JP2006258418A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2006258418A
JP2006258418A JP2006147851A JP2006147851A JP2006258418A JP 2006258418 A JP2006258418 A JP 2006258418A JP 2006147851 A JP2006147851 A JP 2006147851A JP 2006147851 A JP2006147851 A JP 2006147851A JP 2006258418 A JP2006258418 A JP 2006258418A
Authority
JP
Japan
Prior art keywords
evaporator
flow rate
gas
liquid separator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147851A
Other languages
Japanese (ja)
Other versions
JP4082435B2 (en
Inventor
Hiroyuki Morimoto
裕之 森本
Tsuneo Yumikura
恒雄 弓倉
Takeshi Sugimoto
猛 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006147851A priority Critical patent/JP4082435B2/en
Publication of JP2006258418A publication Critical patent/JP2006258418A/en
Application granted granted Critical
Publication of JP4082435B2 publication Critical patent/JP4082435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of a refrigerating device with the usage of an ejector in load fluctuation, a refrigerant flow rate with respect to the starting time, and refrigerant amount control. <P>SOLUTION: This device is equipped with a liquid level detecting means provided on a gas/liquid separator, and a control means for controlling an opening of a first flow rate adjusting valve until a refrigerant amount becomes a predetermined amount when the liquid level detecting means detects that the refrigerant amount of the gas/liquid separator is lower than the predetermined amount. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、冷凍サイクルにエゼクタ使用の冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus using an ejector in a refrigeration cycle.

圧縮機、凝縮器、第一絞り装置、エゼクタ、第一蒸発器、気液分離器を順次、配管で接続し、エゼクタ吸引部に第二蒸発器を接続し、さらに気液分離器と第二蒸発器の間に第二絞り装置を備えた冷凍装置が提案されている(例えば特開昭52−30951号公報)。
この方法では、第二蒸発器の蒸発圧力より、圧縮機吸入の圧力を高くできるため、圧縮機の吸入の冷媒ガス密度が低下しない。このため、圧縮比が大きくならず、高効率の運転が可能となる。
特開昭52−30951号公報
A compressor, a condenser, a first expansion device, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected by piping, a second evaporator is connected to the ejector suction section, and the gas-liquid separator and the second A refrigeration apparatus having a second expansion device between evaporators has been proposed (for example, Japanese Patent Laid-Open No. 52-30951).
In this method, since the pressure at the suction of the compressor can be made higher than the evaporation pressure of the second evaporator, the refrigerant gas density at the suction of the compressor does not decrease. For this reason, the compression ratio does not increase, and high-efficiency operation is possible.
JP 52-30951 A

しかし、上記のようなエゼクタを利用した冷凍装置においては、負荷変動、起動時に対する冷媒流量、冷媒量制御上に多くの問題があった。
また、負荷変動に対してエゼクタの性能が安定しないなど、起動時、停止時や非定常における運転に対して、性能が確保できない等多くの問題があった。
However, the above-described refrigeration apparatus using an ejector has many problems in terms of load fluctuation, refrigerant flow rate relative to startup, and refrigerant amount control.
In addition, there are many problems such that the performance of the ejector is not stable with respect to the load fluctuation, and the performance cannot be ensured for the operation at the time of starting, stopping and unsteady.

本発明は、かかる問題点を解決するためになされたものであり、気液分離器に液面を検知する手段を備えることで、適正な冷媒量制御を行うことを目的とする。
また、蒸発器出口側の冷媒過熱度に基づき適正な冷媒流量制御を行うことを目的とする。
また、冷媒としてR404A,R507を用いることで、エゼクタを有効に利用することで、第二蒸発器での冷媒流量を大きくし、第二蒸発器においても冷凍能力が十分確保することを目的としている。
また、凝縮圧力、第一蒸発圧力、第二蒸発圧力等を一定にすることで、エゼクタ性能の信頼性を確保することを目的としている。
また、再起動時に、液冷媒が逆流することのない、信頼性を確保した冷凍装置を得ることを目的とする。
さらに、エゼクタを有する冷凍装置の性能と信頼性を確保することを目的としている。
The present invention has been made to solve such problems, and an object of the present invention is to perform appropriate refrigerant amount control by providing a gas-liquid separator with means for detecting a liquid level.
Moreover, it aims at performing appropriate refrigerant | coolant flow control based on the refrigerant | coolant superheat degree by the side of an evaporator outlet.
In addition, by using R404A and R507 as the refrigerant, it is intended to increase the refrigerant flow rate in the second evaporator by effectively using the ejector, and to ensure sufficient refrigeration capacity in the second evaporator. .
Another object of the present invention is to ensure the reliability of the ejector performance by making the condensing pressure, the first evaporating pressure, the second evaporating pressure, etc. constant.
It is another object of the present invention to provide a refrigeration apparatus that ensures reliability without causing a liquid refrigerant to flow backward upon restart.
Furthermore, it aims at ensuring the performance and reliability of the freezing apparatus which has an ejector.

この発明の第1の発明に係る冷凍装置は、圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、冷媒としてハイドロフルオロカーボンR404AまたはR507を用いたものである。   In the refrigeration apparatus according to the first aspect of the present invention, a compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected by piping, and the gas-liquid separator In the refrigeration apparatus in which the suction part of the ejector is connected by piping through a second evaporator, hydrofluorocarbon R404A or R507 is used as the refrigerant.

また、この発明の第2の発明に係る冷凍装置は、圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記気液分離器に設けられた液面検知手段と前記液面検知手段が前記気液分離器の冷媒量が所定量にないことを検知した時、前記冷媒量が所定量になるまで前記第一流量調節弁の開度制御する制御手段とを備えたものである。   In the refrigeration apparatus according to the second aspect of the present invention, a compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected by piping. In the refrigeration apparatus in which the separator and the suction part of the ejector are connected by piping through a second evaporator, the liquid level detection means and the liquid level detection means provided in the gas-liquid separator are the gas-liquid separator. Control means for controlling the opening of the first flow rate control valve until the refrigerant amount reaches a predetermined amount when it is detected that the refrigerant amount is not within the predetermined amount.

また、第3の発明に係る冷凍装置は、気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記第二蒸発器出口側配管に設けられた圧力検知手段及び温度検知手段と、前記圧力検知手段と温度検知手段との検出値に基づき、前記第二蒸発器出口の加熱度が所定値となるように第二流量調節弁を制御する制御手段とを備えたものである。   A refrigeration apparatus according to a third aspect of the present invention includes a second flow rate control valve connected by piping between the gas-liquid separator and the second evaporator on the outlet side of the gas-liquid separator, and the second evaporator Based on pressure detection means and temperature detection means provided in the outlet side piping, and detection values of the pressure detection means and temperature detection means, the second flow rate is set so that the heating degree of the second evaporator outlet becomes a predetermined value. And a control means for controlling the control valve.

また、第4の発明に係る冷凍装置は、気液分離器に設けた液面検知手段と、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記液面検知手段が前記気液分離器の冷媒液量不足を検知した時、前記冷媒量が所定量になるまで前記第二流量調節弁を閉弁する制御手段とを備えたものである。   Further, the refrigeration apparatus according to the fourth invention is a liquid level detection means provided in the gas-liquid separator, and a pipe connection between the gas-liquid separator and the second evaporator at the outlet side of the gas-liquid separator. And when the liquid level detecting means detects that the amount of refrigerant liquid in the gas-liquid separator is insufficient, the second flow rate adjusting valve is closed until the refrigerant amount reaches a predetermined amount. Means.

また、第5の発明に係る冷凍装置は、第一蒸発器の出口側配管に設けられた圧力検知手段及び温度検知手段と、前記圧力検知手段と温度検知手段との検出値に基づき、前記第一蒸発器出口の過熱度が所定値となるように第一流量調節弁を制御する制御手段とを備えたものである。   The refrigeration apparatus according to a fifth aspect of the invention is based on pressure detection means and temperature detection means provided in the outlet side piping of the first evaporator, and detection values of the pressure detection means and temperature detection means. And a control means for controlling the first flow rate control valve so that the degree of superheat at the outlet of the evaporator becomes a predetermined value.

また、第6の発明に係る冷凍装置は、気液分離器に設けられた液面検知手段と、前記第一蒸発器をバイパスする、開閉弁または流量調節弁を有するバイパス回路と、前記液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、前記バイパス回路の開閉弁または流量調節弁を開弁する制御手段とを備えたものである。   A refrigeration apparatus according to a sixth aspect of the invention includes a liquid level detection means provided in a gas-liquid separator, a bypass circuit having an on-off valve or a flow rate control valve that bypasses the first evaporator, and the liquid level Control means for opening the on-off valve or the flow rate control valve of the bypass circuit until the refrigerant amount reaches a predetermined amount when the detection unit detects that the refrigerant amount is insufficient in the gas-liquid separator. .

また、第7の発明に係る冷凍装置は、第6の発明において、第一蒸発器入口側配管に第一開閉弁を備え、バイパス回路をエゼクタと前記第一開閉弁間の配管と、前記第一蒸発器と気液分離器間の配管とに接続された第二開閉弁を有する第一のバイパス回路とし、液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、制御手段が前記第一開閉弁を閉弁し、前記第二開閉弁を開弁するようにしたものである。   The refrigeration apparatus according to a seventh invention is the refrigeration apparatus according to the sixth invention, wherein the first evaporator inlet side pipe is provided with a first on-off valve, and a bypass circuit is provided between the ejector and the first on-off valve. A first bypass circuit having a second on-off valve connected to one evaporator and a pipe between the gas-liquid separator, and when the liquid level detecting means detects that the amount of refrigerant in the gas-liquid separator is insufficient, the refrigerant The control means closes the first on-off valve and opens the second on-off valve until the amount reaches a predetermined amount.

また、第8の発明に係る冷凍装置は、第7の発明において、第一流量調節弁とエゼクタとをバイパスする第三流量調節弁を有する第二バイパス回路を備え、液面検知手段が気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、制御手段が前記第一バイパス回路の第二開閉弁を開弁し、第一蒸発器の第一開閉弁及び第一流量調節弁を閉弁し、前記第三流量調節弁の弁開度を調節制御するようにしたものである。   The refrigeration apparatus according to an eighth aspect of the present invention is the refrigeration apparatus according to the seventh aspect of the present invention, further comprising a second bypass circuit having a third flow rate adjustment valve that bypasses the first flow rate adjustment valve and the ejector, and the liquid level detection means is gas-liquid. When it is detected that the amount of refrigerant in the separator is insufficient, the control means opens the second on-off valve of the first bypass circuit until the refrigerant amount reaches a predetermined amount, and the first on-off valve and the first on-off valve of the first evaporator One flow rate control valve is closed, and the opening degree of the third flow rate control valve is adjusted and controlled.

また、第9の発明に係る冷凍装置は、第6の発明において、バイパス回路を、凝縮器と第一流量調節弁間の配管と、第一蒸発器と気液分離器間の配管とを接続する第4流量調節弁を有する第三バイパス回路とし、液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、制御手段が前記第一流量調節弁を閉弁し、前記第4流量調節弁の弁開度を調節制御するようにしたものである。   In the refrigeration apparatus according to the ninth invention, in the sixth invention, the bypass circuit is connected to the pipe between the condenser and the first flow rate control valve and to the pipe between the first evaporator and the gas-liquid separator. A third bypass circuit having a fourth flow rate adjusting valve that controls the first flow rate until the refrigerant amount reaches a predetermined amount when the liquid level detection means detects that the refrigerant amount of the gas-liquid separator is insufficient. The control valve is closed, and the valve opening degree of the fourth flow rate control valve is adjusted and controlled.

また、第10の発明に係る冷凍装置は、気液分離器に設けた液面検知手段と、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記第一流量調節弁と前記エゼクタとバイパスする第二バイパス回路と、前記第二バイパス回路に設けた第三流量調節弁と、前記液面検知手段が前記気液分離器の冷媒量不足を検知したとき、前記冷媒量が所定量になるまで、前記第一流量弁と前記第二流量弁とを閉弁し、前記第三流量調節弁の弁開度を調節する制御手段とを備えたものである。   A refrigeration apparatus according to a tenth aspect of the present invention is a pipe connection between the gas-liquid separator and the second evaporator at the liquid level detection means provided in the gas-liquid separator and on the outlet side of the gas-liquid separator. The second flow rate control valve, the second flow rate control valve, the second bypass circuit bypassing the ejector, the third flow rate control valve provided in the second bypass circuit, and the liquid level detection means When a shortage of refrigerant in the liquid separator is detected, the first flow valve and the second flow valve are closed until the refrigerant amount reaches a predetermined amount, and the valve opening of the third flow control valve is adjusted. Control means for adjusting.

また、第11の発明に係る冷凍装置は、圧縮機、凝縮器、開閉弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、前記気液分離器を前記第二蒸発器より高い位置に設置するとともに、前記第二蒸発器出口側の圧力を検出する圧力検出手段と、同じく温度を検出する温度検出手段と、前記第二流量調節弁を制御する制御手段とを備え、前記制御手段は、前記圧力検出手段の検出圧力及び前記温度検出手段の検出温度に基づき、前記第二蒸発器出口側の過熱度が目標の過熱度になるように前記第二流量調節弁で冷媒流量を調節するとともに、停止時には前記流量調節弁を全開にするものである。   In the refrigeration apparatus according to the eleventh aspect of the invention, a compressor, a condenser, an on-off valve, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected by piping, and the gas-liquid separator and the ejector suction are connected. A refrigerating apparatus comprising a second flow rate control valve connected to a pipe via a second evaporator, and further connected to a pipe between the gas-liquid separator and the second evaporator. Control that controls the second flow rate control valve, a pressure detecting means for detecting the pressure on the outlet side of the second evaporator, a temperature detecting means for detecting the temperature, and a second flow rate adjusting valve. And the control means based on the detected pressure of the pressure detecting means and the detected temperature of the temperature detecting means so that the degree of superheat on the outlet side of the second evaporator becomes a target degree of superheat. Adjust the refrigerant flow rate with the flow control valve and stop it. Sometimes those of fully opening the flow control valve.

また、第12の発明に係る冷凍装置は、第12の発明において、起動時は、前記制御手段が前記第二流量調節弁を全閉にし前記圧力検出手段と前記温度検出手段の検出値により第二蒸発器出口の過熱度を検出し、過熱度が所定の値になるまで前記第二流量調節弁を全閉にするものである。   The refrigeration apparatus according to a twelfth aspect of the present invention is the refrigeration apparatus according to the twelfth aspect of the invention, wherein the control means fully closes the second flow rate control valve at the time of start-up, based on detection values of the pressure detection means and the temperature detection means. The degree of superheat at the outlet of the two evaporators is detected, and the second flow rate control valve is fully closed until the degree of superheat reaches a predetermined value.

また、第13の発明に係る冷凍装置は、エゼクタ、第一蒸発器、第二蒸発器等を備えた冷凍装置において、前記凝縮器の凝縮圧力を検出する凝縮圧力検出手段あるいは凝縮温度を検出する凝縮温度検出手段と、前記凝縮圧力検出手段あるいは凝縮温度検出手段の検出値により、目標の凝縮圧力あるいは目標の凝縮温度になるように凝縮器の凝縮状態を制御する凝縮器制御手段と、前記第二蒸発器出口側の圧力を検出する圧力検出手段と、同じく温度を検出する温度検出手段と、前記圧力検出手段の検出圧力及び前記温度検出手段の検出温度に基づき、前記第二蒸発器出口側の過熱度が目標の加熱度になるように前記第二流量調節弁を制御する制御手段とを備えたものである。   Further, a refrigeration apparatus according to a thirteenth aspect of the present invention is a refrigeration apparatus comprising an ejector, a first evaporator, a second evaporator, etc., detecting a condensation pressure detecting means for detecting a condensation pressure of the condenser or a condensation temperature. A condenser temperature detecting means; a condenser control means for controlling a condensation state of the condenser so as to reach a target condensation pressure or a target condensation temperature based on a detection value of the condensation pressure detecting means or the condensation temperature detecting means; Pressure detecting means for detecting the pressure on the outlet side of the two evaporators, temperature detecting means for detecting the temperature, and on the outlet side of the second evaporator based on the detected pressure of the pressure detecting means and the detected temperature of the temperature detecting means And a control means for controlling the second flow rate control valve so that the degree of superheat of the target becomes the target degree of heating.

また、第14の発明に係る冷凍装置は、エゼクタ、第一蒸発器、第二蒸発器等を備えた冷凍装置において、前記凝縮器の凝縮圧力を検出する凝縮圧力検出手段あるいは凝縮温度を検出する凝縮温度検出手段と、前記凝縮圧力検出手段あるいは凝縮温度検出手段の検出値により、目標の凝縮圧力あるいは目標の凝縮温度になるように凝縮器の凝縮状態を制御する凝縮器制御手段と、前記第二蒸発器の蒸発圧力を検出する圧力検出手段あるいは蒸発温度を検出する温度検出手段と、前記圧力検出手段の検出圧力あるいは前記温度検出手段の検出温度に基づき、前記第二蒸発器の蒸発圧力または蒸発温度が目標の蒸発圧力または目標の蒸発温度になるように前記第二流量調節弁を制御する制御手段とを備えたものである。   A refrigeration apparatus according to a fourteenth aspect of the invention is a refrigeration apparatus comprising an ejector, a first evaporator, a second evaporator, and the like, detecting a condensation pressure detecting means for detecting a condensation pressure of the condenser or a condensation temperature. A condenser temperature detecting means; a condenser control means for controlling a condensation state of the condenser so as to reach a target condensation pressure or a target condensation temperature based on a detection value of the condensation pressure detecting means or the condensation temperature detecting means; A pressure detection means for detecting the evaporation pressure of the two evaporators, a temperature detection means for detecting the evaporation temperature, and the detection pressure of the pressure detection means or the detection temperature of the temperature detection means, And a control means for controlling the second flow rate adjusting valve so that the evaporation temperature becomes a target evaporation pressure or a target evaporation temperature.

また、第15の発明に係る冷凍装置は、圧縮機、凝縮器、開閉弁、第一流量調節弁、第一蒸発器、気液分離器が、順次配管接続され、前記第一流量調節弁と第一蒸発器をバイパスするバイパス回路にエゼクタを備え、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、圧力検出手段あるいは温度検出手段を備え、前記凝縮器の凝縮圧力あるいは凝縮温度を検出し、目標の凝縮圧力あるいは目標の凝縮温度になるように、凝縮器の凝縮状態を制御する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第一蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第一流量調節弁を制御する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第二蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第二流量調節弁の冷媒流量を調節する制御手段を備えたものである。   Further, the refrigeration apparatus according to the fifteenth aspect of the present invention is the compressor, the condenser, the on-off valve, the first flow rate adjustment valve, the first evaporator, and the gas-liquid separator, which are sequentially connected by piping, and the first flow rate adjustment valve and The bypass circuit for bypassing the first evaporator is provided with an ejector, and the gas-liquid separator and the ejector suction part are connected via a second evaporator, and the gas-liquid separator and the second evaporator are further connected. In a refrigeration system having a second flow rate control valve connected between pipes, a pressure detection means or a temperature detection means is provided, the condensation pressure or condensation temperature of the condenser is detected, and a target condensation pressure or target condensation is detected. A control means for controlling the condensation state of the condenser and a pressure detection means or a temperature detection means so as to reach a temperature, and detects an evaporation pressure or an evaporation temperature of the first evaporator to detect a target evaporation pressure or a target Evaporating temperature Control means for controlling the first flow rate control valve, pressure detecting means or temperature detecting means, and detecting the evaporation pressure or evaporation temperature of the second evaporator to detect the target evaporation pressure or target evaporation temperature. The control means for adjusting the refrigerant flow rate of the second flow rate adjustment valve is provided.

また、第16の発明に係る冷凍装置は、第15の発明において、第一流量調節弁と第二蒸発器をバイパスさせるバイパス回路に開閉弁を備えたものである。   According to a sixteenth aspect of the present invention, in the fifteenth aspect, the bypass circuit for bypassing the first flow rate adjusting valve and the second evaporator includes an on-off valve.

また、第17の発明に係る冷凍装置は、圧縮機、凝縮器、開閉弁、第一流量調節弁、第一蒸発器、気液分離器が、順次配管接続され、前記第一流量調節弁と第一蒸発器をバイパスする回路にエゼクタを備え、前記第一蒸発器と前記気液分離器を接続する配管への、前記バイパス回路の合流点と第一蒸発器出口間に圧力調整弁を備え、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、圧力検出手段あるいは温度検出手段を備え、前記凝縮器の凝縮圧力あるいは凝縮温度を検出し、目標の凝縮圧力あるいは目標の凝縮温度になるように、凝縮器の凝縮状態を制御する制御手段と、圧力検出手段と温度検出手段を備え、第一蒸発器出口の圧力と温度を検出し、目標の過熱度になるように、前記第一流量調節弁で冷媒流量を調節する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第二蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第二流量調節弁の冷媒流量を調節する制御手段を備えたものである。   Further, the refrigeration apparatus according to the seventeenth aspect of the present invention is the compressor, the condenser, the on-off valve, the first flow rate adjustment valve, the first evaporator, and the gas-liquid separator, which are sequentially connected by piping, A circuit bypassing the first evaporator is provided with an ejector, and a pressure regulating valve is provided between the junction of the bypass circuit and the outlet of the first evaporator to the pipe connecting the first evaporator and the gas-liquid separator. The gas-liquid separator and the ejector suction part are connected to each other through a second evaporator, and further include a second flow rate control valve connected between the gas-liquid separator and the second evaporator. In the refrigeration apparatus, a control having pressure detection means or temperature detection means for detecting the condensation pressure or condensation temperature of the condenser and controlling the condensation state of the condenser so as to reach a target condensation pressure or target condensation temperature. Means, pressure detection means and temperature detection means A control means for detecting the pressure and temperature at the outlet of the first evaporator and adjusting the refrigerant flow rate with the first flow rate control valve so as to achieve a target superheat degree, and a pressure detection means or a temperature detection means, Control means for detecting the evaporation pressure or the evaporation temperature of the second evaporator and adjusting the refrigerant flow rate of the second flow rate adjusting valve so as to reach the target evaporation pressure or the target evaporation temperature is provided.

以上説明したとおり第1の発明に係る冷凍装置は、圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、冷媒としてハイドロフルオロカーボンR404AまたはR507を用いた構成にしたので、エゼクタを有効に利用することで、第二蒸発器での冷媒流量を大きくし、第二蒸発器においても冷凍能力が十分確保できる冷凍装置を提供する。   As described above, in the refrigeration apparatus according to the first invention, the compressor, the condenser, the first flow rate control valve, the ejector, the first evaporator, and the gas-liquid separator are sequentially connected by piping, and the gas-liquid separation is performed. In the refrigeration system in which the suction unit of the ejector and the ejector are connected to each other through the second evaporator, the configuration using the hydrofluorocarbon R404A or R507 as the refrigerant is used. Provided is a refrigeration apparatus in which the refrigerant flow rate in the evaporator is increased and the refrigeration capacity can be sufficiently secured even in the second evaporator.

また、第2の発明に係る冷凍装置は、気液分離器に設けられた液面検知手段と前記液面検知手段が前記気液分離器の冷媒量が所定量にないことを検知した時、前記冷媒量が所定量になるまで第一流量調節弁の開度制御する制御手段とを備えた構成としたので、気液分離器で液面が所定より低下すると、弁開度を大きくし、液面が所定より高くなると、弁開度を小さくして気液分離器の冷媒量を所定の適正量に制御でき、性能と信頼性を確保した冷凍装置を提供することができる。   In the refrigeration apparatus according to the second invention, when the liquid level detection means provided in the gas-liquid separator and the liquid level detection means detect that the amount of refrigerant in the gas-liquid separator is not a predetermined amount, And a control means for controlling the opening of the first flow rate control valve until the refrigerant amount reaches a predetermined amount, so that when the liquid level falls below a predetermined level in the gas-liquid separator, the valve opening is increased, When the liquid level becomes higher than a predetermined value, the valve opening degree can be reduced to control the refrigerant amount of the gas-liquid separator to a predetermined appropriate amount, and a refrigeration apparatus ensuring performance and reliability can be provided.

また、第3の発明に係る冷凍装置は、気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記第二蒸発器出口側配管に設けられた圧力検知手段及び温度検知手段と、前記圧力検知手段と温度検知手段との検出値に基づき、前記第二蒸発器出口の加熱度が所定値となるように第二流量調節弁を制御する制御手段とを備えた構成としたので、第二蒸発器の冷媒流量が適正に制御され、エゼクタを有効に利用できる。   A refrigeration apparatus according to a third aspect of the present invention includes a second flow rate control valve connected by piping between the gas-liquid separator and the second evaporator on the outlet side of the gas-liquid separator, and the second evaporator Based on pressure detection means and temperature detection means provided in the outlet side piping, and detection values of the pressure detection means and temperature detection means, the second flow rate is set so that the heating degree of the second evaporator outlet becomes a predetermined value. Since the control means for controlling the control valve is provided, the refrigerant flow rate of the second evaporator is appropriately controlled, and the ejector can be used effectively.

また、第4の発明に係る冷凍装置は、気液分離器に設けた液面検知手段と、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記液面検知手段が前記気液分離器の冷媒液量不足を検知した時、前記冷媒量が所定量になるまで前記第二流量調節弁を閉弁する制御手段とを備えた構成としたので、第一蒸発器で冷却を行いながら、気液分離器の液冷媒を所定量までもっていくことができる。   Further, the refrigeration apparatus according to the fourth invention is a liquid level detection means provided in the gas-liquid separator, and a pipe connection between the gas-liquid separator and the second evaporator at the outlet side of the gas-liquid separator. And when the liquid level detecting means detects that the amount of refrigerant liquid in the gas-liquid separator is insufficient, the second flow rate adjusting valve is closed until the refrigerant amount reaches a predetermined amount. Therefore, the liquid refrigerant in the gas-liquid separator can be brought to a predetermined amount while cooling with the first evaporator.

また、第5の発明に係る冷凍装置は、第一蒸発器の出口側配管に設けられた圧力検知手段及び温度検知手段と、前記圧力検知手段と温度検知手段との検出値に基づき、前記第一蒸発器出口の過熱度が所定値となるように第一流量調節弁を制御する制御手段とを備えた構成としたので、第一蒸発器の冷媒流量が適正に制御される。   The refrigeration apparatus according to a fifth aspect of the invention is based on pressure detection means and temperature detection means provided in the outlet side piping of the first evaporator, and detection values of the pressure detection means and temperature detection means. Since the control means for controlling the first flow rate adjustment valve so that the degree of superheat at the outlet of one evaporator becomes a predetermined value, the refrigerant flow rate of the first evaporator is appropriately controlled.

また、第6の発明〜第9の発明に係る冷凍装置は、気液分離器に設けられた液面検知手段と、第一蒸発器をバイパスする、開閉弁または流量調節弁を有するバイパス回路と、前記液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、前記バイパス回路の開閉弁または流量調節弁を開弁する制御手段とを備えた構成としたので、早急に気液分離器の冷媒量不足を解消でき、性能と信頼性の高い冷凍装置を提供できる。   Moreover, the refrigeration apparatus according to the sixth to ninth inventions includes a liquid level detection means provided in the gas-liquid separator, and a bypass circuit having an on-off valve or a flow rate control valve that bypasses the first evaporator. Control means for opening the on-off valve or the flow rate control valve of the bypass circuit until the liquid amount reaches a predetermined amount when the liquid level detecting unit detects that the refrigerant amount of the gas-liquid separator is insufficient. Therefore, the shortage of the refrigerant amount in the gas-liquid separator can be solved quickly, and a refrigeration apparatus with high performance and reliability can be provided.

また、第10の発明に係る冷凍装置は、気液分離器に設けた液面検知手段と、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記第一流量調節弁と前記エゼクタとをバイパスする第二バイパス回路と、前記第二バイパス回路に設けた第三流量調節弁と、前記液面検知手段が前記気液分離器の冷媒量不足を検知したとき、前記冷媒量が所定量になるまで、前記第一流量弁と前記第二流量弁とを閉弁し、前記第三流量調節弁の弁開度を調節する制御手段とを備えた構成としたので、第一蒸発器で冷却を行いながら、第三流量調節弁の弁開度を調節制御して、気液分離装置の液量に対応した制御が可能となる。   A refrigeration apparatus according to a tenth aspect of the present invention is a pipe connection between the gas-liquid separator and the second evaporator at the liquid level detection means provided in the gas-liquid separator and on the outlet side of the gas-liquid separator. The second flow rate regulating valve, the second bypass circuit bypassing the first flow rate regulating valve and the ejector, the third flow rate regulating valve provided in the second bypass circuit, and the liquid level detecting means When the refrigerant amount shortage of the gas-liquid separator is detected, the first flow valve and the second flow valve are closed until the refrigerant amount reaches a predetermined amount, and the valve opening degree of the third flow control valve And a control unit corresponding to the liquid amount of the gas-liquid separator by adjusting and controlling the valve opening degree of the third flow rate adjustment valve while cooling with the first evaporator. Is possible.

また、第11の発明に係る冷凍装置は、気液分離器を前記第二蒸発器より高い位置に接地するとともに、前記第二蒸発器出口側の圧力を検出する圧力検出手段と、同じく温度を検出する温度検出手段と、前記第二流量調節弁を制御する制御手段とを備え、前記制御手段は、前記圧力検出手段の検出圧力及び前記温度検出手段の検出温度に基づき、前記第二蒸発器出口側の過熱度が目標の過熱度になるように前記第二流量調節弁で冷媒流量を調節するとともに、停止時には前記流量調節弁を全開にするので、停止時に気液分離器に残った冷媒液を第二蒸発器に流れ込むようにできるため、再起動時に対して信頼性を確保した冷凍装置を提供することができる。   Further, the refrigeration apparatus according to the eleventh aspect of the present invention is to ground the gas-liquid separator at a position higher than the second evaporator, and to detect the pressure on the outlet side of the second evaporator, Temperature detecting means for detecting, and control means for controlling the second flow rate control valve, the control means based on the detected pressure of the pressure detecting means and the detected temperature of the temperature detecting means based on the second evaporator The refrigerant flow rate is adjusted by the second flow rate adjustment valve so that the degree of superheat on the outlet side becomes the target degree of superheat, and the flow rate adjustment valve is fully opened at the time of stop, so the refrigerant remaining in the gas-liquid separator at the time of stop Since the liquid can flow into the second evaporator, it is possible to provide a refrigeration apparatus that ensures reliability against restart.

また、第12の発明に係る冷凍装置は、第11の発明において、起動時は、制御手段が前記第二流量調節弁を全閉にし前記圧力検出手段と前記温度検出手段の検出値により第二蒸発器出口の過熱度を検出し、過熱度が所定の値になるまで前記第二流量調節弁を全閉にするので、停止時に気液分離器より第二蒸発器に回収した冷媒液が第二蒸発器から逆流することを防ぐことにより信頼性を確保した冷凍装置を提供することができる。   The refrigeration apparatus according to a twelfth aspect of the present invention is the refrigeration apparatus according to the eleventh aspect of the present invention, wherein, when activated, the control means fully closes the second flow rate control valve and the second detection value is detected by the pressure detection means and the temperature detection means. Since the degree of superheat at the evaporator outlet is detected and the second flow rate control valve is fully closed until the degree of superheat reaches a predetermined value, the refrigerant liquid recovered from the gas-liquid separator to the second evaporator at the time of stoppage It is possible to provide a refrigeration apparatus that ensures reliability by preventing backflow from the two evaporators.

また、第13の発明に係る冷凍装置は、凝縮器の凝縮圧力を検出する凝縮圧力検出手段あるいは凝縮温度を検出する凝縮温度検出手段と、前記凝縮圧力検出手段あるいは凝縮温度検出手段の検出値により、目標の凝縮圧力あるいは目標の凝縮温度になるように凝縮器の凝縮状態を制御する凝縮器制御手段と、前記第二蒸発器出口側の圧力を検出する圧力検出手段と、同じく温度を検出する温度検出手段と、前記圧力検出手段の検出圧力及び前記温度検出手段の検出温度に基づき、前記第二蒸発器出口側の過熱度が目標の加熱度になるように前記第二流量調節弁を制御する制御手段とを備えたので、エゼクタ入口の冷媒の状態が一定となり、エゼクタの性能が安定するため、信頼性を確保した冷凍装置を提供することができる。   The refrigeration apparatus according to the thirteenth aspect of the present invention is based on a condensation pressure detection means for detecting the condensation pressure of the condenser or a condensation temperature detection means for detecting the condensation temperature, and a detection value of the condensation pressure detection means or the condensation temperature detection means. , The condenser control means for controlling the condensation state of the condenser so as to reach the target condensation pressure or the target condensation temperature, and the pressure detection means for detecting the pressure on the outlet side of the second evaporator, and also detecting the temperature. Based on the temperature detection means and the detected pressure of the pressure detection means and the detected temperature of the temperature detection means, the second flow rate control valve is controlled so that the degree of superheat on the outlet side of the second evaporator becomes a target heating degree. Since the state of the refrigerant at the inlet of the ejector is constant and the performance of the ejector is stabilized, a refrigeration apparatus that ensures reliability can be provided.

また、第14の発明に係る冷凍装置は、凝縮器の凝縮圧力を検出する凝縮圧力検出手段あるいは凝縮温度を検出する凝縮温度検出手段と、前記凝縮圧力検出手段あるいは凝縮温度検出手段の検出値により、目標の凝縮圧力あるいは目標の凝縮温度になるように凝縮器の凝縮状態を制御する凝縮器制御手段と、前記第二蒸発器の蒸発圧力を検出する圧力検出手段あるいは蒸発温度を検出する温度検出手段と、前記圧力検出手段の検出圧力あるいは前記温度検出手段の検出温度に基づき、前記第二蒸発器の蒸発圧力または蒸発温度が目標の蒸発圧力または目標の蒸発温度になるように前記第二流量調節弁を制御する制御手段とを備えたので、エゼクタ入口の冷媒の状態が一定となり、エゼクタの性能が安定するとともに、第二蒸発器での蒸発圧力も一定となるため、第一、第二蒸発器も一定の冷凍能力を発揮できる冷凍装置を提供することができる。   Further, the refrigeration apparatus according to the fourteenth aspect of the invention is based on the condensation pressure detection means for detecting the condensation pressure of the condenser or the condensation temperature detection means for detecting the condensation temperature, and the detected value of the condensation pressure detection means or the condensation temperature detection means. A condenser control means for controlling the condensation state of the condenser so as to reach a target condensation pressure or a target condensation temperature, and a pressure detection means for detecting the evaporation pressure of the second evaporator or a temperature detection for detecting the evaporation temperature. And the second flow rate so that the evaporating pressure or evaporating temperature of the second evaporator becomes the target evaporating pressure or the target evaporating temperature based on the detected pressure of the pressure detecting unit or the detected temperature of the temperature detecting unit. Control means for controlling the control valve, the refrigerant state at the ejector inlet becomes constant, the ejector performance is stabilized, and the evaporation pressure in the second evaporator To become constant, it is possible to provide a first refrigeration system which second evaporator may also exert a certain refrigerating capacity.

また、第15の発明に係る冷凍装置は、圧縮機、凝縮器、開閉弁、第一流量調節弁、第一蒸発器、気液分離器が、順次配管接続され、前記第一流量調節弁と第一蒸発器をバイパスするバイパス回路にエゼクタを備え、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、圧力検出手段あるいは温度検出手段を備え、前記凝縮器の凝縮圧力あるいは凝縮温度を検出し、目標の凝縮圧力あるいは目標の凝縮温度になるように、凝縮器の凝縮状態を制御する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第一蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第一流量調節弁を制御する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第二蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第二流量調節弁の冷媒流量を調節する制御手段を備えたので、エゼクタ入口の冷媒の状態が一定となり、エゼクタの性能が安定するとともに、第一蒸発器、第二蒸発器では冷凍能力を一定にできる冷凍装置を提供することができる。   Further, the refrigeration apparatus according to the fifteenth aspect of the present invention is the compressor, the condenser, the on-off valve, the first flow rate adjustment valve, the first evaporator, and the gas-liquid separator, which are sequentially connected by piping, and the first flow rate adjustment valve and The bypass circuit for bypassing the first evaporator is provided with an ejector, and the gas-liquid separator and the ejector suction part are connected via a second evaporator, and the gas-liquid separator and the second evaporator are further connected. In a refrigeration system having a second flow rate control valve connected between pipes, a pressure detection means or a temperature detection means is provided, the condensation pressure or condensation temperature of the condenser is detected, and a target condensation pressure or target condensation is detected. A control means for controlling the condensation state of the condenser and a pressure detection means or a temperature detection means so as to reach a temperature, and detects an evaporation pressure or an evaporation temperature of the first evaporator to detect a target evaporation pressure or a target Evaporating temperature Control means for controlling the first flow rate control valve, pressure detecting means or temperature detecting means, and detecting the evaporation pressure or evaporation temperature of the second evaporator to detect the target evaporation pressure or target evaporation temperature. Since the control means for adjusting the refrigerant flow rate of the second flow rate adjustment valve is provided so that the state of the refrigerant at the ejector inlet is constant, the performance of the ejector is stabilized, and the first evaporator and the second evaporator Then, it is possible to provide a refrigeration apparatus capable of making the refrigeration capacity constant.

また、第16の発明に係る冷凍装置は、第15の発明において、第一流量調節弁と第二蒸発器をバイパスさせるバイパス回路に開閉弁を備えたので、エゼクタ入口の冷媒の状態が一定となり、エゼクタの性能が安定するとともに、第一蒸発器は可変、第二蒸発器では冷凍能力を一定にできる冷凍装置を提供することができる。   In the refrigeration apparatus according to the sixteenth invention, in the fifteenth invention, since the bypass circuit for bypassing the first flow rate adjustment valve and the second evaporator is provided with an on-off valve, the state of the refrigerant at the ejector inlet becomes constant. Further, it is possible to provide a refrigeration apparatus in which the performance of the ejector is stabilized, the first evaporator is variable, and the refrigeration capacity is constant in the second evaporator.

また、第17の発明に係る冷凍装置は、圧縮機、凝縮器、開閉弁、第一流量調節弁、第一蒸発器、気液分離器が、順次配管接続され、前記第一流量調節弁と第一蒸発器をバイパスするバイパス回路にエゼクタを備え、前記第一蒸発器と前記気液分離器を接続する配管への、前記バイパス回路の合流点と第一蒸発器出口間に圧力調整弁を備え、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、圧力検出手段あるいは温度検出手段を備え、前記凝縮器の凝縮圧力あるいは凝縮温度を検出し、目標の凝縮圧力あるいは目標の凝縮温度になるように、凝縮器の凝縮状態を制御する制御手段と、圧力検出手段と温度検出手段を備え、第一蒸発器出口の圧力と温度を検出し、目標の過熱度になるように、前記第一流量調節弁で冷媒流量を調節する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第二蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第二流量調節弁の冷媒流量を調節する制御手段を備えたので、起動時やプルダウン運転時など、前記第二開閉弁を全閉することで、第一蒸発器のみで、通常の冷凍サイクル運転をできる冷凍装置を提供できる。   Further, the refrigeration apparatus according to the seventeenth aspect of the present invention is the compressor, the condenser, the on-off valve, the first flow rate adjustment valve, the first evaporator, and the gas-liquid separator, which are sequentially connected by piping, A bypass circuit bypassing the first evaporator is provided with an ejector, and a pressure regulating valve is connected between the junction of the bypass circuit and the outlet of the first evaporator to the pipe connecting the first evaporator and the gas-liquid separator. The gas-liquid separator and the ejector suction part are connected via a second evaporator, and further include a second flow rate control valve connected between the gas-liquid separator and the second evaporator. The refrigeration apparatus includes pressure detection means or temperature detection means, detects the condensation pressure or condensation temperature of the condenser, and controls the condensation state of the condenser so that the target condensation pressure or the target condensation temperature is reached. Control means, pressure detection means and temperature detection A control unit that detects the pressure and temperature at the outlet of the first evaporator and adjusts the refrigerant flow rate with the first flow rate control valve so as to achieve a target superheat degree; and a pressure detection unit or a temperature detection unit. Provided with a control means for detecting the evaporation pressure or the evaporation temperature of the second evaporator and adjusting the refrigerant flow rate of the second flow rate control valve so as to reach the target evaporation pressure or the target evaporation temperature. By fully closing the second open / close valve such as at the time of pull-down operation or the like, a refrigeration apparatus capable of normal refrigeration cycle operation can be provided by using only the first evaporator.

実施の形態1.
図1は本発明の実施の形態の一例であり、圧縮機1、凝縮器2、第一流量調節弁3、エゼクタ4、第一蒸発器5、第二流量調節弁13、第二蒸発器6、気液分離器7が順次配管で接続され、さらに、気液分離器7には、液面の高さを検知する液面検知手段として、液面センサ8を備えた冷凍装置である。図2はエゼクタの構造図であり、エゼクタはノズル部10、ディフューザ部11から構成されている。図3は圧力−エンタルピ線図上の実施の形態の冷凍サイクル動作点である。なお、図において矢印9は冷媒の流れを示している。
Embodiment 1 FIG.
FIG. 1 shows an example of an embodiment of the present invention, where a compressor 1, a condenser 2, a first flow rate adjustment valve 3, an ejector 4, a first evaporator 5, a second flow rate adjustment valve 13, and a second evaporator 6 are shown. The gas-liquid separator 7 is sequentially connected by piping, and the gas-liquid separator 7 is a refrigeration apparatus provided with a liquid level sensor 8 as liquid level detection means for detecting the height of the liquid level. FIG. 2 is a structural diagram of the ejector. The ejector includes a nozzle portion 10 and a diffuser portion 11. FIG. 3 is a refrigeration cycle operating point of the embodiment on the pressure-enthalpy diagram. In the figure, an arrow 9 indicates the flow of the refrigerant.

図1、図2、図3を用いて冷凍サイクル動作について説明する。圧縮機1から吐出した高温高圧の冷媒ガスR1は凝縮器2に入り、そこで凝縮して高圧の液冷媒R2となり、第一流量調節弁3で冷媒流量を調節され、エゼクタ4に送り込まれる。エゼクタ4に送り込まれた冷媒はノズル部出口E2で状態R3になり、ディフューザ部11の混合部へ流れ込む。混合部でE4から流れ込む状態R4の冷媒ガスと混合した後、R5の状態となった冷媒はディフューザ11によりPe2からPe1に圧力が回復し、状態R6の冷媒となる。エゼクタ4をでた冷媒は第一蒸発器5に流れ込み、湿りの状態R7で気液分離器7に送り込まれる。気液分離器7で状態R8の冷媒ガスは圧縮機1の吸入へ、一方状態R9の冷媒液は第二流量調節弁13で減圧され、第二蒸発器6に送り込まれ、蒸発して状態R4となって、エゼクタ4の吸引部E4に流れる。このため、通常の冷凍装置の様に、二つの蒸発器があり、異なる蒸発圧力Pe1,Pe2(Pe1>Pe2)で運転している場合は、蒸発圧力Pe2に圧縮機吸入の圧力を合わせる必要があるが、エゼクタを用いることで、圧縮機吸入の圧力を蒸発圧力Pe1に合わせることができるため、圧縮機1の吸入ガス密度が低下しない。そのため圧縮比が小さくでき、高効率な運転が可能となる。   The refrigeration cycle operation will be described with reference to FIGS. The high-temperature and high-pressure refrigerant gas R1 discharged from the compressor 1 enters the condenser 2, where it is condensed into a high-pressure liquid refrigerant R2, and the refrigerant flow rate is adjusted by the first flow rate adjusting valve 3 and sent to the ejector 4. The refrigerant sent to the ejector 4 enters the state R3 at the nozzle part outlet E2 and flows into the mixing part of the diffuser part 11. After mixing with refrigerant gas in state R4 flowing from E4 in the mixing section, the refrigerant in state R5 recovers pressure from Pe2 to Pe1 by the diffuser 11, and becomes refrigerant in state R6. The refrigerant discharged from the ejector 4 flows into the first evaporator 5 and is sent to the gas-liquid separator 7 in a wet state R7. In the gas-liquid separator 7, the refrigerant gas in the state R8 is sucked into the compressor 1, while the refrigerant liquid in the state R9 is depressurized by the second flow control valve 13, sent to the second evaporator 6, and evaporated to the state R4. And flows to the suction part E4 of the ejector 4. For this reason, when there are two evaporators as in a normal refrigeration system and they are operating at different evaporation pressures Pe1, Pe2 (Pe1> Pe2), it is necessary to match the compressor suction pressure with the evaporation pressure Pe2. However, by using the ejector, the compressor suction pressure can be adjusted to the evaporation pressure Pe1, so that the suction gas density of the compressor 1 does not decrease. Therefore, the compression ratio can be reduced, and highly efficient operation is possible.

次に、冷媒としてR404AまたはR507のエゼクタに対する有効性を説明する。ここではR404Aのみについて説明するが、R507でもよい。
図1において圧縮機1での冷媒流量をGs、第二蒸発器6での冷媒流量をGe、第二蒸発器6での冷媒流量Geと圧縮機1での冷媒流量Gsの比を流量比α(=Ge/Gs)とする。一般にエゼクタ効率ηと流量比αとエンタルピの関係は(1)式で表される。
α={(HR10−HR3)/(HR11−HR4)}η・・・・(1)
Hはエンタルピで、添え字は図3の冷凍サイクル動作点に対応している。R2→R3,R4→R11は等エントロピ変化、R2→R10は等エンタルピ変化である。(1)式からも分かる様に、HR11→HR4が小さく、HR10→HR3が大きい冷媒ほど、同じエゼクタ効
率の場合は流量比αが大きくなる。その結果、第二蒸発器6での冷媒流量は大きくなり、第二蒸発器6の冷凍能力を大きくすることが可能となる。(HR10−HR3)/(HR11−H
R4)は冷媒の物性で決定される値である。たとえば、第一蒸発器5での蒸発圧力Pe1と
第二蒸発器6の蒸発圧力Pe2の差を50kPa一定とした場合におけるR22とR404Aの(HR10−HR3)/(HR11−HR4)と第二蒸発器6の蒸発温度との関係を図4に示
す。図4でR22とR404A比較すると、R404Aの(HR10−HR3)/(HR11−H
R4)はR22のそれに比べて約1.7倍大きい。同じエゼクタ効率ηを用いた場合、R4
04Aの方がR22より流量比αが大きくなり、第二蒸発器6での冷凍能力を大きくすることが容易になる。以上から、冷媒としてR404Aを用いた冷凍装置には物性の観点から他の冷媒と比べてエゼクタ4の効果が大きいと言える。
即ち、(HR10−HR3)/(HR11−HR4)の値が大きい冷媒、例えば、従来使われてい
た冷媒R22に比べて大きいR404A,R507を用いることでエゼクタを有効に利用することができる。
Next, the effectiveness of the R404A or R507 ejector as a refrigerant will be described. Here, only R404A will be described, but R507 may be used.
1, the refrigerant flow rate at the compressor 1 is Gs, the refrigerant flow rate at the second evaporator 6 is Ge, the ratio of the refrigerant flow rate Ge at the second evaporator 6 and the refrigerant flow rate Gs at the compressor 1 is the flow rate ratio α. (= Ge / Gs). In general, the relationship between the ejector efficiency η, the flow rate ratio α, and the enthalpy is expressed by equation (1).
α = {(H R10 −H R3 ) / (H R11 −H R4 )} η (1)
H is enthalpy and the subscript corresponds to the refrigeration cycle operating point of FIG. R2 → R3, R4 → R11 is an isentropic change, and R2 → R10 is an isenthalpy change. As can be seen from the equation (1), the smaller the ratio H R11 → H R4 and the larger the ratio H R10 → H R3 , the larger the flow rate ratio α in the case of the same ejector efficiency. As a result, the refrigerant flow rate in the second evaporator 6 increases, and the refrigeration capacity of the second evaporator 6 can be increased. (H R10 −H R3 ) / (H R11 −H
R4 ) is a value determined by the physical properties of the refrigerant. For example, (H R10 −H R3 ) / (H R11 −H R4 ) of R22 and R404A when the difference between the evaporation pressure Pe1 in the first evaporator 5 and the evaporation pressure Pe2 in the second evaporator 6 is constant 50 kPa. FIG. 4 shows the relationship between the temperature and the evaporation temperature of the second evaporator 6. Comparing R22 and R404A in FIG. 4, (H R10 −H R3 ) / (H R11 −H) of R404A
R4 ) is approximately 1.7 times larger than that of R22. When the same ejector efficiency η is used, R4
In the case of 04A, the flow rate ratio α is larger than that of R22, and it becomes easier to increase the refrigerating capacity in the second evaporator 6. From the above, it can be said that the refrigeration apparatus using R404A as the refrigerant has a greater effect of the ejector 4 than the other refrigerants from the viewpoint of physical properties.
That is, the ejector can be effectively used by using a refrigerant having a large value of (H R10 −H R3 ) / (H R11 −H R4 ), for example, R404A and R507 which are larger than the refrigerant R22 conventionally used. Can do.

次に、運転方法について説明する。たとえば、第一流量調節弁3、第二流量調節弁13には、それぞれ電子膨張弁3、電子膨張弁13を採用し、さらに気液分離器7には液面センサ8を備え、液面センサ8が気液分離器7での液面高さが所定量にないことを検知したとき、第1の第一流量調節弁制御手段が電子膨張弁3を流れる冷媒流量を調節することにより、冷媒量の制御を行う。具体的には、気液分離器7で液面が低下すると、電子膨張弁3の開度を大きくし、液面が高くなるように、冷媒量を制御する。
逆に、液面が高い時は電子膨張弁3の開度を小さくして、液面高さが低下するように制御する。その結果、冷媒量は適正に制御することができる。
また、第二蒸発器6の冷媒流量制御は、圧力を検出する圧力検知手段として、たとえば、圧力センサ18と、前記蒸発器の温度を検出する温度検知手段として、たとえば、温度センサ19を用いて、第二蒸発器出口の圧力P、温度Tを検出して、蒸発器出口の過熱度が一定になるように、第1の第二流量調節弁制御手段が電子膨張弁13で冷媒流量を制御する。
なお、起動時等、気液分離器7に液冷媒が存在しない時や不足時は、液面センサ8の検知により第2の第二流量調節弁制御手段が電子膨張弁13を全閉にして、第一蒸発器5のみの運転とする。液面センサ8により液面高さが目標値まで到達しているのを検出した後は電子膨張弁13の開度調節を行う。
但し、第1、第2の第二流量調節弁制御手段は、共通の制御手段としてもよい。
Next, a driving method will be described. For example, the first flow rate adjusting valve 3 and the second flow rate adjusting valve 13 employ the electronic expansion valve 3 and the electronic expansion valve 13, respectively, and the gas-liquid separator 7 includes the liquid level sensor 8, and the liquid level sensor When 8 detects that the liquid level at the gas-liquid separator 7 is not a predetermined amount, the first first flow rate control valve control means adjusts the flow rate of the refrigerant flowing through the electronic expansion valve 3 to Control the amount. Specifically, when the liquid level is lowered by the gas-liquid separator 7, the opening of the electronic expansion valve 3 is increased, and the amount of refrigerant is controlled so that the liquid level becomes higher.
On the contrary, when the liquid level is high, the opening degree of the electronic expansion valve 3 is reduced to control the liquid level to be lowered. As a result, the amount of refrigerant can be properly controlled.
Further, the refrigerant flow rate control of the second evaporator 6 uses, for example, a pressure sensor 18 as a pressure detection means for detecting pressure, and a temperature sensor 19 as a temperature detection means for detecting the temperature of the evaporator, for example. The first second flow rate adjusting valve control means controls the refrigerant flow rate by the electronic expansion valve 13 so that the pressure P and temperature T at the outlet of the second evaporator are detected and the degree of superheat at the outlet of the evaporator becomes constant. To do.
When the liquid refrigerant is not present or insufficient in the gas-liquid separator 7 such as at the time of start-up, the second second flow rate control valve control means fully closes the electronic expansion valve 13 by the detection of the liquid level sensor 8. Only the first evaporator 5 is operated. After the liquid level sensor 8 detects that the liquid level has reached the target value, the opening degree of the electronic expansion valve 13 is adjusted.
However, the first and second second flow rate control valve control means may be common control means.

実施の形態2.
図5は発明の実施の形態2を示したものである。前記発明の実施の形態1の第一蒸発器5の出口に第一蒸発器の出口圧力を検出する第1の第一蒸発器圧力検知手段として、たとえば圧力センサ20を設置し、さらに前記第一蒸発器5の出口に第一蒸発器の出口温度を検出する第1の第一蒸発器温度検知手段として、たとえば温度センサ21を備えている。通常の運転モードでは、前記発明の実施の形態1と同様に、気液分離器7の液面を検出する手段、たとえば、液面センサ8で液面を検知して、第1の第一流量調節弁制御手段が第一流量調節弁、たとえば電子膨張弁3の開度を調節することで、気液分離器7の冷媒量を制御する。
また、第一蒸発器5のみの運転を行う時は、第二流量調節弁13、たとえば電子膨張弁13を全閉にし、第一蒸発器5の出口の圧力Pを圧力センサ20で検出し、さらに温度Tを温度センサ21で検出して、蒸発器出口の過熱度が一定になるように、第2の第一流量調節弁制御手段が電子膨張弁3で冷媒流量を制御する。
但し、第1、第2の第一流量調節弁制御手段は共通の制御手段としてもよい。
Embodiment 2. FIG.
FIG. 5 shows a second embodiment of the invention. For example, a pressure sensor 20 is installed at the outlet of the first evaporator 5 of the first embodiment of the invention as first first evaporator pressure detection means for detecting the outlet pressure of the first evaporator. For example, a temperature sensor 21 is provided at the outlet of the evaporator 5 as first first evaporator temperature detecting means for detecting the outlet temperature of the first evaporator. In the normal operation mode, as in the first embodiment of the present invention, the liquid level of the gas-liquid separator 7 is detected, for example, the liquid level sensor 8 detects the liquid level, and the first first flow rate is detected. The control valve control means controls the amount of refrigerant in the gas-liquid separator 7 by adjusting the opening of the first flow rate control valve, for example, the electronic expansion valve 3.
When only the first evaporator 5 is operated, the second flow rate control valve 13, for example, the electronic expansion valve 13, is fully closed, and the pressure P at the outlet of the first evaporator 5 is detected by the pressure sensor 20, Further, the temperature T is detected by the temperature sensor 21, and the second first flow rate control valve control means controls the refrigerant flow rate by the electronic expansion valve 3 so that the degree of superheat at the evaporator outlet becomes constant.
However, the first and second first flow rate control valve control means may be common control means.

実施の形態3.
図6は発明の実施の形態3を示したものである。前記発明の実施の形態2の第一蒸発器5に例えば第一開閉弁として第一電磁弁12と、第一蒸発器5をバイパスする第一バイパス回路15と、そのバイパス回路15に第二開閉弁として第二電磁弁14を備えている。

通常の運転モードでは、第一バイパス回路15の電磁弁14は閉、第一蒸発器5の電磁弁12は開にする。液面センサ8で気液分離器7に冷媒が存在しないことや不足が検出されたときは、第一開閉弁制御手段が第一蒸発器5の電磁弁12は閉、バイパス回路15の電磁弁14は開にして、第一蒸発器5を冷媒がバイパスできるようにし、液面センサ8により目標液面高さになるまで、冷媒がバイパス回路15を流れるようにする。目標液面高さに達すると、通常の運転モードにする。
また、第二蒸発器6の冷媒流量制御は、圧力を検出する手段として、例えば、圧力センサ18と、前記蒸発器の温度を検出する手段として、例えば温度センサ19を用いて、第二蒸発器出口の圧力P、温度Tを検出して、第1の第二流量調節弁制御手段が蒸発器出口の過熱度が一定になるように、電子膨張弁13で制御する。
第一蒸発器5の電磁弁12を閉、バイパス回路15の電磁弁14を開にすることで、例えば、ヒータデフロスト時等、第二蒸発器6のみの運転が可能となる。また、第一蒸発器5でヒータデフロストを行いたい時も同様に、第一蒸発器5の第一電磁弁12は閉、バイパス回路15の第二電磁弁14は開にすると、第一蒸発器5はデフロストを行い、第二蒸発器6は運転させることにより、庫内温度上昇を抑えることが可能となる。逆に、電子膨張弁13を全閉、バイパス回路15の第二電磁弁14は閉にすると、第一蒸発器5のみの運転となり、第二蒸発器6のみデフロスト状態にすることもできる。
Embodiment 3 FIG.
FIG. 6 shows a third embodiment of the invention. The first evaporator 5 according to the second embodiment of the present invention includes, for example, a first solenoid valve 12 as a first on-off valve, a first bypass circuit 15 that bypasses the first evaporator 5, and a second on-off switch on the bypass circuit 15. A second electromagnetic valve 14 is provided as a valve.

In the normal operation mode, the electromagnetic valve 14 of the first bypass circuit 15 is closed and the electromagnetic valve 12 of the first evaporator 5 is opened. When the liquid level sensor 8 detects that there is no refrigerant in the gas-liquid separator 7 or a shortage is detected, the first on-off valve control means closes the solenoid valve 12 of the first evaporator 5 and the solenoid valve of the bypass circuit 15. 14 is opened so that the refrigerant can bypass the first evaporator 5, and the refrigerant flows through the bypass circuit 15 until the target liquid level is reached by the liquid level sensor 8. When the target liquid level is reached, the normal operation mode is set.
The refrigerant flow rate control of the second evaporator 6 is performed by using, for example, a pressure sensor 18 as a means for detecting pressure and a temperature sensor 19 as a means for detecting the temperature of the evaporator, for example. The outlet pressure P and temperature T are detected, and the first second flow rate control valve control means controls the electronic expansion valve 13 so that the degree of superheat at the evaporator outlet becomes constant.
By closing the solenoid valve 12 of the first evaporator 5 and opening the solenoid valve 14 of the bypass circuit 15, only the second evaporator 6 can be operated, for example, at the time of heater defrost. Similarly, when it is desired to perform heater defrosting with the first evaporator 5, when the first electromagnetic valve 12 of the first evaporator 5 is closed and the second electromagnetic valve 14 of the bypass circuit 15 is opened, the first evaporator By defrosting 5 and operating the second evaporator 6, it is possible to suppress an increase in the internal temperature. Conversely, when the electronic expansion valve 13 is fully closed and the second electromagnetic valve 14 of the bypass circuit 15 is closed, only the first evaporator 5 is operated, and only the second evaporator 6 can be in a defrost state.

実施の形態4.
図7は発明の実施の形態4を示したものである。圧縮機1、凝縮器2、第一流量調節弁3、エゼクタ4、第三流量調節弁17を備え、エゼクタ4をバイパスする第二バイパス回路16、第一蒸発器5、気液分離器7、第二流量調節弁13、第二蒸発器6などが順次配管で接続されている。さらに、気液分離器7には、例えば液面の高さを検知する手段として液面センサ8を備えた冷凍装置である。ここでは、第一流量調節弁3、第二流量調節弁13、第三流量調節弁17には、電子膨張弁を用いることにする。
通常の運転モードでは、電子膨張弁17の開度を全閉にし、エゼクタ4に冷媒が流れるようにし、気液分離器7の液面を液面センサ8で検出して、第1の第一流量調節弁制御手段が電子膨張弁3で冷媒量を制御する。
また、第二蒸発器6の冷媒流量制御は、圧力を検出する手段として、例えば、圧力センサ18と、前記蒸発器の温度を検出する手段として、例えば温度センサ19を用いて、第二蒸発器出口の圧力P、温度Tを検出して、第1の第二流量調節弁制御手段が蒸発器出口の過熱度が一定になるように、電子膨張弁13で制御する。
起動時などは、第1の第三流量調節弁制御手段がこの電子膨張弁3を全閉にし、さらに電子膨張弁13も全閉にして、エゼクタ4と第二蒸発器6に冷媒を流れなくする。気液分離器7の液面高さを液面センサ8にて検出しながら、エゼクタ4をバイパスする回路16の電子膨張弁17の開度を調節することで冷媒量を制御する。液面高さが目標値になるまで、電子膨張弁13は全閉にし、第一蒸発器5のみの運転とする。液面高さが目標値に達した後は通常の運転モードにする。
Embodiment 4 FIG.
FIG. 7 shows a fourth embodiment of the invention. A compressor 1, a condenser 2, a first flow rate adjustment valve 3, an ejector 4, a third flow rate adjustment valve 17, a second bypass circuit 16, a first evaporator 5, a gas-liquid separator 7, which bypass the ejector 4, The second flow rate control valve 13, the second evaporator 6 and the like are sequentially connected by piping. Further, the gas-liquid separator 7 is a refrigeration apparatus provided with a liquid level sensor 8 as means for detecting the height of the liquid level, for example. Here, electronic expansion valves are used for the first flow rate adjustment valve 3, the second flow rate adjustment valve 13, and the third flow rate adjustment valve 17.
In the normal operation mode, the opening of the electronic expansion valve 17 is fully closed, the refrigerant flows through the ejector 4, the liquid level of the gas-liquid separator 7 is detected by the liquid level sensor 8, and the first first The flow rate control valve control means controls the refrigerant amount by the electronic expansion valve 3.
The refrigerant flow rate control of the second evaporator 6 is performed by using, for example, a pressure sensor 18 as a means for detecting pressure and a temperature sensor 19 as a means for detecting the temperature of the evaporator, for example. The outlet pressure P and temperature T are detected, and the first second flow rate control valve control means controls the electronic expansion valve 13 so that the degree of superheat at the evaporator outlet becomes constant.
At the time of start-up, the first third flow rate control valve control means fully closes the electronic expansion valve 3 and further closes the electronic expansion valve 13 so that the refrigerant does not flow to the ejector 4 and the second evaporator 6. To do. While detecting the liquid level height of the gas-liquid separator 7 by the liquid level sensor 8, the amount of refrigerant is controlled by adjusting the opening degree of the electronic expansion valve 17 of the circuit 16 that bypasses the ejector 4. Until the liquid level reaches the target value, the electronic expansion valve 13 is fully closed and only the first evaporator 5 is operated. After the liquid level reaches the target value, the normal operation mode is set.

実施の形態5.
図8は発明の実施の形態5を示したものである。前記実施の形態4の第一蒸発器5に例えば第一開閉弁として第一電磁弁12と、第一蒸発器5をバイパスする第一バイパス回路15と、その回路に第二開閉弁として第二電磁弁14を備えている。
通常の運転モードでは、バイパス回路15の第二電磁弁14は閉、第一蒸発器5の第一電磁弁12は開にし、電子膨張弁17の開度は全閉にし、エゼクタ4に冷媒が流れるようにする。気液分離器7の液面センサ8で検知し、第1の第一流量調節弁制御手段が電子膨張弁3の開度を調節することで、冷媒量を制御する。 また、第二蒸発器6の冷媒流量制御は、圧力を検出する手段として、例えば、圧力センサ18と、前記蒸発器の温度を検出する手段として、例えば温度センサ19を用いて、第二蒸発器出口の圧力P、温度Tを検出して、第1の第二流量調節弁制御手段が蒸発器出口の過熱度が一定になるように、電子膨張弁13で制御する。
液面センサ8で気液分離器7に冷媒が存在しないことや不足が検知されたときは、第2の第三流量調節弁制御手段が第一蒸発器5の第一電磁弁12は閉、バイパス回路15の第二電磁弁14は開にし、第一蒸発器5を冷媒がバイパスさせるようにし、電子膨張弁3は全閉にしてエゼクタをバイパスする回路16の電子膨張弁17により、液面センサ8により目標液面高さになるまで、蒸発器5をバイパスさせ、目標液面高さに達すると、通常の運転モードにする。
但し、第2の第三流量調節弁制御手段は、前記実施の形態4の第1の第三流量調節弁制御手段と共通の制御手段としてもよい。
第一蒸発器5の電磁弁12を閉、バイパス回路15の電磁弁14を開にすることで、第二蒸発器6のみの運転可能となる。また、ヒータデフロストなどを使用した時も同様に、第一蒸発器5の電磁弁12は閉、バイパス回路15の電磁弁14は開にすると、第一蒸発器5はデフロストを行い、第二蒸発器6は運転させることにより、庫内温度上昇を抑えることが可能となる。逆に、電子膨張弁13を全閉、バイパス回路15の電磁弁14は閉にすると、第一蒸発器5は運転状態、第二蒸発器6はデフロスト状態にすることもできる。
Embodiment 5 FIG.
FIG. 8 shows a fifth embodiment of the invention. For example, the first evaporator 5 of the fourth embodiment has a first solenoid valve 12 as a first on-off valve, a first bypass circuit 15 to bypass the first evaporator 5, and a second on-off valve in the circuit. An electromagnetic valve 14 is provided.
In the normal operation mode, the second electromagnetic valve 14 of the bypass circuit 15 is closed, the first electromagnetic valve 12 of the first evaporator 5 is opened, the opening of the electronic expansion valve 17 is fully closed, and the refrigerant is supplied to the ejector 4. Make it flow. Detected by the liquid level sensor 8 of the gas-liquid separator 7, the first first flow rate control valve control means adjusts the opening of the electronic expansion valve 3, thereby controlling the refrigerant amount. The refrigerant flow rate control of the second evaporator 6 is performed by using, for example, a pressure sensor 18 as a means for detecting pressure and a temperature sensor 19 as a means for detecting the temperature of the evaporator, for example. The outlet pressure P and temperature T are detected, and the first second flow rate control valve control means controls the electronic expansion valve 13 so that the degree of superheat at the evaporator outlet becomes constant.
When the liquid level sensor 8 detects that there is no refrigerant in the gas-liquid separator 7 or a shortage is detected, the second third flow rate control valve control means closes the first electromagnetic valve 12 of the first evaporator 5, The second electromagnetic valve 14 of the bypass circuit 15 is opened, the refrigerant is bypassed in the first evaporator 5, the electronic expansion valve 3 is fully closed, and the electronic expansion valve 17 of the circuit 16 bypassing the ejector is used to The evaporator 5 is bypassed until the target liquid level is reached by the sensor 8, and when the target liquid level is reached, the normal operation mode is set.
However, the second third flow rate control valve control means may be the same control means as the first third flow rate control valve control means of the fourth embodiment.
By closing the solenoid valve 12 of the first evaporator 5 and opening the solenoid valve 14 of the bypass circuit 15, only the second evaporator 6 can be operated. Similarly, when a heater defrost or the like is used, when the solenoid valve 12 of the first evaporator 5 is closed and the solenoid valve 14 of the bypass circuit 15 is opened, the first evaporator 5 performs defrosting and the second evaporation. By operating the vessel 6, it is possible to suppress an increase in the internal temperature. Conversely, when the electronic expansion valve 13 is fully closed and the solenoid valve 14 of the bypass circuit 15 is closed, the first evaporator 5 can be in the operating state and the second evaporator 6 can be in the defrosted state.

実施の形態6.
図9は発明の実施の形態6を示すものである。圧縮機1、凝縮器2、第一流量調節弁3、エゼクタ4、第一蒸発器5、第二流量調節弁13、第二蒸発器6が順次配管で接続され、さらに、気液分離器7には、液面の高さを検知する手段として、液面センサ8を備えた冷凍装置である。また、第一流量調節弁3、エゼクタ4と第一蒸発器5をバイパスする第三バイパス回路23と、そのバイパス回路23に第四流量調節弁24を備えている。ここでは、第一流量調節弁3、第二流量調節弁13、第四流量調節弁24には電子膨張弁を用いている。
通常の運転モードでは、電子膨張弁24は全閉にし、エゼクタ4に冷媒が流れるようにする。気液分離器7に設置した液面センサ8で液面高さを検出して、第1の第一流量調節弁制御手段が電子膨張弁3により、冷媒量制御を行う。
また、第二蒸発器6の冷媒流量制御は、圧力を検出する手段として、例えば、圧力センサ18と、前記蒸発器の温度を検出する手段として、例えば温度センサ19を用いて、第二蒸発器出口の圧力P、温度Tを検出して、第1の第二流量調節弁制御手段が蒸発器出口の過熱度が一定になるように、電子膨張弁13で制御する。
気液分離器に液が存在しない時または不足時は、第1の第四流量調節弁制御手段が電子膨張弁3を全閉にして、エゼクタに冷媒が流れないようにして、バイパス回路23に冷媒を流れるようにして、目標液面高さに達するまで電子膨張弁24の開度を調節しながら運転する。気液分離器7での目標液面高さに到達した後は通常運転モードにする。
Embodiment 6 FIG.
FIG. 9 shows a sixth embodiment of the invention. The compressor 1, the condenser 2, the first flow rate adjustment valve 3, the ejector 4, the first evaporator 5, the second flow rate adjustment valve 13, and the second evaporator 6 are sequentially connected by piping, and further, the gas-liquid separator 7. The refrigeration apparatus includes a liquid level sensor 8 as means for detecting the height of the liquid level. The first flow rate adjusting valve 3, the ejector 4 and the third evaporator 23 bypassing the first evaporator 5, and the bypass circuit 23 includes a fourth flow rate adjusting valve 24. Here, electronic expansion valves are used for the first flow rate adjustment valve 3, the second flow rate adjustment valve 13, and the fourth flow rate adjustment valve 24.
In the normal operation mode, the electronic expansion valve 24 is fully closed so that the refrigerant flows through the ejector 4. The liquid level sensor 8 detects the liquid level height installed in the gas-liquid separator 7, and the first first flow rate control valve control means controls the refrigerant amount by the electronic expansion valve 3.
The refrigerant flow rate control of the second evaporator 6 is performed by using, for example, a pressure sensor 18 as a means for detecting pressure and a temperature sensor 19 as a means for detecting the temperature of the evaporator, for example. The outlet pressure P and temperature T are detected, and the first second flow rate control valve control means controls the electronic expansion valve 13 so that the degree of superheat at the evaporator outlet becomes constant.
When the liquid does not exist in the gas-liquid separator or when the liquid is insufficient, the first fourth flow rate control valve control means fully closes the electronic expansion valve 3 so that the refrigerant does not flow to the ejector. The operation is performed while adjusting the opening of the electronic expansion valve 24 until the target liquid level is reached by flowing the refrigerant. After reaching the target liquid level in the gas-liquid separator 7, the normal operation mode is set.

実施の形態7.
図10は本発明の実施の形態の一例であり、圧縮機1、凝縮器2、液溜26、第三開閉弁27、エゼクタ4、第一蒸発器5、気液分離器7、第二流量調節弁13、第二蒸発器6が順次配管で接続されている。なお図において、矢印9は冷媒の流れを示している。
図2、図3、図10を用いて冷凍サイクル動作について説明する。圧縮機1から吐出した高温高圧の冷媒ガスR1は凝縮器2に入り、そこで凝縮して高圧の液冷媒R2となり、エゼクタ4に送り込まれる。エゼクタ4に送り込まれた冷媒はノズル部出口E2で状態R3になり、ディフューザ11の混合部へ流れ込む。混合部でE4から流れ込む状態R4の冷媒ガスと混合した後、R5の状態となった冷媒はディフューザ11によりPe2からPe1に圧力が回復し、状態R6の冷媒となる。エゼクタ4を出た冷媒は第一蒸発器5に流れ込み、湿りの状態R7となり気液分離器7に送り込まれる。気液分離器7で状態R8の冷媒ガスは圧縮機1の吸入側へ、一方状態R9の冷媒液は第二流量調節弁13で減圧され、第二蒸発器6に送り込まれ、蒸発して状態R4となって、エゼクタ5の吸引部E4に流れる。このため、通常の冷凍装置のように、二つの蒸発器があり、異なる蒸発圧力Pe1,Pe2(Pe1>Pe2)で運転している場合は、蒸発圧力Pe2に圧縮機吸入の圧力を合わせる必要があるが、エゼクタを用いることで、圧縮機吸入の圧力を蒸発圧力Pe1に合わせることができるため、圧縮機1の吸入ガス密度が低下しない。そのため圧縮比が小さくでき、高効率な運転が可能となる。
Embodiment 7 FIG.
FIG. 10 shows an example of an embodiment of the present invention. The compressor 1, the condenser 2, the liquid reservoir 26, the third on-off valve 27, the ejector 4, the first evaporator 5, the gas-liquid separator 7, and the second flow rate. The control valve 13 and the second evaporator 6 are sequentially connected by piping. In the figure, an arrow 9 indicates the flow of the refrigerant.
The refrigeration cycle operation will be described with reference to FIGS. 2, 3, and 10. The high-temperature and high-pressure refrigerant gas R1 discharged from the compressor 1 enters the condenser 2, where it condenses to become a high-pressure liquid refrigerant R2, and is sent to the ejector 4. The refrigerant sent to the ejector 4 enters the state R3 at the nozzle part outlet E2 and flows into the mixing part of the diffuser 11. After mixing with refrigerant gas in state R4 flowing from E4 in the mixing section, the refrigerant in state R5 recovers pressure from Pe2 to Pe1 by the diffuser 11, and becomes refrigerant in state R6. The refrigerant that has exited the ejector 4 flows into the first evaporator 5, enters a wet state R 7, and is sent to the gas-liquid separator 7. In the gas-liquid separator 7, the refrigerant gas in the state R8 is sent to the suction side of the compressor 1, while the refrigerant liquid in the state R9 is depressurized by the second flow control valve 13, sent to the second evaporator 6, and evaporated. R4 flows to the suction part E4 of the ejector 5. For this reason, when there are two evaporators as in a normal refrigeration system and they are operating at different evaporation pressures Pe1, Pe2 (Pe1> Pe2), it is necessary to match the compressor suction pressure with the evaporation pressure Pe2. However, by using the ejector, the suction pressure of the compressor 1 is not reduced because the suction pressure of the compressor can be adjusted to the evaporation pressure Pe1. Therefore, the compression ratio can be reduced, and highly efficient operation is possible.

運転方法について説明する。本発明の実施の形態では、第二流量調節弁13には電子膨張弁13、第三開閉弁27には電磁弁27、第二蒸発器出口の圧力を検出する第1の第二蒸発器圧力検出手段18には圧力センサ18、第二蒸発器出口の温度を検出する第1の第二蒸発器温度検出手段19には温度センサ19を用いている。運転時は電磁弁27は開にしておき、第二蒸発器出口の圧力、温度を圧力センサ18、温度センサ19で測定し、第1の第二流量調節弁制御手段6aが第二蒸発器出口の過熱度を算出し、所定の目標の過熱度になるように電子膨張弁13の開度を調節することで、第二蒸発器6に送り込む冷媒流量を制御する。停止時は通常の冷凍装置と同じように、電磁弁27を全閉にして、ポンプダウン運転で冷凍装置を停止させる。
このようにポンプダウン運転で冷凍装置を停止させた場合、次に冷凍装置を起動する時は気液分離器7に冷媒液が残っているために、圧縮機1に急激に冷媒が返る可能性があり、信頼性の問題がある。そこで、気液分離器7を第二蒸発器6より上の位置に据え、さらに冷凍装置が停止した場合、電子膨張弁13は全開にしておき、気液分離器7の冷媒液が第二蒸発器6に流れ込むようにする。このように冷媒液を第二蒸発器6に移動させることによって再起動時、圧縮機1に冷媒液が返りにくくなるため、信頼性が向上する。
さらに、再起動時には、第1の第二流量調節弁制御手段6aにより、電子膨張弁13を全閉にし、第二蒸発器出口の圧力センサ18、温度センサ19で過熱度を算出し、所定の過熱度に達したら、電子膨張弁13を開け、第二蒸発器6の液冷媒をなくすようにすることが望ましい。以後は所定の目標の過熱度になるように、第1の第二流量調節弁制御手段6aにより電子膨張弁13で第二蒸発器6での冷媒流量を制御する。この制御をすることで、起動時の第二蒸発器6から気液分離器7に逆流する冷媒をなくすことが可能となり、信頼性が向上する。
A driving method will be described. In the embodiment of the present invention, the second flow rate adjusting valve 13 is an electronic expansion valve 13, the third on-off valve 27 is an electromagnetic valve 27, and the first second evaporator pressure for detecting the pressure at the second evaporator outlet. A pressure sensor 18 is used as the detection means 18, and a temperature sensor 19 is used as the first second evaporator temperature detection means 19 that detects the temperature at the outlet of the second evaporator. During operation, the solenoid valve 27 is kept open, the pressure and temperature at the outlet of the second evaporator are measured by the pressure sensor 18 and the temperature sensor 19, and the first second flow rate control valve control means 6a is controlled by the second evaporator outlet. And the flow rate of the refrigerant sent to the second evaporator 6 is controlled by adjusting the opening degree of the electronic expansion valve 13 so as to reach a predetermined target superheat degree. At the time of stop, like the normal refrigeration apparatus, the electromagnetic valve 27 is fully closed and the refrigeration apparatus is stopped by the pump down operation.
In this way, when the refrigeration apparatus is stopped by the pump-down operation, the refrigerant liquid remains in the gas-liquid separator 7 the next time the refrigeration apparatus is started, and therefore, the refrigerant may return suddenly to the compressor 1. There is a problem of reliability. Therefore, when the gas-liquid separator 7 is placed above the second evaporator 6 and the refrigeration system is stopped, the electronic expansion valve 13 is fully opened, and the refrigerant liquid in the gas-liquid separator 7 is second evaporated. To flow into the vessel 6. By moving the refrigerant liquid to the second evaporator 6 in this way, it becomes difficult for the refrigerant liquid to return to the compressor 1 at the time of restart, thereby improving the reliability.
Further, at the time of restart, the electronic expansion valve 13 is fully closed by the first second flow rate control valve control means 6a, the degree of superheat is calculated by the pressure sensor 18 and the temperature sensor 19 at the outlet of the second evaporator, When the degree of superheat is reached, it is desirable to open the electronic expansion valve 13 and eliminate the liquid refrigerant in the second evaporator 6. Thereafter, the refrigerant flow rate in the second evaporator 6 is controlled by the electronic expansion valve 13 by the first second flow rate adjusting valve control means 6a so as to achieve a predetermined target superheat degree. By performing this control, it is possible to eliminate the refrigerant that flows backward from the second evaporator 6 to the gas-liquid separator 7 at the time of startup, and the reliability is improved.

実施の形態8.
図11は本発明の実施の形態8を示したものである。圧縮機1、凝縮器2、液溜26、第三開閉弁27、エゼクタ4、第一蒸発器5、第二蒸発器6等が配管接続されている。凝縮器2には、例えば本発明の実施の形態では凝縮器2の中間地点に凝縮圧力を検出する凝縮圧力検出手段29として、圧力センサ29を備えている。凝縮圧力検出手段の代わりに凝縮温度を検出する凝縮温度検出手段として温度センサでもよい。第二蒸発器出口には第1の圧力検出手段18として圧力センサ18、第1の温度検出手段19として温度センサ19を用いている。
次に凝縮圧力制御(凝縮圧力を一定にする制御)の有効性について説明する。図11において圧縮機1での冷媒流量をGc、第二蒸発器6での冷媒流量をGe、第二蒸発器6での冷媒流量Geと圧縮機1での冷媒流量Gcの比を流量比α(=Ge/Gc)とする。一般にエゼクタ効率ηと流量比αとエンタルピの関係は(2)式で表される。
α=(HR10−HR3)・η/(HR11−HR4) ・・・・(2)
Hはエンタルピで、添え字は図3の冷凍サイクル動作点に対応している。R2→R3,R4→R11は等エントロピ変化、R2→R10は等エンタルピ変化である。(2)式からもわかる様に、HR10→HR3が大きいほど、同じエゼクタ効率の場合は流量比が大きく
なる。その結果、エゼクタを有効に利用することができる。すなわち、凝縮圧力が低下すると、図3からも分かるようにエンタルピHR3は増大し、HR10−HR3も小さくなる。そ
の結果(2)式から、流量比αは低下する。凝縮圧力を上昇させると流量比αは増加するが、圧縮比が増加するため、圧縮機の性能は低下する。その結果Gcは低下するので、第二蒸発器の冷凍能力は増加しない。すなわち凝縮圧力は適正な範囲がある。
Embodiment 8 FIG.
FIG. 11 shows an eighth embodiment of the present invention. The compressor 1, the condenser 2, the liquid reservoir 26, the third on-off valve 27, the ejector 4, the first evaporator 5, the second evaporator 6 and the like are connected by piping. For example, in the embodiment of the present invention, the condenser 2 includes a pressure sensor 29 as the condensation pressure detecting means 29 that detects the condensation pressure at an intermediate point of the condenser 2. Instead of the condensation pressure detection means, a temperature sensor may be used as the condensation temperature detection means for detecting the condensation temperature. At the outlet of the second evaporator, a pressure sensor 18 is used as the first pressure detection means 18 and a temperature sensor 19 is used as the first temperature detection means 19.
Next, the effectiveness of condensing pressure control (control for condensing condensing pressure) will be described. 11, the refrigerant flow rate at the compressor 1 is Gc, the refrigerant flow rate at the second evaporator 6 is Ge, the ratio of the refrigerant flow rate Ge at the second evaporator 6 and the refrigerant flow rate Gc at the compressor 1 is a flow rate ratio α. (= Ge / Gc). In general, the relationship between the ejector efficiency η, the flow rate ratio α, and the enthalpy is expressed by equation (2).
α = (H R10 −H R3 ) · η / (H R11 −H R4 ) (2)
H is enthalpy and the subscript corresponds to the refrigeration cycle operating point of FIG. R2 → R3, R4 → R11 is an isentropic change, and R2 → R10 is an isenthalpy change. As can be seen from the equation (2), the larger H R10 → H R3 , the larger the flow rate ratio becomes for the same ejector efficiency. As a result, the ejector can be used effectively. That is, when the condensing pressure decreases, enthalpy H R3 increases and H R10 -H R3 also decreases as can be seen from FIG. As a result, the flow rate ratio α decreases from the equation (2). Increasing the condensing pressure increases the flow rate ratio α, but the compression ratio increases, so the compressor performance decreases. As a result, Gc decreases, and the refrigerating capacity of the second evaporator does not increase. That is, the condensation pressure has an appropriate range.

次に、運転方法について説明する。圧力センサ29で凝縮圧力を検出し、目標の凝縮圧力に到達するように、凝縮圧力制御手段2aにより、空冷式凝縮器の場合は風量を調節する。具体的には、凝縮圧力が目標圧力を下回るときは、風量を減少させ、逆に凝縮圧力が目標圧力を上回るときは、風量を増大させる。水冷式凝縮器の場合は水量を調節する。具体的には、凝縮圧力が目標圧力を下回るときは、水量を減少させ、逆に凝縮圧力が目標圧力を上回るときは、水量を増大させる。このような制御方法で、凝縮圧力を目標の範囲に入るようにする。また、第二蒸発器出口の圧力、温度を圧力センサ18、温度センサ19で測定し、第二蒸発器出口の過熱度を算出し、目標の過熱度になるように、第1の第二流量調節弁制御手段6aにより電子膨張弁13の開度を調節することで、第二蒸発器6に送り込む冷媒流量を制御する。   Next, a driving method will be described. In the case of an air-cooled condenser, the air volume is adjusted by the condensation pressure control means 2a so that the condensation pressure is detected by the pressure sensor 29 and reaches the target condensation pressure. Specifically, when the condensation pressure is lower than the target pressure, the air volume is decreased. Conversely, when the condensation pressure exceeds the target pressure, the air volume is increased. In the case of a water-cooled condenser, adjust the amount of water. Specifically, when the condensation pressure is lower than the target pressure, the amount of water is decreased. Conversely, when the condensation pressure is higher than the target pressure, the amount of water is increased. With such a control method, the condensation pressure is set within a target range. Further, the pressure and temperature at the outlet of the second evaporator are measured by the pressure sensor 18 and the temperature sensor 19, the degree of superheat at the outlet of the second evaporator is calculated, and the first second flow rate is set so as to reach the target degree of superheat. The flow rate of the refrigerant sent to the second evaporator 6 is controlled by adjusting the opening degree of the electronic expansion valve 13 by the adjusting valve control means 6a.

実施の形態9.
図12は発明の実施の形態9を示したものである。第二蒸発器6に蒸発圧力を検出する第2の蒸発圧力検出手段31として圧力センサ31を備えている。第二蒸発器6に第2の蒸発圧力検出手段31の代わりに第2の蒸発温度検出手段として温度センサを用いてもよい。凝縮器2に凝縮圧力検出手段29として圧力センサを備えているが、凝縮温度温度検出手段でもよい。凝縮器2の凝縮圧力あるいは凝縮温度は前記発明の実施の形態8の制御と同様に凝縮圧力制御手段2aにて制御する。第二蒸発器6の蒸発圧力を圧力センサ31で検出し、第3の第二流量調節弁制御手段6bにより、目標の蒸発圧力になるように、第二流量調節弁13を制御する。具体的には、蒸発圧力が目標の蒸発圧力より大きい場合は、流量調節弁13として例えば電子膨張弁13の開度を小さくする。逆に蒸発圧力が目標の蒸発圧力より低い場合は、電子膨張弁13の開度を大きくする。この運転により凝縮圧力は一定、第二蒸発圧力は一定となる。また、第一蒸発圧力はエゼクタのノズルの入口の状態とノズル径でほぼ決定されるため、第一蒸発圧力もほぼ一定となる。その結果、(2)式におけるHR10−HR3,HR11−HR4も一定となり、流量比αも一定となり、第二蒸発
器6の冷凍能力は一定となる。このような制御方法は、負荷変動が小さい冷凍倉庫などに特に有効である。
Embodiment 9 FIG.
FIG. 12 shows Embodiment 9 of the invention. The second evaporator 6 is provided with a pressure sensor 31 as the second evaporation pressure detecting means 31 for detecting the evaporation pressure. A temperature sensor may be used as the second evaporation temperature detection means in the second evaporator 6 instead of the second evaporation pressure detection means 31. Although the condenser 2 is provided with a pressure sensor as the condensation pressure detection means 29, it may be a condensation temperature temperature detection means. The condensing pressure or condensing temperature of the condenser 2 is controlled by the condensing pressure control means 2a as in the control of the eighth embodiment of the present invention. The evaporation pressure of the second evaporator 6 is detected by the pressure sensor 31, and the second flow rate adjustment valve 13 is controlled by the third second flow rate adjustment valve control means 6b so as to reach the target evaporation pressure. Specifically, when the evaporation pressure is larger than the target evaporation pressure, for example, the opening degree of the electronic expansion valve 13 is reduced as the flow rate adjustment valve 13. Conversely, when the evaporation pressure is lower than the target evaporation pressure, the opening degree of the electronic expansion valve 13 is increased. By this operation, the condensation pressure is constant and the second evaporation pressure is constant. Further, since the first evaporation pressure is substantially determined by the state of the inlet of the ejector nozzle and the nozzle diameter, the first evaporation pressure is also substantially constant. As a result, H R10 −H R3 and H R11 −H R4 in equation (2) are also constant, the flow rate ratio α is also constant, and the refrigeration capacity of the second evaporator 6 is constant. Such a control method is particularly effective in a refrigerated warehouse where the load fluctuation is small.

実施の形態10.
図13は発明の実施の形態10を示すものである。圧縮機1、凝縮器2、液溜26、第三開閉弁27、第一流量調節弁3、第一蒸発器5、気液分離器7を順次接続して回路を形成し、前記第一流量調節弁3と第一蒸発器5をバイパスさせる第四バイパス回路28にエゼクタ4を備え、さらに、第二流量調節弁13と第二蒸発器6を接続した回路を前記気液分離器7と前記エゼクタ4の吸引部E4に接続している。前記気液分離器7と第二蒸発器6との間に第二流量調節弁13として電子膨張弁13を備えている。また、第一流量調節弁3として、例えば電子膨張弁3を用いる。また、凝縮器2には凝縮圧力を検出する凝縮圧力検出手段として圧力センサ29及び凝縮圧力制御手段2a、第一蒸発器5の蒸発圧力を検出する第2の第一蒸発器圧力検出手段として圧力センサ32及び第3の第一流量調節弁制御手段5a、第二蒸発器の蒸発圧力を検出する第2の第二蒸発器圧力手段として圧力センサ31及び第3の第二流量調節弁制御手段6bを備えている。
通常の運転では、凝縮器2では目標の凝縮圧力になるように凝縮圧力制御手段2aにより風量や水量を増減させる。第一蒸発器5については、目標の第一蒸発圧力になるように第3の第一流量調節弁制御手段5aにより電子膨張弁3の制御を行い、第二蒸発器6については、目標の第二蒸発圧力になるように第3の第二流量調節弁制御手段6bにより電子膨張弁13の制御を行う。通常の運転では、エゼクタ4に流れる冷媒流量はほぼ一定であり、エゼクタ入口の状態もほぼ一定であるので、第二蒸発器6での冷凍能力はほぼ一定となる。また、第二蒸発器6の冷凍能力もほぼ一定となる。
例えば第一蒸発器5の設置されている庫内の温度が高い場合(負荷大きい場合)は気液分離器7に液がなくなる可能性がある。しかし、本発明の実施の形態のようにバイパス回路28にエゼクタ4を設け、第一蒸発器5をバイパスさせることで、常に気液分離器7に冷媒液を送り込むことができるため、気液分離器7に冷媒液を溜めることが可能となり、信頼性が向上する。
Embodiment 10 FIG.
FIG. 13 shows a tenth embodiment of the invention. The compressor 1, the condenser 2, the liquid reservoir 26, the third on-off valve 27, the first flow rate adjusting valve 3, the first evaporator 5, and the gas-liquid separator 7 are sequentially connected to form a circuit, and the first flow rate The fourth bypass circuit 28 for bypassing the control valve 3 and the first evaporator 5 is provided with the ejector 4, and the circuit connecting the second flow rate control valve 13 and the second evaporator 6 is connected to the gas-liquid separator 7 and the It is connected to the suction part E4 of the ejector 4. An electronic expansion valve 13 is provided as a second flow rate adjustment valve 13 between the gas-liquid separator 7 and the second evaporator 6. As the first flow rate adjusting valve 3, for example, an electronic expansion valve 3 is used. The condenser 2 has a pressure sensor 29 and a condensation pressure control means 2a as the condensation pressure detection means for detecting the condensation pressure, and a pressure as the second first evaporator pressure detection means for detecting the evaporation pressure of the first evaporator 5. The sensor 32 and the third first flow rate control valve control means 5a, the pressure sensor 31 and the third second flow rate control valve control means 6b as the second second evaporator pressure means for detecting the evaporation pressure of the second evaporator. It has.
In normal operation, in the condenser 2, the air volume and the water volume are increased or decreased by the condensation pressure control means 2a so that the target condensation pressure is obtained. For the first evaporator 5, the electronic expansion valve 3 is controlled by the third first flow rate control valve control means 5 a so as to achieve the target first evaporation pressure. For the second evaporator 6, the target first evaporation pressure is controlled. The electronic expansion valve 13 is controlled by the third second flow rate control valve control means 6b so as to obtain the double evaporation pressure. In normal operation, the flow rate of the refrigerant flowing through the ejector 4 is substantially constant, and the state of the ejector inlet is also substantially constant, so that the refrigerating capacity in the second evaporator 6 is substantially constant. Moreover, the refrigerating capacity of the second evaporator 6 is also substantially constant.
For example, when the temperature in the cabinet in which the first evaporator 5 is installed is high (when the load is large), there is a possibility that the gas-liquid separator 7 may run out of liquid. However, since the ejector 4 is provided in the bypass circuit 28 and the first evaporator 5 is bypassed as in the embodiment of the present invention, the refrigerant liquid can always be fed into the gas-liquid separator 7. Refrigerant liquid can be stored in the vessel 7 and the reliability is improved.

実施の形態11.
図14は発明の実施の形態11を示すものである。前記発明の実施の形態10の第四バイパス回路28の第一蒸発器6と気液分離器7を接続した配管との合流点と第一蒸発器出口の間にエゼクタ4の出口圧力と、圧縮機吸込み圧力を常に等しくするような圧力調節弁34として例えば蒸発圧力調節弁34を備えている。第一蒸発器5での冷媒負荷が大きくなり、エゼクタ4出口の圧力が上昇し、その結果、エゼクタ4での圧力差が十分に確保できず、性能を十分に発揮できない現象が発生する。蒸発圧力調節弁34を設置することで、エゼクタ4出口の圧力をほぼ一定にすることが可能となり、エゼクタ4の性能を一定にすることができる。第一蒸発器出口には第一蒸発器出口圧力を検出する第3の圧力検出手段35、第一蒸発器出口温度を検出する第2の温度検出手段36として圧力センサ35、温度センサ36及び第4の第一流量調節弁制御手段5bを備えている。
凝縮器2及び第二蒸発器6の圧力制御については、前記実施の形態10と同じである。

通常の運転では、エゼクタ4に流れる冷媒流量はほぼ一定であり、エゼクタ入口の状態もほぼ一定であるので、第二蒸発器6での冷凍能力はほぼ一定となる。また第一蒸発器出口の圧力センサ35、温度センサ36から第一蒸発器出口の過熱度を求め、目標の過熱度になるように電子膨張弁3の開度を調節する。本発明の実施の形態のような冷媒回路にすることで、第一蒸発器5の冷凍能力は可変、第二蒸発器6の冷凍能力は一定にすることが可能となる。このような制御及び冷媒回路を用いる冷凍装置は、第一蒸発器側の冷凍倉庫は負荷変動があるが、第二蒸発器の冷凍倉庫は負荷変動が小さい所に特に有効である。
Embodiment 11 FIG.
FIG. 14 shows Embodiment 11 of the invention. The outlet pressure of the ejector 4 and the compression between the junction of the first evaporator 6 and the pipe connecting the gas-liquid separator 7 of the fourth bypass circuit 28 of the tenth embodiment of the invention and the outlet of the first evaporator For example, an evaporation pressure adjusting valve 34 is provided as a pressure adjusting valve 34 for always equalizing the machine suction pressure. The refrigerant load in the first evaporator 5 is increased, and the pressure at the outlet of the ejector 4 is increased. As a result, a pressure difference at the ejector 4 cannot be sufficiently secured, and a phenomenon in which the performance cannot be exhibited sufficiently occurs. By installing the evaporation pressure control valve 34, the pressure at the outlet of the ejector 4 can be made substantially constant, and the performance of the ejector 4 can be made constant. At the outlet of the first evaporator, there are a third pressure detection means 35 for detecting the first evaporator outlet pressure, a pressure sensor 35, a temperature sensor 36 and a second temperature detection means 36 for detecting the first evaporator outlet temperature. 4 first flow rate control valve control means 5b.
The pressure control of the condenser 2 and the second evaporator 6 is the same as in the tenth embodiment.

In normal operation, the flow rate of the refrigerant flowing through the ejector 4 is substantially constant, and the state of the ejector inlet is also substantially constant, so that the refrigerating capacity in the second evaporator 6 is substantially constant. Further, the degree of superheat at the outlet of the first evaporator is obtained from the pressure sensor 35 and the temperature sensor 36 at the outlet of the first evaporator, and the opening degree of the electronic expansion valve 3 is adjusted so as to achieve the target degree of superheat. By using the refrigerant circuit as in the embodiment of the present invention, the refrigerating capacity of the first evaporator 5 can be made variable, and the refrigerating capacity of the second evaporator 6 can be made constant. The refrigeration apparatus using such a control and refrigerant circuit is particularly effective in a place where the first evaporator side refrigeration warehouse has a load fluctuation, but the second evaporator refrigeration warehouse has a small load fluctuation.

実施の形態12.
図15は発明の実施の形態12を示すものである。前記発明の実施の形態10の第四バイパス回路28に第四開閉弁33として、例えば電磁弁33を備えている。通常運転では、前記第四バイパス回路28の電磁弁33は開にしておき、前記発明の実施の形態10と同様の制御とする。エゼクタ4を備えた第四バイパス回路28の電磁弁33を閉じることで、起動時やプルダウン時には第一蒸発器5のみの運転となり、通常の冷凍サイクルとなる。起動時やプルダウン運転時(非定常な運転時)は、冷媒流量などの変動が大きいことが予測され、安定な状態になるまでは、エゼクタに冷媒を流さないようにしたいため、通常の冷凍サイクル運転とする。また、前記電磁弁33を閉じることで、第二蒸発器6は停止による霜取り運転、第一蒸発器5は通常運転が可能となる。逆に、第一電子膨張弁3を全閉にし、前記電磁弁33は開にしておくと、第一蒸発器5は停止による霜取り運転、第二蒸発器6は通常運転が可能となる。
Embodiment 12 FIG.
FIG. 15 shows a twelfth embodiment of the invention. For example, an electromagnetic valve 33 is provided as the fourth on-off valve 33 in the fourth bypass circuit 28 of the tenth embodiment of the invention. In normal operation, the solenoid valve 33 of the fourth bypass circuit 28 is kept open and the control is the same as in the tenth embodiment of the invention. By closing the solenoid valve 33 of the fourth bypass circuit 28 including the ejector 4, only the first evaporator 5 is operated at the time of start-up or pull-down, and a normal refrigeration cycle is achieved. During start-up or pull-down operation (during unsteady operation), fluctuations in the refrigerant flow rate are expected to be large, and it is desirable to prevent the refrigerant from flowing into the ejector until it becomes stable. Let's drive. Further, by closing the electromagnetic valve 33, the second evaporator 6 can be defrosted by stopping, and the first evaporator 5 can be operated normally. Conversely, when the first electronic expansion valve 3 is fully closed and the electromagnetic valve 33 is opened, the first evaporator 5 can be defrosted by stopping and the second evaporator 6 can be operated normally.

この発明の実施の形態1を示す図である。It is a figure which shows Embodiment 1 of this invention. この発明のエゼクタの構造図である。1 is a structural diagram of an ejector according to the present invention. この発明の圧力−エンタルピ線図上の冷凍サイクル動作点である。It is the refrigerating cycle operating point on the pressure-enthalpy diagram of this invention. この発明のHR10−HR3/HR11−HR4と蒸発温度の関係を示す図である。Is a diagram showing an H R10 -H R3 / H R11 -H R4 and relationship evaporation temperature of the present invention. この発明の実施の形態2を示す図である。It is a figure which shows Embodiment 2 of this invention. この発明の実施の形態3を示す図である。It is a figure which shows Embodiment 3 of this invention. この発明の実施の形態4を示す図である。It is a figure which shows Embodiment 4 of this invention. この発明の実施の形態5を示す図である。It is a figure which shows Embodiment 5 of this invention. この発明の実施の形態6を示す図である。It is a figure which shows Embodiment 6 of this invention. この発明の実施の形態7を示す図である。It is a figure which shows Embodiment 7 of this invention. この発明の実施の形態8を示す図である。It is a figure which shows Embodiment 8 of this invention. この発明の実施の形態9を示す図である。It is a figure which shows Embodiment 9 of this invention. この発明の実施の形態10を示す図である。It is a figure which shows Embodiment 10 of this invention. この発明の実施の形態11を示す図である。It is a figure which shows Embodiment 11 of this invention. この発明の実施の形態12を示す図である。It is a figure which shows Embodiment 12 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 凝縮器、2a 凝縮器制御手段、3 第一流量調節弁、4 エゼクタ、5 第一蒸発器、5b 制御手段、6 第二蒸発器、6a 制御手段、6b 制御手段、7 気液分離器、8 液面検知手段、12 第一開閉弁、13 第二流量調節弁、14 開閉弁(第二開閉弁)、15 バイパス回路(第一バイパス回路)、16 第二バイパス回路、17 第三流量調節弁、18 圧力検知手段、19 温度検知手段、20 圧力検知手段、21 温度検知手段、22 吸引部、23 バイパス回路(第三バイパス回路)、24 流量調節弁(第四流量調節弁)、28 バイパス回路、29 凝縮圧力(温度)検知手段、31 第二蒸発器圧力(温度)検出手段、33 開閉弁、34 圧力調整弁、35 圧力検出手段、36 温度検出手段。
なお、各図中において同一の番号は同一または相当部分を示す。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 2a Condenser control means, 3 First flow control valve, 4 Ejector, 5 First evaporator, 5b Control means, 6 Second evaporator, 6a Control means, 6b Control means, 7 Air Liquid separator, 8 liquid level detecting means, 12 first on-off valve, 13 second flow rate adjusting valve, 14 on-off valve (second on-off valve), 15 bypass circuit (first bypass circuit), 16 second bypass circuit, 17 3rd flow control valve, 18 pressure detection means, 19 temperature detection means, 20 pressure detection means, 21 temperature detection means, 22 suction part, 23 bypass circuit (3rd bypass circuit), 24 flow control valve (4th flow control valve) ), 28 Bypass circuit, 29 Condensing pressure (temperature) detecting means, 31 Second evaporator pressure (temperature) detecting means, 33 On-off valve, 34 Pressure adjusting valve, 35 Pressure detecting means, 36 Temperature detecting means.
In the drawings, the same numbers indicate the same or corresponding parts.

Claims (17)

圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、冷媒としてハイドロフルオロカーボンR404AまたはR507を用いたことを特徴とする冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. A refrigerating apparatus using hydrofluorocarbon R404A or R507 as a refrigerant in a refrigerating apparatus connected through a pipe. 圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記気液分離器に設けられた液面検知手段と前記液面検知手段が前記気液分離器の冷媒量が所定量にないことを検知した時、前記冷媒量が所定量になるまで前記第一流量調節弁の開度制御する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. In the refrigeration apparatus connected via a pipe, when the liquid level detection means provided in the gas-liquid separator and the liquid level detection means detect that the amount of refrigerant in the gas-liquid separator is not a predetermined amount, A refrigeration apparatus comprising: control means for controlling an opening degree of the first flow rate control valve until a refrigerant amount reaches a predetermined amount. 圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記第二蒸発器出口側配管に設けられた圧力検知手段及び温度検知手段と、前記圧力検知手段と温度検知手段との検出値に基づき、前記第二蒸発器出口の過熱度が所定値となるように第二流量調節弁を制御する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. In the refrigerating apparatus connected via piping, on the outlet side of the gas-liquid separator, a second flow rate control valve connected by piping between the gas-liquid separator and the second evaporator, and the second evaporator outlet Second flow rate adjustment so that the degree of superheat at the outlet of the second evaporator becomes a predetermined value based on the pressure detection means and temperature detection means provided in the side pipe, and the detection values of the pressure detection means and the temperature detection means And a control means for controlling the valve. 圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記気液分離器に設けた液面検知手段と、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記液面検知手段が前記気液分離器の冷媒液量不足を検知した時、前記冷媒量が所定量になるまで前記第二流量調節弁を閉弁する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. In the refrigeration apparatus connected via a pipe, a liquid level detecting means provided in the gas-liquid separator and an outlet side of the gas-liquid separator are connected between the gas-liquid separator and the second evaporator. And a control means for closing the second flow control valve until the refrigerant amount reaches a predetermined amount when the liquid level detection means detects that the refrigerant liquid amount is insufficient in the gas-liquid separator. A refrigeration apparatus comprising: 圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記第一蒸発器の出口側配管に設けられた圧力検知手段及び温度検知手段と、前記圧力検知手段と温度検知手段との検出値に基づき、前記第一蒸発器出口の過熱度が所定値となるように第一流量調節弁を制御する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. In the refrigeration apparatus connected via the pipe, the first detection unit and the temperature detection unit provided in the outlet side pipe of the first evaporator, and the first detection unit based on the detection values of the pressure detection unit and the temperature detection unit. And a control means for controlling the first flow rate control valve so that the degree of superheat at the evaporator outlet becomes a predetermined value. 圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記気液分離器に設けられた液面検知手段と、前記第一蒸発器をバイパスする、開閉弁または流量調節弁を有するバイパス回路と、前記液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、前記バイパス回路の開閉弁または流量調節弁を開弁する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. In a refrigeration apparatus connected via a pipe, a liquid level detection means provided in the gas-liquid separator, a bypass circuit having an on-off valve or a flow rate adjustment valve that bypasses the first evaporator, and the liquid level detection Control means for opening an on-off valve or a flow rate control valve of the bypass circuit until the refrigerant amount reaches a predetermined amount when the means detects a refrigerant amount shortage of the gas-liquid separator. Refrigeration equipment. 第一蒸発器入口側配管に第一開閉弁を備え、バイパス回路をエゼクタと前記第一開閉弁間の配管と、前記第一蒸発器と気液分離器間の配管とに接続された第二開閉弁を有する第一のバイパス回路とし、液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、制御手段が前記第一開閉弁を閉弁し、前記第二開閉弁を開弁すること特徴とする請求項6記載の冷凍装置。 A first on-off valve is provided in the first evaporator inlet side pipe, and a bypass circuit is connected to a pipe between the ejector and the first on-off valve, and a second pipe connected to the pipe between the first evaporator and the gas-liquid separator. A first bypass circuit having an on-off valve is provided, and when the liquid level detection means detects that the refrigerant amount in the gas-liquid separator is insufficient, the control means closes the first on-off valve until the refrigerant amount reaches a predetermined amount. 7. The refrigeration apparatus according to claim 6, wherein the second on-off valve is opened. 第一流量調節弁とエゼクタとをバイパスする第三流量調節弁を有する第二バイパス回路を備え、液面検知手段が気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、制御手段が第一バイパス回路の第二開閉弁を開弁し、第一蒸発器の第一開閉弁及び第一流量調節弁を閉弁し、前記第三流量調節弁の弁開度を調節制御すること特徴とする請求項7記載の冷凍装置。 A second bypass circuit having a third flow rate control valve for bypassing the first flow rate control valve and the ejector, and when the liquid level detecting means detects that the refrigerant amount of the gas-liquid separator is insufficient, the refrigerant amount is set to a predetermined amount; Until the control means opens the second on-off valve of the first bypass circuit, closes the first on-off valve and the first flow control valve of the first evaporator, the valve opening of the third flow control valve The refrigeration apparatus according to claim 7, wherein the refrigeration apparatus is adjusted and controlled. バイパス回路を、凝縮器と第一流量調節弁間の配管と、第一蒸発器と気液分離器間の配管とを接続する第4流量調節弁を有する第三バイパス回路とし、液面検知手段が前記気液分離器の冷媒量不足を検知した時、前記冷媒量が所定量になるまで、制御手段が前記第一流量調節弁を閉弁し、前記第4流量調節弁の弁開度を調節制御すること特徴とする請求項6記載の冷凍装置。 The bypass circuit is a third bypass circuit having a fourth flow rate control valve for connecting a pipe between the condenser and the first flow rate control valve and a pipe between the first evaporator and the gas-liquid separator, and a liquid level detecting means When detecting that the amount of refrigerant in the gas-liquid separator is insufficient, the control means closes the first flow rate adjustment valve until the refrigerant amount reaches a predetermined amount, and sets the valve opening degree of the fourth flow rate adjustment valve. The refrigeration apparatus according to claim 6, wherein the refrigeration apparatus is controlled. 圧縮機、凝縮器、第一流量調節弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタの吸引部とが第二蒸発器を介して配管接続された冷凍装置において、前記気液分離器に設けた液面検知手段と、前記気液分離器の出口側で、前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁と、前記第一流量調節弁と前記エゼクタとをバイパスする第二バイパス回路と、前記第二バイパス回路に設けた第三流量調節弁と、前記液面検知手段が前記気液分離器の冷媒量不足を検知したとき、前記冷媒量が所定量になるまで、前記第一流量弁と前記第二流量弁とを閉弁し、前記第三流量調節弁の弁開度を調節する制御手段とを備えた冷凍装置。 A compressor, a condenser, a first flow rate control valve, an ejector, a first evaporator, and a gas-liquid separator are connected in a pipe, and the gas-liquid separator and the suction part of the ejector are connected to the second evaporator. In the refrigeration apparatus connected via a pipe, a liquid level detecting means provided in the gas-liquid separator and an outlet side of the gas-liquid separator are connected between the gas-liquid separator and the second evaporator. A second flow rate control valve, a second bypass circuit that bypasses the first flow rate control valve and the ejector, a third flow rate control valve provided in the second bypass circuit, and the liquid level detecting means When a shortage of refrigerant in the liquid separator is detected, the first flow valve and the second flow valve are closed until the refrigerant amount reaches a predetermined amount, and the valve opening of the third flow control valve is adjusted. A refrigeration apparatus comprising a control means for adjusting. 圧縮機、凝縮器、開閉弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、前記気液分離器を前記第二蒸発器より高い位置に設置するとともに、前記第二蒸発器出口側の圧力を検出する圧力検出手段と、同じく温度を検出する温度検出手段と、前記第二流量調節弁を制御する制御手段とを備え、前記制御手段は、前記圧力検出手段の検出圧力及び前記温度検出手段の検出温度に基づき、前記第二蒸発器出口側の過熱度が目標の過熱度になるように前記第二流量調節弁で冷媒流量を調節するとともに、停止時には前記流量調節弁を全開にすることを特徴とする冷凍装置。 A compressor, a condenser, an on-off valve, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected to a pipe, and the gas-liquid separator and the ejector suction part are connected to each other via a second evaporator. In the refrigeration apparatus further comprising a second flow rate control valve connected by piping between the gas-liquid separator and the second evaporator, the gas-liquid separator is installed at a position higher than the second evaporator. A pressure detecting means for detecting the pressure on the outlet side of the second evaporator, a temperature detecting means for detecting the temperature, and a control means for controlling the second flow rate adjusting valve, wherein the control means comprises the pressure Based on the detected pressure of the detecting means and the detected temperature of the temperature detecting means, the refrigerant flow rate is adjusted by the second flow rate control valve so that the superheat degree on the outlet side of the second evaporator becomes the target superheat degree, and stopped. Sometimes the flow control valve is fully open. Refrigeration apparatus according to claim. 起動時は、前記制御手段が前記第二流量調節弁を全閉にし前記圧力検出手段と前記温度検出手段の検出値により第二蒸発器出口の過熱度を検出し、過熱度が所定の値になるまで前記第二流量調節弁を全閉にすることを特徴とする請求項11記載の冷凍装置。 At startup, the control means fully closes the second flow rate control valve, detects the superheat degree at the outlet of the second evaporator based on the detection values of the pressure detection means and the temperature detection means, and the superheat degree becomes a predetermined value. The refrigeration apparatus according to claim 11, wherein the second flow rate control valve is fully closed until it becomes. 圧縮機、凝縮器、開閉弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、前記凝縮器の凝縮圧力を検出する凝縮圧力検出手段あるいは凝縮温度を検出する凝縮温度検出手段と、前記凝縮圧力検出手段あるいは凝縮温度検出手段の検出値により、目標の凝縮圧力あるいは目標の凝縮温度になるように凝縮器の凝縮状態を制御する凝縮器制御手段と、前記第二蒸発器出口側の圧力を検出する圧力検出手段と、同じく温度を検出する温度検出手段と、前記圧力検出手段の検出圧力及び前記温度検出手段の検出温度に基づき、前記第二蒸発器出口側の過熱度が目標の加熱度になるように前記第二流量調節弁を制御する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, an on-off valve, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected to a pipe, and the gas-liquid separator and the ejector suction part are connected to each other via a second evaporator. And a condensing pressure detecting means for detecting a condensing pressure of the condenser or a condensing temperature in a refrigeration apparatus further comprising a second flow rate control valve connected between the gas-liquid separator and the second evaporator. And a condenser control means for controlling a condensation state of the condenser so as to reach a target condensation pressure or a target condensation temperature based on a detection value of the condensation pressure detection means or the condensation temperature detection means, Based on the pressure detection means for detecting the pressure on the outlet side of the second evaporator, the temperature detection means for detecting the temperature, the detected pressure of the pressure detection means and the detected temperature of the temperature detection means, the second evaporator outlet ~ side Refrigerating apparatus characterized by degree of superheat and a control means for controlling the second flow rate control valve so that the heating of the target. 圧縮機、凝縮器、開閉弁、エゼクタ、第一蒸発器、気液分離器が、順次配管接続され、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、前記凝縮器の凝縮圧力を検出する凝縮圧力検出手段あるいは凝縮温度を検出する凝縮温度検出手段と、前記凝縮圧力検出手段あるいは凝縮温度検出手段の検出値により、目標の凝縮圧力あるいは目標の凝縮温度になるように凝縮器の凝縮状態を制御する凝縮器制御手段と、前記第二蒸発器の蒸発圧力を検出する圧力検出手段あるいは蒸発温度を検出する温度検出手段と、前記圧力検出手段の検出圧力あるいは前記温度検出手段の検出温度に基づき、前記第二蒸発器の蒸発圧力または蒸発温度が目標の蒸発圧力または目標の蒸発温度になるように前記第二流量調節弁を制御する制御手段とを備えたことを特徴とする冷凍装置。 A compressor, a condenser, an on-off valve, an ejector, a first evaporator, and a gas-liquid separator are sequentially connected to a pipe, and the gas-liquid separator and the ejector suction part are connected to each other via a second evaporator. And a condensing pressure detecting means for detecting a condensing pressure of the condenser or a condensing temperature in a refrigeration apparatus further comprising a second flow rate control valve connected between the gas-liquid separator and the second evaporator. And a condenser control means for controlling a condensation state of the condenser so as to reach a target condensation pressure or a target condensation temperature based on a detection value of the condensation pressure detection means or the condensation temperature detection means, Based on the pressure detection means for detecting the evaporation pressure of the second evaporator or the temperature detection means for detecting the evaporation temperature, and the detected pressure of the pressure detection means or the detected temperature of the temperature detection means, Refrigerating apparatus characterized by originating pressure or evaporation temperature and control means for controlling said second flow control valve such that the evaporation temperature of the evaporator pressure or the target goal. 圧縮機、凝縮器、開閉弁、第一流量調節弁、第一蒸発器、気液分離器が、順次配管接続され、前記第一流量調節弁と第一蒸発器をバイパスするバイパス回路にエゼクタを備え、また、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、圧力検出手段あるいは温度検出手段を備え、前記凝縮器の凝縮圧力あるいは凝縮温度を検出し、目標の凝縮圧力あるいは目標の凝縮温度になるように、凝縮器の凝縮状態を制御する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第一蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第一流量調節弁を制御する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第二蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第二流量調節弁の冷媒流量を調節する制御手段を備えたことを特徴とする冷凍装置。 A compressor, a condenser, an on-off valve, a first flow rate control valve, a first evaporator, and a gas-liquid separator are connected in series, and an ejector is provided in a bypass circuit that bypasses the first flow rate control valve and the first evaporator. And a second flow rate control valve in which the gas-liquid separator and the ejector suction part are connected via a second evaporator, and further connected between the gas-liquid separator and the second evaporator. A pressure detecting means or a temperature detecting means for detecting the condensing pressure or condensing temperature of the condenser and adjusting the condensing state of the condenser so as to reach a target condensing pressure or a target condensing temperature. A control means for controlling, a pressure detecting means or a temperature detecting means, detecting the evaporating pressure or evaporating temperature of the first evaporator, and adjusting the first flow rate adjusting valve so as to reach a target evaporating pressure or a target evaporating temperature. Control A control means, a pressure detection means or a temperature detection means for detecting the evaporation pressure or evaporation temperature of the second evaporator, and the refrigerant of the second flow rate control valve so as to reach the target evaporation pressure or the target evaporation temperature A refrigeration apparatus comprising control means for adjusting a flow rate. 第一流量調節弁と第二蒸発器をバイパスさせるバイパス回路に開閉弁を備えたことを特徴とする請求項15記載の冷凍装置。 The refrigerating apparatus according to claim 15, wherein an on-off valve is provided in a bypass circuit for bypassing the first flow rate control valve and the second evaporator. 圧縮機、凝縮器、開閉弁、第一流量調節弁、第一蒸発器、気液分離器が、順次配管接続され、前記第一流量調節弁と第一蒸発器をバイパスする回路にエゼクタを備え、前記第一蒸発器と前記気液分離器を接続する配管への、前記バイパス回路の合流点と第一蒸発器出口間に圧力調整弁を備え、前記気液分離器と前記エゼクタ吸引部とが第二蒸発器を介して配管接続され、さらに前記気液分離器と前記第二蒸発器間に配管接続された第二流量調節弁を備えた冷凍装置において、圧力検出手段あるいは温度検出手段を備え、前記凝縮器の凝縮圧力あるいは凝縮温度を検出し、目標の凝縮圧力あるいは目標の凝縮温度になるように、凝縮器の凝縮状態を制御する制御手段と、圧力検出手段と温度検出手段を備え、第一蒸発器出口の圧力と温度を検出し、目標の過熱度になるように、前記第一流量調節弁で冷媒流量を調節する制御手段と、圧力検出手段あるいは温度検出手段を備え、前記第二蒸発器の蒸発圧力あるいは蒸発温度を検出し、目標の蒸発圧力あるいは目標の蒸発温度になるように前記第二流量調節弁の冷媒流量を調節する制御手段を備えたことを特徴とする冷凍装置。 A compressor, a condenser, an on-off valve, a first flow rate adjustment valve, a first evaporator, and a gas-liquid separator are connected in series, and an ejector is provided in a circuit that bypasses the first flow rate adjustment valve and the first evaporator. A pressure adjusting valve is provided between the junction of the bypass circuit and the outlet of the first evaporator to the pipe connecting the first evaporator and the gas-liquid separator, and the gas-liquid separator and the ejector suction unit In a refrigeration apparatus comprising a second flow rate control valve connected to a pipe via a second evaporator and further connected to a pipe between the gas-liquid separator and the second evaporator. A control means for detecting a condensation pressure or a condensation temperature of the condenser and controlling a condensation state of the condenser so as to reach a target condensation pressure or a target condensation temperature; a pressure detection means; and a temperature detection means. Detect the pressure and temperature at the outlet of the first evaporator And a control means for adjusting the refrigerant flow rate with the first flow rate control valve and a pressure detection means or a temperature detection means so as to achieve a target superheat degree, and detects an evaporation pressure or an evaporation temperature of the second evaporator. A refrigeration apparatus comprising control means for adjusting the refrigerant flow rate of the second flow rate control valve so as to achieve a target evaporation pressure or a target evaporation temperature.
JP2006147851A 1996-03-28 2006-05-29 Refrigeration equipment Expired - Lifetime JP4082435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147851A JP4082435B2 (en) 1996-03-28 2006-05-29 Refrigeration equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7390996 1996-03-28
JP2006147851A JP4082435B2 (en) 1996-03-28 2006-05-29 Refrigeration equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9071086A Division JPH09318169A (en) 1996-03-28 1997-03-25 Refrigerating apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007273721A Division JP2008032391A (en) 1996-03-28 2007-10-22 Refrigerating unit

Publications (2)

Publication Number Publication Date
JP2006258418A true JP2006258418A (en) 2006-09-28
JP4082435B2 JP4082435B2 (en) 2008-04-30

Family

ID=37097871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147851A Expired - Lifetime JP4082435B2 (en) 1996-03-28 2006-05-29 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4082435B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243095A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Refrigerating cycle device and gas-liquid separator
JP2012021761A (en) * 2010-06-18 2012-02-02 Daikin Industries Ltd Refrigerating device
KR101524512B1 (en) * 2014-08-08 2015-06-01 홍기호 Heat exchanging system having anti-frost device
JP2017160878A (en) * 2016-03-11 2017-09-14 Jfeエンジニアリング株式会社 Injector type pressure increasing device and rankine cycle system
CN110553427A (en) * 2019-08-16 2019-12-10 盾安环境技术有限公司 air conditioning system and control method
CN112146314A (en) * 2020-09-22 2020-12-29 华商国际工程有限公司 Ammonia pump liquid supply refrigeration system and control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243095A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Refrigerating cycle device and gas-liquid separator
JP2012021761A (en) * 2010-06-18 2012-02-02 Daikin Industries Ltd Refrigerating device
KR101524512B1 (en) * 2014-08-08 2015-06-01 홍기호 Heat exchanging system having anti-frost device
JP2017160878A (en) * 2016-03-11 2017-09-14 Jfeエンジニアリング株式会社 Injector type pressure increasing device and rankine cycle system
CN110553427A (en) * 2019-08-16 2019-12-10 盾安环境技术有限公司 air conditioning system and control method
CN110553427B (en) * 2019-08-16 2021-07-20 盾安环境技术有限公司 Air conditioning system and control method
CN112146314A (en) * 2020-09-22 2020-12-29 华商国际工程有限公司 Ammonia pump liquid supply refrigeration system and control method thereof

Also Published As

Publication number Publication date
JP4082435B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JPH09318169A (en) Refrigerating apparatus
US7730729B2 (en) Refrigerating machine
US9976783B2 (en) Refrigeration cycle apparatus
US20180106514A1 (en) Refrigerating apparatus
KR102098164B1 (en) Refrigeration cycle device and control method of refrigeration cycle device
JP4082435B2 (en) Refrigeration equipment
WO2017037771A1 (en) Refrigeration cycle device
JP5484890B2 (en) Refrigeration equipment
JP2011133204A (en) Refrigerating apparatus
JP5449266B2 (en) Refrigeration cycle equipment
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
KR101190317B1 (en) Freezing device
JP2005214575A (en) Refrigerator
JP5502460B2 (en) Refrigeration equipment
JP4274250B2 (en) Refrigeration equipment
JP2002257427A (en) Refrigerating air conditioner and its operating method
JP2016205729A (en) Refrigeration cycle device
JP2008032391A (en) Refrigerating unit
JP4269476B2 (en) Refrigeration equipment
JP4111241B2 (en) Refrigeration equipment
JP2008267691A (en) Air conditioner
KR100876285B1 (en) Gas heat pump system
JP2005048981A (en) Refrigeration unit
JP2005214442A (en) Refrigerator
JP2007101179A5 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term