JP2004251558A - Refrigeration cycle device and its control method - Google Patents

Refrigeration cycle device and its control method Download PDF

Info

Publication number
JP2004251558A
JP2004251558A JP2003042854A JP2003042854A JP2004251558A JP 2004251558 A JP2004251558 A JP 2004251558A JP 2003042854 A JP2003042854 A JP 2003042854A JP 2003042854 A JP2003042854 A JP 2003042854A JP 2004251558 A JP2004251558 A JP 2004251558A
Authority
JP
Japan
Prior art keywords
compressor
expander
refrigerant
gas
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042854A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
和生 中谷
Masahiro Shin
正廣 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003042854A priority Critical patent/JP2004251558A/en
Publication of JP2004251558A publication Critical patent/JP2004251558A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration cycle device and its control method capable of sufficiently securing the reliability of an expansion device and recovering the energy in expansion, and remarkably improving the coefficient of performance. <P>SOLUTION: This refrigeration cycle device uses a carbon dioxide gas as a refrigerant, and is constituted by successively connecting a compressor for compressing the refrigerant, a radiator for cooling the refrigerant pressurized by the compressor, an expander positioned at a downstream side with respect to the radiator, and taking out the motive energy by depressurizing and expanding the cooled refrigerant, and an ejector mounted at a downstream side of the expander, by means of pipes. A gas-liquid separator is mounted between the ejector and the compressor, a gas-side of the gas-liquid separator and a suction-side of the compressor are connected, a liquid-side of the gas-liquid separator is connected to the evaporator through a restriction device, and an outlet of the evaporator is connected to a suction port of the ejector. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒として二酸化炭素を用い、空調機や給湯機に用いる冷凍サイクル装置に関し、冷媒の膨張により失われるエネルギーを有効かつ安全に回収することにより、高い効率を実現する構成とその制御方法に関するものである。
【0002】
【従来の技術】
従来より、車両用空気調和機では、エジェクタを用いた冷凍サイクルが公知であり、図3に示すように、圧縮機201、凝縮器202、エジェクタ203、気液分離器204、蒸発器205より構成され、気液分離器204で分離されたガス冷媒は圧縮機201に吸引され、液冷媒は蒸発器205へ導かれて蒸発した後、再びエジェクタ203に吸引される。こうすることにより、エジェクタ203における断熱膨張によりエジェクタ203の出口のエンタルピが減少し、蒸発器での冷房能力が増加して、冷凍サイクルの成績係数が向上する。また、蒸発器205を出た冷媒ガスはエジェクタ203によって昇圧されて後、気液分離器204に流入後、ガス冷媒が圧縮機201に吸入されるので、圧縮機201での圧縮仕事量が低減でき、さらに成績係数の向上達成される(例えば特許文献1参照)。
【0003】
また、近年、炭酸ガス冷媒(CO)を用いた冷凍サイクル装置が注目を浴びているが、COの冷凍サイクル効率をさらに向上させるために、放熱機出口に膨張機を設け、冷媒が高圧から低圧に膨張して損失するエネルギーを回収して成績係数を向上させたり、また、断熱膨張に近づけることができるので蒸発器入口のエンタルピが減少して蒸発器での吸熱量が増加し、冷凍能力の向上が実現できるものである。
【0004】
たとえば、図4に示すように、圧縮機301、放熱器302、膨張機303、膨張弁304、蒸発器305が順に配管接続されており、放熱器302出口の冷媒が、減圧膨張することにより膨張機303で、圧力エネルギーを回収し有効利用することにより、所要動力の低減と冷凍効果の増大を同時に達成し、冷凍サイクル装置の高効率化を実現できるものである。
【0005】
また、膨張機303の出口圧力を、膨張弁304によって炭酸ガスの臨界圧力よりも高く設定しているため、膨張機303で膨張した後も超臨界状態を保つことができ、膨張機303の内部で減圧膨張により、気液二層状態となって液冷媒が膨張機303の騒音の原因や故障原因になるようなこともなく、高圧側ラインが超臨界領域となる炭酸ガス冷媒(CO)の性質利用し、圧力エネルギーを安全に回収し有効利用することにより、所要動力の低減と冷凍効果の増大を同時に達成し、冷凍サイクル装置の高効率化を実現できるものである。(例えば特許文献2参照)
【0006】
【特許文献1】
特許第3219108号公報(図3)
【特許文献2】
特開2002−22298号公報(図4)
【0007】
【発明が解決しようとする課題】
しかしながら、炭酸ガス冷媒のように高圧側が超臨界となるような冷凍サイクルにおいて、特許文献1のような構成では、エジェクタ203入口が超臨界冷媒で、膨張途中から二相冷媒となるような流れを駆動流とするため、エジェクタ203の効率を高くすることが難しく、そのため十分に蒸発器205の出口冷媒を昇圧することが困難で、成績係数の向上度合いが低いという課題があった。
【0008】
一方、特許文献2のような構成では、膨脹機の信頼性は向上するものの、膨脹機を出た冷媒は膨脹弁304で等エンタルピ膨脹することになり、エネルギーの回収はできないため成績係数の向上が少ないという課題があった。
【0009】
本発明は上記課題を解決するために、膨脹時のエネルギーの回収を十分に行え、成績係数を大きく向上することができる冷凍サイクル装置とその制御方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明にかかる冷凍サイクル装置は、放熱器出口の高圧冷媒より動力を取り出す膨張機と、膨張機の下流側に設けたエジェクタとを直列に接続して、膨脹機でのエネルギー回収に加え、エジェクタによって膨脹機出口の中圧冷媒よりエネルギー回収することにより、成績係数を大きく向上させる冷凍サイクル装置を提供できる。
【0011】
また、本発明にかかる冷凍サイクル装置は、膨張機の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したので、信頼性の高い膨脹機を提供できる。
【0012】
また、本発明にかかる冷凍サイクル装置は、膨張機と並列に副絞り装置を設け、膨張機の出口に圧力センサを設け、圧力センサの検出信号に応じて前記副絞り装置の開度調整を行い、膨張機出口圧力を炭酸ガスの臨界圧力以上に保つように制御する圧力制御器を設けたので、膨張機内部で減圧膨張により、気液二相状態となることを防止できるので、騒音発生の防止や膨脹機の信頼性向上に大きく貢献できる。
【0013】
また、本発明にかかる冷凍サイクル装置は、第1圧縮機と第2圧縮機を直列に設け、放熱器出口の高圧冷媒より動力を取り出す膨張機と、膨張機の下流側に設けたエジェクタとを直列に接続して、膨脹機でのエネルギー回収に加え、エジェクタによって膨脹機出口の中圧冷媒よりエネルギー回収することにより、成績係数を大きく向上させることができ、また、第2圧縮機の吸入に、第1圧縮機出口の冷媒に加え、膨脹機出口の低温冷媒を流すことができるので、第2圧縮機出口の冷媒温度を低く抑える冷凍サイクル装置を提供できる。
【0014】
また、本発明にかかる冷凍サイクル装置は、膨張機の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したので、第2圧縮機に液冷媒が吸入することがなく信頼性の高い圧縮機および膨脹機を提供できる。
【0015】
また、本発明にかかる冷凍サイクル装置は、膨張機と並列に副絞り装置を設け、膨張機の出口に圧力センサを設け、圧力センサの検出信号に応じて前記副絞り装置の開度調整を行い、膨張機出口圧力を炭酸ガスの臨界圧力以上に保つように制御する圧力制御器を設けたので、膨張機内部で減圧膨張により、気液二相状態となることを防止できるので、騒音発生の防止や膨脹機の信頼性向上に大きく貢献できると共に、第2圧縮機に液冷媒が吸入することがなく信頼性の高い圧縮機を提供できる。
【0016】
また、本発明にかかる冷凍サイクル装置は、第2圧縮機の吐出配管に温度センサーを設け、第2圧縮機出口の冷媒温度をあらかじめ定めた設定温度以下に制御する温度制御器を設けたので、第2圧縮機の吐出温度を常に安全な温度以下にして運転することができ、信頼性が向上する。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
【0018】
(実施の形態1)
図1は本発明の実施の形態1における冷凍サイクル装置の構成図である。
【0019】
図1において、炭酸ガスを冷媒とし、冷媒を圧縮する圧縮機1と、圧縮機1で昇圧された冷媒を冷却する放熱器2と、放熱器2よりも下流側に位置し、放熱器2で冷却された冷媒を減圧膨張することにより動力を取り出す膨張機3と、膨張機3の下流側に設けたエジェクタ4とを順に配管接続している。
【0020】
また、エジェクタ4と1圧縮機の間に気液分離器5を設け、気液分離器5のガス側(図中では気液分離器5上部)と圧縮機1の吸入側とを接続し、気液分離器5の液側(図中では気液分離器5下部)を絞り装置6を介して蒸発器7と接続し、蒸発器7の出口をエジェクタ4の吸引口に接続している。
【0021】
さらに、膨張機3と並列に副絞り装置8を設けて膨張機3をバイパスできるように配管接続している。
【0022】
また、膨張機3の出口に圧力センサ9を設け、外部に設けた圧力制御器10により圧力センサ9の検出信号に応じて副絞り装置8の開度調整を行い、膨張機3出口圧力を制御できるようにしている。
【0023】
圧力制御器10を用いて、副絞り装置8を開く方向に開度調整すれば、副絞り装置8を通過する冷媒量が増加するため膨張機3の出口圧力が上昇し、逆に副絞り装置8を閉じる方向に開度調整すれば副絞り装置8を通過する冷媒量が減少するため膨張機3の出口圧力が低下する性質を利用して、膨張機3の出口圧力を炭酸ガスの臨界圧力以上に保つように制御する。
【0024】
なお、エジェクタ4は膨張機3の出口冷媒あるいは副絞り装置8の出口冷媒がエジェクタ4の駆動流となり、蒸発器7の出口冷媒を吸引して昇圧する作用をなす。
【0025】
以上のように構成された、冷凍サイクル装置について、以下その動作を説明する。
【0026】
圧縮機1によって圧縮された冷媒(炭酸ガス)は、高温高圧の超臨界状態の冷媒となって放熱器2に入り、ここで放熱して冷却する。放熱器2を出た冷媒は分岐して、一方は膨張機3に導かれ、ここで高圧から中間圧程度まで膨張することにより、機械エネルギーを発生すると共に、自らも断熱膨張して温度低下し、エンタルピを減少させる。
【0027】
放熱器2を出て分岐した冷媒のもう一方は副絞り装置8に流入して膨張機3の出口冷媒と合流する。
【0028】
ここで、膨張機3の出口圧力は圧力センサ9により検知し、この圧力と炭酸ガスの臨界圧力とを圧力制御器10で比較して、圧力が臨界圧力より高ければ副絞り装置8の開度を閉止する方向に動作させて副絞り装置8を通過する冷媒量を減少させる。こうすることにより、膨張機3を通過する冷媒量が増加するため、膨張機3での抵抗が増加して膨張機3の出口圧力は低下すると共に、取り出せる動力を増加させる。
【0029】
一方、膨張機3の出口圧力が臨界圧力より低ければ副絞り装置8の開度を開放する方向に動作させて副絞り装置8を通過する冷媒量を増加させる。こうすることにより、膨張機3を通過する冷媒量が減少するため、膨張機3での抵抗が減少して膨張機3の出口圧力は増加する。
【0030】
こうすることにより、膨張機3での出口圧力を炭酸ガスの臨界圧力以上に保ちながら動力を最大限に取り出すことができる。さらにまた、膨張機3内部で減圧膨張により、気液二相状態となることを防止できるので、騒音発生の防止や膨脹機3の信頼性が向上するものである。
【0031】
一方、膨張機3を出た冷媒は、エジェクタ4に流入し、気液二相の駆動流となって減圧しながら、蒸発器7出口の冷媒を吸引、昇圧して気液分離器5に流入する。
【0032】
気液分離器5では気液二相冷媒をガスと液体に分離し、気液分離器5の主に上部に位置するガス冷媒は圧縮機1に流入し、気液分離器5の主に下部に位置する液冷媒は、絞り装置6において蒸発圧力までやや減圧されて低温低圧の湿り蒸気となり、蒸発器5において、ここを通過する空気と熱交換してガス状となり、エジェクタ4へ吸引され、昇圧される。
【0033】
すなわち、エジェクタ4の作用により、蒸発器7での蒸発圧力よりも高い圧力になって気液分離器5に入るため、圧縮機1の吸入圧力が上昇し、圧縮に必要な動力を減少させることができ、冷凍サイクル装置の成績係数を向上させることができる。
【0034】
なお、エジェクタ4では駆動流の運動エネルギーを圧力エネルギーに変換するため、エジェクタ4の出口冷媒のエンタルピーは減少し、蒸発器7での冷凍能力の向上にも貢献できるものである。
【0035】
また、エジェクタ4は機械部がないため、内部に二相冷媒が流れても信頼性には影響することはない。
【0036】
すなわち、本冷凍サイクル装置においては、膨張機3の騒音発生防止や信頼性向上を維持しながら、最大限に動力を取り出す作用と、気液二相冷媒となっても信頼性には影響しないエジェクタ4の圧縮機吸入圧力の向上作用の両方により、成績係数の向上と冷凍能力の向上が実現できるものである。
【0037】
なお、膨張機3で回収した機械エネルギーは、たとえば圧縮機1を回転するための補助動力として利用される。
【0038】
(実施の形態2)
図2は本発明の実施の形態2における冷凍サイクル装置の構成図である。
【0039】
図2において、炭酸ガスを冷媒とし、冷媒を圧縮する第1圧縮機21と、第1圧縮機21で中間圧力まで昇圧された冷媒をさらに昇圧する第2圧縮機22と、ここで昇圧された冷媒を冷却する放熱器23と、放熱器23よりも下流側に位置し、放熱器23で冷却された冷媒を減圧膨張することにより動力を取り出す膨張機24と、膨張機24の下流側に設けたエジェクタ25とを順に配管接続している。
【0040】
また、エジェクタ25と第1圧縮機21の間に気液分離器26を設け、気液分離器26のガス側(図中では気液分離器26上部)と第1圧縮機21の吸入側とを接続し、気液分離器26の液側(図中では気液分離器26下部)を絞り装置27を介して蒸発器28と接続し、蒸発器28の出口をエジェクタ25の吸引口に接続している。
【0041】
さらに、膨張機24と並列に副絞り装置29を設けて膨張機24をバイパスできるように配管接続している。
【0042】
また、膨張機24の出口は副絞り装置30を介して、第1圧縮機21の出口配管に接続している。
【0043】
また、膨張機24の出口に圧力センサ31を設け、外部に設けた圧力制御器32により圧力センサ31の検出信号に応じて副絞り装置29の開度調整を行い、膨張機24出口圧力を制御できるようにしている。
【0044】
圧力制御器32を用いて、副絞り装置29を開く方向に開度調整すれば、副絞り装置29を通過する冷媒量が増加するため膨張機24の出口圧力が上昇し、逆に副絞り装置29を閉じる方向に開度調整すれば副絞り装置29を通過する冷媒量が減少するため膨張機24の出口圧力が低下する性質を利用して、膨張機24の出口圧力を炭酸ガスの臨界圧力以上に保つように制御する。
【0045】
なお、エジェクタ25は膨張機24の出口冷媒と副絞り装置29の出口冷媒との合流冷媒がエジェクタ25の駆動流となり、蒸発器28の出口冷媒を吸引して昇圧する作用をなす。
【0046】
また、第2圧縮機22の吐出配管に温度センサー33を設けてあり、外部に設けた温度制御器34により温度センサー33の検出信号に応じて副絞り装置30の開度調整を行い、第2圧縮機22の出口温度を制御できるようにしている。
【0047】
温度制御器34を用いて、副絞り装置30を開く方向に開度調整すれば、膨張機24出口のエンタルピの低い冷媒が副絞り装置30を通過して第1圧縮機21の吐出冷媒と合流して、その温度を低下させる性質を利用して、第2圧縮機22の出口温度をあらかじめ定めた設定温度以下に保つように制御する。
【0048】
以上のように構成された、冷凍サイクル装置について、以下その動作を説明する。
【0049】
第1圧縮機21によって圧縮された冷媒(炭酸ガス)は、副絞り装置30を通過して流入した冷媒と合流して、引き続き第2圧縮機22で圧縮され、高温高圧の超臨界状態の冷媒となって放熱器23に入り、ここで放熱して冷却する。放熱器23を出た冷媒は分岐して、一方は膨張機24に導かれ、ここで高圧から中間圧程度まで膨張することにより、機械エネルギーを発生すると共に、自らも断熱膨張して温度低下し、エンタルピを減少させる。
【0050】
放熱器23を出て分岐した冷媒のもう一方は副絞り装置29に流入して膨張機24の出口冷媒と合流する。
【0051】
ここで、膨張機24の出口圧力は圧力センサ31により検知し、この圧力と炭酸ガスの臨界圧力とを圧力制御器32で比較して、圧力が臨界圧力より高ければ副絞り装置29の開度を閉止する方向に動作させて副絞り装置29を通過する冷媒量を減少させる。こうすることにより、膨張機24を通過する冷媒量が増加するため、膨張機24での抵抗が増加して膨張機24の出口圧力は低下すると共に、取り出せる動力を増加させる。
【0052】
一方、膨張機24の出口圧力が臨界圧力より低ければ副絞り装置29の開度を開放する方向に動作させて副絞り装置29を通過する冷媒量を増加させる。こうすることにより、膨張機24を通過する冷媒量が減少するため、膨張機24での抵抗が減少して膨張機24の出口圧力は増加する。
【0053】
こうすることにより、膨張機24での出口圧力を炭酸ガスの臨界圧力以上に保ちながら動力を最大限に取り出すことができる。さらにまた、膨張機24内部で減圧膨張により、気液二相状態となることを防止できるので、騒音発生の防止や膨脹機24の信頼性が向上するものである。
【0054】
一方、膨張機24を出た冷媒は、エジェクタ25に流入し、気液二相の駆動流となって減圧しながら、蒸発器28出口の冷媒を吸引、昇圧して気液分離器26に流入する。
【0055】
気液分離器26では気液二相冷媒をガスと液体に分離し、気液分離器26の主に上部に位置するガス冷媒は第1圧縮機21に流入し、気液分離器26の主に下部に位置する液冷媒は、絞り装置27において蒸発圧力までやや減圧されて低温低圧の湿り蒸気となり、蒸発器28において、ここを通過する空気と熱交換してガス状態となり、エジェクタ25へ吸引され、昇圧される。
【0056】
すなわち、エジェクタ25の作用により、蒸発器28での蒸発圧力よりも高い圧力になって気液分離器26に入るため、第1圧縮機21の吸入圧力が上昇し、圧縮に必要な動力を減少させることができ、冷凍サイクル装置の成績係数を向上させることができる。
【0057】
なお、エジェクタ25では駆動流の運動エネルギーを圧力エネルギーに変換するため、エジェクタ25の出口冷媒のエンタルピーは減少し、蒸発器28での冷凍能力の向上にも貢献できるものである。
【0058】
また、エジェクタ25は機械部がないため、内部に二相冷媒が流れても信頼性には影響することはない。
【0059】
一方、第1圧縮機21の吸入圧力と第2圧縮機22の吐出圧力に大きな差が生じる様な運転の場合には、第2圧縮機22の吐出温度が異常に上昇する。
【0060】
本実施例では、温度センサー33によって第2圧縮機22の吐出温度を検知し、外部に設けた温度制御器34により温度センサー33の温度があらかじめ設定した温度よりも高いときには副絞り装置30を開方向に制御することにより、膨張機24出口のエンタルピの低い冷媒が副絞り装置30を通過して第1圧縮機21の吐出冷媒と合流して、第2圧縮機22の吸入ガス温度を低下させることにより第2圧縮機22出口温度を低下させることができ、このような運転条件でも第2圧縮機22の温度が異常に上昇することがなく、安全に運転することができる。
【0061】
また、膨張機24の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したので二相冷媒とはならず、第2圧縮機22に液冷媒が吸入することがないので、第2圧縮機22の信頼性が向上する。
【0062】
また、放熱器23を通過する冷媒循環量が増加するため特に放熱器23での能力を増大することができ、給湯負荷の増大時などにおいても効果を発揮するものである。
【0063】
すなわち、本冷凍サイクル装置においては、膨張機3の騒音発生防止や膨張機3や第2圧縮機33の信頼性を維持しながら、最大限に動力を取り出す作用と、気液二相冷媒となっても信頼性には影響しないエジェクタ4の圧縮機吸入圧力の向上作用の両方により、高い信頼性を持って、成績係数の向上と冷凍能力の向上が実現できるものである。
【0064】
なお、膨張機3で回収した機械エネルギーは、たとえば圧縮機1を回転するための補助動力として利用される。
【0065】
なお、本実施例では圧縮機を第1圧縮機21と第2圧縮機22に分割して、その途中に副絞り装置30を通過した冷媒を合流させたが、圧縮機を1台として、圧縮途中のシリンダ内に副絞り装置30を通過した冷媒を噴射させるように構成しても同様な効果を有し、これらも本発明に含まれるものである。
【0066】
【発明の効果】
以上の説明から明らかなように、請求項1記載の発明は、放熱器出口の高圧冷媒より動力を取り出す膨張機と、膨張機の下流側に設けたエジェクタとを直列に接続して、膨脹機でのエネルギー回収に加え、エジェクタによって膨脹機出口の中圧冷媒よりエネルギー回収することにより、成績係数の向上と冷凍能力の向上が実現できる冷凍サイクル装置を提供できる。
【0067】
また、本発明にかかる冷凍サイクル装置は、膨張機の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したので、膨張機の内部で二相冷媒となることなく、膨張機の騒音発生防止や信頼性向上を維持しながら最大限に動力を取り出し、また、気液二相冷媒となっても信頼性には影響しないエジェクタによる圧縮機吸入圧力の向上作用により、成績係数の向上と冷凍能力の向上が実現できる冷凍サイクル装置を提供できる。
【0068】
また、本発明にかかる冷凍サイクル装置は、膨張機と並列に副絞り装置を設け、膨張機の出口に圧力センサを設け、圧力センサの検出信号に応じて前記副絞り装置の開度調整を行い、膨張機出口圧力を炭酸ガスの臨界圧力以上に保つように制御する圧力制御器を設けたので、膨張機内部で減圧膨張により、気液二相状態となることを簡単に防止できるので、騒音発生の防止や膨脹機の信頼性向上に大きく貢献できる。
【0069】
また、本発明にかかる冷凍サイクル装置は、第1圧縮機と第2圧縮機を直列に設け、放熱器出口の高圧冷媒より動力を取り出す膨張機と、膨張機の下流側に設けたエジェクタとを直列に接続して、膨脹機でのエネルギー回収に加え、エジェクタによって膨脹機出口の中圧冷媒よりエネルギー回収することにより、成績係数を大きく向上させることができ、また、第2圧縮機の吸入に、第1圧縮機出口の冷媒に加え、膨脹機出口の低温冷媒を流すことができるので、第2圧縮機出口の冷媒温度を低く抑える冷凍サイクル装置を提供できる。
【0070】
また、本発明にかかる冷凍サイクル装置は、膨張機の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したので、第2圧縮機に液冷媒が吸入することがなく信頼性の高い圧縮機および膨脹機を提供できる。
【0071】
また、本発明にかかる冷凍サイクル装置は、膨張機と並列に副絞り装置を設け、膨張機の出口に圧力センサを設け、圧力センサの検出信号に応じて前記副絞り装置の開度調整を行い、膨張機出口圧力を炭酸ガスの臨界圧力以上に保つように制御する圧力制御器を設けたので、膨張機内部で減圧膨張により、気液二相状態となることを防止できるので、騒音発生の防止や膨脹機の信頼性向上に大きく貢献できると共に、第2圧縮機に液冷媒が吸入することがなく信頼性の高い圧縮機を提供できる。
【0072】
また、本発明にかかる冷凍サイクル装置は、第2圧縮機の吐出配管に温度センサーを設け、第2圧縮機出口の冷媒温度をあらかじめ定めた設定温度以下に制御する温度制御器を設けたので、第2圧縮機の吐出温度を常に安全な温度以下にして運転することができ、信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示す冷凍サイクル装置の構成図
【図2】本発明の実施の形態2を示す冷凍サイクル装置の構成図
【図3】従来の冷凍サイクル装置の構成図
【図4】従来の冷凍サイクル装置の構成図
【符号の説明】
1 圧縮機
2,23 放熱器
3,24 膨張機
4,25 エジェクタ
5,26 気液分離器
6,27 絞り装置
7,28 蒸発器
8,29,30 副絞り装置
9,31 圧力センサー
10,32 圧力制御器
21 第1圧縮機
22 第2圧縮機
33 温度センサー
34 温度制御器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus that uses carbon dioxide as a refrigerant and is used for an air conditioner or a water heater. A configuration that achieves high efficiency by effectively and safely recovering energy lost due to expansion of the refrigerant, and a control method thereof. It is about.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a refrigeration cycle using an ejector has been known in an air conditioner for a vehicle, and includes a compressor 201, a condenser 202, an ejector 203, a gas-liquid separator 204, and an evaporator 205 as shown in FIG. Then, the gas refrigerant separated by the gas-liquid separator 204 is sucked by the compressor 201, and the liquid refrigerant is guided to the evaporator 205 to evaporate, and then sucked again by the ejector 203. In this way, the adiabatic expansion of the ejector 203 reduces the enthalpy at the outlet of the ejector 203, increases the cooling capacity of the evaporator, and improves the coefficient of performance of the refrigeration cycle. After the refrigerant gas exiting the evaporator 205 is pressurized by the ejector 203 and then flows into the gas-liquid separator 204, the gas refrigerant is sucked into the compressor 201, so that the compression work in the compressor 201 is reduced. It is possible to further improve the coefficient of performance (see, for example, Patent Document 1).
[0003]
In recent years, a refrigeration cycle apparatus using a carbon dioxide gas refrigerant (CO 2 ) has attracted attention. In order to further improve the refrigeration cycle efficiency of CO 2 , an expander is provided at a radiator outlet, and the refrigerant has a high pressure. The energy lost due to expansion to low pressure can be recovered to improve the coefficient of performance, or it can be approximated to adiabatic expansion, so the enthalpy at the evaporator inlet decreases, the amount of heat absorbed by the evaporator increases, and freezing occurs. The ability can be improved.
[0004]
For example, as shown in FIG. 4, a compressor 301, a radiator 302, an expander 303, an expansion valve 304, and an evaporator 305 are sequentially connected in a pipe, and the refrigerant at the outlet of the radiator 302 expands by decompression and expansion. By recovering and effectively utilizing the pressure energy in the machine 303, the required power can be reduced and the refrigeration effect can be increased at the same time, and the efficiency of the refrigeration cycle apparatus can be improved.
[0005]
Further, since the outlet pressure of the expander 303 is set higher than the critical pressure of carbon dioxide gas by the expansion valve 304, the supercritical state can be maintained even after the expansion by the expander 303, and the inside of the expander 303 can be maintained. The pressure-reduced expansion causes a gas-liquid two-layer state, and the liquid refrigerant does not cause noise or a failure of the expander 303, and the high-pressure side line becomes a supercritical region in a carbon dioxide gas refrigerant (CO 2 ). By utilizing the nature of the above and safely recovering and effectively utilizing the pressure energy, it is possible to simultaneously reduce the required power and increase the refrigeration effect, and to realize a high efficiency of the refrigeration cycle device. (For example, see Patent Document 2)
[0006]
[Patent Document 1]
Japanese Patent No. 3219108 (FIG. 3)
[Patent Document 2]
JP 2002-22298 A (FIG. 4)
[0007]
[Problems to be solved by the invention]
However, in a refrigeration cycle in which the high-pressure side is supercritical, such as a carbon dioxide gas refrigerant, in the configuration as in Patent Document 1, the flow is such that the inlet of the ejector 203 is a supercritical refrigerant and becomes a two-phase refrigerant during expansion. Because of the drive flow, it is difficult to increase the efficiency of the ejector 203. Therefore, it is difficult to sufficiently increase the pressure of the refrigerant at the outlet of the evaporator 205, and the degree of improvement in the coefficient of performance is low.
[0008]
On the other hand, in the configuration as in Patent Document 2, although the reliability of the expander is improved, the refrigerant that has exited the expander is isenthalpy-expanded by the expansion valve 304, and energy cannot be recovered. There was a problem that there was little.
[0009]
An object of the present invention is to provide a refrigeration cycle apparatus capable of sufficiently recovering energy during expansion and greatly improving the coefficient of performance, and a control method thereof, in order to solve the above-mentioned problems.
[0010]
[Means for Solving the Problems]
The refrigeration cycle apparatus according to the present invention is configured such that an expander that extracts power from a high-pressure refrigerant at an outlet of a radiator and an ejector provided on the downstream side of the expander are connected in series. By recovering energy from the medium-pressure refrigerant at the outlet of the expander, it is possible to provide a refrigeration cycle apparatus that greatly improves the coefficient of performance.
[0011]
Moreover, since the refrigeration cycle apparatus according to the present invention sets the outlet pressure of the expander higher than the critical pressure of carbon dioxide gas, it is possible to provide a highly reliable expander.
[0012]
Further, the refrigeration cycle device according to the present invention includes a sub-throttle device provided in parallel with the expander, a pressure sensor at the outlet of the expander, and adjusts the opening degree of the sub-throttle device according to a detection signal of the pressure sensor. Since a pressure controller is provided to control the outlet pressure of the expander to be equal to or higher than the critical pressure of carbon dioxide, it is possible to prevent a two-phase gas-liquid state due to decompression and expansion inside the expander. It can greatly contribute to prevention and improvement of the reliability of the expander.
[0013]
Further, the refrigeration cycle apparatus according to the present invention includes an expander that includes a first compressor and a second compressor in series and extracts power from high-pressure refrigerant at a radiator outlet, and an ejector that is provided downstream of the expander. By connecting in series and recovering energy from the medium pressure refrigerant at the outlet of the expander by the ejector in addition to the energy recovery at the expander, the coefficient of performance can be greatly improved. Since a low-temperature refrigerant at the outlet of the expander can flow in addition to the refrigerant at the outlet of the first compressor, it is possible to provide a refrigeration cycle device that keeps the refrigerant temperature at the outlet of the second compressor low.
[0014]
Further, in the refrigeration cycle apparatus according to the present invention, since the outlet pressure of the expander is set higher than the critical pressure of carbon dioxide, a highly reliable compressor without liquid refrigerant being sucked into the second compressor. Can provide inflator.
[0015]
Further, the refrigeration cycle device according to the present invention includes a sub-throttle device provided in parallel with the expander, a pressure sensor at the outlet of the expander, and adjusts the opening degree of the sub-throttle device according to a detection signal of the pressure sensor. Since a pressure controller is provided to control the outlet pressure of the expander to be equal to or higher than the critical pressure of carbon dioxide, it is possible to prevent a two-phase gas-liquid state due to decompression and expansion inside the expander. This can greatly contribute to prevention and improvement of the reliability of the expander, and can provide a highly reliable compressor without liquid refrigerant being sucked into the second compressor.
[0016]
In addition, the refrigeration cycle apparatus according to the present invention includes a temperature sensor in the discharge pipe of the second compressor, and a temperature controller that controls the refrigerant temperature at the outlet of the second compressor to a predetermined temperature or less, The operation can be performed with the discharge temperature of the second compressor always kept at a safe temperature or lower, and the reliability is improved.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(Embodiment 1)
FIG. 1 is a configuration diagram of a refrigeration cycle device according to Embodiment 1 of the present invention.
[0019]
In FIG. 1, a compressor 1 that uses carbon dioxide as a refrigerant and compresses the refrigerant, a radiator 2 that cools the refrigerant pressurized by the compressor 1, and a radiator 2 that is located downstream of the radiator 2 An expander 3 that takes out power by decompressing and expanding the cooled refrigerant, and an ejector 4 provided downstream of the expander 3 are sequentially connected by piping.
[0020]
Further, a gas-liquid separator 5 is provided between the ejector 4 and one compressor, and the gas side of the gas-liquid separator 5 (the upper part of the gas-liquid separator 5 in the figure) and the suction side of the compressor 1 are connected. The liquid side of the gas-liquid separator 5 (the lower part of the gas-liquid separator 5 in the figure) is connected to the evaporator 7 via the throttle device 6, and the outlet of the evaporator 7 is connected to the suction port of the ejector 4.
[0021]
Further, a sub-throttle device 8 is provided in parallel with the expander 3 and connected to the pipe so that the expander 3 can be bypassed.
[0022]
In addition, a pressure sensor 9 is provided at the outlet of the expander 3, and the opening degree of the sub-throttle device 8 is adjusted by a pressure controller 10 provided outside according to a detection signal of the pressure sensor 9, and the outlet pressure of the expander 3 is controlled. I can do it.
[0023]
If the degree of opening is adjusted in the opening direction of the sub-throttling device 8 using the pressure controller 10, the amount of refrigerant passing through the sub-throttling device 8 increases, so that the outlet pressure of the expander 3 increases, and conversely, the sub-throttling device If the opening is adjusted in the direction to close the opening 8, the amount of the refrigerant passing through the sub-throttling device 8 is reduced, so that the outlet pressure of the expander 3 is reduced. It is controlled to keep it above.
[0024]
The ejector 4 has a function that the outlet refrigerant of the expander 3 or the outlet refrigerant of the sub-throttle device 8 becomes a driving flow of the ejector 4 and sucks the outlet refrigerant of the evaporator 7 to increase the pressure.
[0025]
The operation of the refrigeration cycle apparatus configured as described above will be described below.
[0026]
The refrigerant (carbon dioxide gas) compressed by the compressor 1 becomes a high-temperature and high-pressure supercritical refrigerant and enters the radiator 2, where it radiates heat and is cooled. The refrigerant that has exited the radiator 2 is branched, and one of the refrigerants is guided to the expander 3, where the refrigerant expands from a high pressure to an intermediate pressure, thereby generating mechanical energy and adiabatically expanding itself to lower the temperature. , Reduce enthalpy.
[0027]
The other of the refrigerant branched out of the radiator 2 flows into the sub-throttling device 8 and merges with the refrigerant at the outlet of the expander 3.
[0028]
Here, the outlet pressure of the expander 3 is detected by a pressure sensor 9, and this pressure is compared with a critical pressure of carbon dioxide by a pressure controller 10, and if the pressure is higher than the critical pressure, the opening degree of the sub-throttle device 8 is increased. Is operated in the closing direction to reduce the amount of refrigerant passing through the sub-throttling device 8. By doing so, the amount of refrigerant passing through the expander 3 increases, so that the resistance in the expander 3 increases, the outlet pressure of the expander 3 decreases, and the power that can be taken out increases.
[0029]
On the other hand, if the outlet pressure of the expander 3 is lower than the critical pressure, the expansion device 3 is operated to open the degree of opening of the sub-throttle device 8 to increase the amount of refrigerant passing through the sub-throttle device 8. By doing so, the amount of refrigerant passing through the expander 3 is reduced, so that the resistance at the expander 3 is reduced and the outlet pressure of the expander 3 is increased.
[0030]
By doing so, it is possible to extract the motive power to the maximum while keeping the outlet pressure at the expander 3 equal to or higher than the critical pressure of carbon dioxide gas. Furthermore, since a gas-liquid two-phase state can be prevented by decompression and expansion inside the expander 3, noise can be prevented and the reliability of the expander 3 can be improved.
[0031]
On the other hand, the refrigerant that has exited the expander 3 flows into the ejector 4 and becomes a gas-liquid two-phase driving flow, while reducing the pressure while sucking and increasing the pressure of the refrigerant at the outlet of the evaporator 7 and flowing into the gas-liquid separator 5. I do.
[0032]
The gas-liquid separator 5 separates the gas-liquid two-phase refrigerant into a gas and a liquid. The gas refrigerant mainly located at the upper part of the gas-liquid separator 5 flows into the compressor 1, and the gas refrigerant mainly located at the lower part of the gas-liquid separator 5 Is slightly reduced to the evaporation pressure in the expansion device 6 to become a low-temperature and low-pressure wet vapor, and in the evaporator 5, heat exchange with air passing therethrough to become gaseous, and is sucked into the ejector 4, It is boosted.
[0033]
That is, by the action of the ejector 4, the pressure becomes higher than the evaporation pressure in the evaporator 7 and enters the gas-liquid separator 5, so that the suction pressure of the compressor 1 increases and the power required for compression is reduced. And the coefficient of performance of the refrigeration cycle apparatus can be improved.
[0034]
In the ejector 4, since the kinetic energy of the driving flow is converted into pressure energy, the enthalpy of the refrigerant at the outlet of the ejector 4 is reduced, which can contribute to the improvement of the refrigerating capacity of the evaporator 7.
[0035]
In addition, since the ejector 4 does not have a mechanical part, even if a two-phase refrigerant flows therein, it does not affect the reliability.
[0036]
That is, in the present refrigeration cycle apparatus, the function of extracting the maximum power while maintaining the noise generation and the improvement of the reliability of the expander 3 and the ejector that does not affect the reliability even if it becomes a gas-liquid two-phase refrigerant. The improvement of the coefficient of performance and the improvement of the refrigerating capacity can be realized by both the action of improving the compressor suction pressure of No. 4.
[0037]
The mechanical energy recovered by the expander 3 is used, for example, as auxiliary power for rotating the compressor 1.
[0038]
(Embodiment 2)
FIG. 2 is a configuration diagram of a refrigeration cycle device according to Embodiment 2 of the present invention.
[0039]
In FIG. 2, a first compressor 21 that uses carbon dioxide as a refrigerant and compresses the refrigerant, a second compressor 22 that further increases the pressure of the refrigerant that has been increased to an intermediate pressure by the first compressor 21, A radiator 23 for cooling the refrigerant; an expander 24 located downstream of the radiator 23 to extract power by decompressing and expanding the refrigerant cooled by the radiator 23; and an expander 24 provided downstream of the expander 24. Connected to the ejector 25 in order.
[0040]
Further, a gas-liquid separator 26 is provided between the ejector 25 and the first compressor 21, and the gas side (the upper part of the gas-liquid separator 26 in the figure) of the gas-liquid separator 26 and the suction side of the first compressor 21 are connected. And the liquid side of the gas-liquid separator 26 (the lower part of the gas-liquid separator 26 in the figure) is connected to the evaporator 28 via the throttle device 27, and the outlet of the evaporator 28 is connected to the suction port of the ejector 25. are doing.
[0041]
Further, a sub-throttle device 29 is provided in parallel with the expander 24, and is connected to the pipe so that the expander 24 can be bypassed.
[0042]
The outlet of the expander 24 is connected to the outlet pipe of the first compressor 21 via the sub-throttling device 30.
[0043]
Further, a pressure sensor 31 is provided at the outlet of the expander 24, and the opening degree of the sub-throttle device 29 is adjusted by a pressure controller 32 provided outside according to a detection signal of the pressure sensor 31 to control the outlet pressure of the expander 24. I can do it.
[0044]
If the degree of opening is adjusted in the opening direction of the sub-throttle device 29 using the pressure controller 32, the amount of refrigerant passing through the sub-throttle device 29 increases, so that the outlet pressure of the expander 24 increases, and conversely, If the opening degree is adjusted in the direction to close 29, the amount of refrigerant passing through the sub-throttling device 29 is reduced, so that the outlet pressure of the expander 24 is reduced. It is controlled to keep it above.
[0045]
In the ejector 25, the combined refrigerant of the outlet refrigerant of the expander 24 and the outlet refrigerant of the sub-throttle device 29 becomes a driving flow of the ejector 25, and acts to suck the outlet refrigerant of the evaporator 28 to increase the pressure.
[0046]
Further, a temperature sensor 33 is provided in the discharge pipe of the second compressor 22, and the opening degree of the sub-throttle device 30 is adjusted by a temperature controller 34 provided outside in accordance with a detection signal of the temperature sensor 33, The outlet temperature of the compressor 22 can be controlled.
[0047]
If the degree of opening is adjusted in the opening direction of the sub-throttle device 30 using the temperature controller 34, the refrigerant having a low enthalpy at the outlet of the expander 24 passes through the sub-throttle device 30 and merges with the refrigerant discharged from the first compressor 21. Then, utilizing the property of lowering the temperature, control is performed so that the outlet temperature of the second compressor 22 is maintained at a predetermined set temperature or lower.
[0048]
The operation of the refrigeration cycle apparatus configured as described above will be described below.
[0049]
The refrigerant (carbon dioxide) compressed by the first compressor 21 merges with the refrigerant flowing through the sub-throttle device 30 and is subsequently compressed by the second compressor 22 to be a high-temperature, high-pressure supercritical refrigerant. And enters the radiator 23 where heat is radiated and cooled. The refrigerant that has exited the radiator 23 branches, and one of the refrigerants is guided to the expander 24, where the refrigerant expands from a high pressure to an intermediate pressure, thereby generating mechanical energy and adiabatically expanding itself to lower the temperature. , Reduce enthalpy.
[0050]
The other of the refrigerant branched out of the radiator 23 flows into the sub-throttling device 29 and joins with the refrigerant at the outlet of the expander 24.
[0051]
Here, the outlet pressure of the expander 24 is detected by a pressure sensor 31, and this pressure is compared with the critical pressure of carbon dioxide by a pressure controller 32. If the pressure is higher than the critical pressure, the opening degree of the sub-throttling device 29 is increased. Is operated in the closing direction to reduce the amount of refrigerant passing through the sub-throttling device 29. By doing so, the amount of refrigerant passing through the expander 24 increases, so that the resistance in the expander 24 increases, the outlet pressure of the expander 24 decreases, and the power that can be taken out increases.
[0052]
On the other hand, if the outlet pressure of the expander 24 is lower than the critical pressure, the expansion device 24 is operated to open the degree of opening of the sub-throttle device 29 to increase the amount of refrigerant passing through the sub-throttle device 29. By doing so, the amount of refrigerant passing through the expander 24 decreases, so that the resistance at the expander 24 decreases and the outlet pressure of the expander 24 increases.
[0053]
By doing so, the power can be extracted to the maximum while maintaining the outlet pressure at the expander 24 at or above the critical pressure of carbon dioxide gas. Furthermore, since the gas-liquid two-phase state can be prevented by the decompression and expansion inside the expander 24, the generation of noise is prevented and the reliability of the expander 24 is improved.
[0054]
On the other hand, the refrigerant that has exited the expander 24 flows into the ejector 25 and becomes a gas-liquid two-phase driving flow while decompressing the refrigerant at the outlet of the evaporator 28 and increasing the pressure to flow into the gas-liquid separator 26. I do.
[0055]
The gas-liquid separator 26 separates the gas-liquid two-phase refrigerant into gas and liquid, and the gas refrigerant mainly located on the upper part of the gas-liquid separator 26 flows into the first compressor 21 and The liquid refrigerant located in the lower part is slightly decompressed to the evaporation pressure in the expansion device 27 and becomes low-temperature and low-pressure wet steam, and in the evaporator 28, exchanges heat with the air passing therethrough to become a gaseous state, and is sucked into the ejector 25. And boosted.
[0056]
That is, due to the action of the ejector 25, the pressure becomes higher than the evaporation pressure in the evaporator 28 and enters the gas-liquid separator 26, so that the suction pressure of the first compressor 21 increases and the power required for compression decreases. And the coefficient of performance of the refrigeration cycle apparatus can be improved.
[0057]
Since the ejector 25 converts the kinetic energy of the driving flow into pressure energy, the enthalpy of the refrigerant at the outlet of the ejector 25 is reduced, which can contribute to the improvement of the refrigerating capacity of the evaporator 28.
[0058]
In addition, since the ejector 25 does not have a mechanical part, even if a two-phase refrigerant flows therein, it does not affect the reliability.
[0059]
On the other hand, in an operation in which a large difference occurs between the suction pressure of the first compressor 21 and the discharge pressure of the second compressor 22, the discharge temperature of the second compressor 22 rises abnormally.
[0060]
In the present embodiment, the discharge temperature of the second compressor 22 is detected by the temperature sensor 33, and when the temperature of the temperature sensor 33 is higher than a preset temperature by the temperature controller 34 provided outside, the sub-throttle device 30 is opened. By controlling in the direction, the refrigerant having a low enthalpy at the outlet of the expander 24 passes through the sub-throttling device 30 and merges with the refrigerant discharged from the first compressor 21 to lower the temperature of the intake gas of the second compressor 22. As a result, the outlet temperature of the second compressor 22 can be reduced, and even under such operating conditions, the temperature of the second compressor 22 does not abnormally increase, and safe operation can be performed.
[0061]
Further, since the outlet pressure of the expander 24 is set higher than the critical pressure of the carbon dioxide gas, the refrigerant does not become a two-phase refrigerant and the liquid refrigerant is not sucked into the second compressor 22. Reliability is improved.
[0062]
In addition, since the amount of refrigerant circulating through the radiator 23 increases, the capacity of the radiator 23 can be particularly increased, and the effect is exhibited even when the hot water supply load increases.
[0063]
That is, in the present refrigeration cycle apparatus, the function of extracting power to the maximum while preventing the generation of noise of the expander 3 and maintaining the reliability of the expander 3 and the second compressor 33 and the gas-liquid two-phase refrigerant. However, both the effect of improving the compressor suction pressure of the ejector 4 which does not affect the reliability can be achieved with high reliability, thereby improving the coefficient of performance and the refrigerating capacity.
[0064]
The mechanical energy recovered by the expander 3 is used, for example, as auxiliary power for rotating the compressor 1.
[0065]
In the present embodiment, the compressor is divided into the first compressor 21 and the second compressor 22, and the refrigerant that has passed through the sub-throttling device 30 is merged in the middle thereof. The same effect can be obtained by injecting the refrigerant that has passed through the sub-throttle device 30 into the cylinder on the way, and these are also included in the present invention.
[0066]
【The invention's effect】
As is apparent from the above description, the invention according to claim 1 relates to an expander in which an expander that extracts power from high-pressure refrigerant at a radiator outlet and an ejector provided downstream of the expander are connected in series. In addition to the energy recovery in the above, the refrigeration cycle device which can realize an improvement in the coefficient of performance and an improvement in the refrigerating capacity can be provided by recovering the energy from the medium-pressure refrigerant at the outlet of the expander by the ejector in addition to the energy recovery in the compressor.
[0067]
Further, in the refrigeration cycle device according to the present invention, since the outlet pressure of the expander is set higher than the critical pressure of carbon dioxide gas, the refrigerant does not become a two-phase refrigerant inside the expander, thereby preventing the expansion machine from generating noise. Power is taken out as much as possible while maintaining reliability, and the ejector does not affect reliability even if it becomes a gas-liquid two-phase refrigerant. A refrigeration cycle device that can be improved can be provided.
[0068]
Further, the refrigeration cycle device according to the present invention includes a sub-throttle device provided in parallel with the expander, a pressure sensor at the outlet of the expander, and adjusts the opening degree of the sub-throttle device according to a detection signal of the pressure sensor. Since a pressure controller is provided to control the expander outlet pressure to be equal to or higher than the critical pressure of carbon dioxide gas, it is possible to easily prevent a gas-liquid two-phase state due to decompression and expansion inside the expander, thus reducing noise. This can greatly contribute to preventing occurrence and improving the reliability of the expander.
[0069]
Further, the refrigeration cycle apparatus according to the present invention includes an expander that includes a first compressor and a second compressor in series and extracts power from high-pressure refrigerant at a radiator outlet, and an ejector that is provided downstream of the expander. By connecting in series and recovering energy from the medium pressure refrigerant at the outlet of the expander by the ejector in addition to the energy recovery at the expander, the coefficient of performance can be greatly improved. Since a low-temperature refrigerant at the outlet of the expander can flow in addition to the refrigerant at the outlet of the first compressor, it is possible to provide a refrigeration cycle apparatus that keeps the refrigerant temperature at the outlet of the second compressor low.
[0070]
Further, in the refrigeration cycle apparatus according to the present invention, since the outlet pressure of the expander is set higher than the critical pressure of carbon dioxide, a highly reliable compressor without liquid refrigerant being sucked into the second compressor. Can provide inflator.
[0071]
Further, the refrigeration cycle device according to the present invention includes a sub-throttle device provided in parallel with the expander, a pressure sensor at the outlet of the expander, and adjusts the opening degree of the sub-throttle device according to a detection signal of the pressure sensor. Since a pressure controller is provided to control the outlet pressure of the expander to be equal to or higher than the critical pressure of carbon dioxide, it is possible to prevent a two-phase gas-liquid state due to decompression and expansion inside the expander. This can greatly contribute to prevention and improvement of the reliability of the expander, and can provide a highly reliable compressor without liquid refrigerant being sucked into the second compressor.
[0072]
In addition, the refrigeration cycle apparatus according to the present invention includes a temperature sensor in the discharge pipe of the second compressor, and a temperature controller that controls the refrigerant temperature at the outlet of the second compressor to a predetermined temperature or less, The operation can be performed with the discharge temperature of the second compressor always kept at a safe temperature or lower, and the reliability is improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle device showing a first embodiment of the present invention; FIG. 2 is a configuration diagram of a refrigeration cycle device showing a second embodiment of the present invention; FIG. FIG. 4 is a configuration diagram of a conventional refrigeration cycle device.
DESCRIPTION OF SYMBOLS 1 Compressor 2,23 Radiator 3,24 Expander 4,25 Ejector 5,26 Gas-liquid separator 6,27 Throttling device 7,28 Evaporator 8,29,30 Sub-throttling device 9,31 Pressure sensor 10,32 Pressure controller 21 First compressor 22 Second compressor 33 Temperature sensor 34 Temperature controller

Claims (8)

炭酸ガスを冷媒とし、冷媒を圧縮する圧縮機と、前記圧縮機で昇圧された冷媒を冷却する放熱器と、前記放熱器よりも下流側に位置し前記冷却された冷媒を減圧膨張することにより動力を取り出す膨張機と、前記膨張機の下流側に設けたエジェクタとを順次配管接続し、前記エジェクタと前記圧縮機の間に気液分離器を設け、前記気液分離器のガス側と前記圧縮機の吸入側とを接続し、前記気液分離器の液側を絞り装置を介して蒸発器と接続し、前記蒸発器の出口を前記エジェクタの吸引口に接続したことを特徴とする冷凍サイクル装置。By using carbon dioxide as a refrigerant, a compressor that compresses the refrigerant, a radiator that cools the refrigerant pressurized by the compressor, and a decompressed expansion of the cooled refrigerant that is located downstream from the radiator. An expander for taking out power and an ejector provided on the downstream side of the expander are sequentially connected by piping, a gas-liquid separator is provided between the ejector and the compressor, and a gas side of the gas-liquid separator and the A refrigerating machine connected to a suction side of a compressor, a liquid side of the gas-liquid separator connected to an evaporator via a throttle device, and an outlet of the evaporator connected to a suction port of the ejector. Cycle equipment. 前記膨張機の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したことを特徴とする請求項1記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 1, wherein an outlet pressure of the expander is set higher than a critical pressure of carbon dioxide gas. 前記膨張機と並列に副絞り装置を設けたことを特徴とする請求項1記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 1, wherein a sub-throttle device is provided in parallel with the expander. 炭酸ガスを冷媒とし、冷媒を圧縮する圧縮機と、前記圧縮機で昇圧された冷媒を冷却する放熱器と、前記放熱器よりも下流側に位置し前記冷却された冷媒を減圧膨張することにより動力を取り出す膨張機と、前記膨張機の下流側に設けたエジェクタとを順次配管接続し、前記エジェクタと前記圧縮機の間に気液分離器を設け、前記気液分離器のガス側と前記圧縮機の吸入側とを接続し、前記気液分離器の液側を絞り装置を介して蒸発器と接続し、前記蒸発器の出口を前記エジェクタの吸引口に接続し、前記膨張機と並列に副絞り装置を設け、さらに前記膨張機の出口に圧力センサを設けた冷凍サイクル装置であって、前記圧力センサの検出信号に応じて前記副絞り装置の開度調整を行い、膨張機出口圧力を炭酸ガスの臨界圧力以上に保つように制御することを特徴とする冷凍サイクル装置の制御方法。By using carbon dioxide as a refrigerant, a compressor that compresses the refrigerant, a radiator that cools the refrigerant pressurized by the compressor, and a decompressed expansion of the cooled refrigerant that is located downstream from the radiator. An expander for taking out power and an ejector provided on the downstream side of the expander are sequentially connected by piping, a gas-liquid separator is provided between the ejector and the compressor, and a gas side of the gas-liquid separator and the The compressor is connected to the suction side, the liquid side of the gas-liquid separator is connected to an evaporator via a throttle device, the outlet of the evaporator is connected to the suction port of the ejector, and is connected in parallel with the expander. A refrigeration cycle apparatus further comprising a sub-throttle device, and further comprising a pressure sensor at the outlet of the expander, wherein the opening degree of the sub-throttle device is adjusted in accordance with a detection signal of the pressure sensor, and the expansion device outlet pressure is adjusted. To be above the critical pressure of carbon dioxide The method of the refrigeration cycle apparatus and controls. 炭酸ガスを冷媒とし、冷媒を圧縮する第1圧縮機と、第2圧縮機を直列に接続し、前記第2圧縮機で昇圧された冷媒を冷却する放熱器と、前記放熱器よりも下流側に位置し前記冷却された冷媒を減圧膨張することにより動力を取り出す膨張機と、前記膨張機の下流側に設けたエジェクタとを順次配管接続し、前記エジェクタと前記圧縮機の間に気液分離器を設け、前記気液分離器のガス側と前記圧縮機の吸入側とを接続し、前記気液分離器の液側を絞り装置を介して蒸発器と接続し、前記蒸発器の出口を前記エジェクタの吸引口に接続し、前記膨脹機と前記エジェクタとの間と前記第1圧縮機と前記第2圧縮機との間とを副絞り装置を介して接続したことを特徴とする冷凍サイクル装置。A first compressor that uses carbon dioxide as a refrigerant and compresses the refrigerant, a second compressor connected in series, a radiator that cools the refrigerant pressurized by the second compressor, and a downstream side from the radiator An expander that extracts power by decompressing and expanding the cooled refrigerant and an ejector provided downstream of the expander are sequentially connected by piping, and gas-liquid separation is performed between the ejector and the compressor. A gas side of the gas-liquid separator and a suction side of the compressor, a liquid side of the gas-liquid separator connected to an evaporator through a throttle device, and an outlet of the evaporator. A refrigeration cycle connected to a suction port of the ejector, and connected between the expander and the ejector and between the first compressor and the second compressor via a sub-throttling device. apparatus. 前記膨張機の出口圧力を、炭酸ガスの臨界圧力よりも高く設定したことを特徴とする請求項5記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 5, wherein an outlet pressure of the expander is set higher than a critical pressure of carbon dioxide gas. 炭酸ガスを冷媒とし、冷媒を圧縮する第1圧縮機と、第2圧縮機を直列に接続し、前記第2圧縮機で昇圧された冷媒を冷却する放熱器と、前記放熱器よりも下流側に位置し前記冷却された冷媒を減圧膨張することにより動力を取り出す膨張機と、前記膨張機の下流側に設けたエジェクタとを順次配管接続し、前記エジェクタと前記圧縮機の間に気液分離器を設け、前記気液分離器のガス側と前記圧縮機の吸入側とを接続し、前記気液分離器の液側を絞り装置を介して蒸発器と接続し、前記蒸発器の出口を前記エジェクタの吸引口に接続し、前記膨脹機と前記エジェクタとの間と前記第1圧縮機と前記第2圧縮機との間とを第1副絞り装置を介して接続し、前記膨張機と並列に第2副絞り装置を設け、さらに前記膨張機の出口に圧力センサを設けた冷凍サイクル装置であって、前記圧力センサの検出信号に応じて前記副絞り装置の開度調整を行い、膨張機出口圧力を炭酸ガスの臨界圧力以上に保つように制御することを特徴とする冷凍サイクル装置の制御方法。A first compressor that uses carbon dioxide as a refrigerant and compresses the refrigerant, a second compressor connected in series, a radiator that cools the refrigerant pressurized by the second compressor, and a downstream side from the radiator An expander that takes out power by decompressing and expanding the cooled refrigerant and an ejector provided on the downstream side of the expander are sequentially connected by piping, and gas-liquid separation is performed between the ejector and the compressor. A gas side of the gas-liquid separator and a suction side of the compressor, a liquid side of the gas-liquid separator connected to an evaporator through a throttle device, and an outlet of the evaporator. Connected to the suction port of the ejector, and connected between the expander and the ejector and between the first compressor and the second compressor via a first sub-throttle device, A second sub-throttling device is provided in parallel, and a pressure sensor is provided at the outlet of the expander. A refrigerating cycle device, wherein the opening degree of the sub-throttle device is adjusted in accordance with the detection signal of the pressure sensor, and the expansion device outlet pressure is controlled to be maintained at or above the critical pressure of carbon dioxide gas. A method for controlling a refrigeration cycle device. 第2圧縮機の吐出配管に温度センサーを設け、前記温度センサーの検出信号に応じて前記第1副絞り装置の開度調整を行い、第2圧縮機出口の冷媒温度をあらかじめ定めた設定温度以下に制御することを特徴とする請求項7記載の冷凍サイクル装置の制御方法。A temperature sensor is provided in a discharge pipe of the second compressor, and the opening degree of the first sub-throttle device is adjusted according to a detection signal of the temperature sensor, so that the refrigerant temperature at the outlet of the second compressor is equal to or lower than a predetermined set temperature. 8. The control method for a refrigeration cycle apparatus according to claim 7, wherein the control is performed in the following manner.
JP2003042854A 2003-02-20 2003-02-20 Refrigeration cycle device and its control method Pending JP2004251558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042854A JP2004251558A (en) 2003-02-20 2003-02-20 Refrigeration cycle device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042854A JP2004251558A (en) 2003-02-20 2003-02-20 Refrigeration cycle device and its control method

Publications (1)

Publication Number Publication Date
JP2004251558A true JP2004251558A (en) 2004-09-09

Family

ID=33026025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042854A Pending JP2004251558A (en) 2003-02-20 2003-02-20 Refrigeration cycle device and its control method

Country Status (1)

Country Link
JP (1) JP2004251558A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222359A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
JP2009276045A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2010112691A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector-type refrigeration cycle
JP2010112690A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector type refrigeration cycle
WO2010073586A1 (en) * 2008-12-22 2010-07-01 パナソニック株式会社 Refrigeration cycle device
WO2011004969A3 (en) * 2009-07-07 2011-04-14 엘지전자 주식회사 Air conditioner
WO2011161953A1 (en) * 2010-06-23 2011-12-29 パナソニック株式会社 Refrigeration cycle apparatus
WO2011161952A1 (en) * 2010-06-23 2011-12-29 パナソニック株式会社 Refrigeration cycle apparatus
WO2013140992A1 (en) * 2012-03-23 2013-09-26 サンデン株式会社 Refrigeration cycle and refrigeration showcase
EP2272757A3 (en) * 2009-07-07 2014-07-02 Hamilton Sundstrand Corporation Transcritical fluid cooling for aerospace applications
DE102009020062B4 (en) * 2008-05-12 2018-09-20 Denso Corporation Refrigerant cycle device with ejector
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
CN113513854A (en) * 2021-08-09 2021-10-19 上海海洋大学 Transcritical CO with high pressure ejector2Mechanical supercooling refrigerating system
CN114407603A (en) * 2021-11-23 2022-04-29 西安交通大学 System and method for improving safety of combustible working medium electric vehicle heat pump system
CN114909814A (en) * 2022-05-24 2022-08-16 天津大学 Carbon dioxide transcritical circulation method giving consideration to both heating and refrigerating in multiple temperature zones

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222359A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
JP2009276045A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2009276046A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2010112691A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector-type refrigeration cycle
JP2010112690A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector type refrigeration cycle
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
DE102009020062B4 (en) * 2008-05-12 2018-09-20 Denso Corporation Refrigerant cycle device with ejector
WO2010073586A1 (en) * 2008-12-22 2010-07-01 パナソニック株式会社 Refrigeration cycle device
CN102257332A (en) * 2008-12-22 2011-11-23 松下电器产业株式会社 Refrigeration cycle device
JPWO2010073586A1 (en) * 2008-12-22 2012-06-07 パナソニック株式会社 Refrigeration cycle equipment
US8671713B2 (en) 2009-07-07 2014-03-18 Lg Electronics Inc. Air conditioner
WO2011004969A3 (en) * 2009-07-07 2011-04-14 엘지전자 주식회사 Air conditioner
EP2272757A3 (en) * 2009-07-07 2014-07-02 Hamilton Sundstrand Corporation Transcritical fluid cooling for aerospace applications
CN102549355A (en) * 2010-06-23 2012-07-04 松下电器产业株式会社 Refrigeration cycle apparatus
WO2011161953A1 (en) * 2010-06-23 2011-12-29 パナソニック株式会社 Refrigeration cycle apparatus
CN102483276A (en) * 2010-06-23 2012-05-30 松下电器产业株式会社 Refrigeration cycle apparatus
WO2011161952A1 (en) * 2010-06-23 2011-12-29 パナソニック株式会社 Refrigeration cycle apparatus
JP2013200058A (en) * 2012-03-23 2013-10-03 Sanden Corp Refrigerating cycle and refrigerating showcase
WO2013140992A1 (en) * 2012-03-23 2013-09-26 サンデン株式会社 Refrigeration cycle and refrigeration showcase
CN113513854A (en) * 2021-08-09 2021-10-19 上海海洋大学 Transcritical CO with high pressure ejector2Mechanical supercooling refrigerating system
CN114407603A (en) * 2021-11-23 2022-04-29 西安交通大学 System and method for improving safety of combustible working medium electric vehicle heat pump system
CN114407603B (en) * 2021-11-23 2024-05-24 西安交通大学 System and method for improving safety of heat pump system of combustible working medium electric automobile
CN114909814A (en) * 2022-05-24 2022-08-16 天津大学 Carbon dioxide transcritical circulation method giving consideration to both heating and refrigerating in multiple temperature zones
CN114909814B (en) * 2022-05-24 2023-10-20 天津大学 Carbon dioxide transcritical circulation method taking heating and refrigerating of multiple temperature areas into consideration

Similar Documents

Publication Publication Date Title
US7886550B2 (en) Refrigerating machine
JP4053082B2 (en) Refrigeration cycle equipment
JP2004251558A (en) Refrigeration cycle device and its control method
US6880357B2 (en) Refrigeration cycle apparatus
JP2000234814A (en) Vapor compressed refrigerating device
JP4042637B2 (en) Ejector cycle
KR20070067121A (en) Refrigerating apparatus
JP5389184B2 (en) Refrigeration cycle equipment
JP2009270745A (en) Refrigerating system
JP5484889B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP4317793B2 (en) Cooling system
KR102173814B1 (en) Cascade heat pump system
JP2002022298A (en) Refrigeration cycle device and method for controlling the same
KR101190317B1 (en) Freezing device
KR20110074709A (en) Freezing device
JP2003074990A (en) Refrigerating unit
JP2006258418A (en) Refrigerating device
JP5377528B2 (en) Refrigeration cycle equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2007155277A (en) Refrigerating cycle
JP2006145144A (en) Refrigerating cycle device
JP2011133208A (en) Refrigerating apparatus
JP4016711B2 (en) Vapor compression refrigerator
JP2014190562A (en) Refrigeration cycle and cooling device