JP4767133B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4767133B2
JP4767133B2 JP2006235763A JP2006235763A JP4767133B2 JP 4767133 B2 JP4767133 B2 JP 4767133B2 JP 2006235763 A JP2006235763 A JP 2006235763A JP 2006235763 A JP2006235763 A JP 2006235763A JP 4767133 B2 JP4767133 B2 JP 4767133B2
Authority
JP
Japan
Prior art keywords
compressor
cooler
superheat degree
degree
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006235763A
Other languages
Japanese (ja)
Other versions
JP2008057874A (en
Inventor
芳樹 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006235763A priority Critical patent/JP4767133B2/en
Publication of JP2008057874A publication Critical patent/JP2008057874A/en
Application granted granted Critical
Publication of JP4767133B2 publication Critical patent/JP4767133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、圧縮式の冷凍サイクル装置に関するものであり、特に性能向上及び圧縮機損傷防止を可能とする膨張弁制御を行う冷凍サイクル装置に関するものである。   The present invention relates to a compression-type refrigeration cycle apparatus, and particularly to a refrigeration cycle apparatus that performs expansion valve control that enables performance improvement and prevention of compressor damage.

圧縮機、凝縮器、膨張手段、冷却器などからなる圧縮機式冷凍装置において、冷却器出口過熱度が事前に設定された冷却器出口過熱度の目標温度(以下、冷却器出口目標過熱度と称す。)となるように膨張手段の開度を制御する方式が知られている(例えば、特許文献1参照)。
圧縮機吸込過熱度が事前に設定された圧縮機吸込過熱度の目標温度(以下、圧縮機吸込目標過熱度と称す。)となるように膨張手段の開度を制御する方式も知られている(例えば、特許文献2参照)。
圧縮機容量によって冷却器出口目標過熱度または圧縮機吸込目標過熱度を変化させる方法が提案されている(例えば、特許文献3参照)。
In a compressor-type refrigeration system comprising a compressor, a condenser, an expansion means, a cooler, etc., the target temperature of the cooler outlet superheat degree (hereinafter referred to as the cooler outlet target superheat degree), in which the cooler outlet superheat degree is set in advance. There is known a method of controlling the opening degree of the expansion means so as to satisfy (refer to Patent Document 1, for example).
There is also known a method for controlling the opening degree of the expansion means so that the compressor suction superheat degree becomes a preset target temperature of the compressor suction superheat degree (hereinafter referred to as compressor suction target superheat degree). (For example, refer to Patent Document 2).
A method has been proposed in which the cooler outlet target superheat degree or the compressor suction target superheat degree is changed depending on the compressor capacity (see, for example, Patent Document 3).

特開平06−147656号公報(図1、段落0015〜0020)Japanese Unexamined Patent Publication No. 06-147656 (FIG. 1, paragraphs 0015 to 0020) 特開2005−271649号公報(図1、段落0018〜0019)JP 2005-271649 A (FIG. 1, paragraphs 0018 to 0019) 特開平07−208835号公報(図1、図3、図6、図9、段落0013、0016、0017)Japanese Patent Laid-Open No. 07-208835 (FIGS. 1, 3, 6, 9, paragraphs 0013, 0016, 0017) 特開2001−183015号公報(図2、図3、段落0035、0046)Japanese Patent Laid-Open No. 2001-183015 (FIGS. 2, 3, paragraphs 0035 and 0046)

特許文献1で示される従来例では、冷媒を冷却器から圧縮機吸込部へ導く冷媒配管(以下、吸込配管と称す。)内では、摩擦により圧力損失が発生する。このため、圧縮機吸込圧力は冷却器出口圧力より下がり、圧縮機吸込過熱度は冷却器出口過熱度より高くなる。
特に、冷却器から圧縮機への冷媒配管長が長い場合には、吸込配管内の圧力損失が大きくなり、圧縮機吸込過熱度と冷却器出口過熱度の差が大きくなる。圧縮機の運転周波数に関わらず冷却器出口目標過熱度が一定なので、圧縮機吸込過熱度と冷却器出口過熱度の差が大きくなると圧縮機吸込過熱度が高い運転、すなわち吸込圧力が低い運転となり冷却性能が低下する。
In the conventional example shown in Patent Document 1, pressure loss occurs due to friction in a refrigerant pipe (hereinafter referred to as a suction pipe) that guides the refrigerant from the cooler to the compressor suction portion. For this reason, the compressor suction pressure is lower than the cooler outlet pressure, and the compressor suction superheat is higher than the cooler outlet superheat.
In particular, when the refrigerant pipe length from the cooler to the compressor is long, the pressure loss in the suction pipe becomes large, and the difference between the compressor suction superheat degree and the cooler outlet superheat degree becomes large. Regardless of the operating frequency of the compressor, the target superheat degree at the outlet of the cooler is constant. Cooling performance decreases.

また、圧縮機の運転周波数が高くなるに伴い、吸込配管内の冷媒の流速が速くなるので、圧力損失が大きくなり、圧縮機吸込過熱度と冷却器出口過熱度の差が大きくなり、冷却性能が低下する。
また、液バックによる圧縮機損傷を防止するため、圧縮機吸込過熱度を5℃以上に保つことが望まれる。
In addition, as the operating frequency of the compressor increases, the flow rate of the refrigerant in the suction pipe increases, so the pressure loss increases, and the difference between the compressor suction superheat degree and the cooler outlet superheat degree increases. Decreases.
In order to prevent damage to the compressor due to the liquid back, it is desirable to maintain the compressor suction superheat degree at 5 ° C. or higher.

また、冷却器出口過熱度が0℃に近づくにつれ、冷却器の保有している性能が最大限発揮され冷却能力が向上する(特許文献4)ことを考慮すると、圧縮機周波数に関わらず一定の冷却器出口目標過熱度で運転するのは、非効率な運転である。
また、圧縮機運転周波数が通常運転より高い状態では、圧縮機吸込圧力がより低くなるため圧縮機吸込過熱度がより高くなるが、この際、圧縮機吐出温度が上昇して、圧縮機吐出温度異常が発生する恐れがあった。
また、圧縮機運転周波数が通常運転より高くなって圧縮機吸込過熱度がより高くなると、電動機巻線温度が上昇して、巻線温度異常が発生する恐れがあった。特に吸込冷媒密度が低い低蒸発温度運転では、電動機巻線温度の上昇が著しくなるため、巻線温度異常が発生する可能性が高い。
Moreover, as the degree of superheat at the outlet of the cooler approaches 0 ° C., considering that the performance of the cooler is maximized and the cooling capacity is improved (Patent Document 4), it is constant regardless of the compressor frequency. Operating at the cooler outlet target superheat is an inefficient operation.
In addition, when the compressor operating frequency is higher than the normal operation, the compressor suction pressure becomes lower and the compressor suction superheat degree becomes higher, but at this time, the compressor discharge temperature rises and the compressor discharge temperature increases. There was a risk of abnormalities.
In addition, when the compressor operating frequency is higher than that in the normal operation and the compressor suction superheat degree is higher, the motor winding temperature is increased, which may cause winding temperature abnormality. In particular, in the low evaporation temperature operation where the suction refrigerant density is low, the motor winding temperature rises remarkably, so that there is a high possibility that a winding temperature abnormality will occur.

また、特許文献2で示される従来例のように圧縮機吸込過熱度によって膨張手段を制御する場合、特許文献1で示される従来例と異なり圧縮機の運転周波数が高くなっても、冷却能力の低下は発生しないが、吸込配管長が長くなるに伴い、吸込配管の熱容量の影響が大きくなり、膨張手段の制御をしてから、圧縮機吸込過熱度が変化するまで時間が長くなる。そのため吸込配管長が長い場合は、過熱度一定制御による膨張手段の調整が遅れ気味となり、液バックなどの不具合が発生する可能性がある。   Further, when the expansion means is controlled by the compressor suction superheat degree as in the conventional example shown in Patent Document 2, unlike the conventional example shown in Patent Document 1, the cooling capacity is improved even if the operating frequency of the compressor is increased. Although the reduction does not occur, as the length of the suction pipe becomes longer, the influence of the heat capacity of the suction pipe becomes larger, and after the control of the expansion means, the time becomes longer until the compressor suction superheat degree changes. Therefore, when the suction pipe length is long, the adjustment of the expansion means by the constant superheat control is delayed and there is a possibility that problems such as liquid back may occur.

また、特許文献3で示される従来例のように圧縮機周波数によって冷却器出口目標過熱度を変更する方式では、吸込配管長が非常に短い場合や、圧縮機吸込ストレーナに詰まりがあった場合など、吸込配管での圧力損失が想定と異なると、算出された冷却器出口目標過熱度が最適な値にならないという課題があった。
冷蔵庫の冷却などに用いられる圧縮機と冷却器が別に設置される冷凍機の場合、設置場所により吸込配管長が大きく異なるのが一般的なことを考慮すると、上記特許文献3で示される従来例の方式では、圧縮機運転周波数が変化すると、算出された冷却器出口目標過熱度が最適な値にはならないという課題は実質的には解決していないと考えられる。
Moreover, in the method of changing the cooler outlet target superheat degree according to the compressor frequency as in the conventional example shown in Patent Document 3, when the suction pipe length is very short, or when the compressor suction strainer is clogged, etc. When the pressure loss in the suction pipe is different from the assumption, there is a problem that the calculated cooler outlet target superheat degree does not become an optimum value.
In the case of a refrigerator in which a compressor and a cooler used for cooling a refrigerator are installed separately, considering the general fact that the suction pipe length varies greatly depending on the installation location, the conventional example shown in Patent Document 3 above In this method, it is considered that the problem that the calculated cooler outlet target superheat degree does not become an optimum value when the compressor operating frequency changes is not substantially solved.

この発明は、前記のような課題を解決するためになされたものであり、主たる目的は圧縮機周波数に関わらず最適な冷却器出口目標過熱度で運転することである。   The present invention has been made to solve the above-described problems, and a main object is to operate at an optimum cooler outlet target superheat regardless of the compressor frequency.

この発明に係る冷凍サイクル装置は、圧縮機と、圧縮機から吐出した冷媒を放熱して冷却する凝縮器と、凝縮器から出た冷媒を減圧膨張する膨張手段と、圧縮機と別位置に設置され、膨張手段から出た冷媒を蒸発させる冷却器とを配管により順次接続して構成され、冷却器の冷媒出口側の過熱度である冷却器出口過熱度と冷却器出口過熱度の目標値に基づいて膨張手段を制御する制御手段を備え、圧縮機の冷媒吸込口の過熱度である圧縮機吸込過熱度は、配管の内、冷却器の出口側と圧縮機の冷媒吸込口とを接続する配管の、長さに応じて発生する圧力損失に相当する過熱度分、冷却器出口過熱度よりも高く、制御手段は、圧縮機吸込過熱度が予め定めた上限値を超えた状態が所定の時間以上継続すると、冷却器出口過熱度の目標値から圧縮機吸込過熱度が上限値を上回った量を減らすものである。 The refrigeration cycle apparatus according to the present invention is installed at a position different from the compressor , a condenser that radiates and cools the refrigerant discharged from the compressor , expansion means that decompresses and expands the refrigerant discharged from the condenser, and the compressor And a cooler for evaporating the refrigerant from the expansion means, which are sequentially connected by a pipe, so that the superheat degree on the refrigerant outlet side of the cooler and the target value for the superheat degree on the cooler outlet Control means for controlling the expansion means based on the compressor suction superheat degree, which is the superheat degree of the refrigerant suction port of the compressor, connects the outlet side of the cooler and the refrigerant suction port of the compressor in the pipe The superheat degree corresponding to the pressure loss generated according to the length of the pipe is higher than the cooler outlet superheat degree, and the control means is in a state where the compressor suction superheat degree exceeds a predetermined upper limit value. If it continues for more than an hour, it will compress from the target value of the cooler outlet superheat. Suction superheat degrees is to reduce the amount of over the upper limit.

圧縮機の冷媒吸込口の過熱度によって、冷却器出口過熱度の目標値を補正することにより、吸込配管が長い、圧縮機周波数変化が大きいなどの理由で吸込配管での圧力損失の変化が大きい場合でも、常に最適な冷却器出口過熱度で運転することができる。   By correcting the target value of the cooler outlet superheat degree by the superheat degree of the refrigerant suction port of the compressor, the change in pressure loss in the suction pipe is large because the suction pipe is long and the compressor frequency is large. Even in this case, it is always possible to operate with the optimum degree of superheater outlet heating.

実施の形態1.
図1は、本発明の実施の形態1における冷凍装置の構成図である。図1において、圧縮機10の冷媒吐出口10a(冷媒の流れは図面上時計回りに循環する)には、凝縮器3が接続されている。凝縮器3の冷媒出口側には第1冷却器用膨張手段4が接続されている。第1冷却器用膨張手段4の出口側には第1冷却器5が接続され、第1冷却器5の冷媒出口側には圧縮機10の冷媒吸込口10bが接続されている。以上の構成によって冷凍回路が構成されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigeration apparatus in Embodiment 1 of the present invention. In FIG. 1, a condenser 3 is connected to a refrigerant discharge port 10a of the compressor 10 (the refrigerant flow circulates clockwise in the drawing). The first cooler expansion means 4 is connected to the refrigerant outlet side of the condenser 3. The first cooler 5 is connected to the outlet side of the first cooler expansion means 4, and the refrigerant suction port 10 b of the compressor 10 is connected to the refrigerant outlet side of the first cooler 5. The refrigeration circuit is configured by the above configuration.

圧縮機10の冷媒吸込口10bに、冷媒の圧力を圧縮機吸込圧力として検出する圧力検出手段110b、冷媒の温度を圧縮機吸込温度として検出する温度検出手段210bを設けている。また、第1冷却器5の冷媒出口5aに、冷媒の圧力を第1冷却器出口圧力として検出する圧力検出手段105a、冷媒の温度を第1冷却器出口温度として検出する温度検出手段205aを設けている。
圧縮機吸込過熱度算出部310bは、検出された圧縮機吸込圧力と圧縮機吸込温度より式1のように圧縮機10の冷媒吸込口の過熱度(以下、圧縮機吸込過熱度という)を算出する。また第1冷却器出口過熱度算出部305aは、圧力検出手段105aによって検出された第1冷却器出口圧力と温度検出手段205aによって検出された第1冷却器出口温度より式2のように第1冷却器5の冷媒出口側の過熱度(以下、第1冷却器出口過熱度という)を算出する。

圧縮機吸込過熱度=圧縮機吸込温度−圧縮機吸込圧力相当の飽和温度 (式1)

第1冷却器出口過熱度
=第1冷却器出口温度−第1冷却器出口圧力相当の飽和温度 (式2)

そして、第1冷却器用膨張手段制御手段404は、第1冷却器出口過熱度が補正後の第1冷却器出口目標過熱度となるように第1冷却器用膨張手段4の開度を制御する。
Pressure detection means 110b for detecting the refrigerant pressure as the compressor suction pressure and temperature detection means 210b for detecting the refrigerant temperature as the compressor suction temperature are provided in the refrigerant suction port 10b of the compressor 10. The refrigerant outlet 5a of the first cooler 5 is provided with pressure detecting means 105a for detecting the refrigerant pressure as the first cooler outlet pressure, and temperature detecting means 205a for detecting the refrigerant temperature as the first cooler outlet temperature. ing.
The compressor suction superheat degree calculation unit 310b calculates the superheat degree of the refrigerant suction port of the compressor 10 (hereinafter referred to as the compressor suction superheat degree) as shown in Equation 1 from the detected compressor suction pressure and compressor suction temperature. To do. Further, the first cooler outlet superheat degree calculation unit 305a calculates the first cooler outlet pressure detected by the pressure detecting means 105a and the first cooler outlet temperature detected by the temperature detecting means 205a as shown in Equation 2. A superheat degree on the refrigerant outlet side of the cooler 5 (hereinafter referred to as a first cooler outlet superheat degree) is calculated.

Compressor suction superheat = compressor suction temperature−saturation temperature equivalent to compressor suction pressure (Equation 1)

1st cooler outlet superheat
= First cooler outlet temperature-saturation temperature corresponding to the first cooler outlet pressure (Formula 2)

Then, the first cooler expansion means control means 404 controls the opening degree of the first cooler expansion means 4 so that the first cooler outlet superheat degree becomes the corrected first cooler outlet target superheat degree.

なお、第1冷却器用膨張手段4は膨張手段を構成し、例えば膨脹弁などから構成される。また、第1冷却器5は冷却器を構成し、例えば熱交換器などから構成される。第1冷却器用膨張手段制御手段404は制御手段を構成し、例えばCPUやマイコンなどから構成される。   The first cooler expansion means 4 constitutes an expansion means, for example, an expansion valve. Moreover, the 1st cooler 5 comprises a cooler, for example, is comprised from a heat exchanger etc. The first cooler expansion means control means 404 constitutes a control means, for example, a CPU or a microcomputer.

図2は、本発明の実施の形態1における第1冷却器出口目標過熱度補正制御フローを示すフローチャートである。以下に、圧縮機吸込過熱度に基づいて、第1冷却器出口目標過熱度を補正する制御手順の一例を、図2を用いて示す。
第1冷却器用膨張手段制御手段404は、事前に圧縮機吸込過熱度に上限値(以下、圧縮機吸込上限過熱度という)、及び圧縮機吸込過熱度の下限値(以下、圧縮機吸込下限過熱度という)を設定して図示しない内部メモリに記憶しておく。そして、定期的に圧縮機吸込み加熱度算出部から圧縮機吸込過熱度を読み出し、この圧縮機吸込過熱度が内部メモリに記憶していた圧縮機吸込上限過熱度以上(かつ第1冷却器出口過熱度が第1冷却器出口目標過熱度以下)の状態が予め定められた一定時間(以下、過熱度補正周期という)以上継続すれば(ステップS201、S202)、第1冷却器用膨張手段制御手段404は、式3のように第1冷却器出口目標過熱度を補正する(ステップS203)。そして、第1冷却器用膨張手段制御手段404は、補正後の第1冷却器出口目標過熱度になるように、第1冷却用膨張手段4の開度を制御する。

第1冷却器出口目標過熱度(補正後)
=第1冷却器出口目標過熱度(補正前)
−(圧縮機吸込過熱度−圧縮機吸込上限過熱度) (式3)

従って、第1冷却器出口過熱度は補正後の低下した第1冷却器出口目標過熱度に追随して下がり、これに伴い圧縮機吸込過熱度も適正な値(圧縮機吸込下限過熱度以上かつ圧縮機吸込上限過熱度以下の範囲内)まで下がる。すなわち、圧縮機運転周波数が大きく、事前に設定された第1冷却器出口目標過熱度で運転すると圧縮機吸込過熱度が圧縮機吸込上限過熱度を超える程度に高くなるような場合に、第1冷却器用膨張手段制御手段404が上記の制御を行なうことで、圧縮機吸込過熱度を適正範囲内に保ちながら第1冷却器出口過熱度を下げて運転することができる。これにより、第1冷却器の性能が向上して、冷却能力が向上する。従って、従来の方式より冷却器の性能を有効に発揮することができるので、必要な伝熱換面積が小さくなり、冷却器寸法を小さく出来る。
FIG. 2 is a flowchart showing the first cooler outlet target superheat degree correction control flow in the first embodiment of the present invention. An example of a control procedure for correcting the first cooler outlet target superheat degree based on the compressor suction superheat degree will be described below with reference to FIG.
The first cooler expansion means control means 404 preliminarily sets an upper limit value (hereinafter referred to as “compressor suction upper limit superheat degree”) and a lower limit value (hereinafter referred to as “compressor suction lower limit superheat degree”). Is set and stored in an internal memory (not shown). Then, the compressor suction superheat degree is periodically read from the compressor suction heating degree calculation unit, and this compressor suction superheat degree is equal to or higher than the compressor suction upper limit superheat degree stored in the internal memory (and the first cooler outlet superheat degree). If the state of the degree is equal to or less than the first cooler outlet target superheat degree) continues for a predetermined time (hereinafter referred to as superheat degree correction cycle) or longer (steps S201 and S202), the first cooler expansion means control means 404 Corrects the first cooler outlet target superheat degree as shown in Equation 3 (step S203). And the 1st cooler expansion means control means 404 controls the opening degree of the 1st cooler expansion means 4 so that it may become the 1st cooler exit target superheat degree after correction | amendment.

1st cooler outlet target superheat degree (after correction)
= 1st cooler outlet target superheat (before correction)
-(Compressor suction superheat-Compressor suction upper limit superheat) (Formula 3)

Accordingly, the first supercooler outlet superheat degree is lowered following the corrected first cooler outlet target superheat degree, and accordingly, the compressor suction superheat degree is also an appropriate value (more than the compressor suction lower limit superheat degree and Compressor suction lower than the upper limit superheat degree. That is, when the compressor operating frequency is high and the compressor suction superheat degree becomes high enough to exceed the compressor suction upper limit superheat degree when operated at the preset first cooler outlet target superheat degree, the first By performing the above control by the cooler expansion means control means 404, it is possible to operate with the first cooler outlet superheat degree lowered while keeping the compressor suction superheat degree within an appropriate range. Thereby, the performance of the first cooler is improved and the cooling capacity is improved. Therefore, since the performance of the cooler can be more effectively exhibited than the conventional method, the necessary heat transfer area is reduced and the size of the cooler can be reduced.

また、圧縮機運転中に圧縮機吸込過熱度が圧縮機吸込下限過熱度以下(かつ第1冷却器出口過熱度が第1冷却器出口目標過熱度以上)の状態が過熱度補正周期以上経過すれば(ステップS204、S205)、第1冷却器用膨張手段制御手段404は、式4のように第1冷却器出口目標過熱度を補正する(ステップS206)。そして、第1冷却器用膨張手段制御手段404は、補正後の第1冷却器出口目標過熱度になるように、第1冷却用膨張手段4の開度を制御する。

第1冷却器出口目標過熱度(補正後)
=第1冷却器出口目標過熱度(補正前)
+(圧縮機吸込下限過熱度−圧縮機吸込過熱度) (式4)

従って、第1冷却器出口過熱度は補正後の上昇した第1冷却器出口目標過熱度に追随して上がり、これに伴い圧縮機吸込過熱度も適正な値(圧縮機吸込下限過熱度以上かつ圧縮機吸込上限過熱度以下の範囲内)まで上がる。すなわち、圧縮機運転周波数が小さく、事前に設定された第1冷却器出口目標過熱度で運転すると圧縮機吸込過熱度が圧縮機吸込下限過熱度を超える程度に低くなるような場合に、第1冷却器用膨張手段制御手段404が上記の制御を行なうことで、圧縮機吸込過熱度を適正範囲内に保ちながら第1冷却器出口過熱度を上げて運転することができ、第1冷却器用膨張手段4の開度は第1冷却器用膨張手段制御手段404によって小さく絞られるので、液バック等による圧縮機損傷を防止することが出来る。
In addition, during the operation of the compressor, the state in which the compressor suction superheat is less than or equal to the compressor suction lower limit superheat (and the first cooler outlet superheat is greater than or equal to the first cooler outlet target superheat) has passed the superheat correction cycle. If it is (steps S204, S205), the first cooler expansion means control means 404 corrects the first cooler outlet target superheat degree as shown in Equation 4 (step S206). And the 1st cooler expansion means control means 404 controls the opening degree of the 1st cooler expansion means 4 so that it may become the 1st cooler exit target superheat degree after correction | amendment.

1st cooler outlet target superheat degree (after correction)
= 1st cooler outlet target superheat (before correction)
+ (Compressor suction lower limit superheat-Compressor suction superheat) (Formula 4)

Therefore, the first cooler outlet superheat degree increases following the corrected first cooler outlet target superheat degree, and accordingly, the compressor suction superheat degree is also an appropriate value (more than the compressor suction lower limit superheat degree and It rises to within the range below the compressor suction upper limit superheat. That is, when the compressor operating frequency is small and the compressor suction superheat degree is low enough to exceed the compressor suction lower limit superheat degree when operating at a preset first cooler outlet target superheat degree, the first The cooler expansion means control means 404 performs the above-described control, so that the first cooler outlet superheat degree can be increased while maintaining the compressor suction superheat degree within an appropriate range, and the first cooler expansion means can be operated. Since the opening degree of 4 is reduced by the first cooler expansion means control means 404, damage to the compressor due to liquid back or the like can be prevented.

なお、本実施の形態1では、冷媒過熱度を冷媒圧力及び冷媒温度から算出したが、第1冷却器入口冷媒温度と第1冷却器出口冷媒温度の差を第1冷却器冷媒過熱度としても良い。
また、圧縮機は単段圧縮機、多段圧縮機いずれを用いてもよい。
また、冷媒回路に中間冷却を行なうエコノマイザー回路を設けても良い。
In the first embodiment, the refrigerant superheat degree is calculated from the refrigerant pressure and the refrigerant temperature. However, the difference between the first cooler inlet refrigerant temperature and the first cooler outlet refrigerant temperature may be used as the first cooler refrigerant superheat degree. good.
The compressor may be either a single stage compressor or a multistage compressor.
Further, an economizer circuit that performs intermediate cooling may be provided in the refrigerant circuit.

実施の形態2.
実施の形態1のように圧縮機吸込過熱度によって、第1冷却器出口目標過熱度の補正をおこなう場合、電動機発熱が大きい場合や吸込ストレーナでの圧力損失が大きい場合には、実際に圧縮機構が吸い込んでいる冷媒過熱度と異なっており、第1冷却器の能力が十分に発揮できないおそれがある。このような場合、圧縮機構の冷媒吸込部の過熱度(以下、圧縮機構吸込過熱度という)によって、第1冷却器出口目標過熱度の補正を行なっても良い。
そこで、本実施の形態2では、この圧縮機構吸込過熱度によって第1冷却器出口目標過熱度の補正を行なう実施の形態について説明する。
図3に本実施の形態の冷媒回路の一例を示す。図4に本実施の形態の圧縮機の断面図の一例を示す。図3において、図1と同符号は同一又は相当部分を示すので説明を省略する。圧縮機10は、圧縮機10の中核部分である圧縮機構10wと、冷媒中の異物を捕捉する吸込ストレーナ10zと、圧縮機構10wを回転駆動する電動機10yとから構成され、圧縮機構10wの冷媒吸込部10xに、冷媒の圧力を圧縮機吸込圧力として検出する圧力検出手段110x、冷媒の温度を圧縮機吸込温度として検出する温度検出手段210xを設けている。また、圧縮機構10の外部に圧縮機構吸込過熱度を算出する圧縮機構吸込過熱度算出部310xを設けている。
Embodiment 2. FIG.
When the correction of the first cooler outlet target superheat degree is performed by the compressor suction superheat degree as in the first embodiment, when the motor heat generation is large or when the pressure loss in the suction strainer is large, the actual compression mechanism Is different from the superheat degree of the refrigerant being sucked in, and there is a possibility that the capacity of the first cooler cannot be fully exhibited. In such a case, the first cooler outlet target superheat degree may be corrected by the superheat degree of the refrigerant suction portion of the compression mechanism (hereinafter referred to as the compression mechanism suction superheat degree).
Therefore, in the second embodiment, an embodiment in which the first cooler outlet target superheat degree is corrected based on the compression mechanism suction superheat degree will be described.
FIG. 3 shows an example of the refrigerant circuit of the present embodiment. FIG. 4 shows an example of a cross-sectional view of the compressor of the present embodiment. In FIG. 3, the same reference numerals as those in FIG. The compressor 10 includes a compression mechanism 10w that is a core part of the compressor 10, a suction strainer 10z that captures foreign matters in the refrigerant, and an electric motor 10y that rotationally drives the compression mechanism 10w. The part 10x is provided with pressure detection means 110x for detecting the refrigerant pressure as the compressor suction pressure, and temperature detection means 210x for detecting the refrigerant temperature as the compressor suction temperature. In addition, a compression mechanism suction superheat degree calculation unit 310 x that calculates the compression mechanism suction superheat degree is provided outside the compression mechanism 10.

次に、この実施の形態2の動作を図3及び図4を用いて説明する。実施の形態1と同じ部分については説明を省略する。第1冷却器を出た冷媒は圧縮機10に供給される。圧縮機10の冷媒吸込口10bから吸入された冷媒は、吸込ストレーナ10z、電動機10y、圧縮機機構吸込部10xを経て圧縮機構10wに吸入されて圧縮される。圧力検出手段110xは、圧縮機機構吸込部10xにおける冷媒の圧力を圧縮機構吸込圧力として検出する。温度検出手段210xは、圧縮機機構吸込部10xにおける冷媒の温度を圧縮機構吸込温度として検出する。圧縮機構吸込過熱度算出部310xは、圧力検出手段110xによって検出された圧縮機構吸込圧力と温度検出手段210xによって検出された圧縮機構吸込温度より式5のように圧縮機構吸込過熱度を算出する。

圧縮機構吸込過熱度=圧縮機構吸込温度−圧縮機構吸込圧力相当の飽和温度 (式5)

以降の動作は、実施の形態1において圧縮機吸込過熱度の代わりに圧縮機構吸込過熱度に置き換え、圧縮機吸込温度の代わりに圧縮機構吸込温度に置き換え、圧縮機吸込圧力の代わりに圧縮機構吸込圧力に置き換え、圧縮機吸込上限過熱度の代わりに圧縮機構吸込過熱度の上限値に置き換え、圧縮機吸込下限過熱度の代わりに圧縮機構吸込過熱度の下限値に置き換えたものと同様である。
Next, the operation of the second embodiment will be described with reference to FIGS. The description of the same parts as those in Embodiment 1 is omitted. The refrigerant exiting the first cooler is supplied to the compressor 10. The refrigerant sucked from the refrigerant suction port 10b of the compressor 10 is sucked into the compression mechanism 10w through the suction strainer 10z, the electric motor 10y, and the compressor mechanism suction portion 10x and compressed. The pressure detector 110x detects the refrigerant pressure in the compressor mechanism suction portion 10x as the compression mechanism suction pressure. The temperature detection unit 210x detects the temperature of the refrigerant in the compressor mechanism suction unit 10x as the compression mechanism suction temperature. The compression mechanism suction superheat degree calculation unit 310x calculates the compression mechanism suction superheat degree as shown in Equation 5 from the compression mechanism suction pressure detected by the pressure detection means 110x and the compression mechanism suction temperature detected by the temperature detection means 210x.

Compression mechanism suction superheat = compression mechanism suction temperature−saturation temperature equivalent to compression mechanism suction pressure (Formula 5)

Subsequent operations are replaced with the compression mechanism suction superheat degree instead of the compressor suction superheat degree in the first embodiment, replaced with the compression mechanism suction temperature instead of the compressor suction temperature, and the compression mechanism suction instead of the compressor suction pressure. It is the same as that replaced with the upper limit value of the compression mechanism suction superheat degree instead of the pressure, and replaced with the lower limit value of the compression mechanism suction superheat degree instead of the compressor suction lower limit superheat degree.

本実施の形態2によれば、実施の形態1の効果に加えて、圧縮機構吸込部10xの冷媒過熱度を用いて第1冷却器出口目標過熱度の補正を行なうので、圧縮機内部での圧力損失が大きい場合でも適切な膨張手段の操作が可能となる。
また、過負荷などにより電動機が過熱して圧縮機構吸込過熱度が上限値を超えて上昇するような場合には、第1冷却器出口目標過熱度を下げる補正が行なわれ、これに伴い圧縮機構吸込過熱度が適正範囲内に下がるので電動機過熱を防止するという効果も奏す。
According to the second embodiment, in addition to the effects of the first embodiment, the first supercooler outlet target superheat degree is corrected using the refrigerant superheat degree of the compression mechanism suction unit 10x, so Even when the pressure loss is large, an appropriate expansion means can be operated.
Further, when the electric motor is overheated due to overload or the like and the compression mechanism suction superheat degree rises exceeding the upper limit value, correction is performed to lower the first cooler outlet target superheat degree, and accordingly the compression mechanism Since the suction superheat degree falls within an appropriate range, there is an effect of preventing the motor from being overheated.

実施の形態3.
この実施の形態3では、圧縮機吸込過熱度が圧縮機吸込上限過熱度より大幅に高い場合または圧縮機吸込過熱度が圧縮機吸込下限過熱度より大幅に低い場合の実施の形態について説明する。
図1及び図2はこの実施の形態3でも用いられる。
次に、この実施の形態3の動作を実施の形態1と異なる部分について説明する。
先ず、圧縮機吸込過熱度が圧縮機吸込上限過熱度より大幅に高い場合について説明する。
式3で示される第1冷却器出口目標過熱度の補正計算において、所定の値(1℃)以上の減算すべき補正値が算出された場合には、第1冷却器用膨張手段制御手段404は、第1冷却器出口目標過熱度の補正量を所定の値(例えば、1℃)に抑える。即ち、1℃の補正を行なう。
このように、圧縮機吸込過熱度が圧縮機吸込上限過熱度より大幅に高い場合には所定の値に抑えるようにしたので、第1冷却器出口目標過熱度が大幅に変化(低下)した場合に発生する恐れのある液バックを防止できる。
なお、本実施の形態3では、補正の上限は1℃としたが、冷凍サイクル装置の構成によっては、1℃より大きな値や1℃より小さな値を用いても良い。
Embodiment 3 FIG.
In the third embodiment, an embodiment in which the compressor suction superheat degree is significantly higher than the compressor suction upper limit superheat degree or the compressor suction superheat degree is significantly lower than the compressor suction lower limit superheat degree will be described.
1 and 2 are also used in the third embodiment.
Next, the operation of the third embodiment will be described for parts different from the first embodiment.
First, the case where the compressor suction superheat degree is significantly higher than the compressor suction upper limit superheat degree will be described.
In the correction calculation of the first cooler outlet target superheat degree expressed by Equation 3, when a correction value to be subtracted above a predetermined value (1 ° C.) is calculated, the first cooler expansion means control means 404 is The correction amount of the first cooler outlet target superheat degree is suppressed to a predetermined value (for example, 1 ° C.). That is, 1 ° C. correction is performed.
As described above, when the compressor suction superheat degree is significantly higher than the compressor suction upper limit superheat degree, since it is suppressed to a predetermined value, the first cooler outlet target superheat degree is significantly changed (decreased). It is possible to prevent liquid back that may occur.
In the third embodiment, the upper limit of correction is 1 ° C., but a value larger than 1 ° C. or a value smaller than 1 ° C. may be used depending on the configuration of the refrigeration cycle apparatus.

次に、圧縮機吸込過熱度が圧縮機吸込下限過熱度より大幅に低い場合について説明する。
圧縮機吸込過熱度が圧縮機吸込下限過熱度より大幅に低い場合、式4より第1冷却器出口目標過熱度に加算すべき補正値として所定の値(1℃)以上の補正値が算出された場合には、第1冷却器用膨張手段制御手段404は、第1冷却器出口目標過熱度の補正量を所定の値に抑える(例えば1℃以下とする)。即ち、1℃の補正を行なう。
このように、圧縮機吸込過熱度が圧縮機吸込下限過熱度より大幅に低い場合には第1冷却器出口目標過熱度の補正量を所定の値に抑えるようにしたので、第1冷却器出口目標過熱度が大幅に変化(上昇)した場合に膨張手段を大幅に操作することで発生する恐れのある圧縮機吐出温度過熱による圧縮機の焼付け等の圧縮機損傷を防止できる。
なお、本実施の形態3では補正の上限は1℃としたが、冷凍サイクル装置の構成によっては、1℃より大きな値や1℃より小さな値を用いても良い。
Next, a case where the compressor suction superheat degree is significantly lower than the compressor suction lower limit superheat degree will be described.
When the compressor suction superheat degree is significantly lower than the compressor suction lower limit superheat degree, a correction value equal to or greater than a predetermined value (1 ° C.) is calculated as a correction value to be added to the first cooler outlet target superheat degree from Equation 4. In such a case, the first cooler expansion means control means 404 suppresses the correction amount of the first cooler outlet target superheat degree to a predetermined value (for example, 1 ° C. or less). That is, 1 ° C. correction is performed.
As described above, when the compressor suction superheat degree is significantly lower than the compressor suction lower limit superheat degree, the correction amount of the first cooler outlet target superheat degree is suppressed to a predetermined value. It is possible to prevent damage to the compressor such as compressor burning due to compressor discharge temperature overheating, which may occur by operating the expansion means significantly when the target degree of superheat changes (increases) significantly.
In the third embodiment, the upper limit of correction is 1 ° C., but a value larger than 1 ° C. or a value smaller than 1 ° C. may be used depending on the configuration of the refrigeration cycle apparatus.

以上より、本実施の形態3によれば、第1冷却器出口目標過熱度の補正量が大幅に変化する場合には、補正量を所定の値に抑えるので、液バックや圧縮機吐出温度過熱による圧縮機損傷を防止することができる。   As described above, according to the third embodiment, when the correction amount of the first cooler outlet target superheat degree changes significantly, the correction amount is suppressed to a predetermined value. Compressor damage due to can be prevented.

実施の形態4.
圧縮機吸込過熱度が圧縮機吸込上限過熱度より大幅に高くなり、補正後の第1冷却器出口目標過熱度が0℃以下となる場合がある。また、圧縮機吸込過熱度が圧縮機吸込下限過熱度より大幅に低くなり、補正後の第1冷却器出口目標過熱度が20℃以上となる場合がある。
この実施の形態4では、このような場合の実施の形態について説明する。
図1及び図2はこの実施の形態4でも用いられる。
次に、この実施の形態4の動作を実施の形態1と異なる部分について説明する。
先ず、圧縮機吸込過熱度が圧縮機吸込上限過熱度より大幅に高くなり、補正後の第1冷却器出口目標過熱度が0℃以下となる場合について説明する。
式3より補正後の第1冷却器出口目標過熱度が0℃以下となる場合には、第1冷却器用膨張手段制御手段404は、補正後の第1冷却器出口目標過熱度が、事前に設定された一定の下限値以上となるように補正を行なう。
このように、補正後の第1冷却器出口目標過熱度が事前に設定された一定の下限値以上となるように補正を行なうようにしたので、補正後の第1冷却器出口目標過熱度が0℃以下となる場合に発生する恐れのある膨張弁全開に基づく液バックによる圧縮機損傷を防止できる。
次に、圧縮機吸込過熱度が圧縮機吸込下限過熱度より大幅に低くなり、補正後の第1冷却器出口目標過熱度が20℃以上となる場合について説明する。
式4より補正後の第1冷却器出口目標過熱度が20℃以上となる場合には、第1冷却器用膨張手段制御手段404は、補正後の第1冷却器出口目標過熱度が、事前に設定された一定の上限値以下となるように補正を行なう。
このように、補正後の第1冷却器出口目標過熱度が事前に設定された一定の上限値以下となるように補正を行なうようにしたので、補正後の第1冷却器出口目標過熱度が20℃以上となる場合に発生する恐れのある低圧カット(冷媒量不足)による圧縮機損傷を防止できる。
Embodiment 4 FIG.
The compressor suction superheat degree becomes significantly higher than the compressor suction upper limit superheat degree, and the corrected first cooler outlet target superheat degree may be 0 ° C. or less. Further, the compressor suction superheat degree becomes significantly lower than the compressor suction lower limit superheat degree, and the corrected first cooler outlet target superheat degree may be 20 ° C. or higher.
In the fourth embodiment, an embodiment in such a case will be described.
1 and 2 are also used in the fourth embodiment.
Next, portions of the operation of the fourth embodiment different from those of the first embodiment will be described.
First, a case where the compressor suction superheat degree becomes significantly higher than the compressor suction upper limit superheat degree and the corrected first cooler outlet target superheat degree becomes 0 ° C. or less will be described.
When the corrected first cooler outlet target superheat degree is equal to or lower than 0 ° C. from Equation 3, the first cooler outlet target superheat degree 404 determines that the corrected first cooler outlet target superheat degree is in advance. Correction is made so that the value is equal to or greater than a set lower limit value.
As described above, the correction is performed so that the corrected first cooler outlet target superheat degree is equal to or more than a predetermined lower limit value set in advance. It is possible to prevent damage to the compressor due to liquid back based on the fully opened expansion valve, which may occur when the temperature is 0 ° C. or lower.
Next, the case where the compressor suction superheat degree becomes significantly lower than the compressor suction lower limit superheat degree and the corrected first cooler outlet target superheat degree becomes 20 ° C. or higher will be described.
When the corrected first cooler outlet target superheat degree is equal to or higher than 20 ° C. based on Equation 4, the first cooler outlet target superheat degree 404 determines that the corrected first cooler outlet target superheat degree is in advance. Correction is performed so that it is less than or equal to the set upper limit value.
As described above, the correction is performed so that the corrected first cooler outlet target superheat degree is equal to or less than a predetermined upper limit value set in advance. It is possible to prevent the compressor from being damaged by a low pressure cut (insufficient refrigerant amount) that may occur when the temperature is 20 ° C. or higher.

以上より、本実施の形態4によれば、補正後の第1冷却器出口目標過熱度が0℃以下となる場合や20℃以上となる場合には、補正量を所定の値に抑えるので、液バックや低圧カットによる圧縮機損傷を防止することができる。   As described above, according to the fourth embodiment, when the corrected first cooler outlet target superheat degree is 0 ° C. or lower or 20 ° C. or higher, the correction amount is suppressed to a predetermined value. Compressor damage due to liquid back and low pressure cut can be prevented.

実施の形態5.
運転状態の変化があったとき、圧縮機吸込圧力はすぐに変化するが、圧縮機吸込温度は、第1冷却器や吸込配管の熱容量の影響で変化が遅くなる。目標庫内温度(0℃)が高いと、寒冷地に圧縮機を屋外設置した場合、圧縮機定常運転中の圧縮機吸込温度(10℃)より、圧縮機の周囲温度が低くなることがある。このような状態で圧縮機を起動すると、配管が温まるまでに時間が掛かるため、膨張手段の操作が適正でも、起動直後に圧縮機吸込過熱度が0℃以下となり、その後徐々に圧縮機吸込過熱度が定常運転時の値に向けて上昇する。
図5に低外気温起動時での圧縮機吸込圧力、圧縮機吸込温度、圧縮機吸込過熱度の温度変化の一例を示す。
この実施の形態5では、このような場合の実施の形態について説明する。
Embodiment 5 FIG.
When there is a change in the operating state, the compressor suction pressure changes immediately, but the change in the compressor suction temperature is delayed due to the heat capacity of the first cooler and the suction pipe. When the target internal temperature (0 ° C) is high, the compressor ambient temperature may be lower than the compressor suction temperature (10 ° C) during steady operation of the compressor when the compressor is installed outdoors in a cold region. . When the compressor is started in such a state, it takes time until the piping is warmed up. Even if the expansion means is operated properly, the compressor suction superheat degree becomes 0 ° C. or less immediately after the start, and then the compressor suction superheat gradually. The degree increases toward the value during steady operation.
FIG. 5 shows an example of temperature changes of the compressor suction pressure, the compressor suction temperature, and the compressor suction superheat degree when the low outside air temperature is started.
In the fifth embodiment, an embodiment in such a case will be described.

図1及び図2はこの実施の形態5でも用いられる。
次に、この実施の形態5の動作を実施の形態1と異なる部分について説明する。
圧縮機起動時のように、圧縮機吸込過熱度が一時的に安定しない場合には、第1冷却器用膨張手段制御手段404は、圧縮機吸込過熱度による第1冷却器出口目標過熱度の補正を行なわない。そして、圧縮機起動から一定時間経過して圧縮機吸込過熱度が十分に安定してから、第1冷却器用膨張手段制御手段404は、圧縮機吸込過熱度による第1冷却器出口目標過熱度の補正を行なう。
1 and 2 are also used in the fifth embodiment.
Next, portions of the operation of the fifth embodiment different from those of the first embodiment will be described.
When the compressor suction superheat degree is temporarily not stable as at the time of starting the compressor, the first cooler expansion means control means 404 corrects the first cooler outlet target superheat degree by the compressor suction superheat degree. Do not do. Then, after a certain period of time has elapsed since the start of the compressor, the compressor suction superheat degree is sufficiently stabilized, and the first cooler expansion means control means 404 determines the first cooler outlet target superheat degree based on the compressor suction superheat degree. Make corrections.

なお、本実施の形態5において、圧縮機起動から一定時間は、第1冷却器出口目標過熱度の補正を行なわないとしたが、圧縮機起動時だけでなく、圧縮機周波数変化時や、目標庫内温度変化時などによって、運転状態が変化後、過渡応答中のため圧縮機吸込過熱度が安定しない場合には、第1冷却器出口目標過熱度の補正を行なわないようにする。
このように、圧縮機吸込過熱度が安定しない場合には、第1冷却器出口目標過熱度の補正を行なわないようにしたので、圧縮機吸込過熱度が安定しない場合に発生する恐れのある低圧カットを防止することができる。
なお、実施の形態2をこの実施の形態5に適用することも可能である。
In the fifth embodiment, the correction of the first cooler outlet target superheat degree is not performed for a certain time from the start of the compressor. However, not only when the compressor is started but also when the compressor frequency is changed, If the compressor suction superheat degree is not stable because of a transient response after the operating state changes due to a change in the internal temperature, the first cooler outlet target superheat degree is not corrected.
As described above, when the compressor suction superheat degree is not stable, the correction of the first cooler outlet target superheat degree is not performed, so that the low pressure that may occur when the compressor suction superheat degree is not stable. Cut can be prevented.
The second embodiment can also be applied to the fifth embodiment.

実施の形態6.
圧縮機吸込圧力が所定の値より低い運転では、圧縮機の圧縮比が大きくなり、圧縮過程での発熱が大きくなって圧縮機吐出温度及び圧縮機吐出過熱度が高くなる。また、圧縮機吐出圧力が所定の値より低い運転では、圧縮機の圧縮比が小さくなり、圧縮過程での発熱が小さくなって圧縮機吐出過熱度が低くなる。
この実施の形態6では、このような圧縮機吸込圧力が所定の値より低い運転または圧縮機吐出圧力が所定の値より低い運転を行う場合の実施の形態について説明する。
圧縮機吸込圧力が所定の値より低い運転では、圧縮機の圧縮比が大きくなり、圧縮過程での発熱が大きくなって圧縮機吐出温度及び圧縮機吐出過熱度が高くなり、焼き付けによる圧縮機損傷が発生する恐れがある。また、圧縮機吐出圧力が所定の値より低い運転では、圧縮機の圧縮比が小さくなり、圧縮過程での発熱が小さくなって圧縮機吐出過熱度が低くなる。圧縮機吐出過熱度が低くなると、油温が低くなるため油に溶け込む冷媒ガスの量が増える。このため、圧縮機出口側にある油分離器での冷媒と油の分離効率が低下する。油分離効率が低下すると、潤滑油切れによる圧縮機損傷が発生する恐れがある。そこで、この実施の形態6では、このような問題を解決する実施の形態について説明する。
図6に本実施の形態6の冷凍装置の構成の一例を示す。図6において、図1と同符号は同一又は相当部分であるため、説明を省略する。圧縮機10の冷媒吐出口10aに、冷媒の圧力を圧縮機吐出圧力として検出する圧力検出手段110a、温度を圧縮機吐出温度として検出する温度検出手段210aを設けている。圧縮機吐出過熱度算出部310aは圧縮機吐出過熱度を算出する。
Embodiment 6 FIG.
In an operation where the compressor suction pressure is lower than a predetermined value, the compression ratio of the compressor increases, heat generation during the compression process increases, and the compressor discharge temperature and the compressor discharge superheat degree increase. Further, in an operation where the compressor discharge pressure is lower than a predetermined value, the compression ratio of the compressor becomes small, heat generation in the compression process becomes small, and the compressor discharge superheat degree becomes low.
In the sixth embodiment, an embodiment in which such an operation in which the compressor suction pressure is lower than a predetermined value or an operation in which the compressor discharge pressure is lower than a predetermined value will be described.
In operation where the compressor suction pressure is lower than the specified value, the compressor compression ratio increases, heat generation during the compression process increases, compressor discharge temperature and compressor discharge superheat increase, and compressor damage due to baking May occur. Further, in an operation where the compressor discharge pressure is lower than a predetermined value, the compression ratio of the compressor becomes small, heat generation in the compression process becomes small, and the compressor discharge superheat degree becomes low. When the compressor discharge superheat degree is lowered, the oil temperature is lowered, so that the amount of refrigerant gas dissolved in the oil is increased. For this reason, the separation efficiency of the refrigerant and oil in the oil separator on the compressor outlet side is lowered. When the oil separation efficiency decreases, the compressor may be damaged due to running out of lubricating oil. Therefore, in the sixth embodiment, an embodiment for solving such a problem will be described.
FIG. 6 shows an example of the configuration of the refrigeration apparatus of the sixth embodiment. In FIG. 6, the same reference numerals as those in FIG. The refrigerant discharge port 10a of the compressor 10 is provided with pressure detection means 110a for detecting the refrigerant pressure as the compressor discharge pressure, and temperature detection means 210a for detecting the temperature as the compressor discharge temperature. The compressor discharge superheat degree calculation unit 310a calculates the compressor discharge superheat degree.

次に、この実施の形態6の動作を実施の形態1と異なる部分について説明する。
圧力検出手段110aは圧縮機10の冷媒吐出口10aにおける冷媒の圧力を圧縮機吐出圧力として検出する。また、温度検出手段210aは圧縮機10の冷媒吐出口10aにおける冷媒の温度を圧縮機吐出温度として検出する。圧縮機吐出過熱度算出部310aは、検出された圧縮機吐出圧力と圧縮機吐出温度より式6のように圧縮機吐出過熱度を算出する。

圧縮機吐出過熱度=圧縮機吐出温度−圧縮機吐出圧力相当の飽和温度 (式6)

圧縮機吸込圧力が所定の値より低い運転では、第1冷却器用膨張手段制御手段404は圧縮機吐出温度又は圧縮機吐出過熱度の上昇を防止するために、圧縮機吐出温度又は圧縮機吐出過熱度によって、第1冷却器出口目標過熱度を補正する。
また、圧縮機吐出圧力が所定の値より低い運転では、第1冷却器用膨張手段制御手段404は、圧縮機吐出過熱度の低下を防止するために、圧縮機吐出過熱度によって、第1冷却器出口目標過熱度を補正する。
以降の動作は、実施の形態1において圧縮機吸込過熱度の代わりに圧縮機吐出過熱度に置き換え、圧縮機吸込温度の代わりに圧縮機吐出温度に置き換え、圧縮機吸込圧力の代わりに圧縮機吐出圧力に置き換え、圧縮機吸込上限過熱度の代わりに圧縮機吐出過熱度の上限値に置き換え、圧縮機吸込下限過熱度の代わりに圧縮機吐出過熱度の下限値に置き換えたものと同様である。
Next, the operation of the sixth embodiment will be described for parts different from the first embodiment.
The pressure detection means 110a detects the refrigerant pressure at the refrigerant discharge port 10a of the compressor 10 as the compressor discharge pressure. Moreover, the temperature detection means 210a detects the temperature of the refrigerant in the refrigerant discharge port 10a of the compressor 10 as the compressor discharge temperature. The compressor discharge superheat degree calculation unit 310a calculates the compressor discharge superheat degree from Equation 6 using the detected compressor discharge pressure and compressor discharge temperature.

Compressor discharge superheat = compressor discharge temperature−saturation temperature equivalent to compressor discharge pressure (Formula 6)

In an operation where the compressor suction pressure is lower than a predetermined value, the first cooler expansion means control means 404 uses the compressor discharge temperature or the compressor discharge superheat to prevent the compressor discharge temperature or the compressor discharge superheat from increasing. The first cooler outlet target superheat degree is corrected according to the degree.
Further, in an operation where the compressor discharge pressure is lower than a predetermined value, the first cooler expansion means control means 404 controls the first cooler according to the compressor discharge superheat degree in order to prevent the compressor discharge superheat degree from decreasing. Correct the outlet target superheat.
Subsequent operations are replaced with the compressor discharge superheat degree instead of the compressor suction superheat degree in the first embodiment, the compressor discharge temperature instead of the compressor suction temperature, and the compressor discharge instead of the compressor suction pressure. It is the same as that replaced with the pressure, replaced with the upper limit value of the compressor discharge superheat degree instead of the compressor suction upper limit superheat degree, and replaced with the lower limit value of the compressor discharge superheat degree instead of the compressor suction lower limit superheat degree.

この実施の形態6によれば、圧縮機吸込圧力が所定の値より低い運転や圧縮機吐出圧力が所定の値より低い運転では、圧縮機吐出温度又は圧縮機吐出過熱度によって、第1冷却器出口目標過熱度を補正するので、圧縮機吐出温度又は圧縮機吐出過熱度が適正な範囲に収まり、圧縮機吐出温度又は圧縮機吐出過熱度が異常に高い時に発生する恐れのある焼き付けや、逆に異常に低い時に冷媒と油の高溶解率かつ低分離効率に基づいて発生する恐れのある潤滑油切れによる圧縮機損傷の発生を防止できる。   According to the sixth embodiment, in the operation in which the compressor suction pressure is lower than the predetermined value or the operation in which the compressor discharge pressure is lower than the predetermined value, the first cooler depends on the compressor discharge temperature or the compressor discharge superheat degree. Since the outlet target superheat degree is corrected, the compressor discharge temperature or the compressor discharge superheat degree is within the appropriate range, and the burn-in or the like that may occur when the compressor discharge temperature or the compressor discharge superheat degree is abnormally high, It is possible to prevent the occurrence of compressor damage due to running out of lubricating oil, which may occur based on the high dissolution rate and low separation efficiency of the refrigerant and oil when the temperature is extremely low.

実施の形態7.
図7に本実施の形態7の一例を示す。本実施の形態7は、実施の形態1に、凝縮器3の冷媒出口側に第2冷却器用膨張手段14が接続され、第2冷却器用膨張手段14の出口側には第2冷却器15が接続され、第2冷却器15の冷媒出口側には圧縮機10の冷媒吸込口10bが接続されている構成の冷凍回路を追加したものである。
また第2冷却器15の冷媒出口15aに、圧力を第2冷却器出口圧力として検出する圧力検出手段115a、温度を第2冷却器出口温度として検出する温度検出手段215aを設けている。
また第2冷却器出口過熱度算出部315aは、検出された第2冷却器出口圧力と第2冷却器出口温度より式7のように第2冷却器出口過熱度を算出する。

第2冷却器出口過熱度
=第2冷却器出口温度−第2冷却器出口圧力相当の飽和温度 (式7)

本実施の形態7では、第2冷却器用膨張手段制御手段414は、実施の形態1における第1冷却器と同様に圧縮機吸込過熱度によって第2冷却器目標過熱度の補正を行なう。
第1冷却器用膨張手段制御手段404は、第1冷却器出口過熱度が補正後の第1冷却器目標過熱度になるように第1冷却器用膨張手段4を調整し、第2冷却器用膨張手段制御手段414は、第2冷却器出口過熱度が補正後の第2冷却器目標過熱度になるように第2冷却器用膨張手段14を制御するので、第1冷却器、第2冷却器いずれも冷却器の性能を最大限に発揮することができる。
なお、本実施の形態7では、冷却器が2台の場合を示したが、冷却器が3台以上ある場合にも同様な効果を奏す。
また、実施の形態2〜6を本実施の形態7に適用することも可能である。
Embodiment 7 FIG.
FIG. 7 shows an example of the seventh embodiment. In the seventh embodiment, the second cooler expansion means 14 is connected to the refrigerant outlet side of the condenser 3 in the first embodiment, and the second cooler 15 is connected to the outlet side of the second cooler expansion means 14. A refrigeration circuit having a configuration in which the refrigerant suction port 10b of the compressor 10 is connected to the refrigerant outlet side of the second cooler 15 is added.
The refrigerant outlet 15a of the second cooler 15 is provided with pressure detecting means 115a for detecting the pressure as the second cooler outlet pressure, and temperature detecting means 215a for detecting the temperature as the second cooler outlet temperature.
Moreover, the 2nd cooler exit superheat degree calculation part 315a computes a 2nd cooler exit superheat degree like Formula 7 from the detected 2nd cooler exit pressure and 2nd cooler exit temperature.

2nd cooler outlet superheat degree = 2nd cooler exit temperature-saturation temperature equivalent to 2nd cooler exit pressure (Formula 7)

In the seventh embodiment, the second cooler expansion means control means 414 corrects the second cooler target superheat degree by the compressor suction superheat degree as in the first cooler in the first embodiment.
The first cooler expansion means control means 404 adjusts the first cooler expansion means 4 so that the first cooler outlet superheat degree becomes the corrected first cooler target superheat degree, and the second cooler expansion means control means 404 Since the control means 414 controls the second cooler expansion means 14 so that the second cooler outlet superheat degree becomes the corrected second cooler target superheat degree, both the first cooler and the second cooler are controlled. The performance of the cooler can be maximized.
In the seventh embodiment, the case where there are two coolers is shown, but the same effect can be obtained when there are three or more coolers.
Also, the second to sixth embodiments can be applied to the seventh embodiment.

実施の形態8.
実施の形態1の膨張手段の制御は、冷却器出口過熱度で膨張手段を制御し、冷却器出口目標過熱度の補正を圧縮機吸込過熱度で行なっていたが、吸込み配管長が短い場合は、吸込み配管の熱容量が小さく応答遅れによる膨張手段の操作遅れの可能性が小さくなるので、圧縮機構冷媒吸込部310xの過熱度によって膨張手段の制御を行なっても良い。特に圧縮機の最大容量と最小容量の差が大きい、インバータ圧縮機に用いられると効果が大きい。
この場合、冷却器出口過熱度を算出することが不要となり、冷却器出口過熱度算出に関連する圧力計測手段や温度計測手段が不要となる。
図8に本実施の形態8の冷媒回路図を示す。図8において、図2と同符号は同一又は相当部分であるため、説明を省略する。第1冷却器用膨張手段制御手段404は圧縮機構過熱度算出部310xが算出した加熱度によって第1冷却器用膨張手段4を制御する。
Embodiment 8 FIG.
In the control of the expansion means of the first embodiment, the expansion means is controlled by the cooler outlet superheat degree, and the correction of the cooler outlet target superheat degree is performed by the compressor suction superheat degree, but when the suction pipe length is short Since the heat capacity of the suction pipe is small and the possibility of delay in operation of the expansion means due to response delay is reduced, the expansion means may be controlled by the degree of superheat of the compression mechanism refrigerant suction portion 310x. The effect is particularly great when used in an inverter compressor where the difference between the maximum capacity and the minimum capacity of the compressor is large.
In this case, it is not necessary to calculate the cooler outlet superheat degree, and pressure measuring means and temperature measuring means related to the cooler outlet superheat degree calculation are not required.
FIG. 8 shows a refrigerant circuit diagram of the eighth embodiment. In FIG. 8, the same reference numerals as those in FIG. The first cooler expansion means control means 404 controls the first cooler expansion means 4 according to the degree of heating calculated by the compression mechanism superheat degree calculation unit 310x.

次に、この実施の形態8の動作を図8を用いて説明する。
圧力検出手段110xは圧縮機10の圧縮機構吸込部10xにおける冷媒の圧力を圧縮機吸込圧力として検出する。また、温度検出手段210xは圧縮機構吸込部10xにおける冷媒の温度を圧縮機吸込温度として検出する。また、圧縮機構吸込過熱度算出部310xは、圧力検出手段110xによって検出された圧縮機構吸込圧力と温度検出手段210xによって検出された圧縮機吸込温度より式8のように圧縮機構吸込過熱度を算出している。

圧縮機構吸込過熱度=圧縮機構吸込温度−圧縮機構吸込圧力相当の飽和温度 (式8)

第1冷却器用膨張手段制御手段404は、圧縮機構吸込過熱度算出部310xからの圧縮機構吸込過熱度に基づいて第1冷却器用膨張手段4の開度を制御する。
Next, the operation of the eighth embodiment will be described with reference to FIG.
The pressure detection means 110x detects the refrigerant pressure in the compression mechanism suction portion 10x of the compressor 10 as the compressor suction pressure. Moreover, the temperature detection means 210x detects the temperature of the refrigerant | coolant in the compression mechanism suction part 10x as a compressor suction temperature. The compression mechanism suction superheat degree calculation unit 310x calculates the compression mechanism suction superheat degree as shown in Expression 8 from the compression mechanism suction pressure detected by the pressure detection means 110x and the compressor suction temperature detected by the temperature detection means 210x. is doing.

Compression mechanism suction superheat = compression mechanism suction temperature−saturation temperature equivalent to compression mechanism suction pressure (Equation 8)

The first cooler expansion means control means 404 controls the opening degree of the first cooler expansion means 4 based on the compression mechanism suction superheat degree from the compression mechanism suction superheat degree calculation unit 310x.

この実施の形態8によれば、圧縮機構吸込過熱度に基づいて第1冷却器用膨張手段4の開度を制御するので、実施の形態2と同じ効果を維持しながら、冷却器出口過熱度を算出することが不要となり、冷却器出口過熱度算出に関連する圧力計測手段や温度計測手段が不要となる。   According to the eighth embodiment, since the opening degree of the first cooler expansion means 4 is controlled based on the compression mechanism suction superheat degree, the superheater outlet superheat degree is set while maintaining the same effect as in the second embodiment. It becomes unnecessary to calculate, and pressure measuring means and temperature measuring means related to the calculation of the superheater outlet superheat degree are not required.

実施の形態9.
圧縮機吸込圧力が低い運転では、圧縮機の圧縮比が大きくなり、圧縮過程での発熱が大きくなって圧縮機吐出温度及び圧縮機吐出過熱度が高くなる。
そこで、この実施の形態9では、このような場合の実施の形態について説明する。
図6はこの実施の形態9でも用いられる。
図6において、第1冷却器膨張手段制御手段404は、圧縮機吐出温度又は圧縮機吐出過熱度が事前に設定された一定値以上では圧縮機吸込冷媒流量が少なくなるような、膨張手段の操作を禁止する。
このように、この実施の形態9によれば、圧縮機吐出温度又は圧縮機吐出過熱度が事前に設定された一定値以上では圧縮機吸込冷媒流量が少なくなるような膨張手段の操作を禁止するので、圧縮機吐出温度又は圧縮機吐出過熱度が適正な範囲内に収まる。これにより、圧縮機吐出温度及び圧縮機吐出過熱度が上昇することで発生する恐れのある焼き付けによる圧縮機損傷を防止できる。
Embodiment 9 FIG.
In an operation where the compressor suction pressure is low, the compression ratio of the compressor increases, heat generation during the compression process increases, and the compressor discharge temperature and compressor discharge superheat degree increase.
Therefore, in the ninth embodiment, an embodiment in such a case will be described.
FIG. 6 is also used in the ninth embodiment.
In FIG. 6, the first cooler expansion means control means 404 operates the expansion means so that the compressor suction refrigerant flow rate decreases when the compressor discharge temperature or the compressor discharge superheat degree exceeds a predetermined value. Is prohibited.
As described above, according to the ninth embodiment, the operation of the expansion means is prohibited such that the compressor suction refrigerant flow rate decreases when the compressor discharge temperature or the compressor discharge superheat degree is equal to or higher than a predetermined value set in advance. Therefore, the compressor discharge temperature or the compressor discharge superheat degree falls within an appropriate range. Thereby, the compressor damage by the baking which may generate | occur | produce when a compressor discharge temperature and compressor discharge superheat degree rise can be prevented.

実施の形態10.
圧縮機吐出圧力が低い運転では、圧縮機の圧縮比が小さくなり、圧縮過程での発熱が小さくなって圧縮機吐出温度及び圧縮機吐出過熱度が低くなる。
この実施の形態10では、このような場合の実施の形態について説明する。
図6はこの実施の形態10でも用いられる。
図6において、第1冷却器膨張手段制御手段404は、圧縮機吐出温度又は圧縮機吐出過熱度が事前に設定された一定値以下では圧縮機吸込冷媒流量が増加するような膨張手段の操作を禁止する。
このように、この実施の形態10によれば、圧縮機吐出温度又は圧縮機吐出過熱度が事前に設定された一定値以下では圧縮機吸込冷媒流量が増加するような膨張手段の操作を禁止するので、圧縮機吐出温度及び圧縮機吐出過熱度が適正な範囲内に収まる。これにより、圧縮機吐出温度及び圧縮機吐出過熱度の低下により発生する恐れのある潤滑油切れによる圧縮機損傷を防止できる。
Embodiment 10 FIG.
In operation where the compressor discharge pressure is low, the compression ratio of the compressor becomes small, heat generation in the compression process becomes small, and the compressor discharge temperature and the compressor discharge superheat degree become low.
In the tenth embodiment, an embodiment in such a case will be described.
FIG. 6 is also used in the tenth embodiment.
In FIG. 6, the first cooler expansion means control means 404 operates the expansion means such that the compressor suction refrigerant flow rate increases when the compressor discharge temperature or the compressor discharge superheat degree is equal to or lower than a predetermined value set in advance. Ban.
As described above, according to the tenth embodiment, the operation of the expansion means that increases the compressor suction refrigerant flow rate is prohibited when the compressor discharge temperature or the compressor discharge superheat degree is equal to or lower than a predetermined value set in advance. Therefore, the compressor discharge temperature and the compressor discharge superheat degree are within appropriate ranges. This can prevent damage to the compressor due to running out of lubricating oil, which may occur due to a decrease in compressor discharge temperature and compressor discharge superheat.

実施の形態11.
冷却器が大きい場合、質量が大きくなるので熱容量が大きく、また冷媒側内容積も大きくなるので、膨張手段の操作に対して冷却器出口温度変化が遅くなる。
この実施の形態11では、このような場合の実施の形態について説明する。
図9に本実施の形態の一例を示す。図9において、図1又は図11と同符号は同一または相当部分を示す。
図9において、第1冷却器内部圧力検出手段105bは第1冷却器5内部の圧力を検出する。また、第1冷却器出口流体温度検出手段205bは、第1冷却器5を流れ、この第1冷却器5で冷媒によって冷却される流体(以下、被冷却流体という)の出口側の温度を検出する。第1冷却器膨張手段制御手段404は、第1冷却器内部圧力検出手段105bによって検出された冷却器内部圧力に相当する飽和冷媒温度を対応表あるいは計算により取得し、第1冷却器出口流体温度検出手段205bによって検出された被冷却流体の冷却器出口温度と比較する。そして、上記冷却器内部圧力相当の飽和冷媒温度と被冷却流体の冷却器出口温度の差が事前に設定された一定値以下となると、第1冷却器膨張手段制御手段404は冷却器出口冷媒流量が増加するような膨張手段の操作を禁止する。
冷却器内部圧力は膨張手段の操作に対して比較的に応答が速いため、冷媒の流れ過ぎを冷却器内部圧力の変化によって迅速に検出できるので、上記のように、この実施の形態11では、冷却器内部圧力相当の飽和冷媒温度と被冷却流体の冷却器出口温度の差が事前に設定された一定値以下となると、冷却器出口冷媒流量が増加するような膨張手段の操作を即座に禁止する。
これにより、膨張手段の操作遅れがあった場合に上記冷却器出口温度変化の遅れが重なることにより発生する恐れのある液バックを防止することができる。
Embodiment 11 FIG.
When the cooler is large, the mass increases, so that the heat capacity is large and the internal volume on the refrigerant side is also large. Therefore, the change in the cooler outlet temperature is delayed with respect to the operation of the expansion means.
In the eleventh embodiment, an embodiment in such a case will be described.
FIG. 9 shows an example of this embodiment. 9, the same reference numerals as those in FIG. 1 or 11 denote the same or corresponding parts.
In FIG. 9, the first cooler internal pressure detecting means 105 b detects the pressure inside the first cooler 5. The first cooler outlet fluid temperature detecting means 205b detects the temperature on the outlet side of the fluid that flows through the first cooler 5 and is cooled by the refrigerant in the first cooler 5 (hereinafter referred to as the fluid to be cooled). To do. The first cooler expansion means control means 404 obtains the saturated refrigerant temperature corresponding to the cooler internal pressure detected by the first cooler internal pressure detection means 105b by a correspondence table or calculation, and the first cooler outlet fluid temperature. It compares with the cooler outlet temperature of the to-be-cooled fluid detected by the detection means 205b. When the difference between the saturated refrigerant temperature corresponding to the internal pressure of the cooler and the cooler outlet temperature of the fluid to be cooled is equal to or less than a predetermined value set in advance, the first cooler expansion means control means 404 sets the cooler outlet refrigerant flow rate. The operation of the expansion means that increases the flow rate is prohibited.
Since the internal pressure of the cooler has a relatively fast response to the operation of the expansion means, an excessive flow of the refrigerant can be detected quickly by a change in the internal pressure of the cooler. If the difference between the saturated refrigerant temperature equivalent to the internal pressure of the cooler and the cooler outlet temperature of the fluid to be cooled falls below a preset value, operation of the expansion means that increases the refrigerant outlet refrigerant flow is immediately prohibited. To do.
Thereby, when there is a delay in the operation of the expansion means, it is possible to prevent a liquid back that may occur due to the overlap in the delay in the cooler outlet temperature change.

実施の形態12.
実施の形態1〜11において、膨張手段として膨張機を用い動力回収を行なっても良い。
この場合、動力回収が行なわれる分、電気入力が減少して、成績係数が向上するという効果を奏す。特に冷媒として二酸化炭素を用いた場合、有効である。
また、冷媒回路に、冷媒の一部が膨張機を流れないバイパス回路を設けても良い。この場合、
バイパス回路を設けることによって、圧縮機と膨張機の冷媒の質量流量が異なる運転が可能となり、低圧が低下した場合など運転条件が変化したときも、成績係数を向上させるという効果を奏す。
また、膨張機によって回収された動力を用いて発電を行なっても良い。また膨張機によって発電された電力を用いて圧縮機、送風機、ポンプ、制御回路、インバータなど冷凍装置本体機器や補機を駆動しても良い。
膨張機によって発電を行なう方法では、圧縮機と膨張機を別の場所に設置することができる、従来から用いられている圧縮機が使用可能となり圧縮機と膨張機が一体となった専用の流体機械が不要となる、という効果を奏す。
Embodiment 12 FIG.
In Embodiments 1 to 11, power recovery may be performed using an expander as the expansion means.
In this case, there is an effect that the coefficient of performance is improved by reducing the electric input by the amount of power recovery. This is particularly effective when carbon dioxide is used as the refrigerant.
Further, a bypass circuit in which a part of the refrigerant does not flow through the expander may be provided in the refrigerant circuit. in this case,
By providing the bypass circuit, it is possible to perform operations in which the mass flow rates of the refrigerant of the compressor and that of the expander are different, and the effect of improving the coefficient of performance is achieved even when the operating conditions change, such as when the low pressure is reduced.
Moreover, you may generate electric power using the motive power collect | recovered with the expander. Moreover, you may drive refrigeration apparatus main body apparatuses, such as a compressor, a fan, a pump, a control circuit, and an inverter, and auxiliary machinery using the electric power generated by the expander.
In the method of generating power by the expander, the compressor and the expander can be installed in different locations, and a conventionally used compressor can be used, and a dedicated fluid in which the compressor and the expander are integrated There is an effect that a machine becomes unnecessary.

実施の形態13.
また、実施の形態1〜11において、膨張手段としてエゼクタを用いて圧縮機吸込圧力の回復を行なっても良い。
この場合、圧縮機吸込圧力が上昇する分、冷却能力が向上して、成績係数が向上するという効果を奏す。特に圧縮機吸込圧力が低い場合有効である。
Embodiment 13 FIG.
In the first to eleventh embodiments, the compressor suction pressure may be recovered using an ejector as the expansion means.
In this case, as the compressor suction pressure increases, the cooling capacity is improved and the coefficient of performance is improved. This is particularly effective when the compressor suction pressure is low.

本発明の実施の形態1、3〜5における冷凍装置の構成図である。It is a block diagram of the freezing apparatus in Embodiment 1, 3-5 of this invention. 本発明の実施の形態1、3〜5における第1冷却器出口目標過熱度補正制御フロフローを示すフローチャートである。It is a flowchart which shows the 1st cooler exit target superheat degree correction control flow in Embodiment 1, 3-5 of this invention. 本発明の実施の形態2における冷凍装置の構成図である。It is a block diagram of the freezing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2、5における低外気温起動時での圧縮機吸込圧力、圧縮機吸込温度、圧縮機吸込過熱度の温度変化の一例を示す説明図である。It is explanatory drawing which shows an example of the temperature change of the compressor suction pressure, the compressor suction temperature, and the compressor suction superheat degree at the time of the low external temperature starting in Embodiments 2 and 5 of the present invention. 本発明の実施の形態5における冷凍装置の構成図である。It is a block diagram of the freezing apparatus in Embodiment 5 of this invention. 本発明の実施の形態6、9、10における冷凍装置の構成図である。It is a block diagram of the freezing apparatus in Embodiment 6, 9, 10 of this invention. 本発明の実施の形態7における冷凍装置の構成図である。It is a block diagram of the freezing apparatus in Embodiment 7 of this invention. 本発明の実施の形態8における圧縮機の構成図である。It is a block diagram of the compressor in Embodiment 8 of this invention. 本発明の実施の形態11における冷凍装置の構成図である。It is a block diagram of the refrigeration apparatus in Embodiment 11 of this invention.

符号の説明Explanation of symbols

3 凝縮器、4 第1冷却器用膨張手段、5 第1冷却器、5a 第1冷却器出口、5b 第1冷却器入口、10 圧縮機、10a 圧縮機吐出口、10b 圧縮機吸込口、10w 圧縮機構、10x 圧縮機構吸込部、10y 電動機、10z 吸込ストレーナ、14 第2冷却器用膨張手段、15 第2冷却器、15a 第2冷却器出口、105a 第1冷却器出口圧力検出手段、105b 第1冷却器内部圧力検出手段、110a 圧縮機吐出圧力検出手段、110b 圧縮機吸込圧力検出手段、110x 圧縮機構吸込圧力検出部、115a 第2冷却器出口圧力検出手段、205a 第1冷却器出口温度検出手段、205b 第1冷却器出口流体温度検出手段、210a 圧縮機吐出温度検出手段、210b 圧縮機吸込温度検出手段、210x 圧縮機構吸込温度検出手段、215a 第2冷却器出口温度検出手段、305a 第1冷却器出口過熱度算出部、310a 圧縮機吐出過熱度算出部、310b 圧縮機吸込過熱度算出部、310x 圧縮機構吸込過熱度算出部、315a 第2冷却器出口過熱度算出部、404 第1冷却器用膨張手段制御手段、414 第2冷却器用膨張手段制御器。
3 Condenser, 4 1st cooler expansion means, 5 1st cooler, 5a 1st cooler outlet, 5b 1st cooler inlet, 10 compressor, 10a compressor discharge port, 10b compressor suction port, 10w compression Mechanism, 10x compression mechanism suction section, 10y motor, 10z suction strainer, 14 second cooler expansion means, 15 second cooler, 15a second cooler outlet, 105a first cooler outlet pressure detection means, 105b first cooling Compressor internal pressure detection means, 110a compressor discharge pressure detection means, 110b compressor suction pressure detection means, 110x compression mechanism suction pressure detection section, 115a second cooler outlet pressure detection means, 205a first cooler outlet temperature detection means, 205b First cooler outlet fluid temperature detection means, 210a Compressor discharge temperature detection means, 210b Compressor suction temperature detection means, 210x Compressor suction temperature detection Means 215a second cooler outlet temperature detection means, 305a first cooler outlet superheat degree calculation unit, 310a compressor discharge superheat degree calculation part, 310b compressor suction superheat degree calculation part, 310x compression mechanism suction superheat degree calculation part, 315a 2nd cooler exit superheat degree calculation part, 404 1st cooler expansion means control means, 414 2nd cooler expansion means controller.

Claims (19)

圧縮機と、この圧縮機から吐出した冷媒を放熱して冷却する凝縮器と、この凝縮器から出た冷媒を減圧膨張する膨張手段と、前記圧縮機と別位置に設置され、前記膨張手段から出た冷媒を蒸発させる冷却器とを配管により順次接続してなる冷凍サイクル装置において、
前記冷却器の冷媒出口側の過熱度である冷却器出口過熱度とこの冷却器出口過熱度の目標値に基づいて前記膨張手段を制御する制御手段を備え、
前記圧縮機の冷媒吸込口の過熱度である圧縮機吸込過熱度は、前記配管の内、前記冷却器の出口側と前記圧縮機の冷媒吸込口とを接続する配管の、長さに応じて発生する圧力損失に相当する過熱度分前記冷却器出口過熱度よりも高く、
前記制御手段は、前記圧縮機吸込過熱度が予め定めた上限値を超えた状態が所定の時間以上継続すると、前記冷却器出口過熱度の目標値から前記圧縮機吸込過熱度が前記上限値を上回った量減らすことを特徴とする冷凍サイクル装置。
A compressor, a condenser that radiates and cools the refrigerant discharged from the compressor, an expansion means that decompresses and expands the refrigerant discharged from the condenser, and is installed at a position different from the compressor. In a refrigeration cycle apparatus in which a cooler that evaporates the refrigerant that has come out is sequentially connected by piping,
Control means for controlling the expansion means based on a cooler outlet superheat degree which is a superheat degree on the refrigerant outlet side of the cooler and a target value of the cooler outlet superheat degree,
The degree of superheat of the compressor suction, which is the degree of superheat of the refrigerant suction port of the compressor, depends on the length of the pipe connecting the outlet side of the cooler and the refrigerant suction port of the compressor. The degree of superheat corresponding to the generated pressure loss is higher than the degree of superheat of the cooler outlet,
When the state where the compressor suction superheat degree exceeds a predetermined upper limit value continues for a predetermined time or more, the control means determines that the compressor suction superheat degree exceeds the upper limit value from a target value of the cooler outlet superheat degree. refrigerating cycle apparatus you characterized by reducing the amount exceeded.
前記制御手段は、前記圧縮機吸込過熱度が予め設定した上限値よりも第1の所定値以上高いとき、前記冷却器出口過熱度の補正量を第2の所定値に抑えることを特徴とする請求項1記載の冷凍サイクル装置。  The control means suppresses the correction amount of the cooler outlet superheat degree to a second predetermined value when the compressor suction superheat degree is higher than a preset upper limit value by a first predetermined value or more. The refrigeration cycle apparatus according to claim 1. 前記制御手段は、前記圧縮機吸込過熱度が予め設定した上限値よりも所定値以上高くなり、この圧縮機吸込過熱度に基づいて補正した場合の前記冷却器出口過熱度の補正量が特定温度以下となる場合、補正後の前記冷却器出口過熱度の目標値が予め設定した下限値以上になるように補正を行うことを特徴とする請求項1記載の冷凍サイクル装置。  The control means is such that the compressor suction superheat degree is higher than a preset upper limit by a predetermined value or more, and the correction amount of the cooler outlet superheat degree when corrected based on the compressor suction superheat degree is a specific temperature. 2. The refrigeration cycle apparatus according to claim 1, wherein the correction is performed so that the target value of the degree of superheater outlet after correction is equal to or greater than a preset lower limit value when: 圧縮機と、この圧縮機から吐出した冷媒を放熱して冷却する凝縮器と、この凝縮器から出た冷媒を減圧膨張する膨張手段と、前記圧縮機と別位置に設置され、前記膨張手段から出た冷媒を蒸発させる冷却器とを配管により順次接続してなる冷凍サイクル装置において、
前記冷却器の冷媒出口側の過熱度である冷却器出口過熱度とこの冷却器出口過熱度の目標値に基づいて前記膨張手段を制御する制御手段を備え、
前記圧縮機の冷媒吸込口の過熱度である圧縮機吸込過熱度は、前記配管の内、前記冷却器の出口側と前記圧縮機の冷媒吸込口とを接続する配管の、長さに応じて発生する圧力損失に相当する過熱度分前記冷却器出口過熱度よりも高く、
前記制御手段は、前記圧縮機吸込過熱度が予め定めた下限値よりも低い状態が所定の時間以上継続すると、前記冷却器出口過熱度の目標値前記圧縮機吸込過熱度が前記下限値を下回った量を加えることを特徴とする冷凍サイクル装置。
A compressor, a condenser that radiates and cools the refrigerant discharged from the compressor, an expansion means that decompresses and expands the refrigerant discharged from the condenser, and is installed at a position different from the compressor. In a refrigeration cycle apparatus in which a cooler that evaporates the refrigerant that has come out is sequentially connected by piping,
Control means for controlling the expansion means based on a cooler outlet superheat degree which is a superheat degree on the refrigerant outlet side of the cooler and a target value of the cooler outlet superheat degree,
The degree of superheat of the compressor suction, which is the degree of superheat of the refrigerant suction port of the compressor, depends on the length of the pipe connecting the outlet side of the cooler and the refrigerant suction port of the compressor. The degree of superheat corresponding to the generated pressure loss is higher than the degree of superheat of the cooler outlet,
When the state where the compressor suction superheat degree is lower than a predetermined lower limit value continues for a predetermined time or longer, the control means sets the compressor suction superheat degree to the target value of the cooler outlet superheat degree so that the lower limit value is reached. refrigerating cycle apparatus characterized by adding an amount below.
前記制御手段は、前記圧縮機吸込過熱度が予め設定した下限値よりも第1の所定値以上低いとき、前記冷却器出口過熱度の補正量を第2の所定値に抑えることを特徴とする請求項4記載の冷凍サイクル装置。  The control means suppresses the correction amount of the cooler outlet superheat degree to a second predetermined value when the compressor suction superheat degree is lower than a preset lower limit value by a first predetermined value or more. The refrigeration cycle apparatus according to claim 4. 前記制御手段は、前記圧縮機吸込過熱度が予め設定した下限値よりも所定値以上低くなり、この圧縮機吸込過熱度に基づいて補正した場合の前記冷却器出口過熱度の補正量が特定温度以上となる場合、補正後の前記冷却器出口過熱度の目標値が予め設定した上限値以下になるように補正を行うことを特徴とする請求項4記載の冷凍サイクル装置。  In the control means, the compressor suction superheat degree is lower than a preset lower limit value by a predetermined value or more, and the correction amount of the cooler outlet superheat degree when corrected based on the compressor suction superheat degree is a specific temperature. 5. The refrigeration cycle apparatus according to claim 4, wherein the correction is performed so that the corrected target value of the cooler outlet superheat degree is equal to or less than a preset upper limit value in the case of the above. 冷媒を圧縮する圧縮機構を有する圧縮機と、この圧縮機から吐出した冷媒を放熱して冷却する凝縮器と、この凝縮器から出た冷媒を減圧膨張する膨張手段と、前記圧縮機と別位置に設置され、前記膨張手段から出た冷媒を蒸発させる冷却器とを配管により順次接続してなる冷凍サイクル装置において、
前記冷却器の冷媒出口側の過熱度である冷却器出口過熱度とこの冷却器出口過熱度の目標値に基づいて前記膨張手段を制御する制御手段を備え、
前記圧縮機構の冷媒吸込部の過熱度である圧縮機構吸込過熱度は、前記配管の内、前記冷却器の出口側と前記圧縮機構の冷媒吸込部とを接続する配管の、長さに応じて発生する圧力損失に相当する過熱度分前記冷却器出口過熱度よりも高く、
前記制御手段は、前記圧縮機構吸込過熱度が予め定めた上限値を超えた状態が所定の時間以上継続すると、前記冷却器出口過熱度の目標値から前記圧縮機構吸込過熱度が前記上限値を上回った量減らすことを特徴とする冷凍サイクル装置。
A compressor having a compression mechanism for compressing the refrigerant; a condenser for radiating and cooling the refrigerant discharged from the compressor; expansion means for decompressing and expanding the refrigerant discharged from the condenser; and a position separate from the compressor In a refrigeration cycle apparatus that is connected to a cooler that sequentially evaporates the refrigerant that has been discharged from the expansion means by a pipe,
Control means for controlling the expansion means based on a cooler outlet superheat degree which is a superheat degree on the refrigerant outlet side of the cooler and a target value of the cooler outlet superheat degree,
The compression mechanism suction superheat degree, which is the superheat degree of the refrigerant suction part of the compression mechanism, depends on the length of the pipe connecting the outlet side of the cooler and the refrigerant suction part of the compression mechanism in the pipe. The degree of superheat corresponding to the generated pressure loss is higher than the degree of superheat of the cooler outlet,
Wherein, when the state in which the compression mechanism suction superheat exceeds a predetermined upper limit value continues over a predetermined time, the compression mechanism suction superheat degree from the target value of the cooler outlet superheat the upper limit refrigerating cycle apparatus you characterized by reducing the amount exceeded.
冷媒を圧縮する圧縮機構を有する圧縮機と、この圧縮機から吐出した冷媒を放熱して冷却する凝縮器と、この凝縮器から出た冷媒を減圧膨張する膨張手段と、前記圧縮機と別位置に設置され、前記膨張手段から出た冷媒を蒸発させる冷却器とを配管により順次接続してなる冷凍サイクル装置において、
前記冷却器の冷媒出口側の過熱度である冷却器出口過熱度とこの冷却器出口過熱度の目標値に基づいて前記膨張手段を制御する制御手段を備え、
前記圧縮機構の冷媒吸込部の過熱度である圧縮機構吸込過熱度は、前記配管の内、前記冷却器の出口側と前記圧縮機構の冷媒吸込部とを接続する配管の、長さに応じて発生する圧力損失に相当する過熱度分前記冷却器出口過熱度よりも高く、
前記制御手段は、前記圧縮機構吸込過熱度が予め定めた下限値よりも低い状態が所定の時間以上継続すると、前記冷却器出口過熱度の目標値前記圧縮機構吸込過熱度が前記下限値を下回った量を加えることを特徴とする冷凍サイクル装置。
A compressor having a compression mechanism for compressing the refrigerant; a condenser for radiating and cooling the refrigerant discharged from the compressor; expansion means for decompressing and expanding the refrigerant discharged from the condenser; and a position separate from the compressor In a refrigeration cycle apparatus that is connected to a cooler that sequentially evaporates the refrigerant that has been discharged from the expansion means by a pipe,
Control means for controlling the expansion means based on a cooler outlet superheat degree which is a superheat degree on the refrigerant outlet side of the cooler and a target value of the cooler outlet superheat degree,
The compression mechanism suction superheat degree, which is the superheat degree of the refrigerant suction part of the compression mechanism, depends on the length of the pipe connecting the outlet side of the cooler and the refrigerant suction part of the compression mechanism in the pipe. The degree of superheat corresponding to the generated pressure loss is higher than the degree of superheat of the cooler outlet,
When the state where the compression mechanism suction superheat degree is lower than a predetermined lower limit value continues for a predetermined time or more, the control means sets the compression mechanism suction superheat degree to the target value of the cooler outlet superheat degree to the lower limit value. refrigerating cycle apparatus characterized by adding an amount below.
前記制御手段は、前記冷却器出口過熱度の目標値の変化率が事前に設定された一定の範囲内になるように補正を行なうことを特徴とする請求項1〜のいずれかに記載の冷凍サイクル装置。 The said control means correct | amends so that the change rate of the target value of the said cooler exit superheat degree may become in the predetermined fixed range, The correction | amendment in any one of Claims 1-8 characterized by the above-mentioned. Refrigeration cycle equipment. 前記制御手段は、前記冷却器出口過熱度の目標値が事前に設定された一定の範囲内になるように補正を行なうことを特徴とする請求項1〜のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8 , wherein the control means performs correction so that a target value of the superheater outlet superheat degree is within a predetermined range set in advance. . 前記制御手段は、前記圧縮機を起動してから所定時間が経過した後に前記圧縮機吸込過熱度による前記冷却器出口過熱度の目標値の補正を行ことを特徴とする請求項1または請求項4に記載の冷凍サイクル装置。 The control means according to claim 1 or claim, characterized in that intends rows correction of the target value of the cooler outlet superheat degree of the compressor suction superheat after the elapse of the predetermined period from the start of the compressor Item 5. The refrigeration cycle apparatus according to Item 4 . 前記制御手段は、前記圧縮機を起動してから所定時間が経過した後に前記圧縮機吸込過熱度による前記冷却器出口過熱度の目標値の補正を行ことを特徴とする請求項7または請求項8に記載の冷凍サイクル装置。 The control means according to claim 7, characterized in that intends rows correction of the target value of the cooler outlet superheat degree of the compressor structure suction superheat after the elapse of the predetermined period from the start of the compressor or The refrigeration cycle apparatus according to claim 8 . 前記制御手段は、前記圧縮機吸込過熱度によって冷却器出口過熱度の目標値の補正を行なう代わりに、圧縮機吐出温度又は圧縮機吐出過熱度によって冷却器出口過熱度の目標値の補正を行なうことを特徴とする請求項1または請求項4に記載の冷凍サイクル装置。 The control means corrects the target value of the cooler outlet superheat degree by the compressor discharge temperature or the compressor discharge superheat degree instead of correcting the target value of the cooler outlet superheat degree by the compressor suction superheat degree. The refrigeration cycle apparatus according to claim 1 or 4 , wherein 前記冷却器は複数個並列に設けられ、
前記膨張手段は前記冷却器のそれぞれに設けられ、
前記制御手段は前記冷却器と前記膨張手段の組のそれぞれに設けられ、
各制御手段は、対応する冷却器の冷却器出口過熱度に基づいて、対応する膨張手段の制御を行なうことを特徴とする請求項1〜13のいずれかに記載の冷凍サイクル装置。
A plurality of the coolers are provided in parallel,
The expansion means is provided in each of the coolers;
The control means is provided in each set of the cooler and the expansion means,
The refrigeration cycle apparatus according to any one of claims 1 to 13 , wherein each control unit controls the corresponding expansion unit based on a degree of superheater outlet of the corresponding cooler.
前記圧縮機の回転数を制御するインバータを備え、
前記制御手段は、前記インバータを用いて圧縮機回転数制御を行ない
前記圧縮機構吸込過熱度が前記上限値を上回った量を減らした後の冷却器出口過熱度の目標値になるように、前記膨張手段の開度を制御することを特徴とする請求項7記載の冷凍サイクル装置。
Comprising an inverter for controlling the rotational speed of the compressor;
The control means performs compressor rotation speed control using the inverter ,
Wherein such compression mechanism suction superheat degree becomes the target value of the cooling outlet overheat degree after reducing the amount exceeds the upper limit, claims, characterized and Turkey to control the opening degree of the expansion means 8. The refrigeration cycle apparatus according to 7 .
前記圧縮機の回転数を制御するインバータを備え、
前記制御手段は、前記インバータを用いて圧縮機回転数制御を行ない
前記圧縮機構吸込過熱度が前記下限値を下回った量を加えた後の冷却器出口過熱度の目標値になるように、前記膨張手段の開度を制御することを特徴とする請求項8記載の冷凍サイクル装置。
Comprising an inverter for controlling the rotational speed of the compressor;
The control means performs compressor rotation speed control using the inverter ,
Wherein such compression mechanism suction superheat degree becomes the target value of the cooling outlet overheat degree after the addition of an amount below the above lower limit value, claims, characterized and Turkey to control the opening degree of the expansion means 9. The refrigeration cycle apparatus according to 8 .
前記制御手段は、前記圧縮機吐出温度又は圧縮機吐出過熱度が事前に設定された一定値以上では圧縮機吸込冷媒流量が減少するような膨張手段の制御を禁止することを特徴とする請求項13記載の冷凍サイクル装置。 The said control means prohibits control of the expansion means that a compressor suction refrigerant | coolant flow volume reduces when the said compressor discharge temperature or compressor discharge superheat degree is more than the preset fixed value. 13. The refrigeration cycle apparatus according to 13 . 前記制御手段は、前記圧縮機吐出温度又は圧縮機吐出過熱度が事前に設定された一定値以下では圧縮機吸込冷媒流量が増加するような膨張手段の制御を禁止することを特徴とする請求項13記載の冷凍サイクル装置。 The control means forbids the control of the expansion means such that the compressor suction refrigerant flow rate increases when the compressor discharge temperature or the compressor discharge superheat is equal to or less than a predetermined value set in advance. 13. The refrigeration cycle apparatus according to 13 . 前記冷却器の内部圧力を検出する冷却器内部圧力検出手段と、
前記冷却器を流れる被冷却流体の冷却器出口側の温度を検出する冷却器被冷却流体温度検出手段備え、
前記制御手段は、前記冷却器内部圧力検出手段によって検出された冷却器内部圧力相当の飽和冷媒温度と前記冷却器被冷却流体温度検出手段の検出結果との差が事前に設定された一定値以下となった場合には、冷却器出口の冷媒流量が増加するような膨張手段の制御を禁止することを特徴とする請求項1〜18のいずれかに記載の冷凍サイクル装置。
A cooler internal pressure detecting means for detecting the internal pressure of the cooler;
A cooler to-be-cooled fluid temperature detecting means for detecting a temperature on the cooler outlet side of the to-be-cooled fluid flowing through the cooler;
In the control means, the difference between the saturated refrigerant temperature corresponding to the cooler internal pressure detected by the cooler internal pressure detection means and the detection result of the cooler cooled fluid temperature detection means is equal to or less than a predetermined value set in advance. The refrigeration cycle apparatus according to any one of claims 1 to 18 , wherein when it becomes, control of the expansion means that increases the refrigerant flow rate at the cooler outlet is prohibited.
JP2006235763A 2006-08-31 2006-08-31 Refrigeration cycle equipment Expired - Fee Related JP4767133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235763A JP4767133B2 (en) 2006-08-31 2006-08-31 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235763A JP4767133B2 (en) 2006-08-31 2006-08-31 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008057874A JP2008057874A (en) 2008-03-13
JP4767133B2 true JP4767133B2 (en) 2011-09-07

Family

ID=39240832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235763A Expired - Fee Related JP4767133B2 (en) 2006-08-31 2006-08-31 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4767133B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430602B2 (en) * 2011-04-04 2014-03-05 三菱電機株式会社 Air conditioner
JP6132028B2 (en) * 2013-10-18 2017-05-24 富士電機株式会社 Heat pump equipment
JP2017101897A (en) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 Refrigeration cycle device
JP6537629B2 (en) * 2015-12-03 2019-07-03 三菱電機株式会社 Air conditioner
JP6704512B2 (en) * 2017-03-29 2020-06-03 三菱電機株式会社 Air conditioner, railway vehicle air conditioner, and air conditioner control method
CN107676933B (en) * 2017-09-18 2019-09-20 广东美的暖通设备有限公司 Control method, system and the computer readable storage medium of multi-connected air conditioner
DE112021001162T5 (en) * 2020-02-20 2022-12-01 Denso Corporation refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253104B2 (en) * 1991-06-03 2002-02-04 東芝キヤリア株式会社 Refrigeration cycle device
JP4379185B2 (en) * 2004-04-12 2009-12-09 富士電機ホールディングス株式会社 vending machine
JP4714448B2 (en) * 2004-10-01 2011-06-29 株式会社鷺宮製作所 Control device for cooling system
JP3943104B2 (en) * 2004-10-12 2007-07-11 三菱電機株式会社 Multi-room air conditioner

Also Published As

Publication number Publication date
JP2008057874A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4767133B2 (en) Refrigeration cycle equipment
JP5633737B2 (en) Air conditioner
JP5669642B2 (en) Refrigeration equipment
KR20100049681A (en) Compressor protection system and method
JP6264688B2 (en) Refrigeration equipment
KR101220741B1 (en) Freezing device
JP4167190B2 (en) Refrigeration system and operation method thereof
JP2007093117A (en) Refrigerating device
JP6258422B2 (en) Compressor and control method thereof
JP2013164250A (en) Refrigerating apparatus
JP5991884B2 (en) Refrigeration air conditioner
JP2013064573A (en) Refrigerating apparatus for container
JP6076583B2 (en) heat pump
JP6373034B2 (en) refrigerator
JP7066420B2 (en) Refrigerator protection device and protection method
JP2007155277A (en) Refrigerating cycle
JP5927553B2 (en) Refrigeration equipment
JP6467682B2 (en) Refrigeration equipment
JP6704505B2 (en) Heat pump water heater
CN108027176A (en) Multiple compression refrigerating circulatory device
JP6091077B2 (en) Refrigeration equipment
JP6643711B2 (en) Refrigeration cycle apparatus and cooling method
JP2006038386A (en) Cooling device
KR102532023B1 (en) Supercritical refrigeration system and control method of same
JP4318369B2 (en) Screw type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4767133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees