JP2007155277A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2007155277A
JP2007155277A JP2005354303A JP2005354303A JP2007155277A JP 2007155277 A JP2007155277 A JP 2007155277A JP 2005354303 A JP2005354303 A JP 2005354303A JP 2005354303 A JP2005354303 A JP 2005354303A JP 2007155277 A JP2007155277 A JP 2007155277A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
expander
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354303A
Other languages
Japanese (ja)
Inventor
Nobuhiko Suzuki
伸彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2005354303A priority Critical patent/JP2007155277A/en
Publication of JP2007155277A publication Critical patent/JP2007155277A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle capable of obtaining good cooling efficiency even in a condition of a comparatively low thermal load and maintaining an optimal cooling efficiency even when the load fluctuates, in the case a refrigerating cycle using an internal heat exchanger and an expansion machine is used for securing refrigerant capacity at a time of high load. <P>SOLUTION: The refrigerating cycle is equipped with a compressor 2 for giving pressure rise to the refrigerant, a radiator 3 for radiating heat of the pressure-raised refrigerant by the compressor 2, the expansion machine 4 arranged further on the downstream side than the condenser 3 for taking out power by decompressing and expanding the refrigerant, an evaporator 5 for vaporizing the refrigerant decompressed and expanded in the expansion machine 4, and the internal heat exchanger 8 for heat exchanging a high pressure refrigerant introduced from the condenser 3 to the expansion machine 4, and the low pressure refrigerant introduced from the evaporator 5 to the compressor 2. The heat changing amount of the high pressure refrigerant and the low pressure refrigerant by the internal heat exchanger 8 can be adjusted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両等に用いられる冷凍サイクルに関する。   The present invention relates to a refrigeration cycle used for vehicles and the like.

冷媒を昇圧する圧縮機、この昇圧された冷媒を冷却する放熱器、冷却された冷媒を減圧する膨張弁、及びこの減圧された冷媒を蒸発させる蒸発器を含む冷凍サイクルは、周知のサイクル構成であるが、このような構成においては、膨張弁で冷媒が減圧膨張する際のエネルギーを回収することなく無駄に捨てていたので、サイクルとしては効率が悪いという欠点がある。   A refrigeration cycle including a compressor that boosts the refrigerant, a radiator that cools the boosted refrigerant, an expansion valve that decompresses the cooled refrigerant, and an evaporator that evaporates the decompressed refrigerant has a known cycle configuration. However, in such a configuration, since the energy when the refrigerant is decompressed and expanded by the expansion valve is discarded without being recovered, there is a disadvantage that the efficiency of the cycle is poor.

そこで、従来においては、冷媒を昇圧する圧縮機と、この圧縮機で昇圧された冷媒を冷却する放熱器と、この放熱器よりも冷媒下流側に配されて冷却された冷媒を減圧膨張させることで動力を取り出す膨張機と、この膨張機の冷媒下流側に配されて冷媒を蒸発させる蒸発器とを有し、膨張機によって冷媒を減圧膨張させてエネルギーを回収し、この回収したエネルギーを冷媒の圧縮に利用する方法が考えられている(特許文献1,2参照)。
このような構成においては、特に冷媒として二酸化炭素を利用する場合に冷房効率の改善効果が大きい。
Therefore, conventionally, a compressor that boosts the refrigerant, a radiator that cools the refrigerant that has been boosted by the compressor, and a refrigerant that is disposed downstream of the radiator and that is cooled is decompressed and expanded. And an evaporator that is arranged downstream of the refrigerant of the expander and evaporates the refrigerant. The expander decompresses and expands the refrigerant to recover energy, and the recovered energy is used as the refrigerant. The method of using for compression of this is considered (refer patent document 1, 2).
In such a configuration, the effect of improving the cooling efficiency is particularly great when carbon dioxide is used as the refrigerant.

特開平11−63707号公報Japanese Patent Laid-Open No. 11-63707 特開2002−22298号公報JP 2002-22298 A

しかしながら、上述した膨張機を用いた冷凍サイクルにあっては、放熱器から膨張機へ導かれる高圧冷媒と蒸発器から圧縮機へ導かれる低圧冷媒とを熱交換させる内部熱交換器を併用しないと、高負荷時においては、内部熱交換器のみを用いた冷凍サイクルに比べて冷房能力が劣ること、及び、膨張機と内部熱交換器とを単に併用しただけでは、熱負荷が比較的低い条件においては、冷房効率が低下することが研究の結果明らかとなった。   However, in the refrigeration cycle using the expander described above, an internal heat exchanger that exchanges heat between the high-pressure refrigerant guided from the radiator to the expander and the low-pressure refrigerant guided from the evaporator to the compressor must be used in combination. At high load, the cooling capacity is inferior compared to the refrigeration cycle using only the internal heat exchanger, and the condition that the heat load is relatively low by simply using the expander and the internal heat exchanger together As a result of the research, it became clear that the cooling efficiency decreased.

即ち、熱負荷が高い場合の冷房能力(Q)と冷房効率(COP)を見ると、図4に示されるように、内部熱交換器と膨張機とを併用した冷凍サイクル(以下、併用サイクルという)においては、内部熱交換器のみを用いた冷凍サイクル(以下、内部熱交換器サイクルという)または膨張機のみを用いた冷凍サイクル(以下、膨張機サイクルという)に比べて冷房能力(Q)も冷房効率(COP)も共に改善されるが、熱負荷が比較的低い場合には、図5に示されるように、併用サイクルの効率が膨張機サイクルの効率よりも劣ってしまう不都合がある。   That is, looking at the cooling capacity (Q) and cooling efficiency (COP) when the heat load is high, as shown in FIG. 4, a refrigeration cycle using an internal heat exchanger and an expander together (hereinafter referred to as a combined cycle). ) Also has a cooling capacity (Q) as compared to a refrigeration cycle using only an internal heat exchanger (hereinafter referred to as an internal heat exchanger cycle) or a refrigeration cycle using only an expander (hereinafter referred to as an expander cycle). Although both cooling efficiency (COP) is improved, when the heat load is relatively low, the combined cycle efficiency is inferior to the expander cycle efficiency as shown in FIG.

また、熱負荷が高い場合には、いずれのサイクルも高圧側圧力を高くするほど冷房能力が増加するため、安全上の上限値を超えない範囲で必要冷房能力に応じた高圧側設定圧力を設定しても良いが、熱負荷が比較的低い場合には、冷房効率を最大とする最適な高圧側圧力が存在することから(図5参照)、そのような高圧側圧力となるように(図6に示されるような特性線が得られるように)冷凍サイクルを稼動させることが好ましい。   In addition, when the heat load is high, the cooling capacity increases as the high-pressure side pressure increases in any cycle. Therefore, the high-pressure side set pressure corresponding to the required cooling capacity is set within a range that does not exceed the upper limit for safety. However, when the heat load is relatively low, there is an optimum high-pressure side pressure that maximizes the cooling efficiency (see FIG. 5). It is preferable to operate the refrigeration cycle so that a characteristic line as shown in FIG.

本発明は、以上のような事情に鑑みてなされたものであり、高負荷時での冷房能力を確保するために内部熱交換器と膨張機とを併用した冷凍サイクルを採用する場合において、比較的熱負荷が低い条件においても良好な冷房効率が得られ、負荷が変動しても冷房効率を最適に制御することが可能な冷凍サイクルを提供することを主たる課題としている。   The present invention has been made in view of the above circumstances, and in the case of adopting a refrigeration cycle in which an internal heat exchanger and an expander are used together in order to ensure cooling capacity at high loads, a comparison is made. It is a main object to provide a refrigeration cycle that can obtain good cooling efficiency even under low thermal heat load conditions and can optimally control the cooling efficiency even when the load fluctuates.

上記課題を達成するために、この発明にかかる冷凍サイクルは、冷媒を昇圧する圧縮機と、この圧縮機で昇圧された冷媒を冷却する放熱器と、この放熱器よりも冷媒下流側に配され、冷媒を減圧膨張させて動力を取り出す膨張機と、この膨張機で減圧膨張された冷媒を蒸発する蒸発器と、前記放熱器から前記膨張機へ導かれる高圧冷媒と前記蒸発器から前記圧縮機へ導かれる低圧冷媒とを熱交換させる内部熱交換器とを具備し、前記内部熱交換器による前記高圧冷媒と前記低圧冷媒との熱交換量を調節可能にしたことを特徴としている(請求項1)。   In order to achieve the above object, a refrigeration cycle according to the present invention is provided with a compressor that boosts the refrigerant, a radiator that cools the refrigerant that has been pressurized by the compressor, and a refrigerant downstream side of the radiator. An expander that decompresses and expands the refrigerant to extract power; an evaporator that evaporates the refrigerant decompressed and expanded by the expander; a high-pressure refrigerant that is led from the radiator to the expander; and the compressor from the evaporator An internal heat exchanger for exchanging heat with the low-pressure refrigerant led to the heat exchanger, and the amount of heat exchange between the high-pressure refrigerant and the low-pressure refrigerant by the internal heat exchanger can be adjusted. 1).

前述した如く、高負荷以外の条件では、膨張機サイクルの効率が併用サイクルの効率よりも良くなる。このような条件下では、むしろ内部熱交換器による熱交換能力を落とす方が冷房効率がよくなるといえる。このため、内部熱交換器による高圧冷媒と低圧冷媒との熱交換量を調節することで、冷房効率を膨張サイクルの冷房効率に近づくように改善させることが可能となり、高負荷時での良好な冷房能力を確保しつつ、高負荷時以外の条件でも良好な冷房効率を得ることが可能となる。   As described above, under the conditions other than the high load, the efficiency of the expander cycle becomes better than the efficiency of the combined cycle. Under such conditions, it can be said that the cooling efficiency is improved by reducing the heat exchange capacity of the internal heat exchanger. For this reason, by adjusting the amount of heat exchange between the high-pressure refrigerant and the low-pressure refrigerant by the internal heat exchanger, it becomes possible to improve the cooling efficiency so as to approach the cooling efficiency of the expansion cycle, which is favorable at high loads. It is possible to obtain a good cooling efficiency even under conditions other than a high load while ensuring the cooling capacity.

また、上述の構成においては、膨張機を流れる冷媒量を調節可能にしてもよい(請求項2)。このような構成においては、膨張機で取り出される動力を冷媒の昇圧に利用する場合において、膨張機で取り出される動力を調節することで高圧側圧力を調節することが可能となるので、サイクルの冷房効率を最適値に調節することが可能となる。
ここで、最大冷房効率が得られる高圧側圧力は熱負荷との関係で決定されることから、膨張機で回収できる動力、即ち、膨張機を流れる冷媒流量を熱負荷に応じて調節することで意図した高圧圧力に調節することが好ましい。
In the above configuration, the amount of refrigerant flowing through the expander may be adjustable. In such a configuration, when the power extracted by the expander is used for boosting the refrigerant, the high-pressure side pressure can be adjusted by adjusting the power extracted by the expander. The efficiency can be adjusted to an optimum value.
Here, since the high pressure side pressure at which the maximum cooling efficiency is obtained is determined in relation to the heat load, the power that can be recovered by the expander, that is, the refrigerant flow rate that flows through the expander is adjusted according to the heat load. It is preferable to adjust to the intended high pressure.

尚、膨張機で取り出された動力を利用する方法としては、蒸発器と前記圧縮機との間に冷媒を昇圧する補助圧縮機を設け、この補助圧縮機を膨張機で取り出された動力にて駆動させ、圧縮機に送られる冷媒を補助圧縮機で予圧するようにしても(請求項3)、膨張機で取り出された動力を圧縮機の動力に直接利用するようにしてもよい(請求項4)。   As a method of using the power extracted by the expander, an auxiliary compressor for boosting the refrigerant is provided between the evaporator and the compressor, and this auxiliary compressor is operated by the power extracted by the expander. The refrigerant sent to the compressor may be preloaded by the auxiliary compressor (Claim 3), or the power extracted by the expander may be used directly for the power of the compressor (Claim). 4).

さらに、内部熱交換器による高圧冷媒と低圧冷媒との熱交換量を調節する構成としては、放熱器から膨張機へ至る高圧経路、及び、蒸発器から圧縮機へ至る低圧経路の少なくとも一方に内部熱交換器をバイパスするバイパス通路と、このバイパス通路を流れる冷媒流量を調節するバイパス弁とを設け、バイパス弁によってバイパス通路を流れる冷媒流量を調節することで内部熱交換器による熱交換量を調節するようにしてもよい(請求項5)。また、膨張機を流れる冷媒量を調節する構成としては、膨張機をバイパスするバイパス通路と、このバイパス通路を流れる冷媒流量を調節する減圧弁とを設け、減圧弁によってバイパス通路を流れる冷媒流量を調節することで膨張機を流れる冷媒量を調節によるようにしてもよい(請求項6)。   Furthermore, the configuration for adjusting the amount of heat exchange between the high-pressure refrigerant and the low-pressure refrigerant by the internal heat exchanger is as follows: at least one of the high-pressure path from the radiator to the expander and the low-pressure path from the evaporator to the compressor A bypass passage that bypasses the heat exchanger and a bypass valve that adjusts the flow rate of refrigerant flowing through the bypass passage are provided, and the amount of heat exchange by the internal heat exchanger is adjusted by adjusting the flow rate of refrigerant flowing through the bypass passage by the bypass valve. (Claim 5). As a configuration for adjusting the amount of refrigerant flowing through the expander, a bypass passage that bypasses the expander and a pressure reducing valve that adjusts the flow rate of refrigerant flowing through the bypass passage are provided, and the flow rate of refrigerant flowing through the bypass passage by the pressure reducing valve is adjusted. By adjusting, the amount of refrigerant flowing through the expander may be adjusted (claim 6).

以上の構成は、特に冷媒としては、二酸化炭素などの超臨界流体を用いた場合に効果的である(請求項7)。   The above configuration is particularly effective when a supercritical fluid such as carbon dioxide is used as the refrigerant (claim 7).

以上述べたように、本発明によれば、膨張機と内部熱交換器とを併用する冷凍サイクルにおいて、内部熱交換器による高圧冷媒と低圧冷媒との熱交換量を調節可能としたので、高負荷時での冷房能力を確保できると共に、比較的熱負荷が低い条件でも良好な冷房効率が得られ、負荷変動に拘わらず効率を最適に維持することが可能となる。
また、膨張機を流れる冷媒流量を調節可能にすることで冷凍サイクルの高圧側圧力を調節し、冷房効率を最適値に調節することが可能となる。
As described above, according to the present invention, in the refrigeration cycle in which the expander and the internal heat exchanger are used together, the amount of heat exchange between the high-pressure refrigerant and the low-pressure refrigerant by the internal heat exchanger can be adjusted. It is possible to ensure the cooling capacity at the time of load, and to obtain a good cooling efficiency even under a relatively low heat load condition, so that the efficiency can be optimally maintained regardless of the load fluctuation.
In addition, by adjusting the flow rate of the refrigerant flowing through the expander, the high-pressure side pressure of the refrigeration cycle can be adjusted, and the cooling efficiency can be adjusted to the optimum value.

以下、本発明の最良の実施形態を添付図面を参照しながら説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the invention will be described with reference to the accompanying drawings.

図1において、車両に搭載される本発明に係る冷凍サイクル1の構成例が示され、この冷凍サイクル1は、冷媒として超臨界流体を代表する二酸化炭素が用いられ、冷媒を圧縮する圧縮機2と、この圧縮機2で圧縮された冷媒を冷却する放熱器3と、放熱器3の冷媒下流側に配された膨張機4と、膨張機4で減圧された冷媒を蒸発する蒸発器5と、蒸発器5の冷媒下流側に配された補助圧縮機6と、蒸発器5と補助圧縮機6との間に配されたアキュムレータ7と、放熱器3から膨張機4へ導かれる高圧冷媒と蒸発器5から圧縮機2へ導かれる低圧冷媒とを熱交換させる内部熱交換器8とを配管接続して構成されている。   FIG. 1 shows a configuration example of a refrigeration cycle 1 according to the present invention mounted on a vehicle. The refrigeration cycle 1 uses a carbon dioxide representing a supercritical fluid as a refrigerant, and a compressor 2 that compresses the refrigerant. A radiator 3 that cools the refrigerant compressed by the compressor 2, an expander 4 that is disposed downstream of the refrigerant in the radiator 3, and an evaporator 5 that evaporates the refrigerant decompressed by the expander 4 An auxiliary compressor 6 disposed on the refrigerant downstream side of the evaporator 5, an accumulator 7 disposed between the evaporator 5 and the auxiliary compressor 6, and a high-pressure refrigerant guided from the radiator 3 to the expander 4. An internal heat exchanger 8 that exchanges heat with the low-pressure refrigerant guided from the evaporator 5 to the compressor 2 is connected by piping.

圧縮機2は、エンジン又はモータを駆動源として駆動するようになっており、膨張機4と補助圧縮機6とは、それぞれの内部に図示しない羽根車が収納され、これら羽根車を同一の軸10に固装して同時に回転できるようにしている。   The compressor 2 is driven by using an engine or a motor as a drive source, and the expander 4 and the auxiliary compressor 6 each have an impeller (not shown) stored therein, and these impellers are connected to the same shaft. 10 so that it can rotate at the same time.

さらに、この冷凍サイクル1においては、放熱器3から膨張機4へ至る高圧経路11、及び、蒸発器5から圧縮機2へ至る低圧経路12の少なくとも一方、この例では、補助圧縮機6から圧縮機2へ至る低圧経路12に、内部熱交換器8をバイパスするバイパス通路13とこのバイパス通路13を流れる冷媒流量を調節するバイパス弁14とが設けられ、内部熱交換器8での熱交換量をバイパス弁14の開度を制御することによって調節するようにしている。   Furthermore, in this refrigeration cycle 1, at least one of the high pressure path 11 from the radiator 3 to the expander 4 and the low pressure path 12 from the evaporator 5 to the compressor 2, in this example, compression from the auxiliary compressor 6 is performed. The low-pressure path 12 leading to the machine 2 is provided with a bypass passage 13 that bypasses the internal heat exchanger 8 and a bypass valve 14 that adjusts the flow rate of refrigerant flowing through the bypass passage 13, and the amount of heat exchange in the internal heat exchanger 8. Is adjusted by controlling the opening degree of the bypass valve 14.

また、膨張機4をバイパスするバイパス通路15と、このバイパス通路15を流れる冷媒流量を調節する減圧弁16とが設けられ、減圧弁16の開度を制御することにより膨張機4を流れる冷媒流量、即ち、膨張機4で取り出すことができる動力を調節するようにしている。   A bypass passage 15 that bypasses the expander 4 and a pressure reducing valve 16 that adjusts the flow rate of the refrigerant flowing through the bypass passage 15 are provided, and the refrigerant flow rate that flows through the expander 4 by controlling the opening degree of the pressure reducing valve 16. That is, the power that can be taken out by the expander 4 is adjusted.

上述の構成において、圧縮機2によって圧縮された冷媒は、高温高圧のガス状冷媒として放熱器3に入り、ここで放熱器3を通過する空気と熱交換して冷却される。この冷却された冷媒は、内部熱交換器8において低圧側冷媒とさらに熱交換して冷却され、しかる後に膨張機4に送られてここで一気に断熱膨張して低温低圧の湿り蒸気となり、その際に生じるエネルギーによって膨張機4の羽根車を回転させる。これにより、膨張機は、冷媒が断熱膨張する際のエネルギーを羽根車を回転させる動力として取り出す。この膨張機4を介して蒸発器5へ送られる冷媒は、蒸発器5を通過する空気と熱交換して吸熱し、ガス状冷媒としてアキュムレータ7を介して補助圧縮機6へ送られる。この補助圧縮機6の羽根車は膨張機4の羽根車と同軸上に配され、膨張機4によって得られた動力によって回転していることから、膨張機4で取り出された動力が補助圧縮機6において冷媒を予圧する仕事に変換され、冷媒は幾分昇圧した状態で内部熱交換器8へ送られる。そして、この内部熱交換器8で高圧側冷媒と熱交換してさらに吸熱し、完全なガス状冷媒として圧縮機2へ戻され、再び圧縮される。   In the above-described configuration, the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure gaseous refrigerant, and is cooled by exchanging heat with the air passing through the radiator 3. This cooled refrigerant is further cooled by exchanging heat with the low-pressure side refrigerant in the internal heat exchanger 8 and then sent to the expander 4 where it adiabatically expands into a low-temperature and low-pressure wet steam. The impeller of the expander 4 is rotated by the energy generated in. Thereby, an expander takes out the energy at the time of adiabatic expansion of a refrigerant | coolant as motive power which rotates an impeller. The refrigerant sent to the evaporator 5 via the expander 4 exchanges heat with the air passing through the evaporator 5 to absorb heat, and is sent to the auxiliary compressor 6 via the accumulator 7 as a gaseous refrigerant. Since the impeller of the auxiliary compressor 6 is arranged coaxially with the impeller of the expander 4 and is rotated by the power obtained by the expander 4, the power extracted by the expander 4 is used as the auxiliary compressor. 6 is converted into work for pre-pressurizing the refrigerant, and the refrigerant is sent to the internal heat exchanger 8 in a state where the pressure is somewhat increased. Then, the internal heat exchanger 8 exchanges heat with the high-pressure side refrigerant, further absorbs heat, is returned to the compressor 2 as a complete gaseous refrigerant, and is compressed again.

このような冷凍サイクル1において、膨張機4をバイパスするバイパス通路15を流れる冷媒流量を調節するための減圧弁16、及び内部熱交換器8をバイパスするバイパス通路13を流れる冷媒流量を調節するためのバイパス弁14は、コントロールユニット20からの制御信号に基づいて開度制御される。   In such a refrigeration cycle 1, in order to adjust the flow rate of refrigerant flowing through the bypass passage 13 bypassing the internal heat exchanger 8 and the pressure reducing valve 16 for adjusting the flow rate of refrigerant flowing through the bypass passage 15 bypassing the expander 4. The bypass valve 14 is controlled in opening degree based on a control signal from the control unit 20.

このコントロールユニット20は、中央演算装置(CPU)、読出専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入出力ポート等を備えると共に減圧弁16やバイパス弁14を駆動制御する駆動回路を有して構成され、高圧側圧力を検出する高圧圧力センサ21、低圧側圧力を検出する低圧圧力センサ22、放熱器出口冷媒温度を検出する放熱器出口温度センサ23、外気温度を検出する外気温度センサ24、圧縮機の吐出冷媒温度を検出する吐出温度センサ25等からの信号が入力され、ROMやRAMに与えられた所定のプログラムにしたがってこれら入力信号を処理し、減圧弁16やバイパス弁14の開度などが制御されるようになっている。   The control unit 20 includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), an input / output port, and the like, and a drive circuit that drives and controls the pressure reducing valve 16 and the bypass valve 14. A high pressure sensor 21 for detecting the high pressure side pressure, a low pressure sensor 22 for detecting the low pressure side pressure, a radiator outlet temperature sensor 23 for detecting the radiator outlet refrigerant temperature, and an outside temperature sensor 24 for detecting the outside temperature. A signal from a discharge temperature sensor 25 or the like for detecting the discharge refrigerant temperature of the compressor is input, the input signal is processed according to a predetermined program given to the ROM or RAM, and the decompression valve 16 or the bypass valve 14 is opened. The degree is controlled.

図2において、前記コントロールユニット20による冷凍サイクル1の制御動作例がフローチャートとして示され、以下において、このフローチャートに基づいて説明する。   In FIG. 2, an example of the control operation of the refrigeration cycle 1 by the control unit 20 is shown as a flowchart, which will be described below based on this flowchart.

コントロールユニット20は、所定の初期設定処理などを経た後に、この制御ルーチンを実行するもので、ステップ50において、各種センサによって検出された外気温、高圧側圧力、低圧側圧力、放熱器出口冷媒温度、吐出冷媒温度などの検出信号を入力し、ステップ52において、これら信号に基づき所要冷房能力を演算する。   The control unit 20 executes this control routine after a predetermined initial setting process or the like. In step 50, the outside air temperature, the high pressure side pressure, the low pressure side pressure, the radiator outlet refrigerant temperature detected by various sensors. Then, a detection signal such as the discharge refrigerant temperature is input, and in step 52, the required cooling capacity is calculated based on these signals.

その後、演算された所要冷房能力が最大値であるか否かを判定し、所要冷房能力が最大値であると判定された場合には、目標高圧側圧力Pdを予め設定された最大値(例えば、13MPa)に設定し、所要冷房能力が最大値でないと判定された場合には、熱負荷を代表する因子である、例えば、放熱器出口側温度に対して予め定められた図6に示されるような最大冷房効率が得られる目標高圧側圧力Pdを演算する。   Thereafter, it is determined whether or not the calculated required cooling capacity is the maximum value. If it is determined that the required cooling capacity is the maximum value, the target high pressure side pressure Pd is set to a preset maximum value (for example, , 13 MPa), and when it is determined that the required cooling capacity is not the maximum value, it is a factor representative of the heat load, for example, as shown in FIG. The target high-pressure side pressure Pd at which such maximum cooling efficiency is obtained is calculated.

そして、ステップ56又はステップ58で演算された目標高圧側圧力Pdとなるように減圧弁16の目標開度が演算され(ステップ60)、その目標開度が得られるように減圧弁16の開度が制御される(ステップ62)。   Then, the target opening degree of the pressure reducing valve 16 is calculated so as to be the target high pressure side pressure Pd calculated in step 56 or step 58 (step 60), and the opening degree of the pressure reducing valve 16 is obtained so as to obtain the target opening degree. Is controlled (step 62).

その後、前記入力信号に基づき熱負荷に応じた内部熱交換器の所要熱交換能力が演算され(ステップ64)、その熱交換能力が得られるようなバイパス弁14の目標開度が演算される(ステップ66)。   Thereafter, the required heat exchange capacity of the internal heat exchanger corresponding to the heat load is calculated based on the input signal (step 64), and the target opening degree of the bypass valve 14 is calculated so as to obtain the heat exchange capacity ( Step 66).

この際、圧縮機2の吐出冷媒温度が許容温度(例えば、150℃)の範囲内であれば、前記目標開度となるようにバイパス弁14の開度を制御し(ステップ70)、吐出冷媒温度が許容冷媒温度を超えていると判定された場合には、ステップ66で演算されたバイパス弁の目標開度を吐出冷媒温度が許容冷媒温度の範囲内となるように補正し(ステップ72)、この補正された目標開度となるようにバイパス弁14の開度を制御する(ステップ70)。   At this time, if the discharge refrigerant temperature of the compressor 2 is within the allowable temperature range (for example, 150 ° C.), the opening degree of the bypass valve 14 is controlled so as to become the target opening degree (step 70), and the discharge refrigerant. If it is determined that the temperature exceeds the allowable refrigerant temperature, the target opening of the bypass valve calculated in step 66 is corrected so that the discharged refrigerant temperature is within the allowable refrigerant temperature range (step 72). Then, the opening degree of the bypass valve 14 is controlled so as to be the corrected target opening degree (step 70).

したがって、上述した制御によれば、減圧弁16の開度を調節して膨張機4を流れる冷媒流量を調節することで高圧側圧力を最大冷房効率が得られるように制御でき、また、バイパス弁14の開度を調節して内部熱交換器8による高圧側冷媒と低圧側冷媒との熱交換量を調節することで熱負荷に拘わらず良好な冷房効率を維持することが可能となる。   Therefore, according to the control described above, it is possible to control the high-pressure side pressure so as to obtain the maximum cooling efficiency by adjusting the flow rate of the refrigerant flowing through the expander 4 by adjusting the opening degree of the pressure reducing valve 16, and the bypass valve. By adjusting the opening degree of 14 and adjusting the amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant by the internal heat exchanger 8, it becomes possible to maintain good cooling efficiency regardless of the heat load.

具体的には、熱負荷が高い場合には、高圧側圧力を高くすると共に、図4の特性から明らかなように、内部熱交換器8による高圧側冷媒と低圧側冷媒との熱交換を積極的に行うことが冷房能力や冷房効率を高める上で好ましいので、減圧弁16の開度を最小にして膨張機4で取り出す動力(冷媒の昇圧に寄与する動力)を最大にすると共にバイパス弁14の開度を最小にして内部熱交換器8での高圧側冷媒と低圧側冷媒との熱交換量を最大に設定する。   Specifically, when the heat load is high, the high pressure side pressure is increased and, as is clear from the characteristics of FIG. 4, the internal heat exchanger 8 actively exchanges heat between the high pressure side refrigerant and the low pressure side refrigerant. Since it is preferable to increase the cooling capacity and cooling efficiency, the opening of the pressure reducing valve 16 is minimized to maximize the power extracted by the expander 4 (power contributing to the pressure increase of the refrigerant) and the bypass valve 14. The amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger 8 is set to the maximum.

これに対して、比較的熱負荷が低い条件では、図5の特性から明らかなように、内部熱交換器8による高圧側冷媒と低圧側冷媒との熱交換は行わないほうがよく、しかも同じ冷房能力を得るためでも冷房効率が最大となる高圧側圧力を選択することが省動力の点から好ましいことから、冷房効率が最大となる高圧側圧力が得られるように減圧弁16の開度を制御し、バイパス弁14の開度を最大にして内部熱交換器8での高圧側冷媒と低圧側冷媒との熱交換量を最小にする。   On the other hand, it is better not to perform heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant by the internal heat exchanger 8 under the condition that the heat load is relatively low, as is clear from the characteristics of FIG. From the viewpoint of power saving, it is preferable to select the high pressure side pressure that maximizes the cooling efficiency even in order to obtain the capacity. Therefore, the opening degree of the pressure reducing valve 16 is controlled so as to obtain the high pressure side pressure that maximizes the cooling efficiency. Then, the opening degree of the bypass valve 14 is maximized to minimize the amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger 8.

したがって、内部熱交換器8と膨張機4とを併用した冷凍サイクルにおいて、上述の制御を行うことにより、高負荷時での十分な冷房能力を確保すると共に、比較的熱負荷が低い条件でも良好な冷房効率が得られ、負荷が変動しても効率を最適に維持することが可能となる。   Therefore, in the refrigeration cycle in which the internal heat exchanger 8 and the expander 4 are used in combination, by performing the above-described control, sufficient cooling capacity at a high load can be ensured and good even under relatively low heat load conditions. Cooling efficiency can be obtained, and the efficiency can be optimally maintained even when the load fluctuates.

尚、上述の構成においては、補助圧縮機6の上流側にアキュムレータ7が、また下流側に内部熱交換器8が配置されているが、アキュムレータ7を補助圧縮機6の下流側に配置しても、内部熱交換器8を補助圧縮機6の上流側に配置してもよい。さらに、上述においては、膨張機と補助圧縮機を羽根車タイプとして説明したが、これに限定されるものではない。また、高圧制御は膨張機の上流側に直列に開度調節できる弁を用いるようにしてもよい。   In the above-described configuration, the accumulator 7 is arranged upstream of the auxiliary compressor 6 and the internal heat exchanger 8 is arranged downstream, but the accumulator 7 is arranged downstream of the auxiliary compressor 6. Alternatively, the internal heat exchanger 8 may be arranged on the upstream side of the auxiliary compressor 6. Furthermore, in the above description, the expander and the auxiliary compressor have been described as the impeller type, but the present invention is not limited to this. Further, the high pressure control may use a valve whose opening degree can be adjusted in series on the upstream side of the expander.

また、上述の構成においては、膨張機4で取り出した動力を利用する方法として、蒸発器5と圧縮機2との間に配された補助圧縮機6を駆動させ、冷媒を予圧するために利用したが、図3に示されるように、補助圧縮機を設けず、膨張機4と圧縮機2とを連結させ、膨張機4で取り出された動力を圧縮機2の動力の補助として利用するようにしてもよい。尚、他の構成及び制御動作例は前記構成例と同様であるので、同一箇所に同一符号を付して説明を省略する。   Further, in the above-described configuration, as a method of using the power extracted by the expander 4, the auxiliary compressor 6 disposed between the evaporator 5 and the compressor 2 is driven and used to preload the refrigerant. However, as shown in FIG. 3, the auxiliary compressor is not provided, the expander 4 and the compressor 2 are connected, and the power extracted by the expander 4 is used as auxiliary power for the compressor 2. It may be. Since other configurations and control operation examples are the same as those in the above-described configuration example, the same portions are denoted by the same reference numerals and description thereof is omitted.

図1は、本発明にかかる冷凍サイクルの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention. 図2は、コントロールユニットによる冷凍サイクルの制御動作例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a control operation of the refrigeration cycle by the control unit. 図3は、本発明にかかる冷凍サイクルの他の構成例を示す図である。FIG. 3 is a diagram showing another configuration example of the refrigeration cycle according to the present invention. 図4は、熱負荷が高い場合の高圧側圧力の変化に対する冷房能力(Q)と冷房効率(COP)との関係を示す特性線図である。FIG. 4 is a characteristic diagram showing the relationship between the cooling capacity (Q) and the cooling efficiency (COP) with respect to a change in the high-pressure side pressure when the heat load is high. 図5は、比較的熱負荷が低い場合の高圧側圧力の変化に対する冷房能力(Q)と冷房効率(COP)との関係を示す特性線図である。FIG. 5 is a characteristic diagram showing the relationship between the cooling capacity (Q) and the cooling efficiency (COP) with respect to a change in the high-pressure side pressure when the heat load is relatively low. 図6は、冷房効率を最大とする冷媒温度(放熱器出口冷媒温度)と高圧側圧力との関係を示す特性線図である。FIG. 6 is a characteristic diagram showing the relationship between the refrigerant temperature (heat radiator outlet refrigerant temperature) that maximizes the cooling efficiency and the high-pressure side pressure.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 放熱器
4 膨張機
5 蒸発器
6 補助圧縮機
8 内部熱交換器
11 高圧経路
12 低圧経路
13,15 バイパス通路
14 バイパス弁
16 減圧弁
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Expander 5 Evaporator 6 Auxiliary compressor 8 Internal heat exchanger 11 High pressure path 12 Low pressure path 13, 15 Bypass path 14 Bypass valve 16 Pressure reducing valve

Claims (7)

冷媒を昇圧する圧縮機と、この圧縮機で昇圧された冷媒を冷却する放熱器と、この放熱器よりも冷媒下流側に配され、冷媒を減圧膨張させて動力を取り出す膨張機と、この膨張機で減圧膨張された冷媒を蒸発する蒸発器と、前記放熱器から前記膨張機へ導かれる高圧冷媒と前記蒸発器から前記圧縮機へ導かれる低圧冷媒とを熱交換させる内部熱交換器とを具備する冷凍サイクルにおいて、
前記内部熱交換器による前記高圧冷媒と前記低圧冷媒との熱交換量を調節可能にしたことを特徴とする冷凍サイクル。
A compressor that pressurizes the refrigerant, a radiator that cools the refrigerant that has been pressurized by the compressor, an expander that is disposed downstream of the radiator and that expands the refrigerant under reduced pressure to extract power, and the expansion An evaporator that evaporates the refrigerant decompressed and expanded by the machine, and an internal heat exchanger that exchanges heat between the high-pressure refrigerant led from the radiator to the expander and the low-pressure refrigerant led from the evaporator to the compressor In the refrigeration cycle provided,
A refrigeration cycle characterized in that the amount of heat exchange between the high-pressure refrigerant and the low-pressure refrigerant by the internal heat exchanger can be adjusted.
前記膨張機を流れる冷媒流量を調節可能にしたことを特徴とする請求項1記載の冷凍サイクル。 The refrigeration cycle according to claim 1, wherein the flow rate of the refrigerant flowing through the expander is adjustable. 前記蒸発器と前記圧縮機との間に前記冷媒を昇圧する補助圧縮機を設け、前記補助圧縮機を前記膨張機で取り出された動力にて駆動させることを特徴とする請求項1記載の冷凍サイクル。 2. The refrigeration according to claim 1, wherein an auxiliary compressor for increasing the pressure of the refrigerant is provided between the evaporator and the compressor, and the auxiliary compressor is driven by power extracted by the expander. cycle. 前記膨張機で取り出された動力を前記圧縮機の動力に利用することを特徴とする請求項1記載の冷凍サイクル。 The refrigeration cycle according to claim 1, wherein power extracted by the expander is used as power for the compressor. 前記放熱器から前記膨張機へ至る高圧経路、及び、前記蒸発器から前記圧縮機へ至る低圧経路の少なくとも一方に前記内部熱交換器をバイパスするバイパス通路と、このバイパス通路を流れる冷媒流量を調節するバイパス弁とを設け、前記バイパス弁を制御して前記内部熱交換器による熱交換量を調節することを特徴とする請求項1記載の冷凍サイクル。 A bypass passage that bypasses the internal heat exchanger in at least one of a high-pressure path from the radiator to the expander and a low-pressure path from the evaporator to the compressor, and a flow rate of refrigerant flowing through the bypass passage is adjusted. The refrigeration cycle according to claim 1, further comprising: a bypass valve that controls the amount of heat exchange by the internal heat exchanger by controlling the bypass valve. 前記膨張機をバイパスするバイパス通路と、このバイパス通路を流れる冷媒流量を調節する減圧弁とを設け、前記減圧弁を制御して前記膨張機を流れる冷媒流量を調節することを特徴とする請求項2記載の冷凍サイクル。 The bypass flow path for bypassing the expander and a pressure reducing valve for adjusting the flow rate of refrigerant flowing through the bypass path are provided, and the flow rate of the refrigerant flowing through the expander is adjusted by controlling the pressure decrease valve. 2. The refrigeration cycle according to 2. 冷媒として二酸化炭素が用いられることを特徴とする請求項1記載の冷凍サイクル。 The refrigeration cycle according to claim 1, wherein carbon dioxide is used as the refrigerant.
JP2005354303A 2005-12-08 2005-12-08 Refrigerating cycle Pending JP2007155277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354303A JP2007155277A (en) 2005-12-08 2005-12-08 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354303A JP2007155277A (en) 2005-12-08 2005-12-08 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2007155277A true JP2007155277A (en) 2007-06-21

Family

ID=38239882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354303A Pending JP2007155277A (en) 2005-12-08 2005-12-08 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2007155277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162438A (en) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp Air conditioner and its operating method
WO2010073586A1 (en) * 2008-12-22 2010-07-01 パナソニック株式会社 Refrigeration cycle device
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
JP2011153825A (en) * 2011-05-20 2011-08-11 Mitsubishi Electric Corp Refrigerating air conditioner
EP2312238A4 (en) * 2008-06-05 2017-04-19 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162438A (en) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp Air conditioner and its operating method
EP2312238A4 (en) * 2008-06-05 2017-04-19 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2010073586A1 (en) * 2008-12-22 2010-07-01 パナソニック株式会社 Refrigeration cycle device
CN102257332A (en) * 2008-12-22 2011-11-23 松下电器产业株式会社 Refrigeration cycle device
JPWO2010073586A1 (en) * 2008-12-22 2012-06-07 パナソニック株式会社 Refrigeration cycle equipment
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
JP2011153825A (en) * 2011-05-20 2011-08-11 Mitsubishi Electric Corp Refrigerating air conditioner

Similar Documents

Publication Publication Date Title
JP3863480B2 (en) Refrigeration cycle equipment
JP6852642B2 (en) Heat pump cycle
JP4897284B2 (en) Refrigeration cycle
US7000413B2 (en) Control of refrigeration system to optimize coefficient of performance
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
KR100743783B1 (en) Supercritical Pressure Regulation of Vapor Compression System
JP4539553B2 (en) Heat pump water heater
JP2000234814A (en) Vapor compressed refrigerating device
JP4776438B2 (en) Refrigeration cycle
JP2010188949A (en) Vehicle having waste heat recovery system mounted thereon
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JP2007178072A (en) Air conditioner for vehicle
JP2007155277A (en) Refrigerating cycle
JP4767133B2 (en) Refrigeration cycle equipment
JP2008014602A (en) Refrigeration cycle device
US11274868B2 (en) Expansion unit for installation in a refrigerant circuit
JP2006329540A (en) Control device for refrigerating cycle
JP2004251558A (en) Refrigeration cycle device and its control method
JP5024198B2 (en) vending machine
JP2007303709A (en) Refrigerating cycle
JP2016090143A (en) Two-stage compression type refrigeration cycle, and its control device and control method
JP2009156520A (en) Refrigerating air-conditioning device
JP2006145144A (en) Refrigerating cycle device
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP3863555B2 (en) Refrigeration cycle equipment