記圧力検出器
から、検出した吸込圧力Psを示す圧力信号を受け、吸
込圧力Psのときの冷媒の飽和温度Tsの計算、温度差Δ
T=T−Tsの計算、およびΔTと予め定めた設定温度
Ctとの差(ΔT−Ct)の計算を行い、上記容量調節手
段に対して制御信号を出力し、上記差(ΔT−Ct)が
負の場合には、圧縮機の容量を縮小し、上記差が0の場
合には、上記容量を増大するとともに、上記設定温度C
tをより低い設定温度に変えて、上記差が正の場合に
は、上記容量を保ち、再度上記差の計算以降の制御を繰
り返す温度調節器とを設けて形成した。A second invention provides a heat pump having a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator, in addition to a compressor with a capacity adjusting means, wherein a liquid to be cooled is provided inside and outside the evaporator. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out from the evaporator, a pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s, the refrigerant at a suction pressure P s saturated calculation of the temperature T s, the temperature difference Δ
Calculation of T = T−T s and calculation of a difference (ΔT−C t ) between ΔT and a predetermined set temperature C t , outputting a control signal to the capacity adjusting means, and calculating the difference (ΔT −C t ) is negative, the capacity of the compressor is reduced, and if the difference is zero, the capacity is increased and the set temperature C is increased.
When t was changed to a lower set temperature, and when the difference was positive, the temperature was maintained, and a temperature controller for repeating the control after the calculation of the difference again was provided.
【0011】さらに、第3発明は、圧縮機の他に、少な
くとも凝縮器,膨張弁,蒸発器,吸込圧力調節弁を含む
閉じた冷媒流路を形成するヒートポンプにおいて、蒸発
器の内外に被冷却液を流す低温側流路の内、上記蒸発器
からこの被冷却液を流出させる側の流路内の温度を検出
する温度検出器と、上記圧縮機の吸込圧力を検出する圧
力検出器と、上記圧縮機の起動時に、上記温度検出器か
ら、検出温度Tを示す温度信号、および上記圧力検出器
から、検出した吸込圧力Psを示す圧力信号を受け、温
度Tのときの冷媒の飽和圧力Peの計算、圧力差ΔP=
Pe−Psの計算、およびΔPと予め定めた設定圧力Cp
との差(ΔP−Cp)の計算を行い、上記容量調節手段
に対して制御信号を出力し、上記差(ΔP−Cp)が負
の場合には、上記吸込圧力調節弁の開度を縮小し、上記
差が0の場合には、上記開度を増大するとともに、上記
設定圧力Cpをより小さい設定圧力に変えて、上記差が
正の場合には、上記開度を保ち、再度上記差の計算以降
の制御を繰り返す圧力調節器とを設けて形成した。Further, the third invention provides a heat pump having a closed refrigerant flow path including at least a condenser, an expansion valve, an evaporator, and a suction pressure control valve in addition to the compressor. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator, and a pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicative of the detected suction pressure P s, the saturation pressure of the refrigerant at the temperature T calculation of P e, the pressure difference [Delta] P =
P e -P s calculations, and set pressure C p determined in advance and ΔP
Performs calculation of the difference (ΔP-C p) and outputs a control signal to said capacity adjusting means, when the difference (ΔP-C p) is negative, the opening degree of the suction pressure regulating valve When the difference is 0, the opening is increased, and the set pressure C p is changed to a smaller set pressure. When the difference is positive, the opening is maintained, A pressure regulator that repeats the control after calculating the difference is provided.
【0012】さらに、第4発明は、容量調節手段付き圧
縮機の他に、少なくとも凝縮器,膨張弁,蒸発器を含む
閉じた冷媒流路を形成するヒートポンプにおいて、蒸発
器の内外に被冷却液を流す低温側流路の内、上記蒸発器
からこの被冷却液を流出させる側の流路内の温度を検出
する温度検出器と、上記圧縮機の吸込圧力を検出する圧
力検出器と、上記圧縮機の起動時に、上記温度検出器か
ら、検出温度Tを示す温度信号、および上記圧力検出器
から、検出した吸込圧力Psを示す圧力信号を受け、吸
込圧力Psのときの冷媒の飽和温度Tsの計算、温度差Δ
T=T−Tsの計算、およびΔTと予め定めた設定温度
Ctとの差(ΔT−Ct)の計算を行い、上記容量調節手
段に対して制御信号を出力し、上記差(ΔT−Ct)が
負の場合には、上記吸込圧力調節弁の開度を縮小し、上
記差が0の場合には、上記開度を増大するとともに、上
記設定温度Ctをより低い設定温度に変えて、上記差が
正の場合には、上記開度を保ち、再度上記差の計算以降
の制御を繰り返す温度調節器とを設けて形成した。Further, a fourth aspect of the present invention is directed to a heat pump that forms a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator in addition to a compressor with a capacity adjusting means. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out from the evaporator, a pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s, the refrigerant at a suction pressure P s saturated calculation of the temperature T s, the temperature difference Δ
Calculation of T = T−T s and calculation of a difference (ΔT−C t ) between ΔT and a predetermined set temperature C t , outputting a control signal to the capacity adjusting means, and calculating the difference (ΔT When −C t ) is negative, the opening of the suction pressure control valve is reduced, and when the difference is 0, the opening is increased and the set temperature C t is reduced to a lower set temperature. When the difference is positive, a temperature controller that maintains the opening and repeats the control after calculating the difference is provided.
【0013】[0013]
【作用】上記発明のように構成することにより、起動時
にも、蒸発器内での冷媒の温度と被冷却液の温度との差
が冷媒の突沸を生じない一定の範囲内に保たれるように
なる。With the construction as described above, the difference between the temperature of the refrigerant in the evaporator and the temperature of the liquid to be cooled is maintained within a certain range in which the refrigerant does not bump. become.
【0014】[0014]
【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1は、第1発明に係るヒートポンプを示
し、図5に示すヒートポンプと共通する部分について
は、互いに同一番号を付して説明を省略する。本実施例
では、蒸発器14と圧縮機11との間に圧力検出器1が
設けてあり、温度検出器20から検出温度を示す温度信
号と、圧力検出器1から検出圧力を示す圧力信号を圧力
調節器2に入力し、この圧力調節器2によりスライド弁
17の位置を制御して圧縮機11の容量調節を行うよう
に形成してある。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a heat pump according to the first invention, and the same parts as those of the heat pump shown in FIG. In the present embodiment, the pressure detector 1 is provided between the evaporator 14 and the compressor 11, and a temperature signal indicating the detected temperature from the temperature detector 20 and a pressure signal indicating the detected pressure from the pressure detector 1 are output. The pressure is input to the pressure regulator 2, and the position of the slide valve 17 is controlled by the pressure regulator 2 to adjust the capacity of the compressor 11.
【0015】具体的には、図2に示すように、温度検出
器20により被冷却体の温度Tを検出するとともに、圧
力検出器1により冷媒の圧力、即ち圧縮機11の吸込圧
力Psを検出し、圧力調節器2において温度Tのときの
冷媒の飽和圧力Peを計算させている。さらに、圧力調
節器2において、飽和圧力Peと吸込圧力Psとの差ΔP
=Pe−Psの計算、およびΔPと設定圧力Cpとの差Δ
P−Cpの計算をさせている。この設定圧力Cpは、蒸発
器14内で冷媒の突沸が発生しない程度に小さく、かつ
蒸発器14内で冷媒と被冷却液との間の熱交換が効率よ
く行われる程度に大きい範囲で求められる経験値であ
る。[0015] Specifically, as shown in FIG. 2, and detects the temperature T of the object to be cooled by the temperature detector 20, the pressure of the refrigerant by the pressure detector 1, i.e. the suction pressure P s of the compressor 11 detecting, thereby calculating the saturation pressure P e of the refrigerant at the temperature T in the pressure regulator 2. Further, the pressure regulator 2, the difference ΔP between the saturation pressure P e and the suction pressure P s
= P e -P s calculation and the difference Δ between ΔP and set pressure C p
It is made to the calculation of P-C p. The set pressure C p is determined in a range that is small enough not to cause bumping of the refrigerant in the evaporator 14 and large enough that heat exchange between the refrigerant and the liquid to be cooled is efficiently performed in the evaporator 14. Experience.
【0016】そして、上記差ΔP−Cpが正の場合は、
圧縮機11の容量を縮小し、0の場合は圧縮機11の容
量を増大させ、かつ設定圧力Cpを低減させ、負の場合
は、圧縮機11の現容量を維持し、各場合とも再度上記
差ΔP−Cpの計算を行い、以後上記同様のステップを
繰り返すように形成してある。このようにして、本実施
例では、起動時でも、蒸発器14内での冷媒圧力を飽和
圧力に対して適当な範囲内に保ちつつ、冷媒温度を徐々
に低下させ、設計温度に至らせて、蒸発器14内での冷
媒の突沸をなくし、液バック現象の発生を防止するよう
に形成してある。When the difference ΔP−C p is positive,
The capacity of the compressor 11 is reduced, if 0, the capacity of the compressor 11 is increased, and the set pressure Cp is reduced. If negative, the current capacity of the compressor 11 is maintained. perform the calculation of the difference [Delta] p-C p, is formed so as thereafter to repeat the same steps. In this manner, in the present embodiment, even at the time of start-up, while keeping the refrigerant pressure in the evaporator 14 within an appropriate range with respect to the saturation pressure, the refrigerant temperature is gradually lowered to reach the design temperature. It is formed so as to eliminate bumping of the refrigerant in the evaporator 14 and prevent occurrence of a liquid back phenomenon.
【0017】図3は、第2発明に係るヒートポンプを示
し、図1に示すヒートポンプとは、圧力調節器2に代え
て、温度調節器3を設けた点を除き、他は実質的に同一
であり、共通する部分については同一番号を付して説明
を省略する。本実施例では、図4に示すように、温度調
節器3において吸込圧力Psのときの冷媒の飽和温度Ts
の計算、被冷却液の温度Tと飽和温度Tsとの差ΔT=
T−Tsの計算、およびΔTと設定温度Ctとの差ΔT−
Ctの計算をさせている。この設定温度Ctは、蒸発器1
4内で冷媒の突沸が発生しない程度に低く、かつ蒸発器
14内で冷媒と被冷却液との間の熱交換が効率よく行わ
れる程度に高い範囲で求められる経験値である。FIG. 3 shows a heat pump according to the second invention, which is substantially the same as the heat pump shown in FIG. 1 except that a temperature controller 3 is provided instead of the pressure controller 2. Therefore, common portions are denoted by the same reference numerals and description thereof is omitted. In this embodiment, as shown in FIG. 4, the saturation temperature T s of the refrigerant at the suction pressure P s in the temperature controller 3.
Calculations, the difference between the temperature T of the cooling liquid and the saturation temperature T s [Delta] T =
Calculation of T−T s and difference ΔT− between ΔT and set temperature C t
Ct is calculated. This set temperature C t is set in the evaporator 1
It is an empirical value that is low enough to prevent bumping of the refrigerant in the evaporator 4 and high enough to allow efficient heat exchange between the refrigerant and the liquid to be cooled in the evaporator 14.
【0018】そして、上記差ΔT−Ctが正の場合は、
圧縮機11の容量を縮小し、0の場合は圧縮機11の容
量を増大させ、かつ設定圧力Cpを低減させ、負の場合
は、圧縮機11の現容量を維持し、各場合とも再度上記
差ΔT−Ctの計算を行い、以後上記同様のステップを
繰り返すように形成してある。このようにして、本実施
例では、起動時でも、蒸発器14内での冷媒温度を飽和
温度に対して適当な範囲内に保ちつつ、冷媒温度を徐々
に低下させ、設計温度に至らせて、蒸発器14内での冷
媒の突沸をなくし、液バック現象の発生を防止するよう
に形成してある。When the difference ΔT− Ct is positive,
The capacity of the compressor 11 is reduced, if 0, the capacity of the compressor 11 is increased, and the set pressure Cp is reduced. If negative, the current capacity of the compressor 11 is maintained. The difference ΔT−C t is calculated, and the same steps are repeated thereafter. In this manner, in the present embodiment, even at the time of startup, the refrigerant temperature is gradually decreased while maintaining the refrigerant temperature in the evaporator 14 within an appropriate range with respect to the saturation temperature to reach the design temperature. It is formed so as to eliminate bumping of the refrigerant in the evaporator 14 and prevent occurrence of a liquid back phenomenon.
【0019】図5は第3発明に係るヒートポンプを示
し、図1に示すヒートポンプとは、圧縮機11に代えて
スライド弁を具備しない圧縮機11aを設けた点、新た
に蒸発器14と圧縮機11aとの間に流量調節弁4を設
けた点、および圧力調節器5を設けた点を除き、他は実
質的に同様であり、共通する部分については、同一番号
を付して説明を省略する。圧力調節器5は、圧力調節器
2の場合と同様に、温度検出器20から温度信号、圧力
検出器1から圧力信号を受け、基本的には、図2に示す
制御フローと同様の制御フローにしたがって流量調節弁
4の開度の調節を行うようになっている。但し、本実施
例の場合は、圧縮機11aの容量を増大させる場合は、
流量調節弁4の開度を増大させ、逆に容量を縮小させる
場合は、流量調節弁4の開度を縮小させる。FIG. 5 shows a heat pump according to a third invention. The heat pump shown in FIG. 1 is different from the heat pump shown in FIG. 1 in that a compressor 11a having no slide valve is provided instead of the compressor 11, and a new evaporator 14 and a compressor are provided. 11a, except that a flow control valve 4 is provided between them and a pressure regulator 5 are provided, and the other parts are substantially the same. I do. The pressure regulator 5 receives a temperature signal from the temperature detector 20 and a pressure signal from the pressure detector 1 as in the case of the pressure regulator 2, and basically has the same control flow as the control flow shown in FIG. The opening degree of the flow control valve 4 is adjusted in accordance with the following equation. However, in the case of this embodiment, when increasing the capacity of the compressor 11a,
To increase the opening of the flow control valve 4 and conversely reduce the capacity, the opening of the flow control valve 4 is reduced.
【0020】図6は第4発明に係るヒートポンプを示
し、図5に示すヒートポンプとは、圧力調節器5に代え
て温度調節器6を設けた点を除き、他は実質的に同様で
あり、共通する部分については、同一番号を付して説明
を省略する。温度調節器6は、圧力調節器5の場合と同
様に、温度検出器20から温度信号、圧力検出器1から
圧力信号を受け、基本的には、図4に示す制御フローと
同様の制御フローにしたがって流量調節弁4の開度の調
節を行うようになっている。そして、第3,第4発明の
ように構成することにより、第1,第2発明の場合と同
様の作用を生じさせているFIG. 6 shows a heat pump according to a fourth invention, which is substantially the same as the heat pump shown in FIG. 5 except that a temperature controller 6 is provided in place of the pressure controller 5. Common parts are denoted by the same reference numerals, and description thereof is omitted. The temperature controller 6 receives a temperature signal from the temperature detector 20 and a pressure signal from the pressure detector 1 as in the case of the pressure controller 5, and basically has the same control flow as the control flow shown in FIG. The opening degree of the flow control valve 4 is adjusted in accordance with the following equation. And, by constituting as in the third and fourth inventions, the same operation as in the case of the first and second inventions is produced.
【0021】なお、第1〜第4発明は上記実施例に限定
するものでなく、容量調節手段としては、上述したもの
の他、圧縮機の吸気部に設ける吸気容量調節装置,ベー
ンでもよく、さらに圧縮機の吐出部と吸込部を流量調節
弁を介してバイパスさせるバイパス流路であってもよ
い。また、圧縮機についても、スライド弁17を設ける
場合はスクリュ式圧縮機となり、ベーンを設ける場合は
遠心式圧縮機となるが、これ以外の場合はいかなるタイ
プのものか限定するものではない。The first to fourth aspects of the present invention are not limited to the above-described embodiment, and the capacity adjusting means may be an intake capacity adjusting device or a vane provided in the intake section of the compressor in addition to the above-described means. It may be a bypass flow path that bypasses the discharge part and the suction part of the compressor via the flow control valve. Also, the compressor is a screw type compressor when the slide valve 17 is provided, and a centrifugal type compressor when the vane is provided. However, in other cases, the type is not limited.
【0022】[0022]
【発明の効果】以上の説明より明らかなように、第1発
明によれば、容量調節手段付き圧縮機の他に、少なくと
も凝縮器,膨張弁,蒸発器を含む閉じた冷媒流路を形成
するヒートポンプにおいて、蒸発器の内外に被冷却液を
流す低温側流路の内、上記蒸発器からこの被冷却液を流
出させる側の流路内の温度を検出する温度検出器と、上
記圧縮機の吸込圧力を検出する圧力検出器と、上記圧縮
機の起動時に、上記温度検出器から、検出温度Tを示す
温度信号、および上記圧力検出器から、検出した吸込圧
力Psを示す圧力信号を受け、温度Tのときの冷媒の飽
和圧力Peの計算、圧力差ΔP=Pe−Psの計算、およ
びΔPと予め定めた設定圧力Cpとの差(ΔP−Cp)の
計算を行い、上記容量調節手段に対して制御信号を出力
し、上記差(ΔP−Cp)が負の場合には、圧縮機の容
量を縮小し、上記差が0の場合には、上記容量を増大す
るとともに、上記設定圧力Cpをより低い設定圧力に変
えて、上記差が正の場合には、上記容量を保ち、再度上
記差の計算以降の制御を繰り返す圧力調節器とを設けて
形成してある。As is apparent from the above description, according to the first invention, in addition to the compressor with the capacity adjusting means, a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator is formed. In the heat pump, a temperature detector for detecting a temperature in a flow path on a side where the liquid to be cooled flows out from the evaporator in a low-temperature side flow path for flowing the liquid to be cooled in and out of the evaporator; a pressure detector for detecting the suction pressure, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s , performs the computation of the saturation pressure P e of the refrigerant at the temperature T, the calculation of the pressure difference [Delta] P = P e -P s, and the calculation of the difference ([Delta] P-C p) between the set pressure C p of predetermined and [Delta] P , A control signal is output to the capacity adjusting means, and the difference (ΔP− When C p ) is negative, the capacity of the compressor is reduced, and when the difference is zero, the capacity is increased, and the set pressure C p is changed to a lower set pressure to change the compressor capacity. Is positive, a pressure regulator is provided to maintain the above capacity and repeat the control after the calculation of the difference again.
【0023】また、第2発明によれば、容量調節手段付
き圧縮機の他に、少なくとも凝縮器,膨張弁,蒸発器を
含む閉じた冷媒流路を形成するヒートポンプにおいて、
蒸発器の内外に被冷却液を流す低温側流路の内、上記蒸
発器からこの被冷却液を流出させる側の流路内の温度を
検出する温度検出器と、上記圧縮機の吸込圧力を検出す
る圧力検出器と、上記圧縮機の起動時に、上記温度検出
器から、検出温度Tを示す温度信号、および上記圧力検
出器から、検出した吸込圧力Psを示す圧力信号を受
け、吸込圧力Psのときの冷媒の飽和温度Tsの計算、温
度差ΔT=T−Tsの計算、およびΔTと予め定めた設
定温度Ctとの差(ΔT−Ct)の計算を行い、上記容量
調節手段に対して制御信号を出力し、上記差(ΔT−C
t)が負の場合には、圧縮機の容量を縮小し、上記差が
0の場合には、上記容量を増大するとともに、上記設定
温度Ctをより低い設定温度に変えて、上記差が正の場
合には、上記容量を保ち、再度上記差の計算以降の制御
を繰り返す温度調節器とを設けて形成してある。According to the second aspect of the present invention, there is provided a heat pump which forms a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator, in addition to the compressor having a capacity adjusting means.
A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator in the low-temperature side flow path for flowing the liquid to be cooled in and out of the evaporator, and the suction pressure of the compressor. a pressure detector for detecting, when starting the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s, the suction pressure calculation of the saturation temperature T s of the refrigerant at the time of P s, performs calculation of the difference (ΔT-C t) between the temperature difference [Delta] T = T-T s calculations, and [Delta] T with a predetermined set temperature C t, the A control signal is output to the capacity adjusting means, and the difference (ΔT−C
If t ) is negative, the capacity of the compressor is reduced, and if the difference is 0, the capacity is increased and the set temperature C t is changed to a lower set temperature to reduce the difference. In the case of a positive value, a temperature controller for maintaining the above capacity and repeating the control after the calculation of the difference is provided.
【0024】さらに、第3発明によれば、圧縮機の他
に、少なくとも凝縮器,膨張弁,蒸発器,吸込圧力調節
弁を含む閉じた冷媒流路を形成するヒートポンプにおい
て、蒸発器の内外に被冷却液を流す低温側流路の内、上
記蒸発器からこの被冷却液を流出させる側の流路内の温
度を検出する温度検出器と、上記圧縮機の吸込圧力を検
出する圧力検出器と、上記圧縮機の起動時に、上記温度
検出器から、検出温度Tを示す温度信号、および上記圧
力検出器から、検出した吸込圧力Psを示す圧力信号を
受け、温度Tのときの冷媒の飽和圧力Peの計算、圧力
差ΔP=Pe−Psの計算、およびΔPと予め定めた設定
圧力Cpとの差(ΔP−Cp)の計算を行い、上記容量調
節手段に対して制御信号を出力し、上記差(ΔP−
Cp)が負の場合には、上記吸込圧力調節弁の開度を縮
小し、上記差が0の場合には、上記開度を増大するとと
もに、上記設定圧力Cpをより小さい設定圧力に変え
て、上記差が正の場合には、上記開度を保ち、再度上記
差の計算以降の制御を繰り返す圧力調節器とを設けて形
成してある。Further, according to the third invention, in a heat pump which forms a closed refrigerant flow path including at least a condenser, an expansion valve, an evaporator, and a suction pressure control valve in addition to the compressor, the heat pump is provided inside and outside the evaporator. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator, and a pressure detector for detecting the suction pressure of the compressor in the low-temperature side flow path through which the liquid to be cooled flows If, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s, the refrigerant at the temperature T calculation of saturation pressure P e, performs calculation of difference ([Delta] P-C p) between the set pressure C p calculation of the pressure difference ΔP = P e -P s, and determined in advance and [Delta] P, with respect to the volume adjustment means A control signal is output and the difference (ΔP−
When C p ) is negative, the opening of the suction pressure control valve is reduced, and when the difference is 0, the opening is increased and the set pressure C p is reduced to a smaller set pressure. On the other hand, when the difference is positive, a pressure regulator that maintains the opening degree and repeats the control after calculating the difference is provided.
【0025】さらに、第4発明によれば、容量調節手段
付き圧縮機の他に、少なくとも凝縮器,膨張弁,蒸発器
を含む閉じた冷媒流路を形成するヒートポンプにおい
て、蒸発器の内外に被冷却液を流す低温側流路の内、上
記蒸発器からこの被冷却液を流出させる側の流路内の温
度を検出する温度検出器と、上記圧縮機の吸込圧力を検
出する圧力検出器と、上記圧縮機の起動時に、上記温度
検出器から、検出温度Tを示す温度信号、および上記圧
力検出器から、検出した吸込圧力Psを示す圧力信号を
受け、吸込圧力Psのときの冷媒の飽和温度Tsの計算、
温度差ΔT=T−Tsの計算、およびΔTと予め定めた
設定温度Ctとの差(ΔT−Ct)の計算を行い、上記容
量調節手段に対して制御信号を出力し、上記差(ΔT−
Ct)が負の場合には、上記吸込圧力調節弁の開度を縮
小し、上記差が0の場合には、上記開度を増大するとと
もに、上記設定温度Ctをより低い設定温度に変えて、
上記差が正の場合には、上記開度を保ち、再度上記差の
計算以降の制御を繰り返す温度調節器とを設けて形成し
てある。このため、起動時にも、蒸発器内での冷媒の温
度と被冷却液の温度との差が冷媒の突沸を生じない一定
の範囲内に保たれるようになり、圧縮機への液バックが
防止され、この結果、潤滑油への冷媒の混入に起因する
潤滑油の粘度低下による軸受の損傷、さらに圧縮機内の
ロータの損傷という事態の回避が可能となるという効果
を奏する。Further, according to the fourth invention, in addition to the compressor having the capacity adjusting means, in a heat pump having at least a condenser, an expansion valve, and a closed refrigerant flow path including an evaporator, the heat pump is provided inside and outside the evaporator. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator, and a pressure detector for detecting the suction pressure of the compressor, , at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, receives a pressure signal indicating the detected suction pressure P s, the refrigerant at a suction pressure P s Calculation of the saturation temperature T s of
Calculation of temperature difference ΔT = T−T s and calculation of difference (ΔT−C t ) between ΔT and a predetermined set temperature C t , outputting a control signal to the capacity adjusting means, (ΔT−
When C t ) is negative, the opening of the suction pressure control valve is reduced, and when the difference is 0, the opening is increased and the set temperature C t is reduced to a lower set temperature. change,
If the difference is positive, a temperature controller is provided to maintain the opening degree and repeat the control after the calculation of the difference again. For this reason, even at the time of startup, the difference between the temperature of the refrigerant in the evaporator and the temperature of the liquid to be cooled is kept within a certain range where bumping of the refrigerant does not occur. As a result, it is possible to avoid damage to the bearing due to a decrease in the viscosity of the lubricating oil due to mixing of the refrigerant into the lubricating oil, and also to avoid damage to the rotor in the compressor.
【図1】 第1発明に係るヒートポンプの全体構成を示
す図である。FIG. 1 is a diagram showing an overall configuration of a heat pump according to a first invention.
【図2】 図1に示すヒートポンプにおける圧縮機の容
量調節のための制御フローを示す図である。FIG. 2 is a diagram showing a control flow for adjusting the capacity of a compressor in the heat pump shown in FIG.
【図3】 第2発明に係るヒートポンプの全体構成を示
す図である。FIG. 3 is a diagram showing an overall configuration of a heat pump according to a second invention.
【図4】 図3に示すヒートポンプにおける圧縮機の容
量調節のための制御フローを示す図である。4 is a diagram showing a control flow for adjusting the capacity of a compressor in the heat pump shown in FIG.
【図5】 第3発明に係るヒートポンプの全体構成を示
す図である。FIG. 5 is a diagram showing an overall configuration of a heat pump according to a third invention.
【図6】 第4発明に係るヒートポンプの全体構成を示
す図である。FIG. 6 is a diagram showing an overall configuration of a heat pump according to a fourth invention.
【図7】 従来のヒートポンプの全体構成を示す図であ
る。FIG. 7 is a diagram showing an entire configuration of a conventional heat pump.
【図8】 従来の別のヒートポンプの全体構成を示す図
である。FIG. 8 is a diagram showing an overall configuration of another conventional heat pump.
1 圧力検出器 2 圧力調節器 3 温度調節器 4 圧力調節器 5 温度調節器 11,11a 圧縮機 12 凝縮器 13膨張弁 14 蒸発器 15 流量調節弁 16 冷媒流路 17 スライド弁 19 低温側流路 20 温度検出器 DESCRIPTION OF SYMBOLS 1 Pressure detector 2 Pressure regulator 3 Temperature regulator 4 Pressure regulator 5 Temperature regulator 11, 11a Compressor 12 Condenser 13 Expansion valve 14 Evaporator 15 Flow control valve 16 Refrigerant flow path 17 Slide valve 19 Low temperature side flow path 20 Temperature detector
Claims (4)
とも凝縮器,膨張弁,蒸発器を含む閉じた冷媒流路を形
成するヒートポンプにおいて、蒸発器の内外に被冷却液
を流す低温側流路の内、上記蒸発器からこの被冷却液を
流出させる側の流路内の温度を検出する温度検出器と、
上記圧縮機の吸込圧力を検出する圧力検出器と、上記圧
縮機の起動時に、上記温度検出器から、検出温度Tを示
す温度信号、および上記圧力検出器から、検出した吸込
圧力Psを示す圧力信号を受け、温度Tのときの冷媒の
飽和圧力Peの計算、圧力差ΔP=Pe−Psの計算、お
よびΔPと予め定めた設定圧力Cpとの差(ΔP−Cp)
の計算を行い、上記容量調節手段に対して制御信号を出
力し、上記差(ΔP−Cp)が負の場合には、圧縮機の
容量を縮小し、上記差が0の場合には、上記容量を増大
するとともに、上記設定圧力Cpをより低い設定圧力に
変えて、上記差が正の場合には、上記容量を保ち、再度
上記差の計算以降の制御を繰り返す圧力調節器とを設け
て形成したことを特徴とするヒートポンプ。In a heat pump that forms a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator in addition to a compressor with a capacity adjusting means, a low-temperature side flow for flowing a liquid to be cooled into and out of an evaporator. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator,
Shows the pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, the detected suction pressure P s receives the pressure signals, the difference in the calculation of the saturation pressure P e of the refrigerant, the calculation of the pressure difference [Delta] P = P e -P s, a and [Delta] P with a predetermined set pressure C p at the temperature T ([Delta] P-C p)
Is calculated, and a control signal is output to the capacity adjusting means. If the difference (ΔP−C p ) is negative, the capacity of the compressor is reduced. When the capacity is increased, the set pressure C p is changed to a lower set pressure, and when the difference is positive, a pressure regulator that maintains the capacity and repeats the control after calculation of the difference again is used. A heat pump characterized by being provided and formed.
とも凝縮器,膨張弁,蒸発器を含む閉じた冷媒流路を形
成するヒートポンプにおいて、蒸発器の内外に被冷却液
を流す低温側流路の内、上記蒸発器からこの被冷却液を
流出させる側の流路内の温度を検出する温度検出器と、
上記圧縮機の吸込圧力を検出する圧力検出器と、上記圧
縮機の起動時に、上記温度検出器から、検出温度Tを示
す温度信号、および上記圧力検出器から、検出した吸込
圧力Psを示す圧力信号を受け、吸込圧力Psのときの冷
媒の飽和温度Tsの計算、温度差ΔT=T−Tsの計算、
およびΔTと予め定めた設定温度Ctとの差(ΔT−
Ct)の計算を行い、上記容量調節手段に対して制御信
号を出力し、上記差(ΔT−Ct)が負の場合には、圧
縮機の容量を縮小し、上記差が0の場合には、上記容量
を増大するとともに、上記設定温度Ctをより低い設定
温度に変えて、上記差が正の場合には、上記容量を保
ち、再度上記差の計算以降の制御を繰り返す温度調節器
とを設けて形成したことを特徴とするヒートポンプ。2. In a heat pump that forms a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator, in addition to a compressor with a capacity adjusting means, a low-temperature side flow for flowing a liquid to be cooled into and out of the evaporator. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator,
Shows the pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, the detected suction pressure P s receives the pressure signals, calculates the saturation temperature T s of the refrigerant at a suction pressure P s, the calculation of the temperature difference [Delta] T = T-T s,
And the difference between ΔT and a predetermined set temperature C t (ΔT−
Ct ) is calculated, and a control signal is output to the capacity adjusting means. When the difference (ΔT− Ct ) is negative, the capacity of the compressor is reduced, and when the difference is 0, In addition, while the capacity is increased, the set temperature C t is changed to a lower set temperature, and when the difference is positive, the capacity is maintained and the control after the difference calculation is repeated again. A heat pump characterized in that it is formed by providing a heat pump.
弁,蒸発器,吸込圧力調節弁を含む閉じた冷媒流路を形
成するヒートポンプにおいて、蒸発器の内外に被冷却液
を流す低温側流路の内、上記蒸発器からこの被冷却液を
流出させる側の流路内の温度を検出する温度検出器と、
上記圧縮機の吸込圧力を検出する圧力検出器と、上記圧
縮機の起動時に、上記温度検出器から、検出温度Tを示
す温度信号、および上記圧力検出器から、検出した吸込
圧力Psを示す圧力信号を受け、温度Tのときの冷媒の
飽和圧力Peの計算、圧力差ΔP=Pe−Psの計算、お
よびΔPと予め定めた設定圧力Cpとの差(ΔP−Cp)
の計算を行い、上記容量調節手段に対して制御信号を出
力し、上記差(ΔP−Cp)が負の場合には、上記吸込
圧力調節弁の開度を縮小し、上記差が0の場合には、上
記開度を増大するとともに、上記設定圧力Cpをより小
さい設定圧力に変えて、上記差が正の場合には、上記開
度を保ち、再度上記差の計算以降の制御を繰り返す圧力
調節器とを設けて形成したことを特徴とするヒートポン
プ。3. In a heat pump that forms a closed refrigerant flow path including at least a condenser, an expansion valve, an evaporator, and a suction pressure control valve in addition to the compressor, a low-temperature side through which a liquid to be cooled flows inside and outside the evaporator. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out from the evaporator,
Shows the pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, the detected suction pressure P s receives the pressure signals, the difference in the calculation of the saturation pressure P e of the refrigerant, the calculation of the pressure difference [Delta] P = P e -P s, a and [Delta] P with a predetermined set pressure C p at the temperature T ([Delta] P-C p)
Is calculated, and a control signal is output to the capacity adjusting means. If the difference (ΔP−C p ) is negative, the opening of the suction pressure adjusting valve is reduced, and the difference becomes zero. In this case, the opening is increased, and the set pressure C p is changed to a smaller set pressure. If the difference is positive, the opening is maintained, and control after the difference calculation is performed again. A heat pump formed by providing a pressure regulator that is repeated.
とも凝縮器,膨張弁,蒸発器を含む閉じた冷媒流路を形
成するヒートポンプにおいて、蒸発器の内外に被冷却液
を流す低温側流路の内、上記蒸発器からこの被冷却液を
流出させる側の流路内の温度を検出する温度検出器と、
上記圧縮機の吸込圧力を検出する圧力検出器と、上記圧
縮機の起動時に、上記温度検出器から、検出温度Tを示
す温度信号、および上記圧力検出器から、検出した吸込
圧力Psを示す圧力信号を受け、吸込圧力Psのときの冷
媒の飽和温度Tsの計算、温度差ΔT=T−Tsの計算、
およびΔTと予め定めた設定温度Ctとの差(ΔT−
Ct)の計算を行い、上記容量調節手段に対して制御信
号を出力し、上記差(ΔT−Ct)が負の場合には、上
記吸込圧力調節弁の開度を縮小し、上記差が0の場合に
は、上記開度を増大するとともに、上記設定温度Ctを
より低い設定温度に変えて、上記差が正の場合には、上
記開度を保ち、再度上記差の計算以降の制御を繰り返す
温度調節器とを設けて形成したことを特徴とするヒート
ポンプ。4. A low-temperature side flow through which a liquid to be cooled flows inside and outside of an evaporator in a heat pump that forms a closed refrigerant flow path including at least a condenser, an expansion valve, and an evaporator, in addition to the compressor with capacity adjusting means. A temperature detector for detecting the temperature in the flow path on the side from which the liquid to be cooled flows out of the evaporator,
Shows the pressure detector for detecting the suction pressure of the compressor, at the start of the compressor, from the temperature detector, a temperature signal indicating the detected temperature T, and from the pressure detector, the detected suction pressure P s receives the pressure signals, calculates the saturation temperature T s of the refrigerant at a suction pressure P s, the calculation of the temperature difference [Delta] T = T-T s,
And the difference between ΔT and a predetermined set temperature C t (ΔT−
Ct ) is calculated and a control signal is output to the capacity adjusting means. If the difference (ΔT− Ct ) is negative, the opening of the suction pressure adjusting valve is reduced, and the difference is calculated. Is 0, the opening is increased, and the set temperature Ct is changed to a lower set temperature. If the difference is positive, the opening is maintained and the calculation of the difference is performed again. And a temperature controller that repeats the above control.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5331325A JP2765613B2 (en) | 1993-12-27 | 1993-12-27 | heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5331325A JP2765613B2 (en) | 1993-12-27 | 1993-12-27 | heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07190507A JPH07190507A (en) | 1995-07-28 |
JP2765613B2 true JP2765613B2 (en) | 1998-06-18 |
Family
ID=18242427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5331325A Expired - Lifetime JP2765613B2 (en) | 1993-12-27 | 1993-12-27 | heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2765613B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369589A (en) * | 1989-08-04 | 1991-03-25 | Hikari Gijutsu Kenkyu Kaihatsu Kk | Method for growing crystal of semiconductor |
US6047557A (en) * | 1995-06-07 | 2000-04-11 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
JP5881282B2 (en) * | 2010-09-30 | 2016-03-09 | 三菱重工業株式会社 | Turbo refrigeration apparatus, control apparatus and control method thereof |
JP6184158B2 (en) * | 2013-04-25 | 2017-08-23 | 三菱電機株式会社 | Refrigeration air conditioner |
KR102109398B1 (en) * | 2017-03-28 | 2020-05-12 | 위드케이 주식회사 | Heat pump system which can supply heat and chill |
WO2022195663A1 (en) * | 2021-03-15 | 2022-09-22 | 三菱電機株式会社 | Refrigeration cycle device |
-
1993
- 1993-12-27 JP JP5331325A patent/JP2765613B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07190507A (en) | 1995-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1075631B1 (en) | Electronic controlled expansion valve | |
WO2018138796A1 (en) | Refrigeration cycle device | |
JP2765613B2 (en) | heat pump | |
JP4767133B2 (en) | Refrigeration cycle equipment | |
JP4750092B2 (en) | Refrigeration apparatus and method of operating refrigeration apparatus | |
JP2001311567A (en) | Freezer device and environmental test device using the same | |
US4381650A (en) | Electronic control system for regulating startup operation of a compressor in a refrigeration system | |
JP3837298B2 (en) | Screw refrigerator | |
JP2005061402A (en) | Compressor and its operation method | |
JP2002115925A (en) | Operation method for oil cooling compression freezer | |
JP2006207893A (en) | Cooling device | |
JP5604228B2 (en) | Chiller | |
JP4301546B2 (en) | Refrigeration equipment | |
JP3425278B2 (en) | refrigerator | |
JPH07260262A (en) | Refrigerating device | |
KR100188989B1 (en) | Method for controlling an absorption system | |
JPH051866A (en) | Refrigerator | |
JP4690574B2 (en) | Control method and control device for expansion valve in refrigerator | |
KR20180065314A (en) | Turbo chiller system and Method for controlling it | |
JP2012242049A (en) | Refrigerating apparatus | |
CN117345591B (en) | Cooling system and cooling control method of suspension type compressor | |
JPH068461Y2 (en) | Refrigeration equipment | |
JP2000111197A (en) | Engine driven chiller | |
JP2004198048A (en) | Freezer | |
JPH0552430A (en) | Refrigerating machine |